1
The statistical physics approach to
the theory of learning
Typical learning curves in student / teacher models
www.cs.rug.nl/~biehl
Michael Biehl
APPIS 2023
1
The statistical physics approach to
the theory of learning
Typical learning curves in student / teacher models
www.cs.rug.nl/~biehl
Michael Biehl
APPIS 2023
•statistical physics of stochastic optimizaton
1
The statistical physics approach to
the theory of learning
Typical learning curves in student / teacher models
www.cs.rug.nl/~biehl
Michael Biehl
APPIS 2023
•statistical physics of stochastic optimizaton
•machine learning specifics, disorder average over data sets
1
The statistical physics approach to
the theory of learning
Typical learning curves in student / teacher models
www.cs.rug.nl/~biehl
Michael Biehl
APPIS 2023
•statistical physics of stochastic optimizaton
•machine learning specifics, disorder average over data sets
•a simplifying limit: training at high temperature
1
The statistical physics approach to
the theory of learning
Typical learning curves in student / teacher models
www.cs.rug.nl/~biehl
Michael Biehl
APPIS 2023
•statistical physics of stochastic optimizaton
•machine learning specifics, disorder average over data sets
•a simplifying limit: training at high temperature
•student / teacher models
1
The statistical physics approach to
the theory of learning
Typical learning curves in student / teacher models
www.cs.rug.nl/~biehl
Michael Biehl
APPIS 2023
•statistical physics of stochastic optimizaton
•machine learning specifics, disorder average over data sets
•a simplifying limit: training at high temperature
•student / teacher models
•example: phase transitions in (shallow) layered neural networks
2
Statistical Physics of Neural Networks
John Hopfield
Neural Networks and physical systems with emergent
collective computational abilities
PNAS 79(8): 2554, 1982
[activity of model neurons for given synaptic weights]
2
Statistical Physics of Neural Networks
John Hopfield
Neural Networks and physical systems with emergent
collective computational abilities
PNAS 79(8): 2554, 1982
[activity of model neurons for given synaptic weights]
Elizabeth Gardner (1957-1988)
The space of interactions in neural networks
J. Phys. A 21: 257, 1988
[synaptic weights determined for given activity patterns]
3
stochastic optimization
objective/cost/ energy function , e.g. (later: )
consider stochastic optimization process, for example:
H(w) w ∈ ℝN
N → ∞
3
stochastic optimization
objective/cost/ energy function , e.g. (later: )
consider stochastic optimization process, for example:
H(w) w ∈ ℝN
N → ∞
Metropolis-like updates: small random changes of
accepted with probability
Δw w
min{1, exp[−βΔH]}
3
stochastic optimization
objective/cost/ energy function , e.g. (later: )
consider stochastic optimization process, for example:
H(w) w ∈ ℝN
N → ∞
Metropolis-like updates: small random changes of
accepted with probability
Δw w
min{1, exp[−βΔH]}
Langevin dynamics: noisy gradient descent
∂w
∂t
= − ∇wH(w) + f(t)
⟨fj(t)fk(s)⟩ =
2
β
δjkδ(t − s)
with delta-correlated noise:
3
stochastic optimization
objective/cost/ energy function , e.g. (later: )
consider stochastic optimization process, for example:
H(w) w ∈ ℝN
N → ∞
Metropolis-like updates: small random changes of
accepted with probability
Δw w
min{1, exp[−βΔH]}
Langevin dynamics: noisy gradient descent
∂w
∂t
= − ∇wH(w) + f(t)
⟨fj(t)fk(s)⟩ =
2
β
δjkδ(t − s)
with delta-correlated noise:
… acceptance rate for uphill moves in Metropolis algorithms
... noise level, i.e. random deviation from gradient
… “how serious we are about minimizing ”
H
temperature-like parameter controls
thermal equilibrium
stationary density of configurations:
normalization:
Zustandssumme, partition function
4
P(w) =
1
Z
exp [−βH(w)]
Z =
∫
dN
w exp [−βH(w)]
thermal equilibrium
stationary density of configurations:
normalization:
Zustandssumme, partition function
Gibbs-Boltzmann density of states
• physics: thermal equilibrium of a physical system at temperature T
• optimization: formal equilibrium situation, control parameter T
4
P(w) =
1
Z
exp [−βH(w)]
Z =
∫
dN
w exp [−βH(w)]
thermal equilibrium
stationary density of configurations:
normalization:
Zustandssumme, partition function
Gibbs-Boltzmann density of states
• physics: thermal equilibrium of a physical system at temperature T
• optimization: formal equilibrium situation, control parameter T
4
P(w) =
1
Z
exp [−βH(w)]
• thermal averages, e.g.
equilibrium properties given by (derivatives of) ln Z
E = ⟨H⟩T
=
∫
dN
w H(w) P(w) = −
∂
∂β
ln Z
Z =
∫
dN
w exp [−βH(w)]
5
~ volume of states with energy E
Z =
∫
dN
w exp[−β(Hw)] =
∫
dE
∫
dN
w δ[H(w) − E] e−βE
free energy
5
~ volume of states with energy E
Z =
∫
dN
w exp[−β(Hw)] =
∫
dE
∫
dN
w δ[H(w) − E] e−βE
assume extensive energy , for
E = Ne N → ∞
Z =
∫
dE exp [−Nβ (e − s(e)/β)]
entropy ,
s(E)
f = e − s/β ∼ − ln Z/(βN)
dominated by the minimum of the
free energy
free energy
5
~ volume of states with energy E
Z =
∫
dN
w exp[−β(Hw)] =
∫
dE
∫
dN
w δ[H(w) − E] e−βE
assume extensive energy , for
E = Ne N → ∞
Z =
∫
dE exp [−Nβ (e − s(e)/β)]
entropy ,
s(E)
f = e − s/β ∼ − ln Z/(βN)
dominated by the minimum of the
free energy
free energy
controls the competition between
minimization of energy e and
maximization of entropy s(e)
T = 1/β
6
machine learning
ID = {ξμ
, τμ
= τ(ξμ
)}
P
μ=1
H(w) =
P
∑
μ=1
ϵ(σμ
, τμ
)
specifically:
extensive ( ) for
∼ N P = αN
compares student outputs σμ
= σ(ξμ
) and targets τμ
= τ(ξμ
)
energy: defined with respect a given data set
6
machine learning
ID = {ξμ
, τμ
= τ(ξμ
)}
P
μ=1
H(w) =
P
∑
μ=1
ϵ(σμ
, τμ
)
specifically:
extensive ( ) for
∼ N P = αN
compares student outputs σμ
= σ(ξμ
) and targets τμ
= τ(ξμ
)
energy: defined with respect a given data set
6
machine learning
ID = {ξμ
, τμ
= τ(ξμ
)}
P
μ=1
H(w) =
P
∑
μ=1
ϵ(σμ
, τμ
)
typical results on average over data sets ID
•specific input density, e.g. i.i.d. zero mean, unit variance ξμ
j
•training labels provided by teacher network
τμ
, consider
specifically:
extensive ( ) for
∼ N P = αN
compares student outputs σμ
= σ(ξμ
) and targets τμ
= τ(ξμ
)
energy: defined with respect a given data set
6
machine learning
ID = {ξμ
, τμ
= τ(ξμ
)}
P
μ=1
H(w) =
P
∑
μ=1
ϵ(σμ
, τμ
)
typical results on average over data sets ID
•specific input density, e.g. i.i.d. zero mean, unit variance ξμ
j
•training labels provided by teacher network
τμ
, consider
disorder average:
quenched free energy ∼ ⟨ln Z⟩ID
technically difficult for general T = 1/β
specifically:
extensive ( ) for
∼ N P = αN
compares student outputs σμ
= σ(ξμ
) and targets τμ
= τ(ξμ
)
energy: defined with respect a given data set
6
machine learning
ID = {ξμ
, τμ
= τ(ξμ
)}
P
μ=1
H(w) =
P
∑
μ=1
ϵ(σμ
, τμ
)
typical results on average over data sets ID
•specific input density, e.g. i.i.d. zero mean, unit variance ξμ
j
•training labels provided by teacher network
τμ
, consider
disorder average:
quenched free energy ∼ ⟨ln Z⟩ID
technically difficult for general T = 1/β
specifically:
e.g. by means of the replica trick/method Giorgio Parisi, Nobel 2021
extensive ( ) for
∼ N P = αN
compares student outputs σμ
= σ(ξμ
) and targets τμ
= τ(ξμ
)
energy: defined with respect a given data set
7
high temperature limit
a simplifying limit: training at high temperature
lim
β→0
: ⟨ln Z⟩ID
= ln ⟨Z⟩ID ⟨H(w) ⟩ID
= P ⟨ϵ(σ, τ)⟩ξ
= P ϵg
generalization error
7
high temperature limit
a simplifying limit: training at high temperature
lim
β→0
: ⟨ln Z⟩ID
= ln ⟨Z⟩ID
βf = β (P/N) ϵg − s(ϵg)
⟨H(w) ⟩ID
= P ⟨ϵ(σ, τ)⟩ξ
= P ϵg
generalization error
7
high temperature limit
a simplifying limit: training at high temperature
lim
β→0
: ⟨ln Z⟩ID
= ln ⟨Z⟩ID
βf = β (P/N) ϵg − s(ϵg)
⟨H(w) ⟩ID
= P ⟨ϵ(σ, τ)⟩ξ
= P ϵg
generalization error
β → 0
P/N → ∞
⏟
α = 𝒪(1)
“learn almost nothing from
infinitely many examples”
7
high temperature limit
a simplifying limit: training at high temperature
lim
β→0
: ⟨ln Z⟩ID
= ln ⟨Z⟩ID
βf = β (P/N) ϵg − s(ϵg)
⟨H(w) ⟩ID
= P ⟨ϵ(σ, τ)⟩ξ
= P ϵg
generalization error
β → 0
P/N → ∞
⏟
α = 𝒪(1)
“learn almost nothing from
infinitely many examples”
min. free energy typical learning curve ϵg(α)
7
high temperature limit
a simplifying limit: training at high temperature
lim
β→0
: ⟨ln Z⟩ID
= ln ⟨Z⟩ID
βf = β (P/N) ϵg − s(ϵg)
⟨H(w) ⟩ID
= P ⟨ϵ(σ, τ)⟩ξ
= P ϵg
generalization error
β → 0
P/N → ∞
⏟
α = 𝒪(1)
“learn almost nothing from
infinitely many examples”
limitations:
- training error and generalization error cannot be distinguished
- number of examples and training temperature are coupled
- (at best) qualitative agreement with low temperature results
min. free energy typical learning curve ϵg(α)
8
student/teacher scenarios
example system: soft-committee machines (SCM)
adaptive student N-dim. inputs
<latexit
sha1_base64="EWEUTU/uT8q6Rkb2wo5Q65mhUMs=">AAACQXicbVDPaxQxFM5Ubetq66pHL8FF2l6WmaJYCoWCIEKhtOBuFzbbIZPJzIZNJtPkjbqE+de8ePDupfTeSw9K8erFzG4P/fVByMf3vcd770tKKSyE4Vmw8ODho8Wl5cetJ09XVp+1n7/oW10ZxntMS20GCbVcioL3QIDkg9JwqhLJj5LJh8Y/+sKNFbr4DNOSjxTNC5EJRsFLcXtArMgVxTuY2ErFbrIT1cd7OCeSZ7BOMkOZI4rCOMnc1zqeYMJSDZgkWqZ2qvznyDdR147YEwNuv66JEfkYNuJ2J+yGM+C7JLoind3ttdNj/PHnQdz+RVLNKsULYJJaO4zCEkaOGhBM8rpFKstLyiY050NPC6q4HblZAjV+45UUZ9r4VwCeqdc7HFW2WddXNsfY214j3ucNK8i2Rk4UZQW8YPNBWSUxaNzEiVNhOAM59YQyI/yumI2pTw186C0fQnT75Lukv9mN3nXDQ5/GWzTHMnqFXqN1FKH3aBd9Qgeohxj6js7Rb/Qn+BFcBJfB33npQnDV8xLdQPDvP9i7tUY=</latexit>
=
K
X
k=1
g
✓
wk · ⇠
p
N
◆
8
student/teacher scenarios
example system: soft-committee machines (SCM)
adaptive student N-dim. inputs
•non-linear hidden unit activations , fixed linear output
g(z)
<latexit
sha1_base64="EWEUTU/uT8q6Rkb2wo5Q65mhUMs=">AAACQXicbVDPaxQxFM5Ubetq66pHL8FF2l6WmaJYCoWCIEKhtOBuFzbbIZPJzIZNJtPkjbqE+de8ePDupfTeSw9K8erFzG4P/fVByMf3vcd770tKKSyE4Vmw8ODho8Wl5cetJ09XVp+1n7/oW10ZxntMS20GCbVcioL3QIDkg9JwqhLJj5LJh8Y/+sKNFbr4DNOSjxTNC5EJRsFLcXtArMgVxTuY2ErFbrIT1cd7OCeSZ7BOMkOZI4rCOMnc1zqeYMJSDZgkWqZ2qvznyDdR147YEwNuv66JEfkYNuJ2J+yGM+C7JLoind3ttdNj/PHnQdz+RVLNKsULYJJaO4zCEkaOGhBM8rpFKstLyiY050NPC6q4HblZAjV+45UUZ9r4VwCeqdc7HFW2WddXNsfY214j3ucNK8i2Rk4UZQW8YPNBWSUxaNzEiVNhOAM59YQyI/yumI2pTw186C0fQnT75Lukv9mN3nXDQ5/GWzTHMnqFXqN1FKH3aBd9Qgeohxj6js7Rb/Qn+BFcBJfB33npQnDV8xLdQPDvP9i7tUY=</latexit>
=
K
X
k=1
g
✓
wk · ⇠
p
N
◆
8
•complexity (mis-)match: vs. hidden units, here
K M K = M
student/teacher scenarios
example system: soft-committee machines (SCM)
adaptive student N-dim. inputs teacher parameterizes target
? ? ? ? ? ? ?
<latexit
sha1_base64="ALwOwp1y3TncZZzQCxrhKlQLkC0=">AAACQXicbVA9TxwxEPVCCHBAckCZxgIhAcVpN0oEFEhIaWiIiJSDk87Hyuv13lnY68WeBS7W/hz+Bg3/gI6eJkWiKG2aeO8o+HqS5af3ZjQzLymksBCGd8HE5Jupt9Mzs425+YV375uLS0dWl4bxNtNSm05CLZci520QIHmnMJyqRPLj5PRL7R+fc2OFzr/DsOA9Rfu5yASj4KW42SFAS7yLiS1V7NRuVJ0c4D6RPIN1khnKHFEUBknmLqpYnWxiwlINmCRapnao/OfIpagqR+yZAfe1qogR/QFsxM3VsBWOgF+S6IGs7u3A1Y9LuXIYN29JqlmpeA5MUmu7UVhAz1EDgkleNUhpeUHZKe3zrqc5Vdz23CiBCq95JcWZNv7lgEfq4w5Hla3X9ZX1Ofa5V4uved0Ssu2eE3lRAs/ZeFBWSgwa13HiVBjOQA49ocwIvytmA+pzAx96w4cQPT/5JTn62Io+t8JvPo1PaIwZ9AGtoHUUoS20h/bRIWojhq7RPfqFfgc3wc/gT/B3XDoRPPQsoycI/v0HjhS1HA==</latexit>
⌧ =
M
X
m=1
g
✓
w⇤
m · ⇠
p
N
◆
•non-linear hidden unit activations , fixed linear output
g(z)
<latexit
sha1_base64="EWEUTU/uT8q6Rkb2wo5Q65mhUMs=">AAACQXicbVDPaxQxFM5Ubetq66pHL8FF2l6WmaJYCoWCIEKhtOBuFzbbIZPJzIZNJtPkjbqE+de8ePDupfTeSw9K8erFzG4P/fVByMf3vcd770tKKSyE4Vmw8ODho8Wl5cetJ09XVp+1n7/oW10ZxntMS20GCbVcioL3QIDkg9JwqhLJj5LJh8Y/+sKNFbr4DNOSjxTNC5EJRsFLcXtArMgVxTuY2ErFbrIT1cd7OCeSZ7BOMkOZI4rCOMnc1zqeYMJSDZgkWqZ2qvznyDdR147YEwNuv66JEfkYNuJ2J+yGM+C7JLoind3ttdNj/PHnQdz+RVLNKsULYJJaO4zCEkaOGhBM8rpFKstLyiY050NPC6q4HblZAjV+45UUZ9r4VwCeqdc7HFW2WddXNsfY214j3ucNK8i2Rk4UZQW8YPNBWSUxaNzEiVNhOAM59YQyI/yumI2pTw186C0fQnT75Lukv9mN3nXDQ5/GWzTHMnqFXqN1FKH3aBd9Qgeohxj6js7Rb/Qn+BFcBJfB33npQnDV8xLdQPDvP9i7tUY=</latexit>
=
K
X
k=1
g
✓
wk · ⇠
p
N
◆
8
•complexity (mis-)match: vs. hidden units, here
K M K = M
student/teacher scenarios
example system: soft-committee machines (SCM)
adaptive student N-dim. inputs teacher parameterizes target
? ? ? ? ? ? ?
<latexit
sha1_base64="ALwOwp1y3TncZZzQCxrhKlQLkC0=">AAACQXicbVA9TxwxEPVCCHBAckCZxgIhAcVpN0oEFEhIaWiIiJSDk87Hyuv13lnY68WeBS7W/hz+Bg3/gI6eJkWiKG2aeO8o+HqS5af3ZjQzLymksBCGd8HE5Jupt9Mzs425+YV375uLS0dWl4bxNtNSm05CLZci520QIHmnMJyqRPLj5PRL7R+fc2OFzr/DsOA9Rfu5yASj4KW42SFAS7yLiS1V7NRuVJ0c4D6RPIN1khnKHFEUBknmLqpYnWxiwlINmCRapnao/OfIpagqR+yZAfe1qogR/QFsxM3VsBWOgF+S6IGs7u3A1Y9LuXIYN29JqlmpeA5MUmu7UVhAz1EDgkleNUhpeUHZKe3zrqc5Vdz23CiBCq95JcWZNv7lgEfq4w5Hla3X9ZX1Ofa5V4uved0Ssu2eE3lRAs/ZeFBWSgwa13HiVBjOQA49ocwIvytmA+pzAx96w4cQPT/5JTn62Io+t8JvPo1PaIwZ9AGtoHUUoS20h/bRIWojhq7RPfqFfgc3wc/gT/B3XDoRPPQsoycI/v0HjhS1HA==</latexit>
⌧ =
M
X
m=1
g
✓
w⇤
m · ⇠
p
N
◆
•non-linear hidden unit activations , fixed linear output
g(z)
•given determine weights
ID = {ξμ
, τμ
= τ(ξμ
)}
P
μ=1
W = {wk}
K
k=1
H(W) =
1
P
P
∑
μ=1
ϵ(σμ
, τμ
) =
1
P
P
∑
μ=1
1
2
(σμ
− τμ
)2
<latexit
sha1_base64="EWEUTU/uT8q6Rkb2wo5Q65mhUMs=">AAACQXicbVDPaxQxFM5Ubetq66pHL8FF2l6WmaJYCoWCIEKhtOBuFzbbIZPJzIZNJtPkjbqE+de8ePDupfTeSw9K8erFzG4P/fVByMf3vcd770tKKSyE4Vmw8ODho8Wl5cetJ09XVp+1n7/oW10ZxntMS20GCbVcioL3QIDkg9JwqhLJj5LJh8Y/+sKNFbr4DNOSjxTNC5EJRsFLcXtArMgVxTuY2ErFbrIT1cd7OCeSZ7BOMkOZI4rCOMnc1zqeYMJSDZgkWqZ2qvznyDdR147YEwNuv66JEfkYNuJ2J+yGM+C7JLoind3ttdNj/PHnQdz+RVLNKsULYJJaO4zCEkaOGhBM8rpFKstLyiY050NPC6q4HblZAjV+45UUZ9r4VwCeqdc7HFW2WddXNsfY214j3ucNK8i2Rk4UZQW8YPNBWSUxaNzEiVNhOAM59YQyI/yumI2pTw186C0fQnT75Lukv9mN3nXDQ5/GWzTHMnqFXqN1FKH3aBd9Qgeohxj6js7Rb/Qn+BFcBJfB33npQnDV8xLdQPDvP9i7tUY=</latexit>
=
K
X
k=1
g
✓
wk · ⇠
p
N
◆
by minimizing costs
9
SCM student/teacher
thermodynamic limit Central Limit Theorem (CLT) :
N → ∞
xk =
wk ⋅ ξ
N
x*
m =
w*
m ⋅ ξ
N
become zero mean Gaussians
with -dim covariance matrix
(M + K) × (M + K)
9
SCM student/teacher
thermodynamic limit Central Limit Theorem (CLT) :
N → ∞
xk =
wk ⋅ ξ
N
x*
m =
w*
m ⋅ ξ
N
become zero mean Gaussians
with -dim covariance matrix
(M + K) × (M + K)
C =
2
6
6
6
6
6
6
6
6
4
T11 T12 . . . T1M R11 R21 . . . RK1
.
.
.
.
.
.
...
.
.
.
.
.
.
.
.
.
...
.
.
.
TM1 TM2 . . . TMM R1M R2M . . . RKM
R11 R12 . . . R1M Q11 Q12 . . . Q1K
.
.
.
.
.
.
...
.
.
.
.
.
.
.
.
.
...
.
.
.
RK1 RK2 . . . RKM QK1 QK2 . . . QKK
3
7
7
7
7
7
7
7
7
5
=

T R
R>
Q
Rim = wi · w⇤
m/N
Qik = wi · wk/N
Tmn = w⇤
m · w⇤
n/N
order parameters: model parameters:
macroscopic
properties of
the system
Qik = Qki
Tmn = Tnm
9
SCM student/teacher
thermodynamic limit Central Limit Theorem (CLT) :
N → ∞
xk =
wk ⋅ ξ
N
x*
m =
w*
m ⋅ ξ
N
become zero mean Gaussians
with -dim covariance matrix
(M + K) × (M + K)
C =
2
6
6
6
6
6
6
6
6
4
T11 T12 . . . T1M R11 R21 . . . RK1
.
.
.
.
.
.
...
.
.
.
.
.
.
.
.
.
...
.
.
.
TM1 TM2 . . . TMM R1M R2M . . . RKM
R11 R12 . . . R1M Q11 Q12 . . . Q1K
.
.
.
.
.
.
...
.
.
.
.
.
.
.
.
.
...
.
.
.
RK1 RK2 . . . RKM QK1 QK2 . . . QKK
3
7
7
7
7
7
7
7
7
5
=

T R
R>
Q
Rim = wi · w⇤
m/N
Qik = wi · wk/N
Tmn = w⇤
m · w⇤
n/N
order parameters: model parameters:
macroscopic
properties of
the system
⟨…⟩ξ
→ ⟨…⟩
{xk,x*
m}
averages:
Qik = Qki
Tmn = Tnm
Gaussian integrals!
10
simplification: orthonormal teacher vectors, isotropic input density
reflects permutation symmetry, allows for hidden unit specialization
Tij =
⇢
1 for i = j
0 else,
Rij =
⇢
R for i = j
S else,
Qij =
⇢
1 for i = j
C else.
<latexit
sha1_base64="z3U/1x66FQ8CCAKv5dCLWIcbiuE=">AAADPXicpVI7b9RAEF6bQBLzukBJMyICUSDLTiSSJlIgDWVel0S6PZ3We+O7TdZra3eNOFm+X5Ffk4aCf0BHR0PBQ4guLeu7gMhDCMRIK3365vHNzE5SSGFsFL33/Gsz12/Mzs0HN2/dvnO3tXBvz+Sl5tjmucz1QcIMSqGwbYWVeFBoZFkicT852mj8+69QG5GrXTsqsJuxgRKp4Mw6qrfg7ez2KnFYwxoAlZhaWgFNcCBUxbRmoxoqKesAYngMNEvy11Wa63ENYu0QKAUIIPrlQWnwad3QAVBU/Z8VqBaDoQ2DadR4PK6D7b8S3b5SdD6AnX/XdKJb/zGpE904Jxr+QbTXWozCaGJwGcRnYHH92ZfjF8/fft/std7Rfs7LDJXlkhnTiaPCdl1ZK7jEOqClwYLxIzbAjoOKZWi61eT3a3jkmD64Zt1TFibs7xkVy4wZZYmLzJgdmou+hrzK1yltutqthCpKi4pPhdJSgs2hOSXoC43cypEDjGvhegU+ZJpx6w6uWUJ8ceTLYG8pjJfDpS23jVUytTnygDwkT0hMVsg6eUk2SZtw78T74H3yPvtv/I/+V//bNNT3znLuk3Pmn/4AGwYIbw==</latexit>
SCM with sigmoidal activation
10
simplification: orthonormal teacher vectors, isotropic input density
reflects permutation symmetry, allows for hidden unit specialization
Tij =
⇢
1 for i = j
0 else,
Rij =
⇢
R for i = j
S else,
Qij =
⇢
1 for i = j
C else.
<latexit
sha1_base64="z3U/1x66FQ8CCAKv5dCLWIcbiuE=">AAADPXicpVI7b9RAEF6bQBLzukBJMyICUSDLTiSSJlIgDWVel0S6PZ3We+O7TdZra3eNOFm+X5Ffk4aCf0BHR0PBQ4guLeu7gMhDCMRIK3365vHNzE5SSGFsFL33/Gsz12/Mzs0HN2/dvnO3tXBvz+Sl5tjmucz1QcIMSqGwbYWVeFBoZFkicT852mj8+69QG5GrXTsqsJuxgRKp4Mw6qrfg7ez2KnFYwxoAlZhaWgFNcCBUxbRmoxoqKesAYngMNEvy11Wa63ENYu0QKAUIIPrlQWnwad3QAVBU/Z8VqBaDoQ2DadR4PK6D7b8S3b5SdD6AnX/XdKJb/zGpE904Jxr+QbTXWozCaGJwGcRnYHH92ZfjF8/fft/std7Rfs7LDJXlkhnTiaPCdl1ZK7jEOqClwYLxIzbAjoOKZWi61eT3a3jkmD64Zt1TFibs7xkVy4wZZYmLzJgdmou+hrzK1yltutqthCpKi4pPhdJSgs2hOSXoC43cypEDjGvhegU+ZJpx6w6uWUJ8ceTLYG8pjJfDpS23jVUytTnygDwkT0hMVsg6eUk2SZtw78T74H3yPvtv/I/+V//bNNT3znLuk3Pmn/4AGwYIbw==</latexit>
SCM with sigmoidal activation
✏g =
1
K
⇢
1
3
+
K 1
⇡

sin 1
✓
C
2
◆
2 sin 1
✓
S
2
◆
2
⇡
sin 1
✓
R
2
◆
<latexit
sha1_base64="050svsyqr1f80CEz0aVNkCq3F3g=">AAACx3icbVHLbtQwFHVSHiU8OpQlG4cKqQh1lKQSdIPUUhagbspj2krjMHI8zoyp85B9U3VkecE/8Ef8ATs2/AAbPgFPMkKlM1eyfHwesn1vVkuhIYp+ev7ajZu3bq/fCe7eu/9go/dw80RXjWJ8wCpZqbOMai5FyQcgQPKzWnFaZJKfZueHc/30gistqvITzGqeFnRSilwwCo4a9X4RXmshHZxgEr4iISa5oszE1hxZjInkORDzj9u1JHxOwqAjjki4Q0JHk1rY1jrERIvys9mJu/N2Zzy0JrFEickUnrUZnKz0fbzqa7c0wG2g05PFVauyH5ayxAaj3lbUj9rCyyBegK39F7+/vT74/ud41PtBxhVrCl4Ck1TrYRzVkBqqQDDJbUAazWvKzumEDx0sacF1ato5WPzUMWOcV8qtEnDLXk0YWmg9KzLnLChM9XVtTq7Shg3ke6kRZd0AL1l3Ud5IDBWeDxWPheIM5MwBypRwb8VsSl1XwI1+3oT4+peXwUnSj3f7yXvXjT3U1Tp6jJ6gbRSjl2gfvUXHaICY98b74mkP/Hd+5V/4l53V9xaZR+i/8r/+BbLn4Fo=</latexit>
=
⟨
1
2
(σ − τ)2
⟩
ξ
s =
1
2
ln det[ C ] (+ constant)
s =
1
2
ln
h
1+(K 1)C ((R S)+KS)
2
i
+K 1
2 ln
⇥
1 C (R S)2
⇤
<latexit
sha1_base64="R1D/dvB51gM9AtxPyLBvGiIN87s=">AAAC53icbZLLjtMwFIadcBvCrcCSjUtF1TKiSsKC2SCNNBukbgaGzoxUl8pxTlprHCfYDiKK+gJsWIAQW16JHS+DcC6gzgxHsvz7nN/57ONEueDa+P4vx71y9dr1Gzs3vVu379y917v/4FhnhWIwY5nI1GlENQguYWa4EXCaK6BpJOAkOjuo6ycfQGmeybemzGGR0pXkCWfU2NSy95tEsOKygveSKkXLpxtMBI1AVHpqpYGPRptSAPb08OUQk0RRVgWbKqx90g5IzBwHpL9L+qMp6T8j/WB80MxNbTR60yyOxo1lio+I4qu1Gb8LcasWmMhMFmkEChPiDfEQ7+Jqi9wyu2/XZIuOuc4FLTvDuYNYV8v/R7aovyyPgIy3LrvsDfyJ3wS+LIJODFAXh8veTxJnrEhBGiao1vPAz82iospwJmDjkUJDTtkZXcHcSklT0IuqeacNfmIzMU4yZYc0uMlu76hoqnWZRtaZUrPWF2t18n+1eWGSvUXFZV4YkKwFJYXAJsP1o+OYK2BGlFZQprg9K2Zrattq7K/h2SYEF698WRyHk+D5JHwdDvb3unbsoEfoMRqhAL1A++gVOkQzxJzY+eR8cb663P3sfnO/t1bX6fY8ROfC/fEHhtPgvQ==</latexit>
(+ constant)
10
simplification: orthonormal teacher vectors, isotropic input density
reflects permutation symmetry, allows for hidden unit specialization
Tij =
⇢
1 for i = j
0 else,
Rij =
⇢
R for i = j
S else,
Qij =
⇢
1 for i = j
C else.
<latexit
sha1_base64="z3U/1x66FQ8CCAKv5dCLWIcbiuE=">AAADPXicpVI7b9RAEF6bQBLzukBJMyICUSDLTiSSJlIgDWVel0S6PZ3We+O7TdZra3eNOFm+X5Ffk4aCf0BHR0PBQ4guLeu7gMhDCMRIK3365vHNzE5SSGFsFL33/Gsz12/Mzs0HN2/dvnO3tXBvz+Sl5tjmucz1QcIMSqGwbYWVeFBoZFkicT852mj8+69QG5GrXTsqsJuxgRKp4Mw6qrfg7ez2KnFYwxoAlZhaWgFNcCBUxbRmoxoqKesAYngMNEvy11Wa63ENYu0QKAUIIPrlQWnwad3QAVBU/Z8VqBaDoQ2DadR4PK6D7b8S3b5SdD6AnX/XdKJb/zGpE904Jxr+QbTXWozCaGJwGcRnYHH92ZfjF8/fft/std7Rfs7LDJXlkhnTiaPCdl1ZK7jEOqClwYLxIzbAjoOKZWi61eT3a3jkmD64Zt1TFibs7xkVy4wZZYmLzJgdmou+hrzK1yltutqthCpKi4pPhdJSgs2hOSXoC43cypEDjGvhegU+ZJpx6w6uWUJ8ceTLYG8pjJfDpS23jVUytTnygDwkT0hMVsg6eUk2SZtw78T74H3yPvtv/I/+V//bNNT3znLuk3Pmn/4AGwYIbw==</latexit>
SCM with sigmoidal activation
✏g =
1
K
⇢
1
3
+
K 1
⇡

sin 1
✓
C
2
◆
2 sin 1
✓
S
2
◆
2
⇡
sin 1
✓
R
2
◆
<latexit
sha1_base64="050svsyqr1f80CEz0aVNkCq3F3g=">AAACx3icbVHLbtQwFHVSHiU8OpQlG4cKqQh1lKQSdIPUUhagbspj2krjMHI8zoyp85B9U3VkecE/8Ef8ATs2/AAbPgFPMkKlM1eyfHwesn1vVkuhIYp+ev7ajZu3bq/fCe7eu/9go/dw80RXjWJ8wCpZqbOMai5FyQcgQPKzWnFaZJKfZueHc/30gistqvITzGqeFnRSilwwCo4a9X4RXmshHZxgEr4iISa5oszE1hxZjInkORDzj9u1JHxOwqAjjki4Q0JHk1rY1jrERIvys9mJu/N2Zzy0JrFEickUnrUZnKz0fbzqa7c0wG2g05PFVauyH5ayxAaj3lbUj9rCyyBegK39F7+/vT74/ud41PtBxhVrCl4Ck1TrYRzVkBqqQDDJbUAazWvKzumEDx0sacF1ato5WPzUMWOcV8qtEnDLXk0YWmg9KzLnLChM9XVtTq7Shg3ke6kRZd0AL1l3Ud5IDBWeDxWPheIM5MwBypRwb8VsSl1XwI1+3oT4+peXwUnSj3f7yXvXjT3U1Tp6jJ6gbRSjl2gfvUXHaICY98b74mkP/Hd+5V/4l53V9xaZR+i/8r/+BbLn4Fo=</latexit>
=
⟨
1
2
(σ − τ)2
⟩
ξ
s =
1
2
ln det[ C ] (+ constant)
s =
1
2
ln
h
1+(K 1)C ((R S)+KS)
2
i
+K 1
2 ln
⇥
1 C (R S)2
⇤
<latexit
sha1_base64="R1D/dvB51gM9AtxPyLBvGiIN87s=">AAAC53icbZLLjtMwFIadcBvCrcCSjUtF1TKiSsKC2SCNNBukbgaGzoxUl8pxTlprHCfYDiKK+gJsWIAQW16JHS+DcC6gzgxHsvz7nN/57ONEueDa+P4vx71y9dr1Gzs3vVu379y917v/4FhnhWIwY5nI1GlENQguYWa4EXCaK6BpJOAkOjuo6ycfQGmeybemzGGR0pXkCWfU2NSy95tEsOKygveSKkXLpxtMBI1AVHpqpYGPRptSAPb08OUQk0RRVgWbKqx90g5IzBwHpL9L+qMp6T8j/WB80MxNbTR60yyOxo1lio+I4qu1Gb8LcasWmMhMFmkEChPiDfEQ7+Jqi9wyu2/XZIuOuc4FLTvDuYNYV8v/R7aovyyPgIy3LrvsDfyJ3wS+LIJODFAXh8veTxJnrEhBGiao1vPAz82iospwJmDjkUJDTtkZXcHcSklT0IuqeacNfmIzMU4yZYc0uMlu76hoqnWZRtaZUrPWF2t18n+1eWGSvUXFZV4YkKwFJYXAJsP1o+OYK2BGlFZQprg9K2Zrattq7K/h2SYEF698WRyHk+D5JHwdDvb3unbsoEfoMRqhAL1A++gVOkQzxJzY+eR8cb663P3sfnO/t1bX6fY8ROfC/fEHhtPgvQ==</latexit>
(+ constant)
David Saad, Sara Solla
Robert Urbanczik
10
simplification: orthonormal teacher vectors, isotropic input density
reflects permutation symmetry, allows for hidden unit specialization
Tij =
⇢
1 for i = j
0 else,
Rij =
⇢
R for i = j
S else,
Qij =
⇢
1 for i = j
C else.
<latexit
sha1_base64="z3U/1x66FQ8CCAKv5dCLWIcbiuE=">AAADPXicpVI7b9RAEF6bQBLzukBJMyICUSDLTiSSJlIgDWVel0S6PZ3We+O7TdZra3eNOFm+X5Ffk4aCf0BHR0PBQ4guLeu7gMhDCMRIK3365vHNzE5SSGFsFL33/Gsz12/Mzs0HN2/dvnO3tXBvz+Sl5tjmucz1QcIMSqGwbYWVeFBoZFkicT852mj8+69QG5GrXTsqsJuxgRKp4Mw6qrfg7ez2KnFYwxoAlZhaWgFNcCBUxbRmoxoqKesAYngMNEvy11Wa63ENYu0QKAUIIPrlQWnwad3QAVBU/Z8VqBaDoQ2DadR4PK6D7b8S3b5SdD6AnX/XdKJb/zGpE904Jxr+QbTXWozCaGJwGcRnYHH92ZfjF8/fft/std7Rfs7LDJXlkhnTiaPCdl1ZK7jEOqClwYLxIzbAjoOKZWi61eT3a3jkmD64Zt1TFibs7xkVy4wZZYmLzJgdmou+hrzK1yltutqthCpKi4pPhdJSgs2hOSXoC43cypEDjGvhegU+ZJpx6w6uWUJ8ceTLYG8pjJfDpS23jVUytTnygDwkT0hMVsg6eUk2SZtw78T74H3yPvtv/I/+V//bNNT3znLuk3Pmn/4AGwYIbw==</latexit>
SCM with sigmoidal activation
✏g =
1
K
⇢
1
3
+
K 1
⇡

sin 1
✓
C
2
◆
2 sin 1
✓
S
2
◆
2
⇡
sin 1
✓
R
2
◆
<latexit
sha1_base64="050svsyqr1f80CEz0aVNkCq3F3g=">AAACx3icbVHLbtQwFHVSHiU8OpQlG4cKqQh1lKQSdIPUUhagbspj2krjMHI8zoyp85B9U3VkecE/8Ef8ATs2/AAbPgFPMkKlM1eyfHwesn1vVkuhIYp+ev7ajZu3bq/fCe7eu/9go/dw80RXjWJ8wCpZqbOMai5FyQcgQPKzWnFaZJKfZueHc/30gistqvITzGqeFnRSilwwCo4a9X4RXmshHZxgEr4iISa5oszE1hxZjInkORDzj9u1JHxOwqAjjki4Q0JHk1rY1jrERIvys9mJu/N2Zzy0JrFEickUnrUZnKz0fbzqa7c0wG2g05PFVauyH5ayxAaj3lbUj9rCyyBegK39F7+/vT74/ud41PtBxhVrCl4Ck1TrYRzVkBqqQDDJbUAazWvKzumEDx0sacF1ato5WPzUMWOcV8qtEnDLXk0YWmg9KzLnLChM9XVtTq7Shg3ke6kRZd0AL1l3Ud5IDBWeDxWPheIM5MwBypRwb8VsSl1XwI1+3oT4+peXwUnSj3f7yXvXjT3U1Tp6jJ6gbRSjl2gfvUXHaICY98b74mkP/Hd+5V/4l53V9xaZR+i/8r/+BbLn4Fo=</latexit>
=
⟨
1
2
(σ − τ)2
⟩
ξ
s =
1
2
ln det[ C ] (+ constant)
s =
1
2
ln
h
1+(K 1)C ((R S)+KS)
2
i
+K 1
2 ln
⇥
1 C (R S)2
⇤
<latexit
sha1_base64="R1D/dvB51gM9AtxPyLBvGiIN87s=">AAAC53icbZLLjtMwFIadcBvCrcCSjUtF1TKiSsKC2SCNNBukbgaGzoxUl8pxTlprHCfYDiKK+gJsWIAQW16JHS+DcC6gzgxHsvz7nN/57ONEueDa+P4vx71y9dr1Gzs3vVu379y917v/4FhnhWIwY5nI1GlENQguYWa4EXCaK6BpJOAkOjuo6ycfQGmeybemzGGR0pXkCWfU2NSy95tEsOKygveSKkXLpxtMBI1AVHpqpYGPRptSAPb08OUQk0RRVgWbKqx90g5IzBwHpL9L+qMp6T8j/WB80MxNbTR60yyOxo1lio+I4qu1Gb8LcasWmMhMFmkEChPiDfEQ7+Jqi9wyu2/XZIuOuc4FLTvDuYNYV8v/R7aovyyPgIy3LrvsDfyJ3wS+LIJODFAXh8veTxJnrEhBGiao1vPAz82iospwJmDjkUJDTtkZXcHcSklT0IuqeacNfmIzMU4yZYc0uMlu76hoqnWZRtaZUrPWF2t18n+1eWGSvUXFZV4YkKwFJYXAJsP1o+OYK2BGlFZQprg9K2Zrattq7K/h2SYEF698WRyHk+D5JHwdDvb3unbsoEfoMRqhAL1A++gVOkQzxJzY+eR8cb663P3sfnO/t1bX6fY8ROfC/fEHhtPgvQ==</latexit>
(+ constant)
minimize (βf ) = α ϵg − s(ϵg) →
R(α)
C(α)
S(α)
→ ϵg(α)
success of learning
as a function of
the training set size
David Saad, Sara Solla
Robert Urbanczik
11
↵
<
latexit
sha1_base64="+wSBPeL8nxBdvzPXA2qswhGhfpg=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3btZhN2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKrR6KZIT9csWtunOQVeLlpAI5Gv3yV28Q0zRi0lCBWnc9NzF+hspwKti01Es1S5COcci6lkqMmPaz+bVTcmaVAQljZUsaMld/T2QYaT2JAtsZoRnpZW8m/ud1UxNe+xmXSWqYpItFYSqIicnsdTLgilEjJpYgVdzeSugIFVJjAyrZELzll1dJq1b1Lqq1+8tK/SaPowgncArn4MEV1OEOGtAECo/wDK/w5sTOi/PufCxaC04+cwx/4Hz+AIzPjxw=</latexit>
R
<
latexit
sha1_base64="cVRUNBy/RTcU6LUbsjbBwonoaeo=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx7ByCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJYPZpygH9GB5CFn1Fipft8rltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AK3vjNo=</latexit>
S
<
latexit
sha1_base64="vFchJGr6Z+gyWiveB04FdIL/myI=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hyiOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJYPZpygH9GB5CFn1Fipft8rltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AK9zjNs=</latexit>
R = S
<latexit
sha1_base64="nDUP4fccke/FNLKaaM8Wqz9O1M8=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6EUIevEYjXlAsoTZSW8yZHZ2mZkVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYng2rjut7Oyura+sZnbym/v7O7tFw4OGzpOFcM6i0WsWgHVKLjEuuFGYCtRSKNAYDMY3k795hMqzWP5aEYJ+hHtSx5yRo2Vag/XtW6h6JbcGcgy8TJShAzVbuGr04tZGqE0TFCt256bGH9MleFM4CTfSTUmlA1pH9uWShqh9sezUyfk1Co9EsbKljRkpv6eGNNI61EU2M6ImoFe9Kbif147NeGVP+YySQ1KNl8UpoKYmEz/Jj2ukBkxsoQyxe2thA2ooszYdPI2BG/x5WXSKJe881L5/qJYucniyMExnMAZeHAJFbiDKtSBQR+e4RXeHOG8OO/Ox7x1xclmjuAPnM8f0umNfg==</latexit>
✏g
<latexit
sha1_base64="mglHXcqwu+eocCx6ul5cTySUvNg=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae2oWy2k3bpZhN2N0IJ/RdePCji1X/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzaqz02MNEcxHL/rBfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42v3hKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjJ7nwy4QmbExBLKFLe3EjaiijJjQyrZELzll1dJq1b1Lqq1+8tK/SaPowgncArn4MEV1OEOGtAEBhKe4RXeHO28OO/Ox6K14OQzx/AHzucPyzeQ/g==</latexit>
↵
<
latexit
sha1_base64="+wSBPeL8nxBdvzPXA2qswhGhfpg=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3btZhN2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKrR6KZIT9csWtunOQVeLlpAI5Gv3yV28Q0zRi0lCBWnc9NzF+hspwKti01Es1S5COcci6lkqMmPaz+bVTcmaVAQljZUsaMld/T2QYaT2JAtsZoRnpZW8m/ud1UxNe+xmXSWqYpItFYSqIicnsdTLgilEjJpYgVdzeSugIFVJjAyrZELzll1dJq1b1Lqq1+8tK/SaPowgncArn4MEV1OEOGtAECo/wDK/w5sTOi/PufCxaC04+cwx/4Hz+AIzPjxw=</latexit>
K=M=2
phase transitions: hidden unit specialization
SCM with sigmoidal activation
continuous
specialization
transition
11
↵
<
latexit
sha1_base64="+wSBPeL8nxBdvzPXA2qswhGhfpg=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3btZhN2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKrR6KZIT9csWtunOQVeLlpAI5Gv3yV28Q0zRi0lCBWnc9NzF+hspwKti01Es1S5COcci6lkqMmPaz+bVTcmaVAQljZUsaMld/T2QYaT2JAtsZoRnpZW8m/ud1UxNe+xmXSWqYpItFYSqIicnsdTLgilEjJpYgVdzeSugIFVJjAyrZELzll1dJq1b1Lqq1+8tK/SaPowgncArn4MEV1OEOGtAECo/wDK/w5sTOi/PufCxaC04+cwx/4Hz+AIzPjxw=</latexit>
R
<
latexit
sha1_base64="cVRUNBy/RTcU6LUbsjbBwonoaeo=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx7ByCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJYPZpygH9GB5CFn1Fipft8rltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AK3vjNo=</latexit>
S
<
latexit
sha1_base64="vFchJGr6Z+gyWiveB04FdIL/myI=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hyiOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJYPZpygH9GB5CFn1Fipft8rltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AK9zjNs=</latexit>
R = S
<latexit
sha1_base64="nDUP4fccke/FNLKaaM8Wqz9O1M8=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6EUIevEYjXlAsoTZSW8yZHZ2mZkVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYng2rjut7Oyura+sZnbym/v7O7tFw4OGzpOFcM6i0WsWgHVKLjEuuFGYCtRSKNAYDMY3k795hMqzWP5aEYJ+hHtSx5yRo2Vag/XtW6h6JbcGcgy8TJShAzVbuGr04tZGqE0TFCt256bGH9MleFM4CTfSTUmlA1pH9uWShqh9sezUyfk1Co9EsbKljRkpv6eGNNI61EU2M6ImoFe9Kbif147NeGVP+YySQ1KNl8UpoKYmEz/Jj2ukBkxsoQyxe2thA2ooszYdPI2BG/x5WXSKJe881L5/qJYucniyMExnMAZeHAJFbiDKtSBQR+e4RXeHOG8OO/Ox7x1xclmjuAPnM8f0umNfg==</latexit>
✏g
<latexit
sha1_base64="mglHXcqwu+eocCx6ul5cTySUvNg=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae2oWy2k3bpZhN2N0IJ/RdePCji1X/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzaqz02MNEcxHL/rBfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42v3hKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjJ7nwy4QmbExBLKFLe3EjaiijJjQyrZELzll1dJq1b1Lqq1+8tK/SaPowgncArn4MEV1OEOGtAEBhKe4RXeHO28OO/Ox6K14OQzx/AHzucPyzeQ/g==</latexit>
↵
<
latexit
sha1_base64="+wSBPeL8nxBdvzPXA2qswhGhfpg=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3btZhN2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKrR6KZIT9csWtunOQVeLlpAI5Gv3yV28Q0zRi0lCBWnc9NzF+hspwKti01Es1S5COcci6lkqMmPaz+bVTcmaVAQljZUsaMld/T2QYaT2JAtsZoRnpZW8m/ud1UxNe+xmXSWqYpItFYSqIicnsdTLgilEjJpYgVdzeSugIFVJjAyrZELzll1dJq1b1Lqq1+8tK/SaPowgncArn4MEV1OEOGtAECo/wDK/w5sTOi/PufCxaC04+cwx/4Hz+AIzPjxw=</latexit>
K=M=2
phase transitions: hidden unit specialization
SCM with sigmoidal activation
↵
<
latexit
sha1_base64="+wSBPeL8nxBdvzPXA2qswhGhfpg=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3btZhN2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKrR6KZIT9csWtunOQVeLlpAI5Gv3yV28Q0zRi0lCBWnc9NzF+hspwKti01Es1S5COcci6lkqMmPaz+bVTcmaVAQljZUsaMld/T2QYaT2JAtsZoRnpZW8m/ud1UxNe+xmXSWqYpItFYSqIicnsdTLgilEjJpYgVdzeSugIFVJjAyrZELzll1dJq1b1Lqq1+8tK/SaPowgncArn4MEV1OEOGtAECo/wDK/w5sTOi/PufCxaC04+cwx/4Hz+AIzPjxw=</latexit>
R
<
latexit
sha1_base64="cVRUNBy/RTcU6LUbsjbBwonoaeo=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx7ByCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJYPZpygH9GB5CFn1Fipft8rltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AK3vjNo=</latexit>
S
<
latexit
sha1_base64="vFchJGr6Z+gyWiveB04FdIL/myI=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hyiOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJYPZpygH9GB5CFn1Fipft8rltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AK9zjNs=</latexit>
R = S
<latexit
sha1_base64="nDUP4fccke/FNLKaaM8Wqz9O1M8=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6EUIevEYjXlAsoTZSW8yZHZ2mZkVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYng2rjut7Oyura+sZnbym/v7O7tFw4OGzpOFcM6i0WsWgHVKLjEuuFGYCtRSKNAYDMY3k795hMqzWP5aEYJ+hHtSx5yRo2Vag/XtW6h6JbcGcgy8TJShAzVbuGr04tZGqE0TFCt256bGH9MleFM4CTfSTUmlA1pH9uWShqh9sezUyfk1Co9EsbKljRkpv6eGNNI61EU2M6ImoFe9Kbif147NeGVP+YySQ1KNl8UpoKYmEz/Jj2ukBkxsoQyxe2thA2ooszYdPI2BG/x5WXSKJe881L5/qJYucniyMExnMAZeHAJFbiDKtSBQR+e4RXeHOG8OO/Ox7x1xclmjuAPnM8f0umNfg==</latexit>
K=M>2 K=5 ✏g
<latexit
sha1_base64="mglHXcqwu+eocCx6ul5cTySUvNg=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae2oWy2k3bpZhN2N0IJ/RdePCji1X/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzaqz02MNEcxHL/rBfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42v3hKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjJ7nwy4QmbExBLKFLe3EjaiijJjQyrZELzll1dJq1b1Lqq1+8tK/SaPowgncArn4MEV1OEOGtAEBhKe4RXeHO28OO/Ox6K14OQzx/AHzucPyzeQ/g==</latexit>
↵
<
latexit
sha1_base64="+wSBPeL8nxBdvzPXA2qswhGhfpg=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3btZhN2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKrR6KZIT9csWtunOQVeLlpAI5Gv3yV28Q0zRi0lCBWnc9NzF+hspwKti01Es1S5COcci6lkqMmPaz+bVTcmaVAQljZUsaMld/T2QYaT2JAtsZoRnpZW8m/ud1UxNe+xmXSWqYpItFYSqIicnsdTLgilEjJpYgVdzeSugIFVJjAyrZELzll1dJq1b1Lqq1+8tK/SaPowgncArn4MEV1OEOGtAECo/wDK/w5sTOi/PufCxaC04+cwx/4Hz+AIzPjxw=</latexit>
competing
states
separated by
energy barrier
continuous
specialization
transition
disccontinuous
transition
anti-spec.
12
Hidden unit Specialization in Layered Neural Networks:
ReLU vs. Sigmoidal Activation
Elisa Oostwal, Michiel Straat, M. Biehl
Physica A 564: 125517 (2021)
Phase Transitions in Soft-Committee Machines
M. Biehl, E. Schlösser, M. Ahr
Europhysics Letters 44: 261-267 (1998)
Statistical Physics and Practical Training of Soft-Committee Machines
M. Ahr, M. Biehl, R. Urbanczik
European Physics B 10: 583-588 (1999)
sigmoidal activation
high-T, arbitrary K = M
sigmoidal activation,
replica, large
T < ∞
K = M → ∞
ReLU activation
high-T, arbitrary K = M
references
13
challenges:
- more general activation functions,
see the following talk by Frederieke Richert
- overfitting/underfitting (mismatched students)
- low temperature training (Annealed Approximation, Replica)
outlook
13
challenges:
- more general activation functions,
see the following talk by Frederieke Richert
- overfitting/underfitting (mismatched students)
- low temperature training (Annealed Approximation, Replica)
- many layers (deep networks, tree architectures)
- realistic input densities
- material specific activation functions
- regularization techniques, e.g. drop-out
-
outlook
14
Cognigron March 2021 12 / 11
www.cs.rug.nl/~biehl m.biehl@rug.nl

stat-phys-appis-reduced.pdf