History of Insect Biotechnology
•A first milestone in the manifestation of insect biotechnology was
introduced in Europe (Naples, Italy) under supervision of Professor
Francesco Pennacchio in 2002.
• In 2007, a guide was published on insect biotechnology.
•Insect biotechnology or yellow biotechnologyyellow biotechnology can be defined as the
use of whole insects, their organs, cells or molecules, but also their
symbiotic microbes,
• in the fields of medicine (red biotechnology),red biotechnology),
• agriculture (green biotechnologygreen biotechnology)
• and industry (white biotechnologywhite biotechnology).
•The term yellow biotechnology was chosen because of the yellow
colour of insect hemolymph, which has thus far delivered a number of
chemicals, proteins and microbes used in medical, pharmaceutical,
agricultural or industrial applications
Isolate and clone gene of
interest
Add DNA segments to
initiate gene expression
Add selectable markers
Introduce gene construct
into plant cells
(Transformation)
Select transformed cells or
tissues
Regenerate whole plants
 Direct exposure of pest species to
toxins.
 Reduced environmental
contamination by pesticides.
 Reduced operative exposure to
pesticides.
 Effective pest control throughout
the growing season.
 Compatible with natural enemies
and pesticides in IPM
programmes.
 Toxicity of transgenic plants to
non-target species.
 Potential of horizontal
movement of trans gene.
 Toxicity of transgenic plants to
humans.
 Concerns surrounding antibiotic
marker resistance genes in
plants.
 Development of pest resistant to
transgenic plants.
CORN COTTONSOYBEAN RICE TOBACCO
SORGHUMPOTATO BRINJALMUSTARD TOMATO
History
• Bacillus thuringiensis was first recorded in 1901
• Ishiwata discovered a becterium from diseased silkworm larvae
• Dr. Berliner received diseased Mediterranean flour moth larvae
from mill in Thuringen (Germany) in 1909
• Bt. was first used as an insecticide against European corn borer in
South East Europe (1930)
• First commercial product, Sporeine was available in France for
control of flour moth (1938)
Mechanism of toxicity of Crystal proteinsMechanism of toxicity of Crystal proteins
Class Size (KDa) Insects affected
I 130 Lepidoptera
II 60-71 Lepidoptera & Diptera
III 73 Coleoptera
IV 135, 128, 74, 72 Diptera
Cry genes Target pests
Cry1, Cry2 and Cry9
Lepidoptera
Cry3, Cry7 and Cry8
Coleoptera
Cry4, Cry10 and Cry11
Diptera
Classes of cry genesClasses of cry genes
Transgenic crop Transgene(s) Target Insect Pest(s)
Alfa-alfa Cry1C Spodoptera littoralis
Broccoli Cry1C P. xylostella, P. rapae
Canola Cry1A(c) H. zea, S. exigua
Chickpea Cry1A(c) H. armigera
Cotton Cry1A(b), Cry1A(c) H. armigera, H. zea, H. virescens,
P. gossypiella, S. exigua,
Groundnut Cry1A(c) Elasmopalpus lignosellus
Egg plant Cry1(III)b Leptinitarsa decemlineata
Maize Cry1A(b), Cry1A(c) Ostrinia nubilalis,Chilo partellus
Cry19C Busseola fusca, H. zea
Poplar Cry1A(a) Lymantria dispar
Transgenic crops carrying Bt genes for
Insect Resistance
Dhaliwal and Koul (2007)
Transgenic
crop
Transgene(s) Target Insect Pest(s)
Potato Cry1A(b), Cry1A(b)6 Phthorimaea operculella
Cry1(III)A, Cry1(III)B L.decemlineata
Cry1Ac9, CryV-Bt P.opeculella
Rice Cry1A(b), Cry1A(c) Chilo suppressalis, Cnaphalocrocis medinalis,
Cry1II(a) Scirpophaga incertulas
Sorghum Cry1A(c) C.partellus
Soyabean Cry1A(c) H.virescens, H.zea
Sugarcane Cry1A(b) Diatraea saccharalis
Tobacco Cry1A(b), Cry1A(c) H.virescens, M.sexta
Cry1IIa5 H.armigera
Cry1Aa2 H.zea, M.sexta
Tomato Cry1A(c) M.sexta
Bt(k) H.zea, M.sexta
Dhaliwal and Koul (2007)
Cry gene
Cry1Aa
Crt1Ab
Cry1Ac
Cry2A
Cry1C
Intikhab et al.(2000)
TRANSGENIC Bt RICE – RESISTANT TOTRANSGENIC Bt RICE – RESISTANT TO
Rice Leaf Folder and YsbRice Leaf Folder and Ysb
Produces Bt toxin protein Cry1Ab and Cry9C
- European corn borer larvae.
Yield Gard – Cry1Ab/Cry1Ac – corn
earworms,fals army worms,root worms.
Grown on 30% of US corn acreage.
More popular in western corn belt, less
popular in India.
conventional
Bt corn
Refuge strategy
< 80% > 20%
Strategy will not work if resistance is dominant !!!
Vegetative Insecticidal Proteins (VIPs)Vegetative Insecticidal Proteins (VIPs)
Bacillus cereus fluids
(VIP 1 and VIP 2)
Acute toxicity to Western and
Northern corn rootworms  
Bacillus thuingiensis
fluids (VIP 3)
Black cutworms, false armyworm
& beet armyworm 
      The first gene of plant origin successfully transferred to another plant 
species resulting in enhanced resistance was isolated from cowpea 
encoding a trypsin inhibitor, CpTi   (Hilder et al., 1987). 
      This protein is considered to be a particularly effective and suitable 
candidate for genetic engineering of plants because :
     -  Is an effective anti-metabolite against a range of field and storage 
pests belonging to Lepidoptera, Coleoptera and Orthoptera,
      - Has no deleterious effects on mammals,
     -  Has a small polypeptide of about 80 amino acids.
Mode of action- inhibitory activities against proteolytic enzymes of 
insects, interfere with the processes of digestion.
Potato PI-II
&Tomato PI-II
Against M.sexta in
tobacco
Johnson et al.(1989)
CpTi
Cowpea Trypsin
Inhibitor
Resistance against C.
suppressalis & S. inferens in
transgenic rice
Against H.virescens,
H.zea,S.littoralis and M.sexta
in transgenic tobacco
Resistance against
Otiorhynchus sulcatus in
transgenic strawberry
Cysteine Protease InhibitorsCysteine Protease Inhibitors
Rice cystein proteinase
inhibitor
Oryzacystacin(OC-I)
Against Chrysomela
tremulae in poplar trees
Corn Cystacin
(CC)
Sitophilus zeamais
in trangenic rice
Dhaliwal and Koul (2007)
Alpha-Amylase InhibitorsAlpha-Amylase Inhibitors
 Toxic to insects through the interference in the digestion of dietary 
carbohydrates.
 Mostly used for control of weevils.
Transgenic
crop
Transgene
Origin of
transgene
Target Insect Pests(s)
Tobacco WAAI Wheat
Agrotis ipsilon,
Tenebrio molitor
Pea
BAAI-1
BAAI-2 Beans
Bruchus pisorum,
Callosobruchus spp.
De Sousa-majer et al. (2007)
     The first description of a compound with hemagglutinating activity was reported in 
1888, when Stillmark described a toxic factor extracted from castor beans (Ricinus
communis L.) with the capability to agglutinate red blood cells from different animals
     The word lectin originates from the Latin word legere, which means select
       They are evaluated as alternatives of d-endotoxins.
     Mode of action is unknown.
     Lectins may bind to – midgut epithelial cells – inhibit nutrient  absorption.
     Mostly used to control sap-sucking insect pests.
    They are active at µg levels and result in larval growth inhibition with very little 
mortality. 
GNA lectin
from snowdrop Active against
N. lugens in rice
Foissac et al. 2000
WGA lectin
Active against
Mustard aphid Liaphis
erysimi
P- lec from pea
Against H. virescens in
tobacco
EnzymesEnzymes
Hydrolytic EnzymesHydrolytic Enzymes ::
Chitinase enzymes : dissolves the chitin from the peritrophic
membrane and reduces the survival of the insects.
Transgenic
crop
Transgene
Origin of
transgene
Target Insect Pests(s)
Tobacco ICG
Tobacco horn
worm
H. virescens
Tobacco
BCH
Bean Lepidopteran larvae
Potato BCH Bean Aulacorthum solani
(kramer et al., 1997)
Oxidative enzymesOxidative enzymes
Expression is induced by wounding.
Constable et al. (1995)
Oxidise components present in plant tissues into potentially toxic
compounds.
Polyphenol oxidase reduce the protein quality of an insect diet,
and thus reduces the growth of the larvae feeding on that diet.
Felton et al. (1992)
This enzyme has come to be considered a part of endogenous plant
defensive system, although it is still not clear exactly what role it plays.
cholesterol-oxidase in
Streptomyces culture
filtrate
Boll weevil Anthonomus
grandis
Purcell et al. (1993)
Transgenic
crop
Transgene
Origin of
transgene
Target Insect Pests(s)
Maize Avidin
Chicken egg
white
Oryzaphilus
surinamensis
Tobacco
AaIT Venom of
scorpion
H. armigera
Potato
Spider
Peptide
Gene
Spider H. armigera
Kramer et al. (2000)
Biotechnological methods employed for crop
improvement
S.N. Technique Application Examples
1 Agrobacterium-based
plant transformation
Ti- plasmid –to carry novel
DNA into plants
Bt insect resistant
crop plants
2 Particle acceleration DNA coated gold particles
fired into growing tissue
Transgenic Soybean
3 Electroporation Electric current used to alter
protoplast membranes
permitting DNA uptake
Transgenic Rice
4 Microinjection DNA injected into the
nucleus or cytoplasm of a
protoplast
Transgenic tomato
5 RNA interference Blockage of gene function by
inserting short sequences of
RNA
Potential for
protecting cotton,
rice and maize
against insect pests
Atwal and Dhaliwal, 2013
Pest-resistant genetically modified crops can contribute toPest-resistant genetically modified crops can contribute to
increase yields and agricultural growth.increase yields and agricultural growth.
Development and deployment of transgenic plants withDevelopment and deployment of transgenic plants with
insecticidal genes for pest control will lead to the reduction ininsecticidal genes for pest control will lead to the reduction in
insecticide sprays, increased activity of natural enemies, andinsecticide sprays, increased activity of natural enemies, and
IPM of insect pests.IPM of insect pests.
Sonalika kolhekar

Sonalika kolhekar