1
 set
A, B

 a A “a A”
a A “a A”
 A = {a1, a2, …, an} “A a1, …, an”

2

:
 a, b, c
{a, b, c} = {a, c, b} = {b, a, c} =
{b, c, a} = {c, a, b} = {c, b, a}

 a=b, {a, b, c} = {a, c} = {b, c} =
{a, a, b, a, b, c, c, c, c}
 !
3
 A B
:
4
• A = {9, 2, 7, -3}, B = {7, 9, -3, 2} : A = B
• A = { , , },
B = { , , , } : A B
• A = { , , },
B = { , , , } :
A = B
• A = {1, 2, 3, 4},
B = {x | x x>0 x<5
}:
A = B
 A = “ ”
 A = {z} : z A, z {z}
 A = {{b, c}, {c, x, d}}
 A = {{x, y}} : {x, y} A, {x, y} {{x,
y}}
 A = {x | P(x)} “ x P(x)
”
P(x) membership function)
A
x (P(x) x A)
 A = {x | x N x > 7} = {8, 9, 10, …}
“ set builder5

infinite
 :
 Q = {a/b | a Z b Z+}
N = {0, 1, 2, …}
Z = {…, -2, -1, 0, 1, 2, …}
R = {-0.15, 3.67, 30,
74.18284719818125…}

ℕ, ℤ, ℝ
 6
“ ”:
 Natural numbers N = {0, 1, 2,
3, …}
 Integers Z = {…, -2, -1, 0, 1, 2, …}
 Positive Integers Z+ = {1,
2, 3, 4, …}
 Real Numbers R = {47.3, -12, , …}
 Rational Numbers Q = {1.5, 2.6,
-3.8, 15, …}
7


U

8
For 2 sets For 3 sets
9
10
11
 (“null”, “ ”)
 = {} = {x|False}
 ,
x: x
12
 S T (“S T”)
S T
 S T x (x S x T)
 S
 S S
 S T (“S T”) T S
 : S=T S T S T
 (S T), x(x S x T)
13
TS /
 S T (“S T”) S T
 : A = {1, 2, 3}, B = {2, 3, 1},
C = {3}
 B = A, C A, C B
 : U = 1, 2, 3, , 11, 12
T = 1, 2, 3, 6
 T U T U
14
ST /
Example: A B, A B
 A={x|x 42 ≤ x ≤ 51}
 B={x|x=4k+3 k N}
 x A x=43 x=47
43=4(10)+3 47=4(11)+3
 A B
A B
#
 B A
15
Example: A B B A A
B
 A={3k+1 | k N} B={4k+1 | k N}

A={1,4,7,…}
B={1,5,9,…}
 4 A 4 B A B
5 B 5 A B A
#
16
Example: A = B A B
 A={x|x 12 ≤ x ≤ 18}
 B={x|x=4k+1 k {3,4}}
 A B x A x=13
x=17 13=4(3)+1
17=4(4)+1 x B A
B
 B A x B
x=4(3)+1 x=4(4)+1 x=13 17
17
 |S| ( “ S”)
S
 , | |=0, |{1,2,3}| = 3, |{a,b}| = 2,
|{{1,2,3},{4,5}}| = ____
 |S| N, S finite
S infinite
18
D = { x N | x 7000 } |D| = 7001
E = { x N | x 7000 } E
 P(S) S
S P(S) :≡ {x | x S}
 P({a,b}) = { , {a}, {b}, {a,b}}
 A = , P(A) = { }, : |A| = 0, |P(A)| = 1
 S , |P(S)| = 2|S|
 S:|P(S)|>|S|, |P(N)| > |N|
19

 n N, n n
(a1, a2, …, an)
a1
 (1, 2) (2, 1) (2, 1, 1)
 n (a1, a2, a3, …, an)
(b1, b2, b3, …, bn)
,
20
 A, B, Cartesian
product
A B : {(a, b) | a A b B }.
 A = , A =
 : A = {x, y}, B = {a, b, c}
A B = {(x, a), (x, b), (x, c), (y, a), (y, b), (y,
c)}
 A B :
A B A B B A
 A, B , |A B|=|A||B|
 A n
A1 A2 … An...
21
 A, B, nion) A B
A, B (
)
 , A,B: A B = {x | x A x B}
 A B A
B
A, B: (A B A) (A B B)
22
•{a,b,c} {2,3} =__________
•{2,3,5} {3,5,7} =___________
{a,b,c,2,3}
{2,3,5,3,5,7}
= {2,3,5,7}
 union: A B
n-ary
union:
= A1 A2 … An

:
 I Ai
i I union
1i
iA
Oddi
iA
23

n
i
iA
1
Ii
iA
 A, B, intersection A B
A (“ ”)
B
 , A,B: A B={x | x A x B}
 A B A B:
A, B: (A B A) (A B B)
24
•{a,b,c} {2,3} = ___
•{2,4,6} {3,4,5} = ______{4}
 intersection: A B
n-
ary intersection :
= A1 A2 … An

:
 I Ai
i I intersection
1i
iA
Oddi
iA
25

n
i
iA
1
Ii
iA
 A B ?
|A B| = |A| |B| |A B|
 :
Mailing List) ? E I M,
I = {s | s }
M = {s | s }
 !
|E| = |I M| = |I| |M| |I M|
26
 A, B (disjoint)
intersection)
(A B= )
 :
27
 A, B, A B,
A B, A
B :
A B : x x A x B
: x x A x B
 : |A-B| = |A| - |A B|
28
Set A Set B
Set
A B
A−B
A
B
 {1,2,3,4,5,6} {2,3,5,7,9,11} =
___________
 Z N {… , −1, 0, 1, 2, … } {0, 1, … }
= {x | x }
= {x | x }
= {… , −3, −2, −1}
29
{1,4,6}
30
A B
UA B
A B = { x | x A x B }
 universe of discourse
U
 A A U, A complement
,
A U,
= U A
 , U=N,
A
}|{ AxxA
31
A
,...}7,6,4,2,1,0{}5,3{
A
A
A B
A B
A
B
A-B
B-A
A B
32
:
U = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
A= 1, 2, 3, 4, 5 ,
B = 4, 5, 6, 7, 8
 Identity : A = A = A U
 Domination): A U = U , A =
 Idempotent): A A = A = A A
 Double complement):
 Commutative): A B = B A , A B = B A
 Distributive): A (B C) = (A B) (A C)
 Associative): A (B C)=(A B) C ,
A (B C)=(A B) C
 Absorption): A (A B) = A, A (A B) = A
 Complement): A = U, A =A
A
33
AA)(
E1 = E2 ( Es ),
:
1. E1 E2 E2 E1
2. set builder notation
3. membership table
34
: A (B C)=(A B) (A C)
 1: A (B C) (A B) (A C)
 x A (B C), x (A B) (A C)
 x A, x B x C
 1: x B x A B, x (A B) (A C)
 2: x C x A C , x (A B) (A C)
 , x (A B) (A C)
 , A (B C) (A B) (A C)
35
 2: (A B) (A C) A (B C)
 x (A B) (A C), x A (B C)
 x A B, x A C
 1: x A B x A x B
 2: x A C x A x C
 x A, x B x C x A (B C)
 , (A B) (A C) A (B C)
 A (B C) (A B) (A C)
(A B) (A C) A (B C)
A (B C) = (A B) (A C) #
36
:
:
Unions)
(A B ) C = A (B C )
37
:
:
Unions)
(A B ) C = A (B C )
: (A B ) C = {x | x A B x C } (
)
38
:
:
Unions)
(A B ) C = A (B C )
: (A B ) C = {x | x A B x C } (
)
= {x | (x A x B ) x C } (
)
39
:
:
Unions)
(A B ) C = A (B C )
: (A B ) C = {x | x A B x C } (
)
= {x | (x A x B ) x C } (
)
= {x | x A ( x B x C ) } (
)
40
:
:
Unions)
(A B ) C = A (B C )
: (A B ) C = {x | x A B x C } (
)
= {x | (x A x B ) x C } (
)
= {x | x A ( x B x C ) } (
)
= {x | x A x B C ) } (
41
:
:
Unions)
(A B ) C = A (B C )
: (A B ) C = {x | x A B x C } (
)
= {x | (x A x B ) x C } (
)
= {x | x A ( x B x C ) } (
)
= {x | x A (x B C ) } (42
 set
builder notation logical equivalence
 Proof:
 Q.E.D.
BABA
unionofDef.)
complementofDef.)
lawssMorgan'De)
onintersectiofDef.)(
ofDef.))((
complementofDef.
BAxx
BxAxx
BxAxx
BxAxx
BAxx
BAxxBA
43



 “1” , “0”

44
(A B) B = A B
(A B) B = A B #
45
AA BB AA BB ((AA BB)) BB AA BB
0 0 0 0 0
0 1 1 0 0
1 0 1 1 1
1 1 1 0 0
(A B) C = (A C) (B C)
46
A B C AA BB ((AA BB)) CC AA CC BB CC ((AA CC)) ((BB CC))
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
 (A B) B = A B Set builder
notation




47

SET

  • 1.
  • 2.
     set A, B  a A “a A” a A “a A”  A = {a1, a2, …, an} “A a1, …, an”  2
  • 3.
     :  a, b,c {a, b, c} = {a, c, b} = {b, a, c} = {b, c, a} = {c, a, b} = {c, b, a}   a=b, {a, b, c} = {a, c} = {b, c} = {a, a, b, a, b, c, c, c, c}  ! 3
  • 4.
     A B : 4 •A = {9, 2, 7, -3}, B = {7, 9, -3, 2} : A = B • A = { , , }, B = { , , , } : A B • A = { , , }, B = { , , , } : A = B • A = {1, 2, 3, 4}, B = {x | x x>0 x<5 }: A = B
  • 5.
     A =“ ”  A = {z} : z A, z {z}  A = {{b, c}, {c, x, d}}  A = {{x, y}} : {x, y} A, {x, y} {{x, y}}  A = {x | P(x)} “ x P(x) ” P(x) membership function) A x (P(x) x A)  A = {x | x N x > 7} = {8, 9, 10, …} “ set builder5
  • 6.
     infinite  :  Q= {a/b | a Z b Z+} N = {0, 1, 2, …} Z = {…, -2, -1, 0, 1, 2, …} R = {-0.15, 3.67, 30, 74.18284719818125…}  ℕ, ℤ, ℝ  6
  • 7.
    “ ”:  Naturalnumbers N = {0, 1, 2, 3, …}  Integers Z = {…, -2, -1, 0, 1, 2, …}  Positive Integers Z+ = {1, 2, 3, 4, …}  Real Numbers R = {47.3, -12, , …}  Rational Numbers Q = {1.5, 2.6, -3.8, 15, …} 7
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
     (“null”, “”)  = {} = {x|False}  , x: x 12
  • 13.
     S T(“S T”) S T  S T x (x S x T)  S  S S  S T (“S T”) T S  : S=T S T S T  (S T), x(x S x T) 13 TS /
  • 14.
     S T(“S T”) S T  : A = {1, 2, 3}, B = {2, 3, 1}, C = {3}  B = A, C A, C B  : U = 1, 2, 3, , 11, 12 T = 1, 2, 3, 6  T U T U 14 ST /
  • 15.
    Example: A B,A B  A={x|x 42 ≤ x ≤ 51}  B={x|x=4k+3 k N}  x A x=43 x=47 43=4(10)+3 47=4(11)+3  A B A B #  B A 15
  • 16.
    Example: A BB A A B  A={3k+1 | k N} B={4k+1 | k N}  A={1,4,7,…} B={1,5,9,…}  4 A 4 B A B 5 B 5 A B A # 16
  • 17.
    Example: A =B A B  A={x|x 12 ≤ x ≤ 18}  B={x|x=4k+1 k {3,4}}  A B x A x=13 x=17 13=4(3)+1 17=4(4)+1 x B A B  B A x B x=4(3)+1 x=4(4)+1 x=13 17 17
  • 18.
     |S| (“ S”) S  , | |=0, |{1,2,3}| = 3, |{a,b}| = 2, |{{1,2,3},{4,5}}| = ____  |S| N, S finite S infinite 18 D = { x N | x 7000 } |D| = 7001 E = { x N | x 7000 } E
  • 19.
     P(S) S SP(S) :≡ {x | x S}  P({a,b}) = { , {a}, {b}, {a,b}}  A = , P(A) = { }, : |A| = 0, |P(A)| = 1  S , |P(S)| = 2|S|  S:|P(S)|>|S|, |P(N)| > |N| 19
  • 20.
      n N,n n (a1, a2, …, an) a1  (1, 2) (2, 1) (2, 1, 1)  n (a1, a2, a3, …, an) (b1, b2, b3, …, bn) , 20
  • 21.
     A, B,Cartesian product A B : {(a, b) | a A b B }.  A = , A =  : A = {x, y}, B = {a, b, c} A B = {(x, a), (x, b), (x, c), (y, a), (y, b), (y, c)}  A B : A B A B B A  A, B , |A B|=|A||B|  A n A1 A2 … An... 21
  • 22.
     A, B,nion) A B A, B ( )  , A,B: A B = {x | x A x B}  A B A B A, B: (A B A) (A B B) 22 •{a,b,c} {2,3} =__________ •{2,3,5} {3,5,7} =___________ {a,b,c,2,3} {2,3,5,3,5,7} = {2,3,5,7}
  • 23.
     union: AB n-ary union: = A1 A2 … An  :  I Ai i I union 1i iA Oddi iA 23  n i iA 1 Ii iA
  • 24.
     A, B,intersection A B A (“ ”) B  , A,B: A B={x | x A x B}  A B A B: A, B: (A B A) (A B B) 24 •{a,b,c} {2,3} = ___ •{2,4,6} {3,4,5} = ______{4}
  • 25.
     intersection: AB n- ary intersection : = A1 A2 … An  :  I Ai i I intersection 1i iA Oddi iA 25  n i iA 1 Ii iA
  • 26.
     A B? |A B| = |A| |B| |A B|  : Mailing List) ? E I M, I = {s | s } M = {s | s }  ! |E| = |I M| = |I| |M| |I M| 26
  • 27.
     A, B(disjoint) intersection) (A B= )  : 27
  • 28.
     A, B,A B, A B, A B : A B : x x A x B : x x A x B  : |A-B| = |A| - |A B| 28 Set A Set B Set A B A−B A B
  • 29.
     {1,2,3,4,5,6} {2,3,5,7,9,11}= ___________  Z N {… , −1, 0, 1, 2, … } {0, 1, … } = {x | x } = {x | x } = {… , −3, −2, −1} 29 {1,4,6}
  • 30.
    30 A B UA B AB = { x | x A x B }
  • 31.
     universe ofdiscourse U  A A U, A complement , A U, = U A  , U=N, A }|{ AxxA 31 A ,...}7,6,4,2,1,0{}5,3{ A A
  • 32.
    A B A B A B A-B B-A AB 32 : U = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 A= 1, 2, 3, 4, 5 , B = 4, 5, 6, 7, 8
  • 33.
     Identity :A = A = A U  Domination): A U = U , A =  Idempotent): A A = A = A A  Double complement):  Commutative): A B = B A , A B = B A  Distributive): A (B C) = (A B) (A C)  Associative): A (B C)=(A B) C , A (B C)=(A B) C  Absorption): A (A B) = A, A (A B) = A  Complement): A = U, A =A A 33 AA)(
  • 34.
    E1 = E2( Es ), : 1. E1 E2 E2 E1 2. set builder notation 3. membership table 34
  • 35.
    : A (BC)=(A B) (A C)  1: A (B C) (A B) (A C)  x A (B C), x (A B) (A C)  x A, x B x C  1: x B x A B, x (A B) (A C)  2: x C x A C , x (A B) (A C)  , x (A B) (A C)  , A (B C) (A B) (A C) 35
  • 36.
     2: (AB) (A C) A (B C)  x (A B) (A C), x A (B C)  x A B, x A C  1: x A B x A x B  2: x A C x A x C  x A, x B x C x A (B C)  , (A B) (A C) A (B C)  A (B C) (A B) (A C) (A B) (A C) A (B C) A (B C) = (A B) (A C) # 36
  • 37.
    : : Unions) (A B )C = A (B C ) 37
  • 38.
    : : Unions) (A B )C = A (B C ) : (A B ) C = {x | x A B x C } ( ) 38
  • 39.
    : : Unions) (A B )C = A (B C ) : (A B ) C = {x | x A B x C } ( ) = {x | (x A x B ) x C } ( ) 39
  • 40.
    : : Unions) (A B )C = A (B C ) : (A B ) C = {x | x A B x C } ( ) = {x | (x A x B ) x C } ( ) = {x | x A ( x B x C ) } ( ) 40
  • 41.
    : : Unions) (A B )C = A (B C ) : (A B ) C = {x | x A B x C } ( ) = {x | (x A x B ) x C } ( ) = {x | x A ( x B x C ) } ( ) = {x | x A x B C ) } ( 41
  • 42.
    : : Unions) (A B )C = A (B C ) : (A B ) C = {x | x A B x C } ( ) = {x | (x A x B ) x C } ( ) = {x | x A ( x B x C ) } ( ) = {x | x A (x B C ) } (42
  • 43.
     set builder notationlogical equivalence  Proof:  Q.E.D. BABA unionofDef.) complementofDef.) lawssMorgan'De) onintersectiofDef.)( ofDef.))(( complementofDef. BAxx BxAxx BxAxx BxAxx BAxx BAxxBA 43
  • 44.
  • 45.
    (A B) B= A B (A B) B = A B # 45 AA BB AA BB ((AA BB)) BB AA BB 0 0 0 0 0 0 1 1 0 0 1 0 1 1 1 1 1 1 0 0
  • 46.
    (A B) C= (A C) (B C) 46 A B C AA BB ((AA BB)) CC AA CC BB CC ((AA CC)) ((BB CC)) 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1
  • 47.
     (A B)B = A B Set builder notation     47