SlideShare a Scribd company logo
1 of 34
Determine the area bounded by the x-axis, y-axis, y=12, and perimeter of the conic section with its equation provided below. Equation : (x-15)^2 – r^2 = -(y-12)^2 Where r is the positive square root value of D rounded to the nearest whole number Use the equations on the next slide to determine D
Here are the equations.
First of all, we must understand what the question is asking for. We must find the area, which is bounded by these four things: x-axis y-axis y=12 perimeter of  (x-15)^2 – r^2 = -(y-12)^2
The x-axis is the horizontal axis. The y-axis is the vertical axis. The equation y=12 is just a simple linear equation where y is Always going to be equal to 12 no matter what value x is. As for the perimeter of the equation, we must first identify the Shape of this conic section. X-axis Y-axis Y=12
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Given by our proofs, it is safe to say that the equation we have is a circular one. We must obtain the perimeter (circumference) of this circle because it is necessary to find the area that which it helps bound. We do not have sufficient information though to construct this circle. However, we can obtain sufficient information if we work out the four equations because of this specific piece of information: Equation :  (x-15)^2 – r^2 = -(y-12)^2 Or (x-15)^2 + (y-12)^2 = r^2 Where r is the positive square root value of D rounded to the nearest whole number So let us begin by analyzing the 4 given equations
Here are the four equations. The first equation consists of only one variable, A. The second equation consists of three variables, A, B, and C. The third equation consists of four variables, A, B, C, and D. The fourth equation consists of four variables, A, B, C, and D. (e is not a variable) Now we can just think of ways to solve these equations. We shall start with the first equation.
Let’s go through the first equation. Step 1 We have to simply everything as much as possible to obtain a. If you look at the base, there is the letter to a certain exponent. This should be familiar, otherwise, just look at Euler’s Identity, which is shown below. If you transpose the one, e^[i(pi)] will equal -1. So now we can just substitute what we have in the equation for -1. The base of the logarithm should now be (-2)(-1) which equals 2.
The 7/2 is already simplified, so we leave that alone and proceed to simplifying the exponent (right hand side of equation. Step 2 By looking at this, you should easily identify certain trigonometric identities. The denominator is not pleasant looking, so we can expand it into (a+1)(a-1) You should notice that there is only one term in the numerator. Everything in the numerator is being multiplied.
Step 3 You can find (a+1) and (a-1) in the numerator, which can be reduced to 1 from (a+1)(a-1) in the denominator. There is sin(a) and csc(a) which both reduce each other to 1 because csc(a)=1/sin(a) and 1/csc(a)=sin(a). That leaves us with sec(a)-tan(a), which amazingly also equals 1. As a final result, the right hand side should be 2a(1) which equals 2a. Thus, providing us with this equation. The Base is 2, the argument (power) is 7/2 and the exponent is 2a. Let’s convert this logarithm into its exponential form because our calculator can only calculate logarithms with the base of 10. We should obtain this.
Now, we can convert both sides of the equation into logarithmic form with 10 as the base. This will allow us to isolate a and use our calculators. Okay, the base is not “2.” It is 10, so do not get fooled. A logarithm is an exponent, so what does it mean when an exponent is being multiplied? Well, it obviously means the exponent has its own exponent. In this case, 2a is the exponent, so we multiply it by Log2. Now we can isolate a by dividing both sides of the equation by 2 and Log2. That is the last step.
Now it is time to look at the second equation we were given. Check this beastly equation out. It’s going to require knowledge on integrals and differentials. Just joking, it obviously does not, but I wish. Since this equation is extremely long, we will simplify the equation in a manner that goes through sections of the equation. We shall begin this part. We can’t do anything with a. As for the next term, we see the exponent -1. Because the (-1/3) is to the exponent -1, we just obtain the reciprocal of it. Negative exponents just make switch bases into their reciprocal form. For example, 10^-3 = (1^3)/(10^3).
Now let’s do this part of the equation, which is actually an exponent. This part is perhaps the most difficult one out of this whole problem. J/K!!! Okay, keep in mind that this is an exponent. We see cos(-a), but it not cos(a) which is 1/sec(a). By this, I was thinking of reducing sec(a) and 1/sec(a).This is the basic cosine graph and not the actual cosine operation we see in the equation. As you can see, it says cos(-a). The (-) simply flips the graph horizontally. If we flip this graph, it is exactly the same as it was before, so we can say that  Cos(-a) = Cos(a)
This gives us this new equation, which simplifies into this by multiplying cos(a) and sec(a) together.  We are not done simplifying. Through the most primitive Pythagorean Identity:  We can say that ( 1-cos^2(a) ) = sin^2(a). Because it is in front of (-), the negative symbol, we now have –sin^2(a). The whole thing should equal 1 since sin^2(a) - sin^2(a) = 0 leaving 1 by itself. 1*1=1, so the exponent is just 1.
We still have a chunk left to simplify. Our current equation should be this: This is the numerator of the fraction in this equation. I see a lot of trigonometric identities. It is kind of hard to explain the reasoning behind manipulating identities. You just have to use your head and base your luck on chance!!! You can solve this stuff in myriads of ways, so I’ll just take you guys through a concise simplification of the numerator.
The positive symbols next to the radicals (square root symbols) indicate that the square root value is positive. I aligned everything so that every vertical column has the same value. Notice that I input unnecessary brackets in cos(c+∏). The only puzzling thing should be –cos(c). Let’s take a look at a graph of the basic cosine function.  F(c) = cos(c)
F(c) = cos(c) Now let’s view  –cos(c)   and  cos(∏+c) cos(∏+c) – cos(c) Alrighty then,  –cos(c)   and  cos(∏+c)  are exactly the same thing. To obtain  –cos(c),   cos(c)  was just flipped vertically, not horizontally. The value of parameter a is (-1). As for  cos(∏+c) ,  cos(c)  was just shifted to the left by ∏.
Back to the equations 1
So “1” is our numerator, now let’s find the denominator. We can see that Euler’s Identity is involved in this, as well as factorial notation. How about we factor out the a!b!c! ! Hold up! This is Euler’s Identity which equals ZERO. The denominator is zero then, so all our hard work finding the numerator has been wasted. Oh well, +0 is what we found for this section of the equation.
Our current equation should be this: It is the same as it was previously. This is the last section of the equation. We can’t do anything with it, so let’s obtain our final equation. This is our final equation. We still have 2 more to go though.
Here are all of our equations. We had four equations earlier, but the first one was just used to isolate A. Based on the looks of these three equations, we can apply “systems of equations.”
I assigned each of the equations numbers to make things easier. When doing systems of equations, you stack two or more lines in a manner that is similar to addition. However, when the lines are added, at least one variable should be removed. The next slide will show this. Oh and you must use 2 combinations of 2 equations where there is one common equation within each combination. By this, I mean 1,2 and 1,3 go together, 2,1 and 2,3 go together, and 3,1 and 3,2 go together. I’m going to do 1,2 and 1,3. 1 2 3
1,2 (equations 1 and 2) It is basically addition, except there are columns assigned for each term where you can’t carry numbers. The left side shows the original equations and the right side shows the new equations. I decided to get rid of b because I felt like it. In order to get rid of b, one line must consist of (+b) while the other consists of (-b). For the first line, the factor I multiplied everything by to achieve -6b  was 2. For the second line, the factor I multiplied everything by to achieve +6b was -3.
1,3 (equations 1 and 3) B has to be removed since it was removed earlier. The factor for the first line is 5 and the factor for the second line is 3. Now we use 1,2 and 1,3, except their next equations. The top factor is just 1 and bottom one is (-1). We have to remove another variable. I chose d. We shouldn’t choose “a” because we found “a” earlier. Although, we could have plugged in “a” earlier with our value we found, but that is just another method to solve things. Hopefully you understand that or learned from that. This just means that we would have one less variable to worry about.
Now we add the 2 lines, and obtain a new equation! These are our original three equations. a = 0.903677461 It is substitution and more isolation time !
Let’s Find C a = 0.903677461 We use this equation, which was our last equation obtained from using systems of equations, Because it only has the variable, which we need to find. We already have “a.” Now let’s substitute “a” in. If you do everything properly, then: c = 24.51190959 Let’s Find B We use this equation Because we already have “a” and “c.” We don’t have “d,” so the other equations are useless. If you do everything properly, then: b = 39.9877418
We now have three values. Let’s find D a = 0.903677461 We use any 2 of the equations to find D. If we use both, the resultant value of D will be the same. Let’s try one of them out. Note that if you use both of the equations, then it makes sure that your values are correct. We shall use this equation. c = 24.51190959 b = 39.9877418 (7)(0.903677461) + (2)(39.9877418) + 24.51190959 = D D = 149.1378318
Woohoo! Pat yourself on the back! All we did was find d, which is used to find what the question is asking for. Woo, what a long question this is! This takes mighty long! You deserve a certificate for getting this far.
This is what the question stated earlier: D = 149.1378318 R is the positive square root value of D rounded to the nearest whole number. We round the square root value and not D itself. So basically, the square root of D = 12.2474. When that is rounded to the nearest whole number, we obtain 12. Therefore, r=12 Let’s plug that into our circular equation (x-15)^2 + (y-12)^2 = 144 So now, let’s graph this relation, not function!
The vertex is at (15,12). The radius is 12. Based on those two bits of information, we can easily construct this circle below. (x-15)^2 + (y-12)^2 = 144
The vertex is at (15,12). The radius is 12. Based on those two bits of information, we can easily construct this circle below. Great! We have the circle. The question wants us to find the area bounded by this circle, the x-axis, the y-axis, and line y=12. The green is the area we must find. We can solve this several ways.
Analyze the diagram first Here is my way to solve it. I see that there is a rectangle formed, so I obtain the area of that. After that, I subtract ¼ of the area of the circle from the rectangular area. You can see that ¼ of the circle occupies an area of the rectangle. The rectangle has a base of 15 units and height of 12 units, which equals the radius of the circle. You can also see that the radius touching and perpendicular to the x-axis is what creates the rectangle. That, along with y=12 creates the rectangular shape.
Analyze the diagram first Area of rectangle = 15 units x 12 units = 180 units^2 Area of circle = ∏r^2 = ∏(12 units)^2 = 452.3893421 units^2 Bounded Area   = Area of rectangle   - (¼) Area of circle = 180 units^2 – (¼)(452.3893421 units^2) = 66.9027 units^2 Therefore, the area bounded is 66.9027 units^2.
Woohoo Once Again! You deserve a trophy!

More Related Content

What's hot

CMSC 56 | Lecture 17: Matrices
CMSC 56 | Lecture 17: MatricesCMSC 56 | Lecture 17: Matrices
CMSC 56 | Lecture 17: Matricesallyn joy calcaben
 
Introduction to Real Analysis 4th Edition Bartle Solutions Manual
Introduction to Real Analysis 4th Edition Bartle Solutions ManualIntroduction to Real Analysis 4th Edition Bartle Solutions Manual
Introduction to Real Analysis 4th Edition Bartle Solutions ManualDawsonVeronica
 
5 1 complex numbers-x
5 1 complex numbers-x5 1 complex numbers-x
5 1 complex numbers-xmath123b
 
Linear Equations and Inequalities in One Variable
Linear Equations and Inequalities in One VariableLinear Equations and Inequalities in One Variable
Linear Equations and Inequalities in One Variablemisey_margarette
 
PROJECT (PPT) ON PAIR OF LINEAR EQUATIONS IN TWO VARIABLES - CLASS 10
PROJECT (PPT) ON PAIR OF LINEAR EQUATIONS IN TWO VARIABLES - CLASS 10PROJECT (PPT) ON PAIR OF LINEAR EQUATIONS IN TWO VARIABLES - CLASS 10
PROJECT (PPT) ON PAIR OF LINEAR EQUATIONS IN TWO VARIABLES - CLASS 10mayank78610
 
Systems of Linear Equations Graphing
 Systems of Linear Equations Graphing  Systems of Linear Equations Graphing
Systems of Linear Equations Graphing PLeach
 
2 3linear equations ii
2 3linear equations ii2 3linear equations ii
2 3linear equations iimath123a
 
LINEAR EQUATION IN TWO VARIABLES
LINEAR EQUATION IN TWO VARIABLESLINEAR EQUATION IN TWO VARIABLES
LINEAR EQUATION IN TWO VARIABLESDEV YADAV
 
Linear equations rev
Linear equations revLinear equations rev
Linear equations revYash Jain
 
Systems of equations lesson 5
Systems of equations lesson 5Systems of equations lesson 5
Systems of equations lesson 5KathManarang
 
0.3.e,ine,det.
0.3.e,ine,det.0.3.e,ine,det.
0.3.e,ine,det.m2699
 
1 2 2nd-degree equation and word problems-x
1 2 2nd-degree equation and word problems-x1 2 2nd-degree equation and word problems-x
1 2 2nd-degree equation and word problems-xmath123b
 
Linear equations rev - copy
Linear equations rev - copyLinear equations rev - copy
Linear equations rev - copyYash Jain
 
Linear equation in tow variable
Linear equation in tow variableLinear equation in tow variable
Linear equation in tow variableRufus Arul
 
Tutorial linear equations and linear inequalities
Tutorial linear equations and linear inequalitiesTutorial linear equations and linear inequalities
Tutorial linear equations and linear inequalitieskhyps13
 
Lesson 3 solving linear & quadratic equations
Lesson 3   solving linear & quadratic equationsLesson 3   solving linear & quadratic equations
Lesson 3 solving linear & quadratic equationsnjit-ronbrown
 
Solution of linear equation & inequality
Solution of linear equation & inequalitySolution of linear equation & inequality
Solution of linear equation & inequalityflorian Manzanilla
 
5 7applications of factoring
5 7applications of factoring5 7applications of factoring
5 7applications of factoringmath123a
 
Systems of Linear Equations
Systems of Linear EquationsSystems of Linear Equations
Systems of Linear Equationsalrosiemae
 

What's hot (20)

CMSC 56 | Lecture 17: Matrices
CMSC 56 | Lecture 17: MatricesCMSC 56 | Lecture 17: Matrices
CMSC 56 | Lecture 17: Matrices
 
Introduction to Real Analysis 4th Edition Bartle Solutions Manual
Introduction to Real Analysis 4th Edition Bartle Solutions ManualIntroduction to Real Analysis 4th Edition Bartle Solutions Manual
Introduction to Real Analysis 4th Edition Bartle Solutions Manual
 
5 1 complex numbers-x
5 1 complex numbers-x5 1 complex numbers-x
5 1 complex numbers-x
 
Linear Equations and Inequalities in One Variable
Linear Equations and Inequalities in One VariableLinear Equations and Inequalities in One Variable
Linear Equations and Inequalities in One Variable
 
PROJECT (PPT) ON PAIR OF LINEAR EQUATIONS IN TWO VARIABLES - CLASS 10
PROJECT (PPT) ON PAIR OF LINEAR EQUATIONS IN TWO VARIABLES - CLASS 10PROJECT (PPT) ON PAIR OF LINEAR EQUATIONS IN TWO VARIABLES - CLASS 10
PROJECT (PPT) ON PAIR OF LINEAR EQUATIONS IN TWO VARIABLES - CLASS 10
 
Systems of Linear Equations Graphing
 Systems of Linear Equations Graphing  Systems of Linear Equations Graphing
Systems of Linear Equations Graphing
 
2 3linear equations ii
2 3linear equations ii2 3linear equations ii
2 3linear equations ii
 
LINEAR EQUATION IN TWO VARIABLES
LINEAR EQUATION IN TWO VARIABLESLINEAR EQUATION IN TWO VARIABLES
LINEAR EQUATION IN TWO VARIABLES
 
Linear equations rev
Linear equations revLinear equations rev
Linear equations rev
 
Systems of equations lesson 5
Systems of equations lesson 5Systems of equations lesson 5
Systems of equations lesson 5
 
0.3.e,ine,det.
0.3.e,ine,det.0.3.e,ine,det.
0.3.e,ine,det.
 
Linear equations
Linear equationsLinear equations
Linear equations
 
1 2 2nd-degree equation and word problems-x
1 2 2nd-degree equation and word problems-x1 2 2nd-degree equation and word problems-x
1 2 2nd-degree equation and word problems-x
 
Linear equations rev - copy
Linear equations rev - copyLinear equations rev - copy
Linear equations rev - copy
 
Linear equation in tow variable
Linear equation in tow variableLinear equation in tow variable
Linear equation in tow variable
 
Tutorial linear equations and linear inequalities
Tutorial linear equations and linear inequalitiesTutorial linear equations and linear inequalities
Tutorial linear equations and linear inequalities
 
Lesson 3 solving linear & quadratic equations
Lesson 3   solving linear & quadratic equationsLesson 3   solving linear & quadratic equations
Lesson 3 solving linear & quadratic equations
 
Solution of linear equation & inequality
Solution of linear equation & inequalitySolution of linear equation & inequality
Solution of linear equation & inequality
 
5 7applications of factoring
5 7applications of factoring5 7applications of factoring
5 7applications of factoring
 
Systems of Linear Equations
Systems of Linear EquationsSystems of Linear Equations
Systems of Linear Equations
 

Viewers also liked

Solution 4
Solution 4Solution 4
Solution 4aldrins
 
Solution 3
Solution 3Solution 3
Solution 3aldrins
 
Problem 1
Problem 1Problem 1
Problem 1aldrins
 
Problem 3
Problem 3Problem 3
Problem 3aldrins
 
Problem 4
Problem 4Problem 4
Problem 4aldrins
 
Teaching Project #1
Teaching Project #1Teaching Project #1
Teaching Project #1jmgafford
 
Louis Ndilula Cbnrm Namibia 31 03 09
Louis Ndilula Cbnrm Namibia 31 03 09Louis Ndilula Cbnrm Namibia 31 03 09
Louis Ndilula Cbnrm Namibia 31 03 09melissagmoye
 
Teaching Project #2
Teaching Project #2Teaching Project #2
Teaching Project #2jmgafford
 
Solution 4
Solution 4Solution 4
Solution 4aldrins
 
Solution 2
Solution 2Solution 2
Solution 2aldrins
 
E Strategic Planning
E Strategic PlanningE Strategic Planning
E Strategic Planningmelissagmoye
 
Huyser Tmf Overview 03 2009 B
Huyser Tmf Overview 03 2009 BHuyser Tmf Overview 03 2009 B
Huyser Tmf Overview 03 2009 Bmelissagmoye
 
2 Skeppies Application Form Version 2008 09 September 11
2 Skeppies Application Form Version 2008 09 September 112 Skeppies Application Form Version 2008 09 September 11
2 Skeppies Application Form Version 2008 09 September 11melissagmoye
 
Solution 3
Solution 3Solution 3
Solution 3aldrins
 
4 Skeppies Application Example 2 Of Supporting Photos Pof
4 Skeppies Application Example 2 Of Supporting Photos Pof4 Skeppies Application Example 2 Of Supporting Photos Pof
4 Skeppies Application Example 2 Of Supporting Photos Pofmelissagmoye
 
6 Skeppies Monitoring Report Example Of Photo Report
6  Skeppies Monitoring Report Example Of Photo Report6  Skeppies Monitoring Report Example Of Photo Report
6 Skeppies Monitoring Report Example Of Photo Reportmelissagmoye
 

Viewers also liked (20)

Solution 4
Solution 4Solution 4
Solution 4
 
Solution 3
Solution 3Solution 3
Solution 3
 
Problem 1
Problem 1Problem 1
Problem 1
 
Problem 3
Problem 3Problem 3
Problem 3
 
Problem 4
Problem 4Problem 4
Problem 4
 
Teaching Project #1
Teaching Project #1Teaching Project #1
Teaching Project #1
 
Louis Ndilula Cbnrm Namibia 31 03 09
Louis Ndilula Cbnrm Namibia 31 03 09Louis Ndilula Cbnrm Namibia 31 03 09
Louis Ndilula Cbnrm Namibia 31 03 09
 
Teaching Project #2
Teaching Project #2Teaching Project #2
Teaching Project #2
 
Scribe
ScribeScribe
Scribe
 
Solution 4
Solution 4Solution 4
Solution 4
 
Scribe
ScribeScribe
Scribe
 
Solution 2
Solution 2Solution 2
Solution 2
 
E Strategic Planning
E Strategic PlanningE Strategic Planning
E Strategic Planning
 
Huyser Tmf Overview 03 2009 B
Huyser Tmf Overview 03 2009 BHuyser Tmf Overview 03 2009 B
Huyser Tmf Overview 03 2009 B
 
2 Skeppies Application Form Version 2008 09 September 11
2 Skeppies Application Form Version 2008 09 September 112 Skeppies Application Form Version 2008 09 September 11
2 Skeppies Application Form Version 2008 09 September 11
 
I Investment Mgmt
I Investment MgmtI Investment Mgmt
I Investment Mgmt
 
Solution 3
Solution 3Solution 3
Solution 3
 
4 Skeppies Application Example 2 Of Supporting Photos Pof
4 Skeppies Application Example 2 Of Supporting Photos Pof4 Skeppies Application Example 2 Of Supporting Photos Pof
4 Skeppies Application Example 2 Of Supporting Photos Pof
 
6 Skeppies Monitoring Report Example Of Photo Report
6  Skeppies Monitoring Report Example Of Photo Report6  Skeppies Monitoring Report Example Of Photo Report
6 Skeppies Monitoring Report Example Of Photo Report
 
Final Project
Final ProjectFinal Project
Final Project
 

Similar to Solution 1

Complex_Analysis_MIT.pdf
Complex_Analysis_MIT.pdfComplex_Analysis_MIT.pdf
Complex_Analysis_MIT.pdfd00a7ece
 
Analytic Geometry Period 1
Analytic Geometry Period 1Analytic Geometry Period 1
Analytic Geometry Period 1ingroy
 
Graphing rational functions
Graphing rational functionsGraphing rational functions
Graphing rational functionsJessica Garcia
 
Graphing rational functions
Graphing rational functionsGraphing rational functions
Graphing rational functionsJessica Garcia
 
Concepts of root locusplots by tarun gehlot
Concepts of root locusplots by tarun gehlotConcepts of root locusplots by tarun gehlot
Concepts of root locusplots by tarun gehlotTarun Gehlot
 
Concepts of root locusplots by tarun gehlot
Concepts of root locusplots by tarun gehlotConcepts of root locusplots by tarun gehlot
Concepts of root locusplots by tarun gehlotTarun Gehlot
 
2021 noveno guia en casa matematicas periodo 3
2021 noveno guia en casa matematicas periodo 32021 noveno guia en casa matematicas periodo 3
2021 noveno guia en casa matematicas periodo 3Ximena Zuluaga
 
Trigonometry for class xi
Trigonometry for class xiTrigonometry for class xi
Trigonometry for class xiindu psthakur
 
Inverse laplacetransform
Inverse laplacetransformInverse laplacetransform
Inverse laplacetransformTarun Gehlot
 
U3 08 ecuaciones
U3   08 ecuacionesU3   08 ecuaciones
U3 08 ecuacionesUNEFA Zulia
 
Calculus - Functions Review
Calculus - Functions ReviewCalculus - Functions Review
Calculus - Functions Reviewhassaanciit
 
Complex numbers And Quadratic Equations
Complex numbers And Quadratic EquationsComplex numbers And Quadratic Equations
Complex numbers And Quadratic EquationsDeepanshu Chowdhary
 
Math lecture 7 (Arithmetic Sequence)
Math lecture 7 (Arithmetic Sequence)Math lecture 7 (Arithmetic Sequence)
Math lecture 7 (Arithmetic Sequence)Osama Zahid
 
April 13, 2015
April 13, 2015April 13, 2015
April 13, 2015khyps13
 
Differential Equations Homework Help
Differential Equations Homework HelpDifferential Equations Homework Help
Differential Equations Homework HelpMath Homework Solver
 

Similar to Solution 1 (20)

Complex numbers
Complex numbersComplex numbers
Complex numbers
 
Complex_Analysis_MIT.pdf
Complex_Analysis_MIT.pdfComplex_Analysis_MIT.pdf
Complex_Analysis_MIT.pdf
 
Analytic Geometry Period 1
Analytic Geometry Period 1Analytic Geometry Period 1
Analytic Geometry Period 1
 
Exp integrals
Exp integralsExp integrals
Exp integrals
 
Graphing rational functions
Graphing rational functionsGraphing rational functions
Graphing rational functions
 
Graphing rational functions
Graphing rational functionsGraphing rational functions
Graphing rational functions
 
Concepts of root locusplots by tarun gehlot
Concepts of root locusplots by tarun gehlotConcepts of root locusplots by tarun gehlot
Concepts of root locusplots by tarun gehlot
 
Concepts of root locusplots by tarun gehlot
Concepts of root locusplots by tarun gehlotConcepts of root locusplots by tarun gehlot
Concepts of root locusplots by tarun gehlot
 
2021 noveno guia en casa matematicas periodo 3
2021 noveno guia en casa matematicas periodo 32021 noveno guia en casa matematicas periodo 3
2021 noveno guia en casa matematicas periodo 3
 
Trigonometry for class xi
Trigonometry for class xiTrigonometry for class xi
Trigonometry for class xi
 
Inverse laplacetransform
Inverse laplacetransformInverse laplacetransform
Inverse laplacetransform
 
U3 08 ecuaciones
U3   08 ecuacionesU3   08 ecuaciones
U3 08 ecuaciones
 
Act_Fin_IAMT
Act_Fin_IAMTAct_Fin_IAMT
Act_Fin_IAMT
 
CRYPTO 2.pptx
CRYPTO 2.pptxCRYPTO 2.pptx
CRYPTO 2.pptx
 
Ca 1.6
Ca 1.6Ca 1.6
Ca 1.6
 
Calculus - Functions Review
Calculus - Functions ReviewCalculus - Functions Review
Calculus - Functions Review
 
Complex numbers And Quadratic Equations
Complex numbers And Quadratic EquationsComplex numbers And Quadratic Equations
Complex numbers And Quadratic Equations
 
Math lecture 7 (Arithmetic Sequence)
Math lecture 7 (Arithmetic Sequence)Math lecture 7 (Arithmetic Sequence)
Math lecture 7 (Arithmetic Sequence)
 
April 13, 2015
April 13, 2015April 13, 2015
April 13, 2015
 
Differential Equations Homework Help
Differential Equations Homework HelpDifferential Equations Homework Help
Differential Equations Homework Help
 

Recently uploaded

Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Patryk Bandurski
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Allon Mureinik
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024Scott Keck-Warren
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
Azure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAzure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAndikSusilo4
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Paola De la Torre
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxOnBoard
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksSoftradix Technologies
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphNeo4j
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticscarlostorres15106
 

Recently uploaded (20)

Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
Azure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAzure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & Application
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping Elbows
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptx
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other Frameworks
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 

Solution 1

  • 1. Determine the area bounded by the x-axis, y-axis, y=12, and perimeter of the conic section with its equation provided below. Equation : (x-15)^2 – r^2 = -(y-12)^2 Where r is the positive square root value of D rounded to the nearest whole number Use the equations on the next slide to determine D
  • 2. Here are the equations.
  • 3. First of all, we must understand what the question is asking for. We must find the area, which is bounded by these four things: x-axis y-axis y=12 perimeter of (x-15)^2 – r^2 = -(y-12)^2
  • 4. The x-axis is the horizontal axis. The y-axis is the vertical axis. The equation y=12 is just a simple linear equation where y is Always going to be equal to 12 no matter what value x is. As for the perimeter of the equation, we must first identify the Shape of this conic section. X-axis Y-axis Y=12
  • 5.
  • 6. Given by our proofs, it is safe to say that the equation we have is a circular one. We must obtain the perimeter (circumference) of this circle because it is necessary to find the area that which it helps bound. We do not have sufficient information though to construct this circle. However, we can obtain sufficient information if we work out the four equations because of this specific piece of information: Equation : (x-15)^2 – r^2 = -(y-12)^2 Or (x-15)^2 + (y-12)^2 = r^2 Where r is the positive square root value of D rounded to the nearest whole number So let us begin by analyzing the 4 given equations
  • 7. Here are the four equations. The first equation consists of only one variable, A. The second equation consists of three variables, A, B, and C. The third equation consists of four variables, A, B, C, and D. The fourth equation consists of four variables, A, B, C, and D. (e is not a variable) Now we can just think of ways to solve these equations. We shall start with the first equation.
  • 8. Let’s go through the first equation. Step 1 We have to simply everything as much as possible to obtain a. If you look at the base, there is the letter to a certain exponent. This should be familiar, otherwise, just look at Euler’s Identity, which is shown below. If you transpose the one, e^[i(pi)] will equal -1. So now we can just substitute what we have in the equation for -1. The base of the logarithm should now be (-2)(-1) which equals 2.
  • 9. The 7/2 is already simplified, so we leave that alone and proceed to simplifying the exponent (right hand side of equation. Step 2 By looking at this, you should easily identify certain trigonometric identities. The denominator is not pleasant looking, so we can expand it into (a+1)(a-1) You should notice that there is only one term in the numerator. Everything in the numerator is being multiplied.
  • 10. Step 3 You can find (a+1) and (a-1) in the numerator, which can be reduced to 1 from (a+1)(a-1) in the denominator. There is sin(a) and csc(a) which both reduce each other to 1 because csc(a)=1/sin(a) and 1/csc(a)=sin(a). That leaves us with sec(a)-tan(a), which amazingly also equals 1. As a final result, the right hand side should be 2a(1) which equals 2a. Thus, providing us with this equation. The Base is 2, the argument (power) is 7/2 and the exponent is 2a. Let’s convert this logarithm into its exponential form because our calculator can only calculate logarithms with the base of 10. We should obtain this.
  • 11. Now, we can convert both sides of the equation into logarithmic form with 10 as the base. This will allow us to isolate a and use our calculators. Okay, the base is not “2.” It is 10, so do not get fooled. A logarithm is an exponent, so what does it mean when an exponent is being multiplied? Well, it obviously means the exponent has its own exponent. In this case, 2a is the exponent, so we multiply it by Log2. Now we can isolate a by dividing both sides of the equation by 2 and Log2. That is the last step.
  • 12. Now it is time to look at the second equation we were given. Check this beastly equation out. It’s going to require knowledge on integrals and differentials. Just joking, it obviously does not, but I wish. Since this equation is extremely long, we will simplify the equation in a manner that goes through sections of the equation. We shall begin this part. We can’t do anything with a. As for the next term, we see the exponent -1. Because the (-1/3) is to the exponent -1, we just obtain the reciprocal of it. Negative exponents just make switch bases into their reciprocal form. For example, 10^-3 = (1^3)/(10^3).
  • 13. Now let’s do this part of the equation, which is actually an exponent. This part is perhaps the most difficult one out of this whole problem. J/K!!! Okay, keep in mind that this is an exponent. We see cos(-a), but it not cos(a) which is 1/sec(a). By this, I was thinking of reducing sec(a) and 1/sec(a).This is the basic cosine graph and not the actual cosine operation we see in the equation. As you can see, it says cos(-a). The (-) simply flips the graph horizontally. If we flip this graph, it is exactly the same as it was before, so we can say that Cos(-a) = Cos(a)
  • 14. This gives us this new equation, which simplifies into this by multiplying cos(a) and sec(a) together. We are not done simplifying. Through the most primitive Pythagorean Identity: We can say that ( 1-cos^2(a) ) = sin^2(a). Because it is in front of (-), the negative symbol, we now have –sin^2(a). The whole thing should equal 1 since sin^2(a) - sin^2(a) = 0 leaving 1 by itself. 1*1=1, so the exponent is just 1.
  • 15. We still have a chunk left to simplify. Our current equation should be this: This is the numerator of the fraction in this equation. I see a lot of trigonometric identities. It is kind of hard to explain the reasoning behind manipulating identities. You just have to use your head and base your luck on chance!!! You can solve this stuff in myriads of ways, so I’ll just take you guys through a concise simplification of the numerator.
  • 16. The positive symbols next to the radicals (square root symbols) indicate that the square root value is positive. I aligned everything so that every vertical column has the same value. Notice that I input unnecessary brackets in cos(c+∏). The only puzzling thing should be –cos(c). Let’s take a look at a graph of the basic cosine function. F(c) = cos(c)
  • 17. F(c) = cos(c) Now let’s view –cos(c) and cos(∏+c) cos(∏+c) – cos(c) Alrighty then, –cos(c) and cos(∏+c) are exactly the same thing. To obtain –cos(c), cos(c) was just flipped vertically, not horizontally. The value of parameter a is (-1). As for cos(∏+c) , cos(c) was just shifted to the left by ∏.
  • 18. Back to the equations 1
  • 19. So “1” is our numerator, now let’s find the denominator. We can see that Euler’s Identity is involved in this, as well as factorial notation. How about we factor out the a!b!c! ! Hold up! This is Euler’s Identity which equals ZERO. The denominator is zero then, so all our hard work finding the numerator has been wasted. Oh well, +0 is what we found for this section of the equation.
  • 20. Our current equation should be this: It is the same as it was previously. This is the last section of the equation. We can’t do anything with it, so let’s obtain our final equation. This is our final equation. We still have 2 more to go though.
  • 21. Here are all of our equations. We had four equations earlier, but the first one was just used to isolate A. Based on the looks of these three equations, we can apply “systems of equations.”
  • 22. I assigned each of the equations numbers to make things easier. When doing systems of equations, you stack two or more lines in a manner that is similar to addition. However, when the lines are added, at least one variable should be removed. The next slide will show this. Oh and you must use 2 combinations of 2 equations where there is one common equation within each combination. By this, I mean 1,2 and 1,3 go together, 2,1 and 2,3 go together, and 3,1 and 3,2 go together. I’m going to do 1,2 and 1,3. 1 2 3
  • 23. 1,2 (equations 1 and 2) It is basically addition, except there are columns assigned for each term where you can’t carry numbers. The left side shows the original equations and the right side shows the new equations. I decided to get rid of b because I felt like it. In order to get rid of b, one line must consist of (+b) while the other consists of (-b). For the first line, the factor I multiplied everything by to achieve -6b was 2. For the second line, the factor I multiplied everything by to achieve +6b was -3.
  • 24. 1,3 (equations 1 and 3) B has to be removed since it was removed earlier. The factor for the first line is 5 and the factor for the second line is 3. Now we use 1,2 and 1,3, except their next equations. The top factor is just 1 and bottom one is (-1). We have to remove another variable. I chose d. We shouldn’t choose “a” because we found “a” earlier. Although, we could have plugged in “a” earlier with our value we found, but that is just another method to solve things. Hopefully you understand that or learned from that. This just means that we would have one less variable to worry about.
  • 25. Now we add the 2 lines, and obtain a new equation! These are our original three equations. a = 0.903677461 It is substitution and more isolation time !
  • 26. Let’s Find C a = 0.903677461 We use this equation, which was our last equation obtained from using systems of equations, Because it only has the variable, which we need to find. We already have “a.” Now let’s substitute “a” in. If you do everything properly, then: c = 24.51190959 Let’s Find B We use this equation Because we already have “a” and “c.” We don’t have “d,” so the other equations are useless. If you do everything properly, then: b = 39.9877418
  • 27. We now have three values. Let’s find D a = 0.903677461 We use any 2 of the equations to find D. If we use both, the resultant value of D will be the same. Let’s try one of them out. Note that if you use both of the equations, then it makes sure that your values are correct. We shall use this equation. c = 24.51190959 b = 39.9877418 (7)(0.903677461) + (2)(39.9877418) + 24.51190959 = D D = 149.1378318
  • 28. Woohoo! Pat yourself on the back! All we did was find d, which is used to find what the question is asking for. Woo, what a long question this is! This takes mighty long! You deserve a certificate for getting this far.
  • 29. This is what the question stated earlier: D = 149.1378318 R is the positive square root value of D rounded to the nearest whole number. We round the square root value and not D itself. So basically, the square root of D = 12.2474. When that is rounded to the nearest whole number, we obtain 12. Therefore, r=12 Let’s plug that into our circular equation (x-15)^2 + (y-12)^2 = 144 So now, let’s graph this relation, not function!
  • 30. The vertex is at (15,12). The radius is 12. Based on those two bits of information, we can easily construct this circle below. (x-15)^2 + (y-12)^2 = 144
  • 31. The vertex is at (15,12). The radius is 12. Based on those two bits of information, we can easily construct this circle below. Great! We have the circle. The question wants us to find the area bounded by this circle, the x-axis, the y-axis, and line y=12. The green is the area we must find. We can solve this several ways.
  • 32. Analyze the diagram first Here is my way to solve it. I see that there is a rectangle formed, so I obtain the area of that. After that, I subtract ¼ of the area of the circle from the rectangular area. You can see that ¼ of the circle occupies an area of the rectangle. The rectangle has a base of 15 units and height of 12 units, which equals the radius of the circle. You can also see that the radius touching and perpendicular to the x-axis is what creates the rectangle. That, along with y=12 creates the rectangular shape.
  • 33. Analyze the diagram first Area of rectangle = 15 units x 12 units = 180 units^2 Area of circle = ∏r^2 = ∏(12 units)^2 = 452.3893421 units^2 Bounded Area = Area of rectangle - (¼) Area of circle = 180 units^2 – (¼)(452.3893421 units^2) = 66.9027 units^2 Therefore, the area bounded is 66.9027 units^2.
  • 34. Woohoo Once Again! You deserve a trophy!