SlideShare a Scribd company logo
1 of 36
1
Set Theory
Rosen 6th ed., §2.1-2.2
2
Introduction to Set Theory
• A set is a structure, representing an
unordered collection (group, plurality) of
zero or more distinct (different) objects.
• Set theory deals with operations between,
relations among, and statements about sets.
3
Basic notations for sets
• For sets, we’ll use variables S, T, U, …
• We can denote a set S in writing by listing all of its
elements in curly braces:
– {a, b, c} is the set of whatever 3 objects are denoted by
a, b, c.
• Set builder notation: For any proposition P(x) over
any universe of discourse, {x|P(x)} is the set of all
x such that P(x).
e.g., {x | x is an integer where x>0 and x<5 }
4
Basic properties of sets
• Sets are inherently unordered:
– No matter what objects a, b, and c denote,
{a, b, c} = {a, c, b} = {b, a, c} =
{b, c, a} = {c, a, b} = {c, b, a}.
• All elements are distinct (unequal);
multiple listings make no difference!
– {a, b, c} = {a, a, b, a, b, c, c, c, c}.
– This set contains at most 3 elements!
5
Definition of Set Equality
• Two sets are declared to be equal if and only if
they contain exactly the same elements.
• In particular, it does not matter how the set is
defined or denoted.
• For example: The set {1, 2, 3, 4} =
{x | x is an integer where x>0 and x<5 } =
{x | x is a positive integer whose square
is >0 and <25}
6
Infinite Sets
• Conceptually, sets may be infinite (i.e., not
finite, without end, unending).
• Symbols for some special infinite sets:
N = {0, 1, 2, …} The natural numbers.
Z = {…, -2, -1, 0, 1, 2, …} The integers.
R = The “real” numbers, such as
374.1828471929498181917281943125…
• Infinite sets come in different sizes!
7
Venn Diagrams
8
Basic Set Relations: Member of
• xS (“x is in S”) is the proposition that object x is
an lement or member of set S.
– e.g. 3N, “a”{x | x is a letter of the alphabet}
• Can define set equality in terms of  relation:
S,T: S=T  (x: xS  xT)
“Two sets are equal iff they have all the same
members.”
• xS : (xS) “x is not in S”
9
The Empty Set
•  (“null”, “the empty set”) is the unique set
that contains no elements whatsoever.
•  = {} = {x|False}
• No matter the domain of discourse,
we have the axiom
x: x.
10
Subset and Superset Relations
• ST (“S is a subset of T”) means that every
element of S is also an element of T.
• ST  x (xS  xT)
• S, SS.
• ST (“S is a superset of T”) means TS.
• Note S=T  ST ST.
• means (ST), i.e. x(xS  xT)
T
S /

11
Proper (Strict) Subsets & Supersets
• ST (“S is a proper subset of T”) means that
ST but . Similar for ST.
S
T /

S
T
Venn Diagram equivalent of ST
Example:
{1,2} 
{1,2,3}
12
Sets Are Objects, Too!
• The objects that are elements of a set may
themselves be sets.
• E.g. let S={x | x  {1,2,3}}
then S={,
{1}, {2}, {3},
{1,2}, {1,3}, {2,3},
{1,2,3}}
• Note that 1  {1}  {{1}} !!!!
13
Cardinality and Finiteness
• |S| (read “the cardinality of S”) is a measure
of how many different elements S has.
• E.g., ||=0, |{1,2,3}| = 3, |{a,b}| = 2,
|{{1,2,3},{4,5}}| = ____
• We say S is infinite if it is not finite.
• What are some infinite sets we’ve seen?
14
The Power Set Operation
• The power set P(S) of a set S is the set of all
subsets of S. P(S) = {x | xS}.
• E.g. P({a,b}) = {, {a}, {b}, {a,b}}.
• Sometimes P(S) is written 2S.
Note that for finite S, |P(S)| = 2|S|.
• It turns out that |P(N)| > |N|.
There are different sizes of infinite sets!
15
Ordered n-tuples
• For nN, an ordered n-tuple or a sequence
of length n is written (a1, a2, …, an). The
first element is a1, etc.
• These are like sets, except that duplicates
matter, and the order makes a difference.
• Note (1, 2)  (2, 1)  (2, 1, 1).
• Empty sequence, singlets, pairs, triples,
quadruples, quintuples, …, n-tuples.
16
Cartesian Products of Sets
• For sets A, B, their Cartesian product
AB : {(a, b) | aA  bB }.
• E.g. {a,b}{1,2} = {(a,1),(a,2),(b,1),(b,2)}
• Note that for finite A, B, |AB|=|A||B|.
• Note that the Cartesian product is not
commutative: AB: AB =BA.
• Extends to A1  A2  …  An...
17
The Union Operator
• For sets A, B, their union AB is the set
containing all elements that are either in A,
or (“”) in B (or, of course, in both).
• Formally, A,B: AB = {x | xA  xB}.
• Note that AB contains all the elements of
A and it contains all the elements of B:
A, B: (AB  A)  (AB  B)
18
• {a,b,c}{2,3} = {a,b,c,2,3}
• {2,3,5}{3,5,7} = {2,3,5,3,5,7} ={2,3,5,7}
Union Examples
19
The Intersection Operator
• For sets A, B, their intersection AB is the
set containing all elements that are
simultaneously in A and (“”) in B.
• Formally, A,B: AB{x | xA  xB}.
• Note that AB is a subset of A and it is a
subset of B:
A, B: (AB  A)  (AB  B)
20
• {a,b,c}{2,3} = ___
• {2,4,6}{3,4,5} = ______
Intersection Examples

{4}
21
Disjointedness
• Two sets A, B are called
disjoint (i.e., unjoined)
iff their intersection is
empty. (AB=)
• Example: the set of even
integers is disjoint with
the set of odd integers.
Help, I’ve
been
disjointed!
22
Inclusion-Exclusion Principle
• How many elements are in AB?
|AB| = |A|  |B|  |AB|
• Example:
{2,3,5}{3,5,7} = {2,3,5,3,5,7} ={2,3,5,7}
23
Set Difference
• For sets A, B, the difference of A and B,
written AB, is the set of all elements that
are in A but not B.
• A  B : x  xA  xB
 x   xA  xB  
• Also called:
The complement of B with respect to A.
24
Set Difference Examples
• {1,2,3,4,5,6}  {2,3,5,7,9,11} =
___________
• Z  N  {… , -1, 0, 1, 2, … }  {0, 1, … }
= {x | x is an integer but not a nat. #}
= {x | x is a negative integer}
= {… , -3, -2, -1}
{1,4,6}
25
Set Difference - Venn Diagram
• A-B is what’s left after B
“takes a bite out of A”
Set A Set B
Set
AB
Chomp!
26
Set Complements
• The universe of discourse can itself be
considered a set, call it U.
• The complement of A, written , is the
complement of A w.r.t. U, i.e., it is UA.
• E.g., If U=N,
A
,...}
7
,
6
,
4
,
2
,
1
,
0
{
}
5
,
3
{ 
27
More on Set Complements
• An equivalent definition, when U is clear:
}
|
{ A
x
x
A 

A
U
A
28
Set Identities
• Identity: A=A AU=A
• Domination: AU=U A=
• Idempotent: AA = A = AA
• Double complement:
• Commutative: AB=BA AB=BA
• Associative: A(BC)=(AB)C
A(BC)=(AB)C
A
A 
)
(
29
DeMorgan’s Law for Sets
• Exactly analogous to (and derivable from)
DeMorgan’s Law for propositions.
B
A
B
A
B
A
B
A






30
Proving Set Identities
To prove statements about sets, of the form
E1 = E2 (where Es are set expressions), here
are three useful techniques:
• Prove E1  E2 and E2  E1 separately.
• Use logical equivalences.
• Use a membership table.
31
Method 1: Mutual subsets
Example: Show A(BC)=(AB)(AC).
• Show A(BC)(AB)(AC).
– Assume xA(BC), & show x(AB)(AC).
– We know that xA, and either xB or xC.
• Case 1: xB. Then xAB, so x(AB)(AC).
• Case 2: xC. Then xAC , so x(AB)(AC).
– Therefore, x(AB)(AC).
– Therefore, A(BC)(AB)(AC).
• Show (AB)(AC)  A(BC). …
32
Method 3: Membership Tables
• Just like truth tables for propositional logic.
• Columns for different set expressions.
• Rows for all combinations of memberships
in constituent sets.
• Use “1” to indicate membership in the
derived set, “0” for non-membership.
• Prove equivalence with identical columns.
33
Membership Table Example
Prove (AB)B = AB.
A
A B
B A
A
B
B (
(A
A
B
B)
)
B
B A
A
B
B
0 0 0 0 0
0 1 1 0 0
1 0 1 1 1
1 1 1 0 0
34
Membership Table Exercise
Prove (AB)C = (AC)(BC).
A B C A
A
B
B (
(A
A
B
B)
)
C
C A
A
C
C B
B
C
C (
(A
A
C
C)
)
(
(B
B
C
C)
)
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
35
Generalized Union
• Binary union operator: AB
• n-ary union:
AA2…An : ((…((A1 A2) …) An)
(grouping & order is irrelevant)
• “Big U” notation:
• Or for infinite sets of sets:

n
i
i
A
1


X
A
A

36
Generalized Intersection
• Binary intersection operator: AB
• n-ary intersection:
AA2…An((…((A1A2)…)An)
(grouping & order is irrelevant)
• “Big Arch” notation:
• Or for infinite sets of sets:

n
i
i
A
1


X
A
A


More Related Content

What's hot

TOPOLOGY and TYPES OF TOPOLOGY PowerPoint
TOPOLOGY and TYPES OF TOPOLOGY PowerPointTOPOLOGY and TYPES OF TOPOLOGY PowerPoint
TOPOLOGY and TYPES OF TOPOLOGY PowerPointAqsaAhmed26
 
Set, Relations and Functions
Set, Relations and FunctionsSet, Relations and Functions
Set, Relations and Functionssuthi
 
Chapter 2: Relations
Chapter 2: RelationsChapter 2: Relations
Chapter 2: Relationsnszakir
 
Presentation on Solution to non linear equations
Presentation on Solution to non linear equationsPresentation on Solution to non linear equations
Presentation on Solution to non linear equationsRifat Rahamatullah
 
3.1 derivative of a function
3.1 derivative of a function3.1 derivative of a function
3.1 derivative of a functionbtmathematics
 
2.1 Union, intersection and complement
2.1 Union, intersection and complement2.1 Union, intersection and complement
2.1 Union, intersection and complementJan Plaza
 
THE RELATION BETWEEN THE ROOTS OF A QUADRATIC EQUATION
THE RELATION BETWEEN THE ROOTS OF A QUADRATIC EQUATIONTHE RELATION BETWEEN THE ROOTS OF A QUADRATIC EQUATION
THE RELATION BETWEEN THE ROOTS OF A QUADRATIC EQUATIONSKY HAWKS' ACADEMY
 
Continuity of a Function
Continuity of a Function Continuity of a Function
Continuity of a Function Vishvesh Jasani
 
Composition and inverse of functions
Composition  and inverse of functionsComposition  and inverse of functions
Composition and inverse of functionsCharliez Jane Soriano
 
Lesson 7: Limits at Infinity
Lesson 7: Limits at InfinityLesson 7: Limits at Infinity
Lesson 7: Limits at InfinityMatthew Leingang
 
Introduction to Groups and Permutation Groups
Introduction to Groups and Permutation GroupsIntroduction to Groups and Permutation Groups
Introduction to Groups and Permutation GroupsAmit Amola
 
Sequences and Series
Sequences and SeriesSequences and Series
Sequences and Seriessujathavvv
 
Lecture 4 the limit of a function
Lecture 4   the limit of a functionLecture 4   the limit of a function
Lecture 4 the limit of a functionnjit-ronbrown
 
Method of direct proof
Method of direct proofMethod of direct proof
Method of direct proofAbdur Rehman
 

What's hot (20)

TOPOLOGY and TYPES OF TOPOLOGY PowerPoint
TOPOLOGY and TYPES OF TOPOLOGY PowerPointTOPOLOGY and TYPES OF TOPOLOGY PowerPoint
TOPOLOGY and TYPES OF TOPOLOGY PowerPoint
 
Set concepts
Set conceptsSet concepts
Set concepts
 
Riemann sumsdefiniteintegrals
Riemann sumsdefiniteintegralsRiemann sumsdefiniteintegrals
Riemann sumsdefiniteintegrals
 
Set, Relations and Functions
Set, Relations and FunctionsSet, Relations and Functions
Set, Relations and Functions
 
Set in discrete mathematics
Set in discrete mathematicsSet in discrete mathematics
Set in discrete mathematics
 
Chapter 2: Relations
Chapter 2: RelationsChapter 2: Relations
Chapter 2: Relations
 
Presentation on Solution to non linear equations
Presentation on Solution to non linear equationsPresentation on Solution to non linear equations
Presentation on Solution to non linear equations
 
3.1 derivative of a function
3.1 derivative of a function3.1 derivative of a function
3.1 derivative of a function
 
2.1 Union, intersection and complement
2.1 Union, intersection and complement2.1 Union, intersection and complement
2.1 Union, intersection and complement
 
Sets
SetsSets
Sets
 
THE RELATION BETWEEN THE ROOTS OF A QUADRATIC EQUATION
THE RELATION BETWEEN THE ROOTS OF A QUADRATIC EQUATIONTHE RELATION BETWEEN THE ROOTS OF A QUADRATIC EQUATION
THE RELATION BETWEEN THE ROOTS OF A QUADRATIC EQUATION
 
Continuity of a Function
Continuity of a Function Continuity of a Function
Continuity of a Function
 
Composition and inverse of functions
Composition  and inverse of functionsComposition  and inverse of functions
Composition and inverse of functions
 
Sets
SetsSets
Sets
 
Abstract Algebra
Abstract AlgebraAbstract Algebra
Abstract Algebra
 
Lesson 7: Limits at Infinity
Lesson 7: Limits at InfinityLesson 7: Limits at Infinity
Lesson 7: Limits at Infinity
 
Introduction to Groups and Permutation Groups
Introduction to Groups and Permutation GroupsIntroduction to Groups and Permutation Groups
Introduction to Groups and Permutation Groups
 
Sequences and Series
Sequences and SeriesSequences and Series
Sequences and Series
 
Lecture 4 the limit of a function
Lecture 4   the limit of a functionLecture 4   the limit of a function
Lecture 4 the limit of a function
 
Method of direct proof
Method of direct proofMethod of direct proof
Method of direct proof
 

Similar to Introduction to Set Theory

Moazzzim Sir (25.07.23)CSE 1201, Week#3, Lecture#7.pptx
Moazzzim Sir (25.07.23)CSE 1201, Week#3, Lecture#7.pptxMoazzzim Sir (25.07.23)CSE 1201, Week#3, Lecture#7.pptx
Moazzzim Sir (25.07.23)CSE 1201, Week#3, Lecture#7.pptxKhalidSyfullah6
 
Discrete Math Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums, ...
Discrete Math Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums, ...Discrete Math Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums, ...
Discrete Math Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums, ...Amr Rashed
 
Discrete Structure Mathematics lecture 1
Discrete Structure Mathematics lecture 1Discrete Structure Mathematics lecture 1
Discrete Structure Mathematics lecture 1Amr Rashed
 
Set and Set operations, UITM KPPIM DUNGUN
Set and Set operations, UITM KPPIM DUNGUNSet and Set operations, UITM KPPIM DUNGUN
Set and Set operations, UITM KPPIM DUNGUNbaberexha
 
Introduction to Set Theory
Introduction to Set TheoryIntroduction to Set Theory
Introduction to Set TheoryUsama ahmad
 
Set
SetSet
SetH K
 
Set theory
Set theorySet theory
Set theoryGaditek
 
Class7 converted
Class7 convertedClass7 converted
Class7 convertedshouryasree
 

Similar to Introduction to Set Theory (20)

Set theory
Set theorySet theory
Set theory
 
Moazzzim Sir (25.07.23)CSE 1201, Week#3, Lecture#7.pptx
Moazzzim Sir (25.07.23)CSE 1201, Week#3, Lecture#7.pptxMoazzzim Sir (25.07.23)CSE 1201, Week#3, Lecture#7.pptx
Moazzzim Sir (25.07.23)CSE 1201, Week#3, Lecture#7.pptx
 
Discrete Math Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums, ...
Discrete Math Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums, ...Discrete Math Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums, ...
Discrete Math Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums, ...
 
set.pdf
set.pdfset.pdf
set.pdf
 
Set theory
Set theory Set theory
Set theory
 
sets.pptx
sets.pptxsets.pptx
sets.pptx
 
Set theory
Set theorySet theory
Set theory
 
Discrete Structure Mathematics lecture 1
Discrete Structure Mathematics lecture 1Discrete Structure Mathematics lecture 1
Discrete Structure Mathematics lecture 1
 
7-Sets-1.ppt
7-Sets-1.ppt7-Sets-1.ppt
7-Sets-1.ppt
 
Sets automata
Sets automataSets automata
Sets automata
 
Set and Set operations, UITM KPPIM DUNGUN
Set and Set operations, UITM KPPIM DUNGUNSet and Set operations, UITM KPPIM DUNGUN
Set and Set operations, UITM KPPIM DUNGUN
 
set 1.pdf
set 1.pdfset 1.pdf
set 1.pdf
 
Introduction to Set Theory
Introduction to Set TheoryIntroduction to Set Theory
Introduction to Set Theory
 
Set
SetSet
Set
 
Set theory
Set theorySet theory
Set theory
 
Chap2_SETS_PDF.pdf
Chap2_SETS_PDF.pdfChap2_SETS_PDF.pdf
Chap2_SETS_PDF.pdf
 
Blackbox task 2
Blackbox task 2Blackbox task 2
Blackbox task 2
 
Chpt 2-sets v.3
Chpt 2-sets v.3Chpt 2-sets v.3
Chpt 2-sets v.3
 
Set theory
Set theorySet theory
Set theory
 
Class7 converted
Class7 convertedClass7 converted
Class7 converted
 

Recently uploaded

Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupJonathanParaisoCruz
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitolTechU
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.arsicmarija21
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...jaredbarbolino94
 

Recently uploaded (20)

Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized Group
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptx
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...
 

Introduction to Set Theory

  • 1. 1 Set Theory Rosen 6th ed., §2.1-2.2
  • 2. 2 Introduction to Set Theory • A set is a structure, representing an unordered collection (group, plurality) of zero or more distinct (different) objects. • Set theory deals with operations between, relations among, and statements about sets.
  • 3. 3 Basic notations for sets • For sets, we’ll use variables S, T, U, … • We can denote a set S in writing by listing all of its elements in curly braces: – {a, b, c} is the set of whatever 3 objects are denoted by a, b, c. • Set builder notation: For any proposition P(x) over any universe of discourse, {x|P(x)} is the set of all x such that P(x). e.g., {x | x is an integer where x>0 and x<5 }
  • 4. 4 Basic properties of sets • Sets are inherently unordered: – No matter what objects a, b, and c denote, {a, b, c} = {a, c, b} = {b, a, c} = {b, c, a} = {c, a, b} = {c, b, a}. • All elements are distinct (unequal); multiple listings make no difference! – {a, b, c} = {a, a, b, a, b, c, c, c, c}. – This set contains at most 3 elements!
  • 5. 5 Definition of Set Equality • Two sets are declared to be equal if and only if they contain exactly the same elements. • In particular, it does not matter how the set is defined or denoted. • For example: The set {1, 2, 3, 4} = {x | x is an integer where x>0 and x<5 } = {x | x is a positive integer whose square is >0 and <25}
  • 6. 6 Infinite Sets • Conceptually, sets may be infinite (i.e., not finite, without end, unending). • Symbols for some special infinite sets: N = {0, 1, 2, …} The natural numbers. Z = {…, -2, -1, 0, 1, 2, …} The integers. R = The “real” numbers, such as 374.1828471929498181917281943125… • Infinite sets come in different sizes!
  • 8. 8 Basic Set Relations: Member of • xS (“x is in S”) is the proposition that object x is an lement or member of set S. – e.g. 3N, “a”{x | x is a letter of the alphabet} • Can define set equality in terms of  relation: S,T: S=T  (x: xS  xT) “Two sets are equal iff they have all the same members.” • xS : (xS) “x is not in S”
  • 9. 9 The Empty Set •  (“null”, “the empty set”) is the unique set that contains no elements whatsoever. •  = {} = {x|False} • No matter the domain of discourse, we have the axiom x: x.
  • 10. 10 Subset and Superset Relations • ST (“S is a subset of T”) means that every element of S is also an element of T. • ST  x (xS  xT) • S, SS. • ST (“S is a superset of T”) means TS. • Note S=T  ST ST. • means (ST), i.e. x(xS  xT) T S / 
  • 11. 11 Proper (Strict) Subsets & Supersets • ST (“S is a proper subset of T”) means that ST but . Similar for ST. S T /  S T Venn Diagram equivalent of ST Example: {1,2}  {1,2,3}
  • 12. 12 Sets Are Objects, Too! • The objects that are elements of a set may themselves be sets. • E.g. let S={x | x  {1,2,3}} then S={, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}} • Note that 1  {1}  {{1}} !!!!
  • 13. 13 Cardinality and Finiteness • |S| (read “the cardinality of S”) is a measure of how many different elements S has. • E.g., ||=0, |{1,2,3}| = 3, |{a,b}| = 2, |{{1,2,3},{4,5}}| = ____ • We say S is infinite if it is not finite. • What are some infinite sets we’ve seen?
  • 14. 14 The Power Set Operation • The power set P(S) of a set S is the set of all subsets of S. P(S) = {x | xS}. • E.g. P({a,b}) = {, {a}, {b}, {a,b}}. • Sometimes P(S) is written 2S. Note that for finite S, |P(S)| = 2|S|. • It turns out that |P(N)| > |N|. There are different sizes of infinite sets!
  • 15. 15 Ordered n-tuples • For nN, an ordered n-tuple or a sequence of length n is written (a1, a2, …, an). The first element is a1, etc. • These are like sets, except that duplicates matter, and the order makes a difference. • Note (1, 2)  (2, 1)  (2, 1, 1). • Empty sequence, singlets, pairs, triples, quadruples, quintuples, …, n-tuples.
  • 16. 16 Cartesian Products of Sets • For sets A, B, their Cartesian product AB : {(a, b) | aA  bB }. • E.g. {a,b}{1,2} = {(a,1),(a,2),(b,1),(b,2)} • Note that for finite A, B, |AB|=|A||B|. • Note that the Cartesian product is not commutative: AB: AB =BA. • Extends to A1  A2  …  An...
  • 17. 17 The Union Operator • For sets A, B, their union AB is the set containing all elements that are either in A, or (“”) in B (or, of course, in both). • Formally, A,B: AB = {x | xA  xB}. • Note that AB contains all the elements of A and it contains all the elements of B: A, B: (AB  A)  (AB  B)
  • 18. 18 • {a,b,c}{2,3} = {a,b,c,2,3} • {2,3,5}{3,5,7} = {2,3,5,3,5,7} ={2,3,5,7} Union Examples
  • 19. 19 The Intersection Operator • For sets A, B, their intersection AB is the set containing all elements that are simultaneously in A and (“”) in B. • Formally, A,B: AB{x | xA  xB}. • Note that AB is a subset of A and it is a subset of B: A, B: (AB  A)  (AB  B)
  • 20. 20 • {a,b,c}{2,3} = ___ • {2,4,6}{3,4,5} = ______ Intersection Examples  {4}
  • 21. 21 Disjointedness • Two sets A, B are called disjoint (i.e., unjoined) iff their intersection is empty. (AB=) • Example: the set of even integers is disjoint with the set of odd integers. Help, I’ve been disjointed!
  • 22. 22 Inclusion-Exclusion Principle • How many elements are in AB? |AB| = |A|  |B|  |AB| • Example: {2,3,5}{3,5,7} = {2,3,5,3,5,7} ={2,3,5,7}
  • 23. 23 Set Difference • For sets A, B, the difference of A and B, written AB, is the set of all elements that are in A but not B. • A  B : x  xA  xB  x   xA  xB   • Also called: The complement of B with respect to A.
  • 24. 24 Set Difference Examples • {1,2,3,4,5,6}  {2,3,5,7,9,11} = ___________ • Z  N  {… , -1, 0, 1, 2, … }  {0, 1, … } = {x | x is an integer but not a nat. #} = {x | x is a negative integer} = {… , -3, -2, -1} {1,4,6}
  • 25. 25 Set Difference - Venn Diagram • A-B is what’s left after B “takes a bite out of A” Set A Set B Set AB Chomp!
  • 26. 26 Set Complements • The universe of discourse can itself be considered a set, call it U. • The complement of A, written , is the complement of A w.r.t. U, i.e., it is UA. • E.g., If U=N, A ,...} 7 , 6 , 4 , 2 , 1 , 0 { } 5 , 3 { 
  • 27. 27 More on Set Complements • An equivalent definition, when U is clear: } | { A x x A   A U A
  • 28. 28 Set Identities • Identity: A=A AU=A • Domination: AU=U A= • Idempotent: AA = A = AA • Double complement: • Commutative: AB=BA AB=BA • Associative: A(BC)=(AB)C A(BC)=(AB)C A A  ) (
  • 29. 29 DeMorgan’s Law for Sets • Exactly analogous to (and derivable from) DeMorgan’s Law for propositions. B A B A B A B A      
  • 30. 30 Proving Set Identities To prove statements about sets, of the form E1 = E2 (where Es are set expressions), here are three useful techniques: • Prove E1  E2 and E2  E1 separately. • Use logical equivalences. • Use a membership table.
  • 31. 31 Method 1: Mutual subsets Example: Show A(BC)=(AB)(AC). • Show A(BC)(AB)(AC). – Assume xA(BC), & show x(AB)(AC). – We know that xA, and either xB or xC. • Case 1: xB. Then xAB, so x(AB)(AC). • Case 2: xC. Then xAC , so x(AB)(AC). – Therefore, x(AB)(AC). – Therefore, A(BC)(AB)(AC). • Show (AB)(AC)  A(BC). …
  • 32. 32 Method 3: Membership Tables • Just like truth tables for propositional logic. • Columns for different set expressions. • Rows for all combinations of memberships in constituent sets. • Use “1” to indicate membership in the derived set, “0” for non-membership. • Prove equivalence with identical columns.
  • 33. 33 Membership Table Example Prove (AB)B = AB. A A B B A A B B ( (A A B B) ) B B A A B B 0 0 0 0 0 0 1 1 0 0 1 0 1 1 1 1 1 1 0 0
  • 34. 34 Membership Table Exercise Prove (AB)C = (AC)(BC). A B C A A B B ( (A A B B) ) C C A A C C B B C C ( (A A C C) ) ( (B B C C) ) 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1
  • 35. 35 Generalized Union • Binary union operator: AB • n-ary union: AA2…An : ((…((A1 A2) …) An) (grouping & order is irrelevant) • “Big U” notation: • Or for infinite sets of sets:  n i i A 1   X A A 
  • 36. 36 Generalized Intersection • Binary intersection operator: AB • n-ary intersection: AA2…An((…((A1A2)…)An) (grouping & order is irrelevant) • “Big Arch” notation: • Or for infinite sets of sets:  n i i A 1   X A A 

Editor's Notes

  1. 2021-06-28
  2. 2021-06-28
  3. 2021-06-28
  4. 2021-06-28
  5. 2021-06-28
  6. 2021-06-28
  7. 2021-06-28
  8. 2021-06-28
  9. 2021-06-28
  10. 2021-06-28
  11. 2021-06-28
  12. 2021-06-28