SlideShare a Scribd company logo
1 of 80
NEUROPHARMACOLOGICAL EFFECTS
OF AQUEOUS EXTRACT AND
FRACTIONS OF ANCHOMANES
DIFFORMIS (BLUME) ENGLER
( ARACEAE) RHIZOME IN MICE
AGBOOLA, SAMUEL SUNDAY
B. Pharm.(Ife), M. Sc. (Ife)
(PHP11/12/H/2717)
NOVEMBER 2016
1
ABSTRACT
The search for effective and affordable drugs for the management of common central
nervous system disorders from drugs of natural origin has continued to attract the
attention of scientists all over the world. Many herbs have been claimed to be
efficacious in the treatment of these disorders by traditional herbal practitioners. Some
of these claims have been proved scientifically, thus justifying their ethnomedicinal
uses. The rhizome of Anchomanes difformis Blume Engl. (family Araceae) is claimed
to be used in the management of mental illness, among others, by herbalists in the
Southwestern Nigeria. However, no known detailed neuropharmacological study has
been done to verify this claim. This study carried out some neuropharmacological study
on the aqueous & hydro-alcoholic rhizome extracts and fractions in mice using animal
models for psychosis, anxiety, and depression. The results of acute toxicity test showed
LD50 values by oral route for the extracts and fractions as > 5000 mg/kg. The extract
significantly (p < 0.05) reduced the frequency of novelty induced rearing and
grooming; reduced period of immobility in Tail suspension and Forced swimming tests;
and increased both the frequency of entry and the time spent on the open arms of the
Elevated plus maze, thus showing promising anti-depressant and anxiolytic effects.
These results and other work done will be discussed in this seminar.
2
OUTLINE
• Introduction
• Objectives of the research
• Materials and methods
• Results/ Discussion
• Conclusion
• References
3
INTRODUCTION
Mental Illness
This is a disorder of the brain’s processes that makes
the patient feel ill, and may prevent him/her from
coping with daily life.
Examples include:
 Schizophrenia
 Anxiety
 Depression
4
INTRODUCTION: THE PLANT
ANCHOMANES DIFFORMIS (BLUME) ENGLER:
 Family name: Araceae
 Common names: Forest anchomanes (English)
‘Ogirisako’ or ‘Igo’ (Yoruba)
‘ Olumahi’ (Igbo)
‘Eba-enang’ (Efik)
5
INTRODUCTION: THE PLANT
Plate 1: A picture of A. difformis in its natural habitat
along Afao Road, Ado-Ekiti on 2nd May, 2013
INTRODUCTION: THE PLANT
7
Plate 2: A picture of a rhizome of A. difformis collected on
2nd May, 2013 along Afao Road, Ado-Ekiti, Nigeria
INTRODUCTION: THE PLANT
Ethnobotanical uses of A. difformis:
 Leaf & tuber:
Lactation stimulants (incl. veterinary)
 Sap:
Eye treatment; naso-pharyngeal infection
 Rhizome
Abortifacient, Treatment of asthma; gout, diuretic, laxative,
treatment of venereal diseases, diarrhoea, mental illness
INTRODUCTION: Pharmacological
studies reported on the plant
 Antimicrobial activity (Eneojo et al., 2011; Agyare et
al., 2016)
 Anti-trypanosomal activity (Atawodi et al., 2013)
 Analgesic and anti-inflammatory activities (Akah et
al., 1990; Agyare et al., 2016; Eke et al., 2013)
 Sedative activity (Eke et al., 2013)
 Anti-oxidant activity (Aliyu et al., 2013; Agyare et
al., 2016)
9
Table 1: Phytoconstituents of A.
difformis rhizome and leaf
Phytochemical
constituents
Rhizome Leaf
Tannins +++ +++
Alkaloids ++ +
Saponins +++ +++
Terpenoids ++ _
Cardiac glycosides +++ +++
Flavonoids ++ ++
10
Note: +++ = Conspicuously present; ++ = Moderately present; - = Absent
(Adapted with modification from Eneojo et al., 2011 )
Objectives of the study
a) determine the LD50 of the aqueous extract and fractions of the
rhizome of A. difformis
b) determine the effects of the extract and fractions of the rhizome
of A. difformis (Araceae) on novelty-induced behaviours in mice;
c) evaluate the anxiolytic, antidepressant, antipsychotic and
sedative/hypnotic effects of the extract and fractions; and
d) determine the mechanism(s) of action of the extract and the most
active fraction(s).
11
MATERIALS AND METHODS
 Plant materials
• Collection
• Identification and documentation
• Extraction & fractionation
• Preparation of sample solution & reference drugs
 Experimental animals
• Swiss albino mice of either sex (18-25 g)
 Drugs used: Apomorphine, Cyproheptadine, Diazepam, Flumazenil,
Haloperidol, Imipramine, Pentobarbital, Sertraline, Yohimbine, Normal
saline, Tween 80.
12
METHODS
 CNS effects assessment of Aqueous rhizome extract and fractions:
• LD50 determination by Lorke’s Method (Lorke, 1983)
• Sedative: OFT(Crawley, 1985) & Pentobarbital-induced hypnotic
models (Erden et al., 2001, Olayiwola et al., 2013)
• Anxiolytic: EPM (Trullas & Skolnick, 1993; Akanmu et al., 2011),
Staircase (Simiand et al., 1984) & Hole-board models
(File & Pellow, 1985; Nic Dhonnchadha et al., 2003)
• Antidepressant: FST (Porsolt et al., 1977) & TST models (Steru et
al., 1985)
• Antipsychotic: Swim-induced grooming (Kedves et al., 2008),
Apomophine-induced stereotypy model (Siqueira et
al., 1998). 13
STATISTICALANALYSIS
 The results are presented as the mean (n=5) ±
standard error of mean(SEM).
 The values were compared using the One-way
analysis of variance (ANOVA) followed by
Student-Newman-Keuls post hoc test.
 *significant p< 0.05 versus vehicle-treated control
 #significant p<0.05 versus standard drug 14
RESULTS/DISCUSSION
ADE = Aqueous extract of A. difformis rhizome; HF = n-Hexane fraction; EF = Ethylacetate fraction;
BF = Butanol fraction; AF = Residual aqueous fraction of hydro-alcoholic extract of A. difformis
rhizome.
*0/3 means the mice did not die 15
DOSE
LEVEL
MORTALITY WITHIN 24 HOURS
(n=3)
% MORTALITY WITHIN 24
HOURS
ADE HF EF BF AF ADE HF EF BF AF
10 mg/kg 0/3 0/3 0/3 0/3 0/3 0.00 0.00 0.00 0.00 0.00
100 mg/kg 0/3 0/3 0/3 0/3 0/3 0.00 0.00 0.00 0.00 0.00
1000 mg/kg 0/3 0/3 0/3 0/3 0/3 0.00 0.00 0.00 0.00 0.00
Table 2: Acute toxicity (mortality) test (Lorke’s Method) for extracts and fractions of A.
difformis in mice (oral route): Phase I
Table 3: Acute Toxicity Study-phase II (Oral)
(Lorke’s Method)
ADE = Aqueous extract of A. difformis rhizome; HF = n-Hexane fraction; EF = Ethylacatate fraction; BF
= Butanol fraction; AF = Residual aqueous fraction of hydro-alcoholic extract of A. difformis rhizome.
*0/1 means the mouse did not die
16
DOSE
LEVEL
MORTALITY WITHIN 24
HOURS (n=3)
% MORTALITY WITHIN 24
HOURS
ADE HF EF AF ADE HF EF BF AF
1000 mg/kg 0/1* 0/1 0/1 0/1 0.00 0.00 0.00 0.00 0.00
1600 mg/kg 0/1 0/1 0/1 0/1 0.00 0.00 0.00 0.00 0.00
2900 mg/kg 0/1 0/1 0/1 0/1 0.00 0.00 0.00 0.00 0.00
5000 mg/kg 0/1 0/1 0/1 0/1 0.00 0.00 0.00 0.00 0.00
Fig 1: Effect of ADE on novelty-induced grooming behaviour in mice
ADE: Aqueous extract of A. difformis rhizome; DZP: Diazepam (4 mg/kg,
i.p.); VEH: Vehicle (Normal saline, 10 ml/kg, p.o.); *significant p < 0.05
compared to vehicle; #significant p < 0.05 compared to the standard drug,
Diazepam.
17
0
5
10
15
20
25
30
35
40
VEH 30 60 125 250 500 1000 DZP
Frequency
of
grooming/20
min
ADE (mg/kg, p.o)
*
*
*
*
*
#
#
#
# #
*
*
#
NIB: GROOMING
18
0
5
10
15
20
25
30
35
40
VEH 30 60 125 250 500 1000 DZP
Frequency
of
grooming/20
min
HF (mg/kg, p.o.)
*
*
*
*
*
*
#
#
#
#
#
#
Fig. 3: Effect of HF of A. difformis rhizome on novelty-induced grooming
behaviour in mice
HF: Hexane fraction of A. difformis rhizome of hydro-alcoholic extract; DZP:
Diazepam, 4 mg/kg, i.p.; VEH: Vehicle (i.e. 10 ml/kg 2.5% Tween 80 in saline, p.o.);
*significant p < 0.05 compared to vehicle; #significant p < 0.05 compared to reference
drug, Diazepam.
NIB: GROOMING
Fig. 4: Effect of EF of Anchomanes difformis on novelty-induced grooming in
mice. EF = Doses of Ethanol fraction of A. difformis rhizome; DZP = Diazepam (4
mg/kg, i.p.); VEH = Vehicle (i.e. 2.5 % Tween 80 in saline, 10 ml/ kg, p.o.);
*significant p < 0.05 compared to vehicle; #significant p < 0.05 compared to
reference drug, Diazepam. 19
0
5
10
15
20
25
30
35
40
VEH 30 60 125 250 500 1000 DZP
Frequency
of
grooming/20
min
EF (mg/kg, p.o.)
*
* *
*
# #
#
#
# #
NIB: GROOMING
NIB: GROOMING
20
0
5
10
15
20
25
30
35
40
VEH 30 60 125 250 500 1000 DZP
Frequency
of
grooming/20
min
BF (mg/kg, p.o.)
*
#
*
#
*
#
#
#
#
*
Fig. 5: Effect of BF of Anchomanes difformis on novelty-induced grooming in mice.
BF = Doses of Buthanol fraction of A. difformis rhizome; DZP = Diazepam (4 mg/kg, i.p.);
VEH = Vehicle (i.e. 2.5 % Tween 80 in saline, 10 ml/ kg, p.o.); *significant p < 0.05
compared to vehicle; #significant p < 0.05 compared to reference drug, Diazepam.
Fig. 6: Effect of Anchomanes difformis on novelty-induced grooming in mice.
AF = Doses of residual aqueous fraction of A. difformis rhizome; DZP =
Diazepam (4 mg/kg, i.p.); VEH = Vehicle (i.e. Normal saline, 10 ml/ kg, p.o.);
*significant p < 0.05 compared to vehicle; #significant p < 0.05 compared to
reference drug, Diazepam. 21
0
5
10
15
20
25
30
35
40
VEH 30 60 125 250 500 1000 DZP
Frequency
of
grooming/20
min
AF (mg/kg, p.o.)
*
*
*
#
#
#
#
#
#
*
NIB: GROOMING
NIB: REARING
22
0
10
20
30
40
50
60
70
80
90
VEH 30 60 125 250 500 1000 DZP
Frequency
of
rearing/20
min
ADE (mg/kg, p.o.)
*
*
*
#
#
#
#
#
#
Fig. 7: Effect of ADE on novelty-induced rearing behaviour in mice
ADE: Aqueous extract of A. difformis rhizome; DZP: Diazepam (4 mg/kg, i.p.);
VEH: Vehicle (Normal saline, 10 ml/kg, p.o.); *significant p < 0.05 compared to
vehicle; #significant p < 0.05 compared to the standard drug, Diazepam.
NIB: REARING
23
0
20
40
60
80
100
120
140
VEH 30 60 125 250 500 1000 DZP
Frequency
of
rearing/20
min
HF (mg/kg, p.o.)
* *
*
* *
*
*
#
#
#
# #
#
Fig. 9: Effect of HF on novelty-induced rearing behaviour in mice
HF: Hexane fraction of A. difformis rhizome; DZP: Diazepam (4 mg/kg, i.p.); VEH: Vehicle
(2.5 % Tween 80 in saline, 10 ml/kg, p.o.); *significant p < 0.05 compared to vehicle;
#significant p < 0.05 compared to the standard drug, Diazepam.
NIB: REARING
24
Fig. 10: Effect of EF on novelty-induced rearing behaviour in mice
EF: Ethylacetate fraction of A. difformis rhizome; DZP: Diazepam (4 mg/kg, i.p.);
VEH: Vehicle (2.5 % Tween 80 in saline, 10 ml/kg, p.o.); *significant p < 0.05
compared to vehicle; #significant p < 0.05 compared to the standard drug,
Diazepam.
0
20
40
60
80
100
120
140
VEH 30 60 125 250 500 1000 DZP
Frequency
of
rearing/20
min
EF (mg/kg, p.o.)
*
*
*
*
#
#
#
#
#
#
NIB: REARING
25
0
20
40
60
80
100
120
140
VEH 30 60 125 250 500 1000 DZP
Frequency
of
rearing/20
min
BF (mg/kg, p.o.)
*
*
# #
#
#
#
#
Fig. 11: Effect of BF on novelty-induced rearing behaviour in mice
BF: Butanol fraction of A. difformis rhizome; DZP: Diazepam (4 mg/kg, i.p.); VEH: Vehicle
(2.5 % Tween 80 in saline, 10 ml/kg, p.o.); *significant p < 0.05 compared to vehicle;
#significant p < 0.05 compared to the standard drug, Diazepam.
NIB: REARING
26
0
10
20
30
40
50
60
70
80
90
VEH 30 60 125 250 500 1000 DZP
Frequency
of
rearing/20
min
AF (mg/kg, p.o.)
*
*
#
#
#
#
#
#
Fig. 12:Effect of AF on novelty-induced rearing behaviour in mice
AF: Residual aqueous fraction of A. difformis rhizome; DZP: Diazepam (4 mg/kg, i.p.); VEH:
Vehicle (Normal saline, 10 ml/kg, p.o.); *significant p < 0.05 compared to vehicle;
#significant p < 0.05 compared to the standard drug, Diazepam.
NIB: LINE-CROSSING
27
Fig. 13: Effect of ADE on novelty-induced horizontal locomotion behaviour
in mice
ADE: Aqueous extract of A. difformis rhizome; DZP: Diazepam (4 mg/kg,
i.p.); VEH: Vehicle (Normal saline, 10 ml/kg, p.o.); *significant p < 0.05
compared to vehicle; #significant p < 0.05 compared to the standard drug,
Diazepam.
0
50
100
150
200
250
300
350
VEH 30 60 125 250 500 1000 DZP
Frequency
of
line
crossing/20
min
ADE (mg/kg, p.o.)
*
*
*
#
# # #
NIB: LINE-CROSSING
28
0
50
100
150
200
250
300
350
400
VEH 30 60 125 250 500 1000 DZP
Frequency
of
line
crossing/20
min
HF (mg/kg, p.o.)
* *
*
*
*
*
*
# #
Fig. 15: Effect of HF on novelty-induced horizontal locomotion (line-crossing)
in mice
HF: N-hexane fraction of A. difformis rhizome; DZP: Diazepam (4 mg/kg, i.p.);
VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.); *significant p < 0.05
compared to vehicle (control); #significant p < 0.05 compared to the standard drug,
Diazepam.
NIB: LINE-CROSSING
29
0
50
100
150
200
250
300
350
400
VEH 30 60 125 250 500 1000 DZP
Frequency
of
line
crossing/20
min
EF (mg/kg, p.o.)
*
* *
*
#
#
#
#
#
*
Fig. 16: Effect of EF on novelty-induced horizontal locomotion (line-crossing) in
mice
EF: Ethyl-acetate fraction of A. difformis rhizome; DZP: Diazepam (4 mg/kg, i.p.); VEH:
Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.); *significant p < 0.05 compared to
vehicle (control); #significant p < 0.05 compared to the standard drug, Diazepam.
NIB: LINE CROSSING
30
0
50
100
150
200
250
300
350
400
VEH 30 60 125 250 500 1000 DZP
Frequency
of
line
crossing/20
min
BF (mg/kg, p.o.)
*
*
#
#
#
# # #
Fig. 17: Effect of BF on novelty-induced horizontal locomotion (Line-crossing) in mice
BF: Butanol fraction of A. difformis rhizome; DZP: Diazepam (4 mg/kg, i.p.); VEH: Vehicle
(2.5% Tween 80 in saline, 10 ml/kg, p.o.); *significant p < 0.05 compared to vehicle
(control); #significant p < 0.05 compared to the standard drug, Diazepam.
HYPNOTIC TEST
31
0
20
40
60
80
100
120
140
160
180
VEH 250 500 1000 DZP
Sleeping
time
(min)
ADE (mg/kg, p.o.)
*
*
#
#
#
Fig. 19: Effects of ADE on pentobarbital-induced sleep latency (Panel A) and sleeping
time (Panel B) in mice
ADE: Aqueous extract of A. difformis rhizome; DZP: Diazepam (2 mg/kg, i.p.); VEH:
Vehicle (Normal saline, 10 ml/kg, p.o.).* p < 0.05 significantly different from vehicle
(control); # p < 0.05 significantly different from standard drug, Diazepam.
0
1
2
3
4
5
6
VEH 250 500 1000 DZP
Sleep
latency
(min)
ADE (mg/kg, p.o.)
*
*
*
#
#
#
HYPNOTIC TEST
32
0
1
2
3
4
5
6
VEH 250 500 1000 DZP
Sleep
latency
(min)
HF (mg/kg, p.o.)
*
*
*
#
#
*
#
0
20
40
60
80
100
120
140
160
VEH 250 500 1000 DZP
Sleeping
time(min)
HF (mg/kg, p.o.)
*
*
*
*
#
+
Pent
o
Panel A
Panel B
Fig. 21: Effects of HF on pentobarbital-induced sleep latency (Panel A) and sleeping
time (Panel B) in mice
HF: N-hexane fraction of A. difformis rhizome; DZP: Diazepam (2 mg/kg, i.p.); VEH:
Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.).* p < 0.05 significantly different from
vehicle (control); # p < 0.05 significantly different from standard drug, Diazepam.
HYPNOTIC TEST
• Fig. 22: Effect of EF on
Pentobarbital-induced
sleep latency (Panel A) and
sleeping time (Panel B) in
mice
• EF: Ethyl-acetate fraction of
A. difformis rhizome;
• DZP: Diazepam (2 mg/kg,
i.p.);
• VEH: Vehicle (2.5% Tween
80 in saline, 10 ml/kg, p.o.);
• *significant p < 0.05
compared to vehicle
(control);
• #significant p < 0.05
compared to standard drug,
Diazepam.
33
0
1
2
3
4
5
6
Sleep
latency
(min
)
*
*
# # #
0
20
40
60
80
100
120
140
160
VEH 250 500 1000 DZP
Sleeping
time
(min)
EF (mg/kg)
*
* *
*
#
Panel A
Panel B
HYPNOTIC TEST
• Fig. 23: Effects of BF on
Pentobarbital-induced sleep
latency (Panel A) and
sleeping time (Panel B) in
mice
• BF: Butanol fraction of A.
difformis rhizome;
• DZP: Diazepam (2 mg/kg,
i.p.);
• VEH: Vehicle (2.5% Tween
80 in saline, 10 ml/kg, p.o.);
• *significant p < 0.05 compared
to vehicle (control);
• #significant p < 0.05 compared
to standard drug, Diazepam.
34
0
1
2
3
4
5
6
Sleep
latency
(min)
*
#
#
#
0
50
100
150
200
VEH 250 500 1000 DZP
Sleeping
time
(min)
BF (mg/kg)
*
*
#
#
#
Panel A
Panel B
HYPNOTIC TEST
• Fig. 24: Effects of AF on
Pentobarbital-induced
sleep latency (Panel A) and
sleeping time (Panel B) in
mice
• AF: Aqueous fraction of A.
difformis rhizome;
• DZP: Diazepam (2 mg/kg,
i.p.);
• VEH: Vehicle (Normal
saline, 10 ml/kg, p.o.);
• *significant p < 0.05
compared to vehicle
(control);
• #significant p < 0.05
compared to standard drug,
Diazepam.
35
Panel A
0
1
2
3
4
5
Sleep
latency
(min
)
*
#
#
#
Panel B
0
20
40
60
80
100
120
140
160
180
VEH 250 500 1000 DZP
Sleeping
time
(min)
AF (mg/kg)
*
*
#
#
#
Mechanism: Hypnotic effect
• Fig. 25: Influence of Flumazenil (3
mg/kg, i.p.) on effect of ADE (1000
mg/kg, p.o.) on Pentobarbital-
induced sleep latency (Panel A) and
sleeping time (Panel B) in mice
• ADE: Aqueous extract of A. difformis
rhizome (1000 mg/kg, p.o.);
• VEH: Vehicle-treated control group
(Normal saline, 10 ml/kg, p.o.);
• DZP: Diazepam (2 mg/kg, i.p.);
Flum: Flumazenil (3 mg/kg, i.p.);
• #significant p < 0.05 : antagonist
versus treatment alone.
36
Panel A
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
Sleep
latency
(min)
#
#
Panel B
0
20
40
60
80
100
120
140
160
180
VEH Flum VEH Flum VEH Flum
Sleeping
time
(min)
ADE
#
#
DZP
Mechanism: Hypnotic effect
• Fig. 27: Influence of Flumazenil
(3 mg/kg, i.p.) on effect of HF
(1000 mg/kg, p.o.) on
Pentobarbital-induced sleep
latency (Panel A) and sleeping
time (Panel B) in mice
• HF: N-Hexane fraction of A.
difformis rhizome (1000 mg/kg,
p.o.);
• DZP: Diazepam (2 mg/kg, i.p.);
• VEH: Vehicle (2.5% Tween 80 in
saline, 10 ml/kg, p.o.);
• Flum: Flumazenil (3 mg/kg. i.p.);
#significant p < 0.05: antagonist
versus treatment alone.
37
Panel A
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
Sleep
latency
(min)
ns
#
Panel B
0
50
100
150
200
VEH Flum VEH Flum VEH Flum
Sleeping
time
(min)
HF
# #
DZP
Anxiolytic Test: EPM
• Fig. 28: Effect of ADE on %
open arm entries (Panel A)
and % time spent in the open
arm (Panel B) in mice
• ADE: Aqueous extract of A.
difformis rhizome;
• DZP: Diazepam (0.5 mg/kg,
i.p.);
• VEH: Vehicle (Normal saline,
10 ml/kg, p.o.); *significant p
< 0.05 compared to vehicle
(control);
• #significant p < 0.05 compared
to standard drug, Diazepam.
38
Panel A
0
10
20
30
40
50
60
70
%
Open
arm
entries/5
min
*
* *
*
*
Panel B
0
10
20
30
40
50
60
70
VEH 30 60 125 250 DZP
%
Open
arm
duration
/5
min
ADE (mg/kg, p.o.)
*
#
#
*
Anxiolytic Test: EPM
• Fig. 30: Effects of HF on %
open arm entries (Panel A) and
% time spent in the open arm
(Panel B) in mice
• HF: N-hexane fraction of A.
difformis rhizome;
• DZP: Diazepam (0.5 mg/kg, i.p.);
• VEH: Vehicle (2.5% Tween 80 in
saline, 10 ml/kg, p.o.);
• *significant p < 0.05 compared to
vehicle (control);
• #significant p < 0.05 compared to
standard drug, Diazepam.
39
Panel A
0
10
20
30
40
50
60
70
%
Open
arm
entries
/5
min
*
* *
*
*
Panel B
0
20
40
60
80
VEH 30 60 125 250 DZP
%
Open
arm
duration/5
min
HF (mg/kg, p.o.)
*
*
Anxiolytic Test: EPM
• Fig. 31: Effect of EF on %
open arm entries (Panel A)
and % time spent in the open
arm (Panel B) in mice
• EF: Ethyl-acetate fraction of A.
difformis rhizome;
• DZP: Diazepam (0.5 mg/kg,
i.p.);
• VEH: Vehicle (2.5% Tween
80 in saline, 10 ml/kg, p.o.);
• *significant p < 0.05 compared
to vehicle (control);
• #significant p < 0.05 compared
to standard drug, Diazepam
40
Panel A
0
10
20
30
40
50
60
70
%
Open
arm
entries/5
min
* * *
Panel B
0
20
40
60
80
100
VEH 30 60 125 250 DZP
%
Open
arm
duration/5
min
EF (mg/kg, p.o.)
*
* *
Anxiolytic Test: EPM
• Fig. 32: Effects of BF on %
open arm entries (Panel A)
and % time spent in the open
arm (Panel B) in mice
• BF: Butanol fraction of A.
difformis rhizome;
• DZP: Diazepam (0.5 mg/kg,
i.p.);
• VEH: Vehicle (2.5% Tween 80
in saline, 10 ml/kg, p.o.);
• *significant p < 0.05 compared
to vehicle (control);
• #significant p < 0.05 compared
to standard drug, Diazepam
41
Panel A
0
20
40
60
80
%
Open
arm
entries/5
min
*
#
# #
Panel B
0
20
40
60
80
VEH 30 60 125 250 DZP
%
Open
arm
duration/5
min
BF (mg/kg, p.o.)
*
*
*
#
#
Anxiolytic Test: EPM
• Fig. 33: Effects of AF on %
open arm entries (Panel A)
and % time spent in the
open arm (Panel B) in mice
• AF: Aqueous fraction of A.
difformis rhizome;
• DZP: Diazepam (0.05 mg/kg,
i.p.);
• VEH: Vehicle (Normal saline,
10 ml/kg, p.o.);
• *significant p < 0.05 compared
to vehicle (control);
• #significant p < 0.05 compared
to standard drug, Diazepam
42
Panel A
0
20
40
60
80
%
Open
arm
entries/5
min
*
* *
*
#
#
#
Panel B
0
10
20
30
40
50
60
70
VEH 30 60 125 250 DZP
%
Open
arm
duration
/5
min
AF (mg/kg, p.o.)
*
*
*
#
#
Open Arm Avoidance Index
43
0
10
20
30
40
50
60
70
80
VEH 30 60 125 250 DZP
Open
Arm
Avoidance
Index
ADE (mg/kg, p.o.)
Fig. 34: Effect of ADE on OAAI in mice
ADE: Aqueous extract of A. difformis rhizome; DZP: Diazepam (0.5 mg/kg,
i.p.); VEH: Vehicle (Normal saline, 10 ml/kg, p.o.); OAAI: Open Arm
Avoidance Index; Broken lines (…….) indicate the cut-off point which is 10
points below the OAAI for the vehicle-treated control.
Open Arm Avoidance Index
44
0
10
20
30
40
50
60
70
80
VEH 30 60 125 250 DZP
Open
Arm
Avoidance
Index
HF (mg/kg, p.o.)
Fig. 36: Effect of HF on OAAI in mice
HF: N-hexane fraction of A. difformis rhizome; DZP: Diazepam (0.5 mg/kg, i.p.);
VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.); OAAI: Open Arm
Avoidance Index; Broken lines (…….) indicate the cut-off point which is 10
points below the OAAI for the vehicle-treated control.
Open Arm Avoidance Index
45
0
10
20
30
40
50
60
70
80
VEH 30 60 125 250 DZP
Open
Arm
Avoidance
Index
EF (mg/kg, p.o.)
Fig. 37: Effect of EF on OAAI in mice
EF: Ethyl-acetate fraction of A. difformis rhizome; DZP: Diazepam (0.5 mg/kg, i.p.); VEH:
Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.); OAAI: Open Arm Avoidance Index;
Broken lines (…….) indicate the cut-off point which is 10 points below the OAAI for the
vehicle-treated control.
Open Arm Avoidance Index
46
0
10
20
30
40
50
60
70
80
VEH 30 60 125 250 DZP
Open
Arm
Avoidance
Index
BF (mg/kg, p.o.)
Fig. 38: Effect of BF on OAAI in mice
BF: Butanol fraction of A. difformis rhizome; DZP: Diazepam (0.5 mg/kg, i.p.);
VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.); OAAI: Open Arm
Avoidance Index; Broken lines (…….) indicate the cut-off point which is 10
points below the OAAI for the vehicle-treated control.
Open Arm Avoidance Index
47
0
10
20
30
40
50
60
70
80
VEH 30 60 125 250 DZP
Open
Arm
Avoidance
Index
AF (mg/kg, p.o.)
Fig. 39: Effect of AF on OAAI in mice
AF: Aqueous fraction of A. difformis rhizome; DZP: Diazepam (0.05 mg/kg, i.p.);
VEH: Vehicle (Normal saline, 10 ml/kg, p.o.); OAAI: Open Arm Avoidance
Index; Broken lines (…….) indicate the cut-off point which is 10 points below the
OAAI for the vehicle-treated control.
Anxiolytic test: Hole-board
48
0
5
10
15
20
25
30
VEH 30 60 125 250 DZP
No
of
head-dips/5
min
ADE (mg/kg, p.o.)
*
*
# #
#
Fig. 40: Effect of ADE on the number of head-dips made by mice on the Hole-board
ADE: Aqueous extract of A. difformis rhizome;
DZP: Diazepam (0.5 mg/kg, i.p.);
VEH: Vehicle (Normal saline, 10 ml/kg, p.o.);
*significant p < 0.05 compared to vehicle (control);
#significant p < 0.05 compared to standard drug, Diazepam.
Anxiolytic test: Hole-board
49
0
5
10
15
20
25
30
35
40
45
50
VEH 30 60 125 250 DZP
No
of
head-dips/5
min
HF (mg/kg, p.o.)
*
*
*
*
*
Fig. 42: Effect of HF on the number of head-dips made by mice on the Hole-
board
HF: N-hexane fraction of A. difformis rhizome;
DZP: Diazepam (0.5 mg/kg, i.p.);
VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.);
*significant p < 0.05 compared to vehicle (control).
Anxiolytic test: Hole-board
50
0
5
10
15
20
25
30
35
40
VEH 30 60 125 250 DZP
No
of
head-dips/5
min
EF (mg/kg, p.o.)
*
* *
*
*
Fig. 43: Effect of EF on the number of head-dips made by mice on the Hole-
board
EF: Ethyl-acetate fraction of A. difformis rhizome;
DZP: Diazepam (0.5 mg/kg, i.p.);
VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.);
*significant p < 0.05 compared to vehicle-treated control.
Anxiolytic test: Hole-board
51
Fig. 44: Effect of BF on the number of head-dips made by mice on the
Hole-board
BF: Butanol fraction of A. difformis rhizome;
DZP: Diazepam (0.5 mg/kg, i.p.);
VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.);
*significant p < 0.05 compared to vehicle-treated control;
#significant p < 0.05 compared to Diazepam, 0.5 mg/kg, i.p.
0
5
10
15
20
25
30
35
VEH 30 60 125 250 DZP
No
of
head-dips/5
min
BF (mg/kg, p.o.)
*
# #
Anxiolytic test: Hole-board
52
Fig. 45: Effect of AF on the number of head-dips made by mice on the hole-
board
AF: Aqueous fraction of A. difformis rhizome;
DZP: Diazepam (0.05 mg/kg, i.p.); VEH:
Vehicle (Normal saline, 10 ml/kg, p.o.);
*significant p < 0.05 compared to vehicle (control);
#significant p < 0.05 compared to standard drug, Diazepam.
0
5
10
15
20
25
30
VEH 30 60 125 250 DZP
No
of
head-dips/5
min
AF (mg/kg, p.o.)
*
#
# # #
Anxiolytic test: Staircase Model (SCM)
53
0
10
20
30
40
50
No
of
steps
climbed
/5
min
*
*
#
#
#
#
Panel A
Panel B
0
5
10
15
20
VEH 30 60 125 250 DZP
Frequency
of
rearing
/5
min
ADE (mg/kg, p.o.)
*
*
*
*
*
Fig. 46: Effects of ADE on the number of steps climbed (Panel A) and the frequency
of rearing (Panel B) by mice
ADE: Aqueous extract of A. difformis rhizome; DZP: Diazepam (0.5 mg/kg, i.p.); VEH:
Vehicle (Normal saline, 10 ml/kg, p.o.); * significant p < 0.05 compared to vehicle
(control); #significant p < 0.05 compared to standard drug, Diazepam.
Anxiolytic test: Staircase Model
54
Panel A
0
10
20
30
40
50
No
of
steps
climbed
/5
min
*
#
#
#
#
Panel B
0
5
10
15
20
25
30
VEH 30 60 125 250 DZP
Frequency
of
rearing/5
min
HF (mg/kg, p.o.)
* *
*
*
Fig. 48: Effects of HF on the number of steps climbed (Panel A) and the frequency of
rearing (Panel B) by mice
HF: N-hexane fraction of A. difformis rhizome; DZP: Diazepam (0.5 mg/kg, i.p.); VEH:
Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.);* significant p < 0.05 compared to vehicle-
treated control;# significant p < 0.05 compared to standard drug, Diazepam.
Anxiolytic test: Staircase Model
55
Panel A
0
5
10
15
20
25
30
35
40
45
No
of
steps
climbed
/5
min
*
#
#
#
#
Panel B
0
5
10
15
20
25
30
VEH 30 60 125 250 DZP
Frequency
of
rearing
/5
min
EF (mg/kg, p.o.)
* *
*
*
*
Fig. 49: Effects of EF on the number of steps climbed (Panel A) and the frequency of
rearing (Panel B) by mice
EF: Ethyl-acetate fraction of A. difformis rhizome; DZP: Diazepam (0.5 mg/kg, i.p.);
VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.); * significant p < 0.05 compared to
vehicle-treated control; #significant p < 0.05 compared to standard drug, Diazepam.
Anxiolytic test: Staircase Model
56
Panel A
0
10
20
30
40
50
No
of
steps
climbed
/5
min
*
#
#
#
#
Panel B
0
5
10
15
20
25
30
VEH 30 60 125 250 DZP
Frequency
of
rearing/5
min
BF (mg/kg, p.o.)
*
*
* *
*
Fig. 50: Effects of BF on the number of steps climbed (Panel A) and the frequency of
rearing (Panel B) by mice
BF: Butanol fraction of A. difformis rhizome; DZP: Diazepam (0.5 mg/kg, i.p.); VEH: Vehicle
(2.5% Tween 80 in saline, 10 ml/kg, p.o.); *significant p < 0.05 compared to vehicle-treated
control; #significant p < 0.05 compared to standard drug, Diazepam.
Anxiolytic test: Staircase Model
57
Panel A
0
10
20
30
40
50
No
of
steps
climbed/5
min
*
#
#
#
#
Panel B
0
5
10
15
20
VEH 30 60 125 250 DZP
Frequency
of
rearing/5
min
AF (mg/kg, p.o.)
*
*
Fig. 51: Effects of AF on the number of steps climbed (Panel A) and the frequency of
rearing (Panel B) by mice
BF: Aqueous fraction of A. difformis rhizome; DZP: Diazepam (0.5 mg/kg, i.p.); VEH:
Vehicle (Normal saline, 10 ml/kg, p.o.); *significant p < 0.05 compared to vehicle-treated
control; #significant p < 0.05 compared to standard drug, Diazepam.
Mechanism of Anxiolytic effect: GABAA receptor involvement (EPM)
• Fig. 52: : Influence of Flumazenil (3
mg/kg, i.p.) on effects of ADE (30
mg/kg, p.o.) on % entries into open
arm (Panel A) and % time spent on
open arm (Panel B) of EPM in mice
• ADE: Aqueous extract of A. difformis
rhizome (30 mg/kg, p.o.);
• VEH: Vehicle (Normal saline, 10
ml/kg, p.o.);
• Flum: Flumazenil (3 mg/kg, i.p.);
• DZP: Diazepam (0.5 mg/kg, i.p.);
• #significant p < 0.05: antagonist
versus treatment alone.
58
Panel A
0
10
20
30
40
50
60
70
%
Open
Arm
entry
#
ns
Panel B
0
10
20
30
40
50
60
70
VEH Flum VEH Flum VEH Flum
%
Open
Arm
duration
#
#
ADE DZP
Mechanism of Anxiolytic effect: GABAA receptor involvement (EPM)
• Fig. 54: Influence of Flumazenil
(3 mg/kg, i.p.) on effects of EF
(125 mg/kg, p.o.) on % entries
into open arm (Panel A) and %
time spent on open arm (Panel
B) of EPM in mice
• EF: Ethyl-acetate fraction of A.
difformis rhizome (125 mg/kg,
p.o.);
• DZP: Diazepam (0.5 mg/kg, i.p.);
• VEH: Vehicle (2.5% Tween 80 in
saline, 10 ml/kg, p.o.);
• Flum: Flumazenil (3 mg/kg, i.p.);
• #significant p < 0.05: antagonist
versus treatment alone.
59
Panel A
0
10
20
30
40
50
60
70
%
Open
Arm
entry
# #
Panel B
0
10
20
30
40
50
60
70
VEH Flum VEH Flum VEH Flum
%
Open
Arm
duration
#
#
EF DZP
Mechanism of Anxiolytic effect: Serotonergic/histaminergic receptor
involvement (EPM)
• Fig. 55: Influence of Cyproheptadine
(0.5 mg/kg, i.p.) on effect of ADE (30
mg/kg, p.o.) on % entries into open
arm (Panel A) and % time spent on
open arm (Panel B) of EPM in mice
• ADE: Aqueous extract of A. difformis
rhizome (30 mg/kg, p.o.);
• VEH: Vehicle (Normal saline, 10 ml/kg,
p.o.);
• CYP: Cyproheptadine (0.5 mg/kg, i.p.);
• STR: Sertraline (20 mg/kg, p.o.);
• #significant p < 0.05: antagonist versus
treatment alone.
60
Panel A
0
10
20
30
40
50
60
%
Open
Arm
entry
# #
Panel B
0
10
20
30
40
50
60
70
80
VEH CYP VEH CYP VEH CYP
%
Open
Arm
duration
# #
ADE STR
Mechanism of Anxiolytic effect: Serotonergic/histaminergic receptor
involvement (EPM)
• Fig. 57: Influence of
Cyproheptadine (0.5 mg/kg, i.p.)
on effects of EF (125
mg/kg)/STR (20 mg/kg) on %
open arm entries (Panel A) and
% time spent (Panel B) by mice
on EPM
• EF: Ethyl-acetate fraction of A.
difformis rhizome;
• VEH: Vehicle (2.5% Tween 80 in
saline, 10 ml/kg, p.o.);
• STR: Sertraline (20 mg/kg, p.o.);
• CYP: Cyproheptadine (0.5 mg/kg,
i.p.);
• #significant p < 0.05: antagonist
versus treatment alone.
61
Panel A
0
10
20
30
40
50
60
%
Open
Arm
entry
#
#
Panel B
0
10
20
30
40
50
60
70
80
VEH CYP VEH CYP VEH CYP
%
Open
Arm
duration
# #
STR
EF
Mechanism of Anxiolytic effect: GABAA receptor involvement(Hole-board)
62
0
5
10
15
20
25
30
VEH Flum VEH Flum VEH Flum
Number
of
head-dips/5
min #
ADE DZP
#
Fig. 58: Influence of Flumazenil (3 mg/kg, i.p.) on the number of head-dips induced
by ADE (30 mg/kg, p.o.) in mice
ADE: Aqueous extract of A. difformis rhizome (30 mg/kg, p.o.);
VEH: Vehicle (Normal saline, 10 ml/kg, p.o.);
Flum: Flumazenil (3 mg/kg, i.p.);
DZP: Diazepam (0.5 mg/kg, i.p.);
#significant p < 0.05: antagonist versus treatment alone.
Mechanism of Anxiolytic effect: GABAA receptor involvement(Hole-board)
63
0
5
10
15
20
25
30
35
40
VEH Flum VEH Flum VEH Flum
Number
of
head-dips/5
mins
#
#
EF DZP
Fig. 60: Influence of Flumazenil (3 mg/kg, i.p.) on the number of head-dips induced by EF
(125 mg/kg, p.o.) in mice on the Hole-board
EF: Ethyl-acetate fraction of A. difformis rhizome;
DZP: Diazepam (0.5 mg/kg, i.p.);
VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.);
Flum: Flumazenil (3 mg/kg. i.p.); #significant p < 0.05: antagonist versus treatment alone.
Mechanism of Anxiolytic effect: Serotonergic/histaminergic receptor involvement
(Hole-board)
64
0
10
20
30
40
50
60
VEH CYP VEH CYP STR CYP
Number
of
head-dips/5
min
#
#
ADE STR
Fig. 61: Influence of Cyproheptadine (0.5 mg/kg, i.p.) on the number of head-dips
induced by ADE (30 mg/kg, p.o.) in mice on the Holeboard
ADE: Aqueous extract of A. difformis rhizome (30 mg/kg, p.o.);
VEH: Vehicle (Normal saline, 10 ml/kg, p.o.);
CYP: Cyproheptadine (0.5 mg/kg, i.p.);
STR: Sertraline (20 mg/kg, p.o.);
#significant p < 0.05: antagonist versus treatment alone.
Mechanism of Anxiolytic effect: Serotonergic/histaminergic receptor
involvement
(Hole-board)
65
0
10
20
30
40
50
60
VEH CYP VEH CYP VEH CYP
Number
of
head-dips/5
min
#
#
STR
EF
Fig. 63: Influence of Cyproheptadine (0.5 mg/kg, i.p.) on the number of head-dips
induced by EF (125 mg/kg, p.o.) in mice on the Hole-board
EF: Ethyl-acetate fraction of A. difformis rhizome (125 mg/kg, p.o.);
VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.);
STR: Sertraline (20 mg/kg, p.o.);
CYP: Cyproheptadine (0.5 mg/kg, i.p.);
#significant p < 0.05: antagonist versus treatment alone.
Antidepressant study: TST & FST
66
Panel A
0
100
200
300
Period
of
immobility
(s)
* *
*
#
#
#
#
*
Panel B
0
50
100
150
200
VEH 60 125 250 500 1000 IMP
Period
of
immobility
(s)
ADE (mg/kg, p.o.)
*
*
#
#
#
#
#
*
Fig. 64: Effects of ADE on period of immobility in mice on TST (Panel A) and FST
(Panel B)
ADE: Aqueous extract of A. difformis rhizome; IMP: Imipramine (25 mg/kg, i.p.); VEH:
Vehicle (Normal saline, 10 ml/kg, p.o.); *significant p < 0.05 compared to vehicle (control);
#significant p < 0.05 compared to standard drug, Imipramine.
Antidepressant study: TST & FST
67
Panel A
0
100
200
300
Period
of
immobility
(s)
*
#
#
#
#
#
Panel B
0
50
100
150
200
VEH 60 125 250 500 1000 IMP
Period
of
immobility
(s)
HF (mg/kg, p.o.)
*
# # # # #
Fig. 66: Effects of HF on period of immobility in mice on TST (Panel A) and FST (Panel
B)
HF: N-hexane fraction of A. difformis rhizome; IMP: Imipramine (25 mg/kg, i.p.); VEH:
Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.);
*significant p < 0.05 compared to vehicle-treated control; #significant p < 0.05 compared to
standard drug, Imipramine.
Antidepressant study: TST & FST
68
Panel A
0
50
100
150
200
Period
of
immobility
(s)
* *
*
#
*
#
#
#
#
Panel B
0
50
100
150
200
VEH 60 125 250 500 1000 IMP
Period
of
immobility
(s)
EF (mg/kg, p.o.)
*
*
*
*
#
#
# #
#
Fig. 67: Effects of EF on period of immobility in mice on TST (Panel A) and FST (Panel
B)
EF: Ethyl-acetate fraction of A. difformis rhizome; IMP: Imipramine (25 mg/kg, i.p.); VEH:
Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.); *significant p < 0.05 compared to vehicle-
treated control; #significant p < 0.05 compared to standard drug, Imipramine
Antidepressant study: TST & FST
69
Panel A
0
50
100
150
200
Period
of
immobility
(s
)
*
# #
# # #
Panel B
0
50
100
150
200
VEH 60 125 250 500 1000 IMP
Period
of
immobility
(s
)
BF (mg/kg, p.o.)
*
# #
#
#
#
*
*
Fig. 68: Effects of BF on period of immobility in mice on TST (Panel A) and FST (Panel
B)
BF: Butanol fraction of A. difformis rhizome; IMP: Imipramine (25 mg/kg, i.p.); VEH: Vehicle
(2.5% Tween 80 in saline, 10 ml/kg, p.o.). *significant p < 0.05 compared to vehicle (control);
#significant p < 0.05 compared to standard drug, Imipramine
Antidepressant study: TST & FST
70
Panel A
0
50
100
150
200
250
Period
of
immobility
(s)
*
#
#
#
#
#
Panel B
0
50
100
150
200
250
VEH 60 125 250 500 1000 IMP
Period
of
immobility
(s)
AF (mg/kg, p.o.)
*
*
#
*
#
*
#
*
#
*
#
Fig. 69: Effects of AF on period of immobility in mice on TST (Panel A) and FST
(Panel B)
AF: Residual Aqueous fraction of A. difformis rhizome; IMP: Imipramine (25 mg/kg, i.p.);
VEH: Vehicle (Normal saline, 10 ml/kg, p.o.). *significant p < 0.05 compared to vehicle-
treated control; #significant p < 0.05 compared to standard drug, Imipramine
Mechanism: Antidepressant (Serotonergic/histaminergic receptor
involvement)
• Fig. 73: Influence of
Cyproheptadine (0.5 mg/kg, i.p.) on
reduction of immobility period
induced by ADE (30 mg/kg, p.o.) in
mice on TST (Panel A) and FST
(Panel B) models
• ADE: Aqueous extract of A. difformis
rhizome (30 mg/kg, p.o.);
• VEH: Vehicle (Normal saline, 10
ml/kg, p.o.);
• STR: Sertraline (20 mg/kg, p.o.);
• CYP: Cyproheptadine (0.5 mg/kg,
i.p.);
• #significant p < 0.05: antagonist
versus treatment alone.
71
Panel A
0
50
100
150
200
250
Immobility
time
(sec)/6
min
# #
Panel B
0
20
40
60
80
100
120
140
160
180
VEH CYP VEH CYP VEH CYP
Immobility
time
(sec)/6
min
# #
ADE STR
Mechanism: Antidepressant (Serotonergic/histaminergic receptor
involvement)
• Fig. 75: Influence of
Cyproheptadine (0.5 mg/kg, i.p.) on
reduction of immobility period
iduced by EF (250 mg/kg, p.o.) on
TST (Panel A) and FST (Panel B)
models
• EF: Ethyl-acetate fraction of A.
difformis rhizome (250 mg/kg, p.o.);
• VEH: Vehicle (2.5% Tween 80 in
saline, 10 ml/kg, p.o.);
• STR: Sertraline (20 mg/kg, p.o.);
• CYP: Cyproheptadine (0.5 mg/kg,
i.p.);
• #significant p < 0.05: antagonist
versus treatment alone.
72
Panel A
0
50
100
150
200
250
Immobility
time
(sec)/6
min
#
#
Panel B
0
20
40
60
80
100
120
140
160
180
VEH CYP VEH CYP VEH CYP
Immobility
time
(sec)/6
min
#
EF STR
#
Antipsychotic Test: Swim-induced grooming (SIG)
73
Panel A
0
5
10
15
20
Frequency
of
grooming
*
*
*
*
#
#
#
#
#
#
Panel B
0
50
100
150
200
VEH 30 60 125 250 500 1000 HAL
Duration
of
grooming/5
min
ADE (mg/kg, p.o.)
*
*
*
#
#
#
#
#
#
Fig. 82: Effects of ADE on frequency (Panel A) and duration (Panel B) of SIG
behaviour in mice
ADE: Aqueous extract of A. difformis rhizome; VEH: Vehicle-treated control group
(Normal saline, 10 ml/kg, p.o.); HAL: Haloperidol (1 mg/kg, i.p.); *significant p < 0.05
compared to control; #significant p < 0.05 compared to the reference drug, Haloperidol.
Antipsychotic Test: Swim-induced grooming (SIG)
74
Panel A
0
2
4
6
8
10
12
14
Frequency
of
grooming/5
min
*
*
*
* *
*
#
#
#
#
#
# *
Panel B
0
50
100
150
200
250
300
VEH 30 60 125 250 500 1000 HAL
Duration
of
grooming
/5
min
HF (mg/kg, p.o.)
*
*
#
# #
# # #
Fig. 84: Effects of HF on frequency (Panel A) and duration (Panel B) of SIG behaviour
in mice
HF: N-Hexane fraction of A. difformis rhizome; HAL: Haloperidol (1 mg/kg, i.p.); VEH:
Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.); *significant p < 0.05 compared to vehicle-
treated control; #significant p < 0.05 compared to Haloperidol (1 mg/kg, i.p.)
Antipsychotic Test: Swim-induced grooming (SIG)
75
Panel A
0
2
4
6
8
10
12
14
Frequency
of
grooming
/5
min
*
*
*
* *
*
*
#
#
# # #
#
Panel B
0
100
200
300
VEH 30 60 125 250 500 1000 HAL
Duration
of
grooming/5
min
EF (mg/kg, p.o.)
*
*
#
Fig. 85: Effects of orally administered EF on frequency (Panel A) and duration (Panel
B) of SIG behaviour in mice
EF: Ethyl-acetate fraction of A. difformis rhizome; HAL: Haloperidol (1 mg/kg, i.p.); VEH:
Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.). *significant p < 0.05 compared to
vehicle-treated control; #significant p < 0.05 compared to Haloperidol (1 mg/kg, i.p.).
Antipsychotic Test: Swim-induced grooming (SIG)
• Fig. 86: Effects of BF on
frequency (Panel A) and
duration (Panel B) of SIG
behaviour in mice
• BF: Butanol fraction of A.
difformis rhizome;
• HAL: Haloperidol (1 mg/kg,
i.p.);
• VEH: Vehicle (2.5% Tween 80
in saline, 10 ml/kg, p.o.);
• *significant p < 0.05 compared
to vehicle-treated control;
• #significant p < 0.05 compared
to Haloperidol (1 mg/kg, i.p.).
76
Panel A
0
2
4
6
8
10
12
14
Frequency
of
grooming
/5
min
*
*
*
* * *
*
#
#
#
# # #
Panel B
0
50
100
150
200
250
300
VEH 30 60 125 250 500 1000 HAL
Duration
of
grooming/5
min
BF (mg/kg, p.o.)
*
# # # # #
#
Antipsychotic Test: Swim-induced grooming (SIG)
• Fig. 87: Effects of AF on
frequency (Panel A) and
duration (Panel B) of SIG
behaviour in mice
• AF: Aqueous fraction of A.
difformis rhizome;
• VEH: Vehicle-treated control
group (Normal saline, 10
ml/kg, p.o.);
• HAL: Haloperidol (1 mg/kg,
i.p.); *significant p < 0.05
compared to control;
• #significant p < 0.05 compared
to the reference drug,
Haloperidol
77
0
2
4
6
8
10
12
14
16
Frequency
of
grooming
/5
min
*
*
* *
* *
*
#
#
# #
#
#
Panel A
Panel B
0
50
100
150
200
250
VEH 30 60 125 250 500 1000 HAL
Duration
of
grooming/5
min
AF (mg/kg, p.o.)
*
*
*
*
#
# #
#
#
#
Conclusion
• The extract and fractions of A. difformis in this study demonstrated
a central nervous system depressant activity at high doses where
they exerted a sedative effect which was comparable to Diazepam.
• They also showed anxiolytic and antidepressant properties at low
doses in mice.
• The sedative effect appeared to be exerted via GABAA receptor;
• The anxiolytic effect seemed to be exerted via GABAAergic and
serotonergic/histaminergic pathways;
• The antidepressant activity was probably exerted via adrenergic,
serotonergic/histaminergic pathways;
• These findings provide a scientific basis for the ethno-medicinal
use of the rhizome of A. difformis in the management of mental
illness in the South-western part of Nigeria.
78
References
• Agyare C, Boakye YD, Apenteng JA, Dapaah SO, Appiah T, Adow A (2016)
Antimicrobial and anti- inflammatory properties of Anchomanes
difformis (Bl.) Engl. and Colocasia esculenta (L.) Schott. Biochemistry
and Pharmacology 5: 201- 204.
• Akah PA and Njike HA (1990) Some pharmacological effects of rhizome
aqueous extract of Anchomanes difformis. Fitoterapia; 61: 368-370.
• Akanmu MA, Olowookere TA, Atunwa SA, Ibrahim OI, Lamidi OF, Adams PA,
Ajimuda BO, and Adeyemo LE (2011)
Neuropharmacological effects of Nigerian honey in mice. African
Journal of Traditional Complementary and Alternative
Medicine; 8 (3): 230-249.
• Aliyu AB, Ibrahim MA, Musa AM, Musa AO, Kiplimo JJ, Oyewale AO (2013)
Free radical scavenging and total antioxidant capacity of
root extracts of Anchomanes difformis Engl. (Araceae). Acta Poloniae
Pharmacuetica-Drug Research; 70 (1): 115 – 121.
• Atawodi SE, Bulus T, Ibrahim S, Ameh DA, Nok AT, Mamman M, Galadima M
(2003) In vitro trypanocidal effect of methanolic extract of
some Nigerian savannah plants (abstract). African Journal of
Biotechnology; 2 (9): 317.
• Eke IG, Obioha FC, Anaga AO (2013) Evaluation of the Methanolic Rhizome
Extract of Anchomanes difformis for Analgesic and Antipyretic Activities.
International Journal of Basic and Applied Sciences; 2 (4): 289-296.
• Eneojo AS, Egwari LO, Mosaku TO (2011) In vitro Antimicrobial Screening on Anchomanes difformis
(Blume) Engl. Leaves and Rhizomes Against Selected Pathogens of Public Importance. Advances in
Biological Research 5 (4): 221-225.
79
References
• File SE and Pellow S (1985) The effect of triazolobenzodiazepines in two animal tests of
anxiety and on the hole-board. British Journal of Pharmacology 86: 729–
735.
• Lorke D (1983) A new approach to practical acute toxicity testing. Archieves of Toxicology;
54: 275 – 287.
• Magaji MG, Yakubu Y, Magaji RA, Musa AM, Yaro AH, Hussaini IM (2014)
Psychopharmacological Potentials of Methanol Leaf Extract of Securinega
virosa Roxb (Ex Wild) Baill. in Mice. Pakistan Journal of Biological Sciences;
17: 855 – 859.
• Nic Dhonnchadha BA, Bourin M., Hascoet M (2003) Anxiolytic-like effects of 5-HT2
ligands on three mouse models of anxiety. Behavioral Brain Research, 140:
203-214.
• Olayiwola G, Ukponmwan O, Olawode D (2013) Sedative and anxiolytic effects of the
extract of the leaf of Stachytarphyta cayennensis in mice. African Journal of
Traditional Complementary and Alternative Medicine; 10(6): 568-579
• Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test
for antidepressants. Archives of International Pharmacodynamics and
Therapeutics; 229: 327–336.
• Simiand J, Keane PE, Moore M (1984) The staircase test in mice: a simple and procedure
for screening of anxiolytic agents. Journal of Psychopharmacology
(Berlin) 84: 48– 53.
• Steru L, Chermat R, Thierry B and Simon P (1985) The tail suspension test: a new method
for screening antidepressant drugs. Psychopharmacology; 85:367–370.
• Trullas R, Skolnick P (1993) Differences in fear motivated behaviors among inbred mouse
strains. Psychopharmacology (Berl); 111(3): 323-31.
80

More Related Content

Similar to seminar.2016.Ph.D .4.pptx

IOSRPHR(www.iosrphr.org) IOSR Journal of Pharmacy
IOSRPHR(www.iosrphr.org) IOSR Journal of PharmacyIOSRPHR(www.iosrphr.org) IOSR Journal of Pharmacy
IOSRPHR(www.iosrphr.org) IOSR Journal of Pharmacyiosrphr_editor
 
Recovery of acetyl cholinesterase inhibition by Methanolic Bark Extract of Ac...
Recovery of acetyl cholinesterase inhibition by Methanolic Bark Extract of Ac...Recovery of acetyl cholinesterase inhibition by Methanolic Bark Extract of Ac...
Recovery of acetyl cholinesterase inhibition by Methanolic Bark Extract of Ac...Innspub Net
 
Ijb vol-16-no-1-Recovery of acetyl cholinesterase inhibition by Methanolic Ba...
Ijb vol-16-no-1-Recovery of acetyl cholinesterase inhibition by Methanolic Ba...Ijb vol-16-no-1-Recovery of acetyl cholinesterase inhibition by Methanolic Ba...
Ijb vol-16-no-1-Recovery of acetyl cholinesterase inhibition by Methanolic Ba...Innspub Net
 
Influence of gongronema latifolium leaf extracts treatment on some hepatic...
Influence of gongronema  latifolium  leaf extracts  treatment on some hepatic...Influence of gongronema  latifolium  leaf extracts  treatment on some hepatic...
Influence of gongronema latifolium leaf extracts treatment on some hepatic...Alexander Decker
 
Analgesic and Anti-diarrheal Activities of Aganosma dichotoma (Roth)
Analgesic and Anti-diarrheal Activities of Aganosma dichotoma (Roth)Analgesic and Anti-diarrheal Activities of Aganosma dichotoma (Roth)
Analgesic and Anti-diarrheal Activities of Aganosma dichotoma (Roth)Aranno Hossain
 
Sedative activity of abutilon indicum original
Sedative activity of abutilon indicum originalSedative activity of abutilon indicum original
Sedative activity of abutilon indicum originalDHANAPAL VENKATACHALAM
 
Hypoglycemic effect of gongronema latifolia extracts in rats
Hypoglycemic effect of gongronema latifolia extracts in ratsHypoglycemic effect of gongronema latifolia extracts in rats
Hypoglycemic effect of gongronema latifolia extracts in ratsAlexander Decker
 
Arenla Presentation.pptx
Arenla Presentation.pptxArenla Presentation.pptx
Arenla Presentation.pptxSaithanpari
 
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...semualkaira
 
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...semualkaira
 
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...semualkaira
 
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...semualkaira
 
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...semualkaira
 
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...semualkaira
 
Analgesic and antipyretic activity of methanolic extract of Acacia leucophloe...
Analgesic and antipyretic activity of methanolic extract of Acacia leucophloe...Analgesic and antipyretic activity of methanolic extract of Acacia leucophloe...
Analgesic and antipyretic activity of methanolic extract of Acacia leucophloe...pharmaindexing
 
Evaluations of Some Biological Properties of Ethanolic Leave Extract of Costu...
Evaluations of Some Biological Properties of Ethanolic Leave Extract of Costu...Evaluations of Some Biological Properties of Ethanolic Leave Extract of Costu...
Evaluations of Some Biological Properties of Ethanolic Leave Extract of Costu...IOSRJPBS
 
Hepatotoxic Effects of the Methanol Extract of Senna Siemea in Wister Rats - ...
Hepatotoxic Effects of the Methanol Extract of Senna Siemea in Wister Rats - ...Hepatotoxic Effects of the Methanol Extract of Senna Siemea in Wister Rats - ...
Hepatotoxic Effects of the Methanol Extract of Senna Siemea in Wister Rats - ...CrimsonPublishersRDMS
 
Toxicity studies of extract of African Mistletoe: Agelanthus Dodoneifolius Po...
Toxicity studies of extract of African Mistletoe: Agelanthus Dodoneifolius Po...Toxicity studies of extract of African Mistletoe: Agelanthus Dodoneifolius Po...
Toxicity studies of extract of African Mistletoe: Agelanthus Dodoneifolius Po...oyepata
 

Similar to seminar.2016.Ph.D .4.pptx (20)

IOSRPHR(www.iosrphr.org) IOSR Journal of Pharmacy
IOSRPHR(www.iosrphr.org) IOSR Journal of PharmacyIOSRPHR(www.iosrphr.org) IOSR Journal of Pharmacy
IOSRPHR(www.iosrphr.org) IOSR Journal of Pharmacy
 
Recovery of acetyl cholinesterase inhibition by Methanolic Bark Extract of Ac...
Recovery of acetyl cholinesterase inhibition by Methanolic Bark Extract of Ac...Recovery of acetyl cholinesterase inhibition by Methanolic Bark Extract of Ac...
Recovery of acetyl cholinesterase inhibition by Methanolic Bark Extract of Ac...
 
Ijb vol-16-no-1-Recovery of acetyl cholinesterase inhibition by Methanolic Ba...
Ijb vol-16-no-1-Recovery of acetyl cholinesterase inhibition by Methanolic Ba...Ijb vol-16-no-1-Recovery of acetyl cholinesterase inhibition by Methanolic Ba...
Ijb vol-16-no-1-Recovery of acetyl cholinesterase inhibition by Methanolic Ba...
 
Influence of gongronema latifolium leaf extracts treatment on some hepatic...
Influence of gongronema  latifolium  leaf extracts  treatment on some hepatic...Influence of gongronema  latifolium  leaf extracts  treatment on some hepatic...
Influence of gongronema latifolium leaf extracts treatment on some hepatic...
 
Analgesic and Anti-diarrheal Activities of Aganosma dichotoma (Roth)
Analgesic and Anti-diarrheal Activities of Aganosma dichotoma (Roth)Analgesic and Anti-diarrheal Activities of Aganosma dichotoma (Roth)
Analgesic and Anti-diarrheal Activities of Aganosma dichotoma (Roth)
 
PROJECT Presentation.pptx
PROJECT Presentation.pptxPROJECT Presentation.pptx
PROJECT Presentation.pptx
 
Sedative activity of abutilon indicum original
Sedative activity of abutilon indicum originalSedative activity of abutilon indicum original
Sedative activity of abutilon indicum original
 
Hypoglycemic effect of gongronema latifolia extracts in rats
Hypoglycemic effect of gongronema latifolia extracts in ratsHypoglycemic effect of gongronema latifolia extracts in rats
Hypoglycemic effect of gongronema latifolia extracts in rats
 
Arenla Presentation.pptx
Arenla Presentation.pptxArenla Presentation.pptx
Arenla Presentation.pptx
 
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...
 
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...
 
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...
 
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...
 
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...
 
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...
Investigation on Effects of Methanolic and Aqueous Extracts of Seeds of Datur...
 
Analgesic and antipyretic activity of methanolic extract of Acacia leucophloe...
Analgesic and antipyretic activity of methanolic extract of Acacia leucophloe...Analgesic and antipyretic activity of methanolic extract of Acacia leucophloe...
Analgesic and antipyretic activity of methanolic extract of Acacia leucophloe...
 
Evaluations of Some Biological Properties of Ethanolic Leave Extract of Costu...
Evaluations of Some Biological Properties of Ethanolic Leave Extract of Costu...Evaluations of Some Biological Properties of Ethanolic Leave Extract of Costu...
Evaluations of Some Biological Properties of Ethanolic Leave Extract of Costu...
 
Hepatotoxic Effects of the Methanol Extract of Senna Siemea in Wister Rats - ...
Hepatotoxic Effects of the Methanol Extract of Senna Siemea in Wister Rats - ...Hepatotoxic Effects of the Methanol Extract of Senna Siemea in Wister Rats - ...
Hepatotoxic Effects of the Methanol Extract of Senna Siemea in Wister Rats - ...
 
Toxicity studies of extract of African Mistletoe: Agelanthus Dodoneifolius Po...
Toxicity studies of extract of African Mistletoe: Agelanthus Dodoneifolius Po...Toxicity studies of extract of African Mistletoe: Agelanthus Dodoneifolius Po...
Toxicity studies of extract of African Mistletoe: Agelanthus Dodoneifolius Po...
 
4. Diyansh article.output.pdf
4. Diyansh article.output.pdf4. Diyansh article.output.pdf
4. Diyansh article.output.pdf
 

More from SamuelAgboola11

DENTAL MANAGEMENTS OF PATIENTS WITH GASTROINTESTINAL DISEASE (2).pptx
DENTAL MANAGEMENTS OF PATIENTS WITH  GASTROINTESTINAL DISEASE (2).pptxDENTAL MANAGEMENTS OF PATIENTS WITH  GASTROINTESTINAL DISEASE (2).pptx
DENTAL MANAGEMENTS OF PATIENTS WITH GASTROINTESTINAL DISEASE (2).pptxSamuelAgboola11
 
DENTAL MANAGEMENT OF PATIENTS WITH REPIRATORY DISEASES 2809-1.pptx
DENTAL MANAGEMENT OF PATIENTS WITH   REPIRATORY DISEASES 2809-1.pptxDENTAL MANAGEMENT OF PATIENTS WITH   REPIRATORY DISEASES 2809-1.pptx
DENTAL MANAGEMENT OF PATIENTS WITH REPIRATORY DISEASES 2809-1.pptxSamuelAgboola11
 
Drug-Drug Interactions and the Pharmacotherapy of HIV Infect.ppt
Drug-Drug Interactions and the Pharmacotherapy of HIV Infect.pptDrug-Drug Interactions and the Pharmacotherapy of HIV Infect.ppt
Drug-Drug Interactions and the Pharmacotherapy of HIV Infect.pptSamuelAgboola11
 
PROPOSAL POWERPOINT PRESENTATION.pptx
PROPOSAL POWERPOINT PRESENTATION.pptxPROPOSAL POWERPOINT PRESENTATION.pptx
PROPOSAL POWERPOINT PRESENTATION.pptxSamuelAgboola11
 
Pharmacotherapy_handbook_9th_edition.pdf
Pharmacotherapy_handbook_9th_edition.pdfPharmacotherapy_handbook_9th_edition.pdf
Pharmacotherapy_handbook_9th_edition.pdfSamuelAgboola11
 
PROPOSAL POWERPOINT PRESENTATION.pptx
PROPOSAL POWERPOINT PRESENTATION.pptxPROPOSAL POWERPOINT PRESENTATION.pptx
PROPOSAL POWERPOINT PRESENTATION.pptxSamuelAgboola11
 
HISTAMINE PHARMACOLOGY.ppt.ppt
HISTAMINE PHARMACOLOGY.ppt.pptHISTAMINE PHARMACOLOGY.ppt.ppt
HISTAMINE PHARMACOLOGY.ppt.pptSamuelAgboola11
 
seminar.2016.Ph.D .4.pptx
seminar.2016.Ph.D .4.pptxseminar.2016.Ph.D .4.pptx
seminar.2016.Ph.D .4.pptxSamuelAgboola11
 
My seminar power point.pptx
My seminar power point.pptxMy seminar power point.pptx
My seminar power point.pptxSamuelAgboola11
 
7. First line ARV therapy.ppt
7. First line ARV therapy.ppt7. First line ARV therapy.ppt
7. First line ARV therapy.pptSamuelAgboola11
 
Seminar presentation.ppt
Seminar presentation.pptSeminar presentation.ppt
Seminar presentation.pptSamuelAgboola11
 
Bronchogenic Carcinoma ppt.pptx
Bronchogenic Carcinoma ppt.pptxBronchogenic Carcinoma ppt.pptx
Bronchogenic Carcinoma ppt.pptxSamuelAgboola11
 
HISTAMINE PHARMACOLOGY.ppt.ppt
HISTAMINE PHARMACOLOGY.ppt.pptHISTAMINE PHARMACOLOGY.ppt.ppt
HISTAMINE PHARMACOLOGY.ppt.pptSamuelAgboola11
 
32 Pleural diseases.pptx
32 Pleural diseases.pptx32 Pleural diseases.pptx
32 Pleural diseases.pptxSamuelAgboola11
 
31 Pulmonary embolism and infarction..pptx
31 Pulmonary embolism and infarction..pptx31 Pulmonary embolism and infarction..pptx
31 Pulmonary embolism and infarction..pptxSamuelAgboola11
 
Part_A_How_to_Read_a_Scientific_Paper_2018_12.pptx
Part_A_How_to_Read_a_Scientific_Paper_2018_12.pptxPart_A_How_to_Read_a_Scientific_Paper_2018_12.pptx
Part_A_How_to_Read_a_Scientific_Paper_2018_12.pptxSamuelAgboola11
 
Clinical Trial Lecture 2-1.pdf
Clinical Trial Lecture 2-1.pdfClinical Trial Lecture 2-1.pdf
Clinical Trial Lecture 2-1.pdfSamuelAgboola11
 

More from SamuelAgboola11 (20)

DENTAL MANAGEMENTS OF PATIENTS WITH GASTROINTESTINAL DISEASE (2).pptx
DENTAL MANAGEMENTS OF PATIENTS WITH  GASTROINTESTINAL DISEASE (2).pptxDENTAL MANAGEMENTS OF PATIENTS WITH  GASTROINTESTINAL DISEASE (2).pptx
DENTAL MANAGEMENTS OF PATIENTS WITH GASTROINTESTINAL DISEASE (2).pptx
 
DENTAL MANAGEMENT OF PATIENTS WITH REPIRATORY DISEASES 2809-1.pptx
DENTAL MANAGEMENT OF PATIENTS WITH   REPIRATORY DISEASES 2809-1.pptxDENTAL MANAGEMENT OF PATIENTS WITH   REPIRATORY DISEASES 2809-1.pptx
DENTAL MANAGEMENT OF PATIENTS WITH REPIRATORY DISEASES 2809-1.pptx
 
END TIME EVENTS 1.pptx
END TIME EVENTS 1.pptxEND TIME EVENTS 1.pptx
END TIME EVENTS 1.pptx
 
Drug-Drug Interactions and the Pharmacotherapy of HIV Infect.ppt
Drug-Drug Interactions and the Pharmacotherapy of HIV Infect.pptDrug-Drug Interactions and the Pharmacotherapy of HIV Infect.ppt
Drug-Drug Interactions and the Pharmacotherapy of HIV Infect.ppt
 
PROPOSAL POWERPOINT PRESENTATION.pptx
PROPOSAL POWERPOINT PRESENTATION.pptxPROPOSAL POWERPOINT PRESENTATION.pptx
PROPOSAL POWERPOINT PRESENTATION.pptx
 
Pharmacotherapy_handbook_9th_edition.pdf
Pharmacotherapy_handbook_9th_edition.pdfPharmacotherapy_handbook_9th_edition.pdf
Pharmacotherapy_handbook_9th_edition.pdf
 
PROPOSAL POWERPOINT PRESENTATION.pptx
PROPOSAL POWERPOINT PRESENTATION.pptxPROPOSAL POWERPOINT PRESENTATION.pptx
PROPOSAL POWERPOINT PRESENTATION.pptx
 
HISTAMINE PHARMACOLOGY.ppt.ppt
HISTAMINE PHARMACOLOGY.ppt.pptHISTAMINE PHARMACOLOGY.ppt.ppt
HISTAMINE PHARMACOLOGY.ppt.ppt
 
seminar.2016.Ph.D .4.pptx
seminar.2016.Ph.D .4.pptxseminar.2016.Ph.D .4.pptx
seminar.2016.Ph.D .4.pptx
 
My seminar power point.pptx
My seminar power point.pptxMy seminar power point.pptx
My seminar power point.pptx
 
7. First line ARV therapy.ppt
7. First line ARV therapy.ppt7. First line ARV therapy.ppt
7. First line ARV therapy.ppt
 
Bowen PPT.pptx
Bowen PPT.pptxBowen PPT.pptx
Bowen PPT.pptx
 
33 COPD LECTURE.pptx
33 COPD LECTURE.pptx33 COPD LECTURE.pptx
33 COPD LECTURE.pptx
 
Seminar presentation.ppt
Seminar presentation.pptSeminar presentation.ppt
Seminar presentation.ppt
 
Bronchogenic Carcinoma ppt.pptx
Bronchogenic Carcinoma ppt.pptxBronchogenic Carcinoma ppt.pptx
Bronchogenic Carcinoma ppt.pptx
 
HISTAMINE PHARMACOLOGY.ppt.ppt
HISTAMINE PHARMACOLOGY.ppt.pptHISTAMINE PHARMACOLOGY.ppt.ppt
HISTAMINE PHARMACOLOGY.ppt.ppt
 
32 Pleural diseases.pptx
32 Pleural diseases.pptx32 Pleural diseases.pptx
32 Pleural diseases.pptx
 
31 Pulmonary embolism and infarction..pptx
31 Pulmonary embolism and infarction..pptx31 Pulmonary embolism and infarction..pptx
31 Pulmonary embolism and infarction..pptx
 
Part_A_How_to_Read_a_Scientific_Paper_2018_12.pptx
Part_A_How_to_Read_a_Scientific_Paper_2018_12.pptxPart_A_How_to_Read_a_Scientific_Paper_2018_12.pptx
Part_A_How_to_Read_a_Scientific_Paper_2018_12.pptx
 
Clinical Trial Lecture 2-1.pdf
Clinical Trial Lecture 2-1.pdfClinical Trial Lecture 2-1.pdf
Clinical Trial Lecture 2-1.pdf
 

Recently uploaded

Introduction to TechSoup’s Digital Marketing Services and Use Cases
Introduction to TechSoup’s Digital Marketing  Services and Use CasesIntroduction to TechSoup’s Digital Marketing  Services and Use Cases
Introduction to TechSoup’s Digital Marketing Services and Use CasesTechSoup
 
Andreas Schleicher presents at the launch of What does child empowerment mean...
Andreas Schleicher presents at the launch of What does child empowerment mean...Andreas Schleicher presents at the launch of What does child empowerment mean...
Andreas Schleicher presents at the launch of What does child empowerment mean...EduSkills OECD
 
Diuretic, Hypoglycemic and Limit test of Heavy metals and Arsenic.-1.pdf
Diuretic, Hypoglycemic and Limit test of Heavy metals and Arsenic.-1.pdfDiuretic, Hypoglycemic and Limit test of Heavy metals and Arsenic.-1.pdf
Diuretic, Hypoglycemic and Limit test of Heavy metals and Arsenic.-1.pdfKartik Tiwari
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxannathomasp01
 
21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptx21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptxJoelynRubio1
 
How to Manage Call for Tendor in Odoo 17
How to Manage Call for Tendor in Odoo 17How to Manage Call for Tendor in Odoo 17
How to Manage Call for Tendor in Odoo 17Celine George
 
OSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsOSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsSandeep D Chaudhary
 
SPLICE Working Group: Reusable Code Examples
SPLICE Working Group:Reusable Code ExamplesSPLICE Working Group:Reusable Code Examples
SPLICE Working Group: Reusable Code ExamplesPeter Brusilovsky
 
Michaelis Menten Equation and Estimation Of Vmax and Tmax.pptx
Michaelis Menten Equation and Estimation Of Vmax and Tmax.pptxMichaelis Menten Equation and Estimation Of Vmax and Tmax.pptx
Michaelis Menten Equation and Estimation Of Vmax and Tmax.pptxRugvedSathawane
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxmarlenawright1
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxCeline George
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfDr Vijay Vishwakarma
 
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSAnaAcapella
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and ModificationsMJDuyan
 
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfFICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfPondicherry University
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxDr. Ravikiran H M Gowda
 
UGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdf
UGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdfUGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdf
UGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdfNirmal Dwivedi
 
Play hard learn harder: The Serious Business of Play
Play hard learn harder:  The Serious Business of PlayPlay hard learn harder:  The Serious Business of Play
Play hard learn harder: The Serious Business of PlayPooky Knightsmith
 
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...Nguyen Thanh Tu Collection
 

Recently uploaded (20)

Introduction to TechSoup’s Digital Marketing Services and Use Cases
Introduction to TechSoup’s Digital Marketing  Services and Use CasesIntroduction to TechSoup’s Digital Marketing  Services and Use Cases
Introduction to TechSoup’s Digital Marketing Services and Use Cases
 
Andreas Schleicher presents at the launch of What does child empowerment mean...
Andreas Schleicher presents at the launch of What does child empowerment mean...Andreas Schleicher presents at the launch of What does child empowerment mean...
Andreas Schleicher presents at the launch of What does child empowerment mean...
 
Diuretic, Hypoglycemic and Limit test of Heavy metals and Arsenic.-1.pdf
Diuretic, Hypoglycemic and Limit test of Heavy metals and Arsenic.-1.pdfDiuretic, Hypoglycemic and Limit test of Heavy metals and Arsenic.-1.pdf
Diuretic, Hypoglycemic and Limit test of Heavy metals and Arsenic.-1.pdf
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptx21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptx
 
How to Manage Call for Tendor in Odoo 17
How to Manage Call for Tendor in Odoo 17How to Manage Call for Tendor in Odoo 17
How to Manage Call for Tendor in Odoo 17
 
OSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsOSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & Systems
 
SPLICE Working Group: Reusable Code Examples
SPLICE Working Group:Reusable Code ExamplesSPLICE Working Group:Reusable Code Examples
SPLICE Working Group: Reusable Code Examples
 
Michaelis Menten Equation and Estimation Of Vmax and Tmax.pptx
Michaelis Menten Equation and Estimation Of Vmax and Tmax.pptxMichaelis Menten Equation and Estimation Of Vmax and Tmax.pptx
Michaelis Menten Equation and Estimation Of Vmax and Tmax.pptx
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfFICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
UGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdf
UGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdfUGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdf
UGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdf
 
Play hard learn harder: The Serious Business of Play
Play hard learn harder:  The Serious Business of PlayPlay hard learn harder:  The Serious Business of Play
Play hard learn harder: The Serious Business of Play
 
Including Mental Health Support in Project Delivery, 14 May.pdf
Including Mental Health Support in Project Delivery, 14 May.pdfIncluding Mental Health Support in Project Delivery, 14 May.pdf
Including Mental Health Support in Project Delivery, 14 May.pdf
 
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
 

seminar.2016.Ph.D .4.pptx

  • 1. NEUROPHARMACOLOGICAL EFFECTS OF AQUEOUS EXTRACT AND FRACTIONS OF ANCHOMANES DIFFORMIS (BLUME) ENGLER ( ARACEAE) RHIZOME IN MICE AGBOOLA, SAMUEL SUNDAY B. Pharm.(Ife), M. Sc. (Ife) (PHP11/12/H/2717) NOVEMBER 2016 1
  • 2. ABSTRACT The search for effective and affordable drugs for the management of common central nervous system disorders from drugs of natural origin has continued to attract the attention of scientists all over the world. Many herbs have been claimed to be efficacious in the treatment of these disorders by traditional herbal practitioners. Some of these claims have been proved scientifically, thus justifying their ethnomedicinal uses. The rhizome of Anchomanes difformis Blume Engl. (family Araceae) is claimed to be used in the management of mental illness, among others, by herbalists in the Southwestern Nigeria. However, no known detailed neuropharmacological study has been done to verify this claim. This study carried out some neuropharmacological study on the aqueous & hydro-alcoholic rhizome extracts and fractions in mice using animal models for psychosis, anxiety, and depression. The results of acute toxicity test showed LD50 values by oral route for the extracts and fractions as > 5000 mg/kg. The extract significantly (p < 0.05) reduced the frequency of novelty induced rearing and grooming; reduced period of immobility in Tail suspension and Forced swimming tests; and increased both the frequency of entry and the time spent on the open arms of the Elevated plus maze, thus showing promising anti-depressant and anxiolytic effects. These results and other work done will be discussed in this seminar. 2
  • 3. OUTLINE • Introduction • Objectives of the research • Materials and methods • Results/ Discussion • Conclusion • References 3
  • 4. INTRODUCTION Mental Illness This is a disorder of the brain’s processes that makes the patient feel ill, and may prevent him/her from coping with daily life. Examples include:  Schizophrenia  Anxiety  Depression 4
  • 5. INTRODUCTION: THE PLANT ANCHOMANES DIFFORMIS (BLUME) ENGLER:  Family name: Araceae  Common names: Forest anchomanes (English) ‘Ogirisako’ or ‘Igo’ (Yoruba) ‘ Olumahi’ (Igbo) ‘Eba-enang’ (Efik) 5
  • 6. INTRODUCTION: THE PLANT Plate 1: A picture of A. difformis in its natural habitat along Afao Road, Ado-Ekiti on 2nd May, 2013
  • 7. INTRODUCTION: THE PLANT 7 Plate 2: A picture of a rhizome of A. difformis collected on 2nd May, 2013 along Afao Road, Ado-Ekiti, Nigeria
  • 8. INTRODUCTION: THE PLANT Ethnobotanical uses of A. difformis:  Leaf & tuber: Lactation stimulants (incl. veterinary)  Sap: Eye treatment; naso-pharyngeal infection  Rhizome Abortifacient, Treatment of asthma; gout, diuretic, laxative, treatment of venereal diseases, diarrhoea, mental illness
  • 9. INTRODUCTION: Pharmacological studies reported on the plant  Antimicrobial activity (Eneojo et al., 2011; Agyare et al., 2016)  Anti-trypanosomal activity (Atawodi et al., 2013)  Analgesic and anti-inflammatory activities (Akah et al., 1990; Agyare et al., 2016; Eke et al., 2013)  Sedative activity (Eke et al., 2013)  Anti-oxidant activity (Aliyu et al., 2013; Agyare et al., 2016) 9
  • 10. Table 1: Phytoconstituents of A. difformis rhizome and leaf Phytochemical constituents Rhizome Leaf Tannins +++ +++ Alkaloids ++ + Saponins +++ +++ Terpenoids ++ _ Cardiac glycosides +++ +++ Flavonoids ++ ++ 10 Note: +++ = Conspicuously present; ++ = Moderately present; - = Absent (Adapted with modification from Eneojo et al., 2011 )
  • 11. Objectives of the study a) determine the LD50 of the aqueous extract and fractions of the rhizome of A. difformis b) determine the effects of the extract and fractions of the rhizome of A. difformis (Araceae) on novelty-induced behaviours in mice; c) evaluate the anxiolytic, antidepressant, antipsychotic and sedative/hypnotic effects of the extract and fractions; and d) determine the mechanism(s) of action of the extract and the most active fraction(s). 11
  • 12. MATERIALS AND METHODS  Plant materials • Collection • Identification and documentation • Extraction & fractionation • Preparation of sample solution & reference drugs  Experimental animals • Swiss albino mice of either sex (18-25 g)  Drugs used: Apomorphine, Cyproheptadine, Diazepam, Flumazenil, Haloperidol, Imipramine, Pentobarbital, Sertraline, Yohimbine, Normal saline, Tween 80. 12
  • 13. METHODS  CNS effects assessment of Aqueous rhizome extract and fractions: • LD50 determination by Lorke’s Method (Lorke, 1983) • Sedative: OFT(Crawley, 1985) & Pentobarbital-induced hypnotic models (Erden et al., 2001, Olayiwola et al., 2013) • Anxiolytic: EPM (Trullas & Skolnick, 1993; Akanmu et al., 2011), Staircase (Simiand et al., 1984) & Hole-board models (File & Pellow, 1985; Nic Dhonnchadha et al., 2003) • Antidepressant: FST (Porsolt et al., 1977) & TST models (Steru et al., 1985) • Antipsychotic: Swim-induced grooming (Kedves et al., 2008), Apomophine-induced stereotypy model (Siqueira et al., 1998). 13
  • 14. STATISTICALANALYSIS  The results are presented as the mean (n=5) ± standard error of mean(SEM).  The values were compared using the One-way analysis of variance (ANOVA) followed by Student-Newman-Keuls post hoc test.  *significant p< 0.05 versus vehicle-treated control  #significant p<0.05 versus standard drug 14
  • 15. RESULTS/DISCUSSION ADE = Aqueous extract of A. difformis rhizome; HF = n-Hexane fraction; EF = Ethylacetate fraction; BF = Butanol fraction; AF = Residual aqueous fraction of hydro-alcoholic extract of A. difformis rhizome. *0/3 means the mice did not die 15 DOSE LEVEL MORTALITY WITHIN 24 HOURS (n=3) % MORTALITY WITHIN 24 HOURS ADE HF EF BF AF ADE HF EF BF AF 10 mg/kg 0/3 0/3 0/3 0/3 0/3 0.00 0.00 0.00 0.00 0.00 100 mg/kg 0/3 0/3 0/3 0/3 0/3 0.00 0.00 0.00 0.00 0.00 1000 mg/kg 0/3 0/3 0/3 0/3 0/3 0.00 0.00 0.00 0.00 0.00 Table 2: Acute toxicity (mortality) test (Lorke’s Method) for extracts and fractions of A. difformis in mice (oral route): Phase I
  • 16. Table 3: Acute Toxicity Study-phase II (Oral) (Lorke’s Method) ADE = Aqueous extract of A. difformis rhizome; HF = n-Hexane fraction; EF = Ethylacatate fraction; BF = Butanol fraction; AF = Residual aqueous fraction of hydro-alcoholic extract of A. difformis rhizome. *0/1 means the mouse did not die 16 DOSE LEVEL MORTALITY WITHIN 24 HOURS (n=3) % MORTALITY WITHIN 24 HOURS ADE HF EF AF ADE HF EF BF AF 1000 mg/kg 0/1* 0/1 0/1 0/1 0.00 0.00 0.00 0.00 0.00 1600 mg/kg 0/1 0/1 0/1 0/1 0.00 0.00 0.00 0.00 0.00 2900 mg/kg 0/1 0/1 0/1 0/1 0.00 0.00 0.00 0.00 0.00 5000 mg/kg 0/1 0/1 0/1 0/1 0.00 0.00 0.00 0.00 0.00
  • 17. Fig 1: Effect of ADE on novelty-induced grooming behaviour in mice ADE: Aqueous extract of A. difformis rhizome; DZP: Diazepam (4 mg/kg, i.p.); VEH: Vehicle (Normal saline, 10 ml/kg, p.o.); *significant p < 0.05 compared to vehicle; #significant p < 0.05 compared to the standard drug, Diazepam. 17 0 5 10 15 20 25 30 35 40 VEH 30 60 125 250 500 1000 DZP Frequency of grooming/20 min ADE (mg/kg, p.o) * * * * * # # # # # * * # NIB: GROOMING
  • 18. 18 0 5 10 15 20 25 30 35 40 VEH 30 60 125 250 500 1000 DZP Frequency of grooming/20 min HF (mg/kg, p.o.) * * * * * * # # # # # # Fig. 3: Effect of HF of A. difformis rhizome on novelty-induced grooming behaviour in mice HF: Hexane fraction of A. difformis rhizome of hydro-alcoholic extract; DZP: Diazepam, 4 mg/kg, i.p.; VEH: Vehicle (i.e. 10 ml/kg 2.5% Tween 80 in saline, p.o.); *significant p < 0.05 compared to vehicle; #significant p < 0.05 compared to reference drug, Diazepam. NIB: GROOMING
  • 19. Fig. 4: Effect of EF of Anchomanes difformis on novelty-induced grooming in mice. EF = Doses of Ethanol fraction of A. difformis rhizome; DZP = Diazepam (4 mg/kg, i.p.); VEH = Vehicle (i.e. 2.5 % Tween 80 in saline, 10 ml/ kg, p.o.); *significant p < 0.05 compared to vehicle; #significant p < 0.05 compared to reference drug, Diazepam. 19 0 5 10 15 20 25 30 35 40 VEH 30 60 125 250 500 1000 DZP Frequency of grooming/20 min EF (mg/kg, p.o.) * * * * # # # # # # NIB: GROOMING
  • 20. NIB: GROOMING 20 0 5 10 15 20 25 30 35 40 VEH 30 60 125 250 500 1000 DZP Frequency of grooming/20 min BF (mg/kg, p.o.) * # * # * # # # # * Fig. 5: Effect of BF of Anchomanes difformis on novelty-induced grooming in mice. BF = Doses of Buthanol fraction of A. difformis rhizome; DZP = Diazepam (4 mg/kg, i.p.); VEH = Vehicle (i.e. 2.5 % Tween 80 in saline, 10 ml/ kg, p.o.); *significant p < 0.05 compared to vehicle; #significant p < 0.05 compared to reference drug, Diazepam.
  • 21. Fig. 6: Effect of Anchomanes difformis on novelty-induced grooming in mice. AF = Doses of residual aqueous fraction of A. difformis rhizome; DZP = Diazepam (4 mg/kg, i.p.); VEH = Vehicle (i.e. Normal saline, 10 ml/ kg, p.o.); *significant p < 0.05 compared to vehicle; #significant p < 0.05 compared to reference drug, Diazepam. 21 0 5 10 15 20 25 30 35 40 VEH 30 60 125 250 500 1000 DZP Frequency of grooming/20 min AF (mg/kg, p.o.) * * * # # # # # # * NIB: GROOMING
  • 22. NIB: REARING 22 0 10 20 30 40 50 60 70 80 90 VEH 30 60 125 250 500 1000 DZP Frequency of rearing/20 min ADE (mg/kg, p.o.) * * * # # # # # # Fig. 7: Effect of ADE on novelty-induced rearing behaviour in mice ADE: Aqueous extract of A. difformis rhizome; DZP: Diazepam (4 mg/kg, i.p.); VEH: Vehicle (Normal saline, 10 ml/kg, p.o.); *significant p < 0.05 compared to vehicle; #significant p < 0.05 compared to the standard drug, Diazepam.
  • 23. NIB: REARING 23 0 20 40 60 80 100 120 140 VEH 30 60 125 250 500 1000 DZP Frequency of rearing/20 min HF (mg/kg, p.o.) * * * * * * * # # # # # # Fig. 9: Effect of HF on novelty-induced rearing behaviour in mice HF: Hexane fraction of A. difformis rhizome; DZP: Diazepam (4 mg/kg, i.p.); VEH: Vehicle (2.5 % Tween 80 in saline, 10 ml/kg, p.o.); *significant p < 0.05 compared to vehicle; #significant p < 0.05 compared to the standard drug, Diazepam.
  • 24. NIB: REARING 24 Fig. 10: Effect of EF on novelty-induced rearing behaviour in mice EF: Ethylacetate fraction of A. difformis rhizome; DZP: Diazepam (4 mg/kg, i.p.); VEH: Vehicle (2.5 % Tween 80 in saline, 10 ml/kg, p.o.); *significant p < 0.05 compared to vehicle; #significant p < 0.05 compared to the standard drug, Diazepam. 0 20 40 60 80 100 120 140 VEH 30 60 125 250 500 1000 DZP Frequency of rearing/20 min EF (mg/kg, p.o.) * * * * # # # # # #
  • 25. NIB: REARING 25 0 20 40 60 80 100 120 140 VEH 30 60 125 250 500 1000 DZP Frequency of rearing/20 min BF (mg/kg, p.o.) * * # # # # # # Fig. 11: Effect of BF on novelty-induced rearing behaviour in mice BF: Butanol fraction of A. difformis rhizome; DZP: Diazepam (4 mg/kg, i.p.); VEH: Vehicle (2.5 % Tween 80 in saline, 10 ml/kg, p.o.); *significant p < 0.05 compared to vehicle; #significant p < 0.05 compared to the standard drug, Diazepam.
  • 26. NIB: REARING 26 0 10 20 30 40 50 60 70 80 90 VEH 30 60 125 250 500 1000 DZP Frequency of rearing/20 min AF (mg/kg, p.o.) * * # # # # # # Fig. 12:Effect of AF on novelty-induced rearing behaviour in mice AF: Residual aqueous fraction of A. difformis rhizome; DZP: Diazepam (4 mg/kg, i.p.); VEH: Vehicle (Normal saline, 10 ml/kg, p.o.); *significant p < 0.05 compared to vehicle; #significant p < 0.05 compared to the standard drug, Diazepam.
  • 27. NIB: LINE-CROSSING 27 Fig. 13: Effect of ADE on novelty-induced horizontal locomotion behaviour in mice ADE: Aqueous extract of A. difformis rhizome; DZP: Diazepam (4 mg/kg, i.p.); VEH: Vehicle (Normal saline, 10 ml/kg, p.o.); *significant p < 0.05 compared to vehicle; #significant p < 0.05 compared to the standard drug, Diazepam. 0 50 100 150 200 250 300 350 VEH 30 60 125 250 500 1000 DZP Frequency of line crossing/20 min ADE (mg/kg, p.o.) * * * # # # #
  • 28. NIB: LINE-CROSSING 28 0 50 100 150 200 250 300 350 400 VEH 30 60 125 250 500 1000 DZP Frequency of line crossing/20 min HF (mg/kg, p.o.) * * * * * * * # # Fig. 15: Effect of HF on novelty-induced horizontal locomotion (line-crossing) in mice HF: N-hexane fraction of A. difformis rhizome; DZP: Diazepam (4 mg/kg, i.p.); VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.); *significant p < 0.05 compared to vehicle (control); #significant p < 0.05 compared to the standard drug, Diazepam.
  • 29. NIB: LINE-CROSSING 29 0 50 100 150 200 250 300 350 400 VEH 30 60 125 250 500 1000 DZP Frequency of line crossing/20 min EF (mg/kg, p.o.) * * * * # # # # # * Fig. 16: Effect of EF on novelty-induced horizontal locomotion (line-crossing) in mice EF: Ethyl-acetate fraction of A. difformis rhizome; DZP: Diazepam (4 mg/kg, i.p.); VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.); *significant p < 0.05 compared to vehicle (control); #significant p < 0.05 compared to the standard drug, Diazepam.
  • 30. NIB: LINE CROSSING 30 0 50 100 150 200 250 300 350 400 VEH 30 60 125 250 500 1000 DZP Frequency of line crossing/20 min BF (mg/kg, p.o.) * * # # # # # # Fig. 17: Effect of BF on novelty-induced horizontal locomotion (Line-crossing) in mice BF: Butanol fraction of A. difformis rhizome; DZP: Diazepam (4 mg/kg, i.p.); VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.); *significant p < 0.05 compared to vehicle (control); #significant p < 0.05 compared to the standard drug, Diazepam.
  • 31. HYPNOTIC TEST 31 0 20 40 60 80 100 120 140 160 180 VEH 250 500 1000 DZP Sleeping time (min) ADE (mg/kg, p.o.) * * # # # Fig. 19: Effects of ADE on pentobarbital-induced sleep latency (Panel A) and sleeping time (Panel B) in mice ADE: Aqueous extract of A. difformis rhizome; DZP: Diazepam (2 mg/kg, i.p.); VEH: Vehicle (Normal saline, 10 ml/kg, p.o.).* p < 0.05 significantly different from vehicle (control); # p < 0.05 significantly different from standard drug, Diazepam. 0 1 2 3 4 5 6 VEH 250 500 1000 DZP Sleep latency (min) ADE (mg/kg, p.o.) * * * # # #
  • 32. HYPNOTIC TEST 32 0 1 2 3 4 5 6 VEH 250 500 1000 DZP Sleep latency (min) HF (mg/kg, p.o.) * * * # # * # 0 20 40 60 80 100 120 140 160 VEH 250 500 1000 DZP Sleeping time(min) HF (mg/kg, p.o.) * * * * # + Pent o Panel A Panel B Fig. 21: Effects of HF on pentobarbital-induced sleep latency (Panel A) and sleeping time (Panel B) in mice HF: N-hexane fraction of A. difformis rhizome; DZP: Diazepam (2 mg/kg, i.p.); VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.).* p < 0.05 significantly different from vehicle (control); # p < 0.05 significantly different from standard drug, Diazepam.
  • 33. HYPNOTIC TEST • Fig. 22: Effect of EF on Pentobarbital-induced sleep latency (Panel A) and sleeping time (Panel B) in mice • EF: Ethyl-acetate fraction of A. difformis rhizome; • DZP: Diazepam (2 mg/kg, i.p.); • VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.); • *significant p < 0.05 compared to vehicle (control); • #significant p < 0.05 compared to standard drug, Diazepam. 33 0 1 2 3 4 5 6 Sleep latency (min ) * * # # # 0 20 40 60 80 100 120 140 160 VEH 250 500 1000 DZP Sleeping time (min) EF (mg/kg) * * * * # Panel A Panel B
  • 34. HYPNOTIC TEST • Fig. 23: Effects of BF on Pentobarbital-induced sleep latency (Panel A) and sleeping time (Panel B) in mice • BF: Butanol fraction of A. difformis rhizome; • DZP: Diazepam (2 mg/kg, i.p.); • VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.); • *significant p < 0.05 compared to vehicle (control); • #significant p < 0.05 compared to standard drug, Diazepam. 34 0 1 2 3 4 5 6 Sleep latency (min) * # # # 0 50 100 150 200 VEH 250 500 1000 DZP Sleeping time (min) BF (mg/kg) * * # # # Panel A Panel B
  • 35. HYPNOTIC TEST • Fig. 24: Effects of AF on Pentobarbital-induced sleep latency (Panel A) and sleeping time (Panel B) in mice • AF: Aqueous fraction of A. difformis rhizome; • DZP: Diazepam (2 mg/kg, i.p.); • VEH: Vehicle (Normal saline, 10 ml/kg, p.o.); • *significant p < 0.05 compared to vehicle (control); • #significant p < 0.05 compared to standard drug, Diazepam. 35 Panel A 0 1 2 3 4 5 Sleep latency (min ) * # # # Panel B 0 20 40 60 80 100 120 140 160 180 VEH 250 500 1000 DZP Sleeping time (min) AF (mg/kg) * * # # #
  • 36. Mechanism: Hypnotic effect • Fig. 25: Influence of Flumazenil (3 mg/kg, i.p.) on effect of ADE (1000 mg/kg, p.o.) on Pentobarbital- induced sleep latency (Panel A) and sleeping time (Panel B) in mice • ADE: Aqueous extract of A. difformis rhizome (1000 mg/kg, p.o.); • VEH: Vehicle-treated control group (Normal saline, 10 ml/kg, p.o.); • DZP: Diazepam (2 mg/kg, i.p.); Flum: Flumazenil (3 mg/kg, i.p.); • #significant p < 0.05 : antagonist versus treatment alone. 36 Panel A 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Sleep latency (min) # # Panel B 0 20 40 60 80 100 120 140 160 180 VEH Flum VEH Flum VEH Flum Sleeping time (min) ADE # # DZP
  • 37. Mechanism: Hypnotic effect • Fig. 27: Influence of Flumazenil (3 mg/kg, i.p.) on effect of HF (1000 mg/kg, p.o.) on Pentobarbital-induced sleep latency (Panel A) and sleeping time (Panel B) in mice • HF: N-Hexane fraction of A. difformis rhizome (1000 mg/kg, p.o.); • DZP: Diazepam (2 mg/kg, i.p.); • VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.); • Flum: Flumazenil (3 mg/kg. i.p.); #significant p < 0.05: antagonist versus treatment alone. 37 Panel A 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 Sleep latency (min) ns # Panel B 0 50 100 150 200 VEH Flum VEH Flum VEH Flum Sleeping time (min) HF # # DZP
  • 38. Anxiolytic Test: EPM • Fig. 28: Effect of ADE on % open arm entries (Panel A) and % time spent in the open arm (Panel B) in mice • ADE: Aqueous extract of A. difformis rhizome; • DZP: Diazepam (0.5 mg/kg, i.p.); • VEH: Vehicle (Normal saline, 10 ml/kg, p.o.); *significant p < 0.05 compared to vehicle (control); • #significant p < 0.05 compared to standard drug, Diazepam. 38 Panel A 0 10 20 30 40 50 60 70 % Open arm entries/5 min * * * * * Panel B 0 10 20 30 40 50 60 70 VEH 30 60 125 250 DZP % Open arm duration /5 min ADE (mg/kg, p.o.) * # # *
  • 39. Anxiolytic Test: EPM • Fig. 30: Effects of HF on % open arm entries (Panel A) and % time spent in the open arm (Panel B) in mice • HF: N-hexane fraction of A. difformis rhizome; • DZP: Diazepam (0.5 mg/kg, i.p.); • VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.); • *significant p < 0.05 compared to vehicle (control); • #significant p < 0.05 compared to standard drug, Diazepam. 39 Panel A 0 10 20 30 40 50 60 70 % Open arm entries /5 min * * * * * Panel B 0 20 40 60 80 VEH 30 60 125 250 DZP % Open arm duration/5 min HF (mg/kg, p.o.) * *
  • 40. Anxiolytic Test: EPM • Fig. 31: Effect of EF on % open arm entries (Panel A) and % time spent in the open arm (Panel B) in mice • EF: Ethyl-acetate fraction of A. difformis rhizome; • DZP: Diazepam (0.5 mg/kg, i.p.); • VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.); • *significant p < 0.05 compared to vehicle (control); • #significant p < 0.05 compared to standard drug, Diazepam 40 Panel A 0 10 20 30 40 50 60 70 % Open arm entries/5 min * * * Panel B 0 20 40 60 80 100 VEH 30 60 125 250 DZP % Open arm duration/5 min EF (mg/kg, p.o.) * * *
  • 41. Anxiolytic Test: EPM • Fig. 32: Effects of BF on % open arm entries (Panel A) and % time spent in the open arm (Panel B) in mice • BF: Butanol fraction of A. difformis rhizome; • DZP: Diazepam (0.5 mg/kg, i.p.); • VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.); • *significant p < 0.05 compared to vehicle (control); • #significant p < 0.05 compared to standard drug, Diazepam 41 Panel A 0 20 40 60 80 % Open arm entries/5 min * # # # Panel B 0 20 40 60 80 VEH 30 60 125 250 DZP % Open arm duration/5 min BF (mg/kg, p.o.) * * * # #
  • 42. Anxiolytic Test: EPM • Fig. 33: Effects of AF on % open arm entries (Panel A) and % time spent in the open arm (Panel B) in mice • AF: Aqueous fraction of A. difformis rhizome; • DZP: Diazepam (0.05 mg/kg, i.p.); • VEH: Vehicle (Normal saline, 10 ml/kg, p.o.); • *significant p < 0.05 compared to vehicle (control); • #significant p < 0.05 compared to standard drug, Diazepam 42 Panel A 0 20 40 60 80 % Open arm entries/5 min * * * * # # # Panel B 0 10 20 30 40 50 60 70 VEH 30 60 125 250 DZP % Open arm duration /5 min AF (mg/kg, p.o.) * * * # #
  • 43. Open Arm Avoidance Index 43 0 10 20 30 40 50 60 70 80 VEH 30 60 125 250 DZP Open Arm Avoidance Index ADE (mg/kg, p.o.) Fig. 34: Effect of ADE on OAAI in mice ADE: Aqueous extract of A. difformis rhizome; DZP: Diazepam (0.5 mg/kg, i.p.); VEH: Vehicle (Normal saline, 10 ml/kg, p.o.); OAAI: Open Arm Avoidance Index; Broken lines (…….) indicate the cut-off point which is 10 points below the OAAI for the vehicle-treated control.
  • 44. Open Arm Avoidance Index 44 0 10 20 30 40 50 60 70 80 VEH 30 60 125 250 DZP Open Arm Avoidance Index HF (mg/kg, p.o.) Fig. 36: Effect of HF on OAAI in mice HF: N-hexane fraction of A. difformis rhizome; DZP: Diazepam (0.5 mg/kg, i.p.); VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.); OAAI: Open Arm Avoidance Index; Broken lines (…….) indicate the cut-off point which is 10 points below the OAAI for the vehicle-treated control.
  • 45. Open Arm Avoidance Index 45 0 10 20 30 40 50 60 70 80 VEH 30 60 125 250 DZP Open Arm Avoidance Index EF (mg/kg, p.o.) Fig. 37: Effect of EF on OAAI in mice EF: Ethyl-acetate fraction of A. difformis rhizome; DZP: Diazepam (0.5 mg/kg, i.p.); VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.); OAAI: Open Arm Avoidance Index; Broken lines (…….) indicate the cut-off point which is 10 points below the OAAI for the vehicle-treated control.
  • 46. Open Arm Avoidance Index 46 0 10 20 30 40 50 60 70 80 VEH 30 60 125 250 DZP Open Arm Avoidance Index BF (mg/kg, p.o.) Fig. 38: Effect of BF on OAAI in mice BF: Butanol fraction of A. difformis rhizome; DZP: Diazepam (0.5 mg/kg, i.p.); VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.); OAAI: Open Arm Avoidance Index; Broken lines (…….) indicate the cut-off point which is 10 points below the OAAI for the vehicle-treated control.
  • 47. Open Arm Avoidance Index 47 0 10 20 30 40 50 60 70 80 VEH 30 60 125 250 DZP Open Arm Avoidance Index AF (mg/kg, p.o.) Fig. 39: Effect of AF on OAAI in mice AF: Aqueous fraction of A. difformis rhizome; DZP: Diazepam (0.05 mg/kg, i.p.); VEH: Vehicle (Normal saline, 10 ml/kg, p.o.); OAAI: Open Arm Avoidance Index; Broken lines (…….) indicate the cut-off point which is 10 points below the OAAI for the vehicle-treated control.
  • 48. Anxiolytic test: Hole-board 48 0 5 10 15 20 25 30 VEH 30 60 125 250 DZP No of head-dips/5 min ADE (mg/kg, p.o.) * * # # # Fig. 40: Effect of ADE on the number of head-dips made by mice on the Hole-board ADE: Aqueous extract of A. difformis rhizome; DZP: Diazepam (0.5 mg/kg, i.p.); VEH: Vehicle (Normal saline, 10 ml/kg, p.o.); *significant p < 0.05 compared to vehicle (control); #significant p < 0.05 compared to standard drug, Diazepam.
  • 49. Anxiolytic test: Hole-board 49 0 5 10 15 20 25 30 35 40 45 50 VEH 30 60 125 250 DZP No of head-dips/5 min HF (mg/kg, p.o.) * * * * * Fig. 42: Effect of HF on the number of head-dips made by mice on the Hole- board HF: N-hexane fraction of A. difformis rhizome; DZP: Diazepam (0.5 mg/kg, i.p.); VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.); *significant p < 0.05 compared to vehicle (control).
  • 50. Anxiolytic test: Hole-board 50 0 5 10 15 20 25 30 35 40 VEH 30 60 125 250 DZP No of head-dips/5 min EF (mg/kg, p.o.) * * * * * Fig. 43: Effect of EF on the number of head-dips made by mice on the Hole- board EF: Ethyl-acetate fraction of A. difformis rhizome; DZP: Diazepam (0.5 mg/kg, i.p.); VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.); *significant p < 0.05 compared to vehicle-treated control.
  • 51. Anxiolytic test: Hole-board 51 Fig. 44: Effect of BF on the number of head-dips made by mice on the Hole-board BF: Butanol fraction of A. difformis rhizome; DZP: Diazepam (0.5 mg/kg, i.p.); VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.); *significant p < 0.05 compared to vehicle-treated control; #significant p < 0.05 compared to Diazepam, 0.5 mg/kg, i.p. 0 5 10 15 20 25 30 35 VEH 30 60 125 250 DZP No of head-dips/5 min BF (mg/kg, p.o.) * # #
  • 52. Anxiolytic test: Hole-board 52 Fig. 45: Effect of AF on the number of head-dips made by mice on the hole- board AF: Aqueous fraction of A. difformis rhizome; DZP: Diazepam (0.05 mg/kg, i.p.); VEH: Vehicle (Normal saline, 10 ml/kg, p.o.); *significant p < 0.05 compared to vehicle (control); #significant p < 0.05 compared to standard drug, Diazepam. 0 5 10 15 20 25 30 VEH 30 60 125 250 DZP No of head-dips/5 min AF (mg/kg, p.o.) * # # # #
  • 53. Anxiolytic test: Staircase Model (SCM) 53 0 10 20 30 40 50 No of steps climbed /5 min * * # # # # Panel A Panel B 0 5 10 15 20 VEH 30 60 125 250 DZP Frequency of rearing /5 min ADE (mg/kg, p.o.) * * * * * Fig. 46: Effects of ADE on the number of steps climbed (Panel A) and the frequency of rearing (Panel B) by mice ADE: Aqueous extract of A. difformis rhizome; DZP: Diazepam (0.5 mg/kg, i.p.); VEH: Vehicle (Normal saline, 10 ml/kg, p.o.); * significant p < 0.05 compared to vehicle (control); #significant p < 0.05 compared to standard drug, Diazepam.
  • 54. Anxiolytic test: Staircase Model 54 Panel A 0 10 20 30 40 50 No of steps climbed /5 min * # # # # Panel B 0 5 10 15 20 25 30 VEH 30 60 125 250 DZP Frequency of rearing/5 min HF (mg/kg, p.o.) * * * * Fig. 48: Effects of HF on the number of steps climbed (Panel A) and the frequency of rearing (Panel B) by mice HF: N-hexane fraction of A. difformis rhizome; DZP: Diazepam (0.5 mg/kg, i.p.); VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.);* significant p < 0.05 compared to vehicle- treated control;# significant p < 0.05 compared to standard drug, Diazepam.
  • 55. Anxiolytic test: Staircase Model 55 Panel A 0 5 10 15 20 25 30 35 40 45 No of steps climbed /5 min * # # # # Panel B 0 5 10 15 20 25 30 VEH 30 60 125 250 DZP Frequency of rearing /5 min EF (mg/kg, p.o.) * * * * * Fig. 49: Effects of EF on the number of steps climbed (Panel A) and the frequency of rearing (Panel B) by mice EF: Ethyl-acetate fraction of A. difformis rhizome; DZP: Diazepam (0.5 mg/kg, i.p.); VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.); * significant p < 0.05 compared to vehicle-treated control; #significant p < 0.05 compared to standard drug, Diazepam.
  • 56. Anxiolytic test: Staircase Model 56 Panel A 0 10 20 30 40 50 No of steps climbed /5 min * # # # # Panel B 0 5 10 15 20 25 30 VEH 30 60 125 250 DZP Frequency of rearing/5 min BF (mg/kg, p.o.) * * * * * Fig. 50: Effects of BF on the number of steps climbed (Panel A) and the frequency of rearing (Panel B) by mice BF: Butanol fraction of A. difformis rhizome; DZP: Diazepam (0.5 mg/kg, i.p.); VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.); *significant p < 0.05 compared to vehicle-treated control; #significant p < 0.05 compared to standard drug, Diazepam.
  • 57. Anxiolytic test: Staircase Model 57 Panel A 0 10 20 30 40 50 No of steps climbed/5 min * # # # # Panel B 0 5 10 15 20 VEH 30 60 125 250 DZP Frequency of rearing/5 min AF (mg/kg, p.o.) * * Fig. 51: Effects of AF on the number of steps climbed (Panel A) and the frequency of rearing (Panel B) by mice BF: Aqueous fraction of A. difformis rhizome; DZP: Diazepam (0.5 mg/kg, i.p.); VEH: Vehicle (Normal saline, 10 ml/kg, p.o.); *significant p < 0.05 compared to vehicle-treated control; #significant p < 0.05 compared to standard drug, Diazepam.
  • 58. Mechanism of Anxiolytic effect: GABAA receptor involvement (EPM) • Fig. 52: : Influence of Flumazenil (3 mg/kg, i.p.) on effects of ADE (30 mg/kg, p.o.) on % entries into open arm (Panel A) and % time spent on open arm (Panel B) of EPM in mice • ADE: Aqueous extract of A. difformis rhizome (30 mg/kg, p.o.); • VEH: Vehicle (Normal saline, 10 ml/kg, p.o.); • Flum: Flumazenil (3 mg/kg, i.p.); • DZP: Diazepam (0.5 mg/kg, i.p.); • #significant p < 0.05: antagonist versus treatment alone. 58 Panel A 0 10 20 30 40 50 60 70 % Open Arm entry # ns Panel B 0 10 20 30 40 50 60 70 VEH Flum VEH Flum VEH Flum % Open Arm duration # # ADE DZP
  • 59. Mechanism of Anxiolytic effect: GABAA receptor involvement (EPM) • Fig. 54: Influence of Flumazenil (3 mg/kg, i.p.) on effects of EF (125 mg/kg, p.o.) on % entries into open arm (Panel A) and % time spent on open arm (Panel B) of EPM in mice • EF: Ethyl-acetate fraction of A. difformis rhizome (125 mg/kg, p.o.); • DZP: Diazepam (0.5 mg/kg, i.p.); • VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.); • Flum: Flumazenil (3 mg/kg, i.p.); • #significant p < 0.05: antagonist versus treatment alone. 59 Panel A 0 10 20 30 40 50 60 70 % Open Arm entry # # Panel B 0 10 20 30 40 50 60 70 VEH Flum VEH Flum VEH Flum % Open Arm duration # # EF DZP
  • 60. Mechanism of Anxiolytic effect: Serotonergic/histaminergic receptor involvement (EPM) • Fig. 55: Influence of Cyproheptadine (0.5 mg/kg, i.p.) on effect of ADE (30 mg/kg, p.o.) on % entries into open arm (Panel A) and % time spent on open arm (Panel B) of EPM in mice • ADE: Aqueous extract of A. difformis rhizome (30 mg/kg, p.o.); • VEH: Vehicle (Normal saline, 10 ml/kg, p.o.); • CYP: Cyproheptadine (0.5 mg/kg, i.p.); • STR: Sertraline (20 mg/kg, p.o.); • #significant p < 0.05: antagonist versus treatment alone. 60 Panel A 0 10 20 30 40 50 60 % Open Arm entry # # Panel B 0 10 20 30 40 50 60 70 80 VEH CYP VEH CYP VEH CYP % Open Arm duration # # ADE STR
  • 61. Mechanism of Anxiolytic effect: Serotonergic/histaminergic receptor involvement (EPM) • Fig. 57: Influence of Cyproheptadine (0.5 mg/kg, i.p.) on effects of EF (125 mg/kg)/STR (20 mg/kg) on % open arm entries (Panel A) and % time spent (Panel B) by mice on EPM • EF: Ethyl-acetate fraction of A. difformis rhizome; • VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.); • STR: Sertraline (20 mg/kg, p.o.); • CYP: Cyproheptadine (0.5 mg/kg, i.p.); • #significant p < 0.05: antagonist versus treatment alone. 61 Panel A 0 10 20 30 40 50 60 % Open Arm entry # # Panel B 0 10 20 30 40 50 60 70 80 VEH CYP VEH CYP VEH CYP % Open Arm duration # # STR EF
  • 62. Mechanism of Anxiolytic effect: GABAA receptor involvement(Hole-board) 62 0 5 10 15 20 25 30 VEH Flum VEH Flum VEH Flum Number of head-dips/5 min # ADE DZP # Fig. 58: Influence of Flumazenil (3 mg/kg, i.p.) on the number of head-dips induced by ADE (30 mg/kg, p.o.) in mice ADE: Aqueous extract of A. difformis rhizome (30 mg/kg, p.o.); VEH: Vehicle (Normal saline, 10 ml/kg, p.o.); Flum: Flumazenil (3 mg/kg, i.p.); DZP: Diazepam (0.5 mg/kg, i.p.); #significant p < 0.05: antagonist versus treatment alone.
  • 63. Mechanism of Anxiolytic effect: GABAA receptor involvement(Hole-board) 63 0 5 10 15 20 25 30 35 40 VEH Flum VEH Flum VEH Flum Number of head-dips/5 mins # # EF DZP Fig. 60: Influence of Flumazenil (3 mg/kg, i.p.) on the number of head-dips induced by EF (125 mg/kg, p.o.) in mice on the Hole-board EF: Ethyl-acetate fraction of A. difformis rhizome; DZP: Diazepam (0.5 mg/kg, i.p.); VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.); Flum: Flumazenil (3 mg/kg. i.p.); #significant p < 0.05: antagonist versus treatment alone.
  • 64. Mechanism of Anxiolytic effect: Serotonergic/histaminergic receptor involvement (Hole-board) 64 0 10 20 30 40 50 60 VEH CYP VEH CYP STR CYP Number of head-dips/5 min # # ADE STR Fig. 61: Influence of Cyproheptadine (0.5 mg/kg, i.p.) on the number of head-dips induced by ADE (30 mg/kg, p.o.) in mice on the Holeboard ADE: Aqueous extract of A. difformis rhizome (30 mg/kg, p.o.); VEH: Vehicle (Normal saline, 10 ml/kg, p.o.); CYP: Cyproheptadine (0.5 mg/kg, i.p.); STR: Sertraline (20 mg/kg, p.o.); #significant p < 0.05: antagonist versus treatment alone.
  • 65. Mechanism of Anxiolytic effect: Serotonergic/histaminergic receptor involvement (Hole-board) 65 0 10 20 30 40 50 60 VEH CYP VEH CYP VEH CYP Number of head-dips/5 min # # STR EF Fig. 63: Influence of Cyproheptadine (0.5 mg/kg, i.p.) on the number of head-dips induced by EF (125 mg/kg, p.o.) in mice on the Hole-board EF: Ethyl-acetate fraction of A. difformis rhizome (125 mg/kg, p.o.); VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.); STR: Sertraline (20 mg/kg, p.o.); CYP: Cyproheptadine (0.5 mg/kg, i.p.); #significant p < 0.05: antagonist versus treatment alone.
  • 66. Antidepressant study: TST & FST 66 Panel A 0 100 200 300 Period of immobility (s) * * * # # # # * Panel B 0 50 100 150 200 VEH 60 125 250 500 1000 IMP Period of immobility (s) ADE (mg/kg, p.o.) * * # # # # # * Fig. 64: Effects of ADE on period of immobility in mice on TST (Panel A) and FST (Panel B) ADE: Aqueous extract of A. difformis rhizome; IMP: Imipramine (25 mg/kg, i.p.); VEH: Vehicle (Normal saline, 10 ml/kg, p.o.); *significant p < 0.05 compared to vehicle (control); #significant p < 0.05 compared to standard drug, Imipramine.
  • 67. Antidepressant study: TST & FST 67 Panel A 0 100 200 300 Period of immobility (s) * # # # # # Panel B 0 50 100 150 200 VEH 60 125 250 500 1000 IMP Period of immobility (s) HF (mg/kg, p.o.) * # # # # # Fig. 66: Effects of HF on period of immobility in mice on TST (Panel A) and FST (Panel B) HF: N-hexane fraction of A. difformis rhizome; IMP: Imipramine (25 mg/kg, i.p.); VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.); *significant p < 0.05 compared to vehicle-treated control; #significant p < 0.05 compared to standard drug, Imipramine.
  • 68. Antidepressant study: TST & FST 68 Panel A 0 50 100 150 200 Period of immobility (s) * * * # * # # # # Panel B 0 50 100 150 200 VEH 60 125 250 500 1000 IMP Period of immobility (s) EF (mg/kg, p.o.) * * * * # # # # # Fig. 67: Effects of EF on period of immobility in mice on TST (Panel A) and FST (Panel B) EF: Ethyl-acetate fraction of A. difformis rhizome; IMP: Imipramine (25 mg/kg, i.p.); VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.); *significant p < 0.05 compared to vehicle- treated control; #significant p < 0.05 compared to standard drug, Imipramine
  • 69. Antidepressant study: TST & FST 69 Panel A 0 50 100 150 200 Period of immobility (s ) * # # # # # Panel B 0 50 100 150 200 VEH 60 125 250 500 1000 IMP Period of immobility (s ) BF (mg/kg, p.o.) * # # # # # * * Fig. 68: Effects of BF on period of immobility in mice on TST (Panel A) and FST (Panel B) BF: Butanol fraction of A. difformis rhizome; IMP: Imipramine (25 mg/kg, i.p.); VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.). *significant p < 0.05 compared to vehicle (control); #significant p < 0.05 compared to standard drug, Imipramine
  • 70. Antidepressant study: TST & FST 70 Panel A 0 50 100 150 200 250 Period of immobility (s) * # # # # # Panel B 0 50 100 150 200 250 VEH 60 125 250 500 1000 IMP Period of immobility (s) AF (mg/kg, p.o.) * * # * # * # * # * # Fig. 69: Effects of AF on period of immobility in mice on TST (Panel A) and FST (Panel B) AF: Residual Aqueous fraction of A. difformis rhizome; IMP: Imipramine (25 mg/kg, i.p.); VEH: Vehicle (Normal saline, 10 ml/kg, p.o.). *significant p < 0.05 compared to vehicle- treated control; #significant p < 0.05 compared to standard drug, Imipramine
  • 71. Mechanism: Antidepressant (Serotonergic/histaminergic receptor involvement) • Fig. 73: Influence of Cyproheptadine (0.5 mg/kg, i.p.) on reduction of immobility period induced by ADE (30 mg/kg, p.o.) in mice on TST (Panel A) and FST (Panel B) models • ADE: Aqueous extract of A. difformis rhizome (30 mg/kg, p.o.); • VEH: Vehicle (Normal saline, 10 ml/kg, p.o.); • STR: Sertraline (20 mg/kg, p.o.); • CYP: Cyproheptadine (0.5 mg/kg, i.p.); • #significant p < 0.05: antagonist versus treatment alone. 71 Panel A 0 50 100 150 200 250 Immobility time (sec)/6 min # # Panel B 0 20 40 60 80 100 120 140 160 180 VEH CYP VEH CYP VEH CYP Immobility time (sec)/6 min # # ADE STR
  • 72. Mechanism: Antidepressant (Serotonergic/histaminergic receptor involvement) • Fig. 75: Influence of Cyproheptadine (0.5 mg/kg, i.p.) on reduction of immobility period iduced by EF (250 mg/kg, p.o.) on TST (Panel A) and FST (Panel B) models • EF: Ethyl-acetate fraction of A. difformis rhizome (250 mg/kg, p.o.); • VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.); • STR: Sertraline (20 mg/kg, p.o.); • CYP: Cyproheptadine (0.5 mg/kg, i.p.); • #significant p < 0.05: antagonist versus treatment alone. 72 Panel A 0 50 100 150 200 250 Immobility time (sec)/6 min # # Panel B 0 20 40 60 80 100 120 140 160 180 VEH CYP VEH CYP VEH CYP Immobility time (sec)/6 min # EF STR #
  • 73. Antipsychotic Test: Swim-induced grooming (SIG) 73 Panel A 0 5 10 15 20 Frequency of grooming * * * * # # # # # # Panel B 0 50 100 150 200 VEH 30 60 125 250 500 1000 HAL Duration of grooming/5 min ADE (mg/kg, p.o.) * * * # # # # # # Fig. 82: Effects of ADE on frequency (Panel A) and duration (Panel B) of SIG behaviour in mice ADE: Aqueous extract of A. difformis rhizome; VEH: Vehicle-treated control group (Normal saline, 10 ml/kg, p.o.); HAL: Haloperidol (1 mg/kg, i.p.); *significant p < 0.05 compared to control; #significant p < 0.05 compared to the reference drug, Haloperidol.
  • 74. Antipsychotic Test: Swim-induced grooming (SIG) 74 Panel A 0 2 4 6 8 10 12 14 Frequency of grooming/5 min * * * * * * # # # # # # * Panel B 0 50 100 150 200 250 300 VEH 30 60 125 250 500 1000 HAL Duration of grooming /5 min HF (mg/kg, p.o.) * * # # # # # # Fig. 84: Effects of HF on frequency (Panel A) and duration (Panel B) of SIG behaviour in mice HF: N-Hexane fraction of A. difformis rhizome; HAL: Haloperidol (1 mg/kg, i.p.); VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.); *significant p < 0.05 compared to vehicle- treated control; #significant p < 0.05 compared to Haloperidol (1 mg/kg, i.p.)
  • 75. Antipsychotic Test: Swim-induced grooming (SIG) 75 Panel A 0 2 4 6 8 10 12 14 Frequency of grooming /5 min * * * * * * * # # # # # # Panel B 0 100 200 300 VEH 30 60 125 250 500 1000 HAL Duration of grooming/5 min EF (mg/kg, p.o.) * * # Fig. 85: Effects of orally administered EF on frequency (Panel A) and duration (Panel B) of SIG behaviour in mice EF: Ethyl-acetate fraction of A. difformis rhizome; HAL: Haloperidol (1 mg/kg, i.p.); VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.). *significant p < 0.05 compared to vehicle-treated control; #significant p < 0.05 compared to Haloperidol (1 mg/kg, i.p.).
  • 76. Antipsychotic Test: Swim-induced grooming (SIG) • Fig. 86: Effects of BF on frequency (Panel A) and duration (Panel B) of SIG behaviour in mice • BF: Butanol fraction of A. difformis rhizome; • HAL: Haloperidol (1 mg/kg, i.p.); • VEH: Vehicle (2.5% Tween 80 in saline, 10 ml/kg, p.o.); • *significant p < 0.05 compared to vehicle-treated control; • #significant p < 0.05 compared to Haloperidol (1 mg/kg, i.p.). 76 Panel A 0 2 4 6 8 10 12 14 Frequency of grooming /5 min * * * * * * * # # # # # # Panel B 0 50 100 150 200 250 300 VEH 30 60 125 250 500 1000 HAL Duration of grooming/5 min BF (mg/kg, p.o.) * # # # # # #
  • 77. Antipsychotic Test: Swim-induced grooming (SIG) • Fig. 87: Effects of AF on frequency (Panel A) and duration (Panel B) of SIG behaviour in mice • AF: Aqueous fraction of A. difformis rhizome; • VEH: Vehicle-treated control group (Normal saline, 10 ml/kg, p.o.); • HAL: Haloperidol (1 mg/kg, i.p.); *significant p < 0.05 compared to control; • #significant p < 0.05 compared to the reference drug, Haloperidol 77 0 2 4 6 8 10 12 14 16 Frequency of grooming /5 min * * * * * * * # # # # # # Panel A Panel B 0 50 100 150 200 250 VEH 30 60 125 250 500 1000 HAL Duration of grooming/5 min AF (mg/kg, p.o.) * * * * # # # # # #
  • 78. Conclusion • The extract and fractions of A. difformis in this study demonstrated a central nervous system depressant activity at high doses where they exerted a sedative effect which was comparable to Diazepam. • They also showed anxiolytic and antidepressant properties at low doses in mice. • The sedative effect appeared to be exerted via GABAA receptor; • The anxiolytic effect seemed to be exerted via GABAAergic and serotonergic/histaminergic pathways; • The antidepressant activity was probably exerted via adrenergic, serotonergic/histaminergic pathways; • These findings provide a scientific basis for the ethno-medicinal use of the rhizome of A. difformis in the management of mental illness in the South-western part of Nigeria. 78
  • 79. References • Agyare C, Boakye YD, Apenteng JA, Dapaah SO, Appiah T, Adow A (2016) Antimicrobial and anti- inflammatory properties of Anchomanes difformis (Bl.) Engl. and Colocasia esculenta (L.) Schott. Biochemistry and Pharmacology 5: 201- 204. • Akah PA and Njike HA (1990) Some pharmacological effects of rhizome aqueous extract of Anchomanes difformis. Fitoterapia; 61: 368-370. • Akanmu MA, Olowookere TA, Atunwa SA, Ibrahim OI, Lamidi OF, Adams PA, Ajimuda BO, and Adeyemo LE (2011) Neuropharmacological effects of Nigerian honey in mice. African Journal of Traditional Complementary and Alternative Medicine; 8 (3): 230-249. • Aliyu AB, Ibrahim MA, Musa AM, Musa AO, Kiplimo JJ, Oyewale AO (2013) Free radical scavenging and total antioxidant capacity of root extracts of Anchomanes difformis Engl. (Araceae). Acta Poloniae Pharmacuetica-Drug Research; 70 (1): 115 – 121. • Atawodi SE, Bulus T, Ibrahim S, Ameh DA, Nok AT, Mamman M, Galadima M (2003) In vitro trypanocidal effect of methanolic extract of some Nigerian savannah plants (abstract). African Journal of Biotechnology; 2 (9): 317. • Eke IG, Obioha FC, Anaga AO (2013) Evaluation of the Methanolic Rhizome Extract of Anchomanes difformis for Analgesic and Antipyretic Activities. International Journal of Basic and Applied Sciences; 2 (4): 289-296. • Eneojo AS, Egwari LO, Mosaku TO (2011) In vitro Antimicrobial Screening on Anchomanes difformis (Blume) Engl. Leaves and Rhizomes Against Selected Pathogens of Public Importance. Advances in Biological Research 5 (4): 221-225. 79
  • 80. References • File SE and Pellow S (1985) The effect of triazolobenzodiazepines in two animal tests of anxiety and on the hole-board. British Journal of Pharmacology 86: 729– 735. • Lorke D (1983) A new approach to practical acute toxicity testing. Archieves of Toxicology; 54: 275 – 287. • Magaji MG, Yakubu Y, Magaji RA, Musa AM, Yaro AH, Hussaini IM (2014) Psychopharmacological Potentials of Methanol Leaf Extract of Securinega virosa Roxb (Ex Wild) Baill. in Mice. Pakistan Journal of Biological Sciences; 17: 855 – 859. • Nic Dhonnchadha BA, Bourin M., Hascoet M (2003) Anxiolytic-like effects of 5-HT2 ligands on three mouse models of anxiety. Behavioral Brain Research, 140: 203-214. • Olayiwola G, Ukponmwan O, Olawode D (2013) Sedative and anxiolytic effects of the extract of the leaf of Stachytarphyta cayennensis in mice. African Journal of Traditional Complementary and Alternative Medicine; 10(6): 568-579 • Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Archives of International Pharmacodynamics and Therapeutics; 229: 327–336. • Simiand J, Keane PE, Moore M (1984) The staircase test in mice: a simple and procedure for screening of anxiolytic agents. Journal of Psychopharmacology (Berlin) 84: 48– 53. • Steru L, Chermat R, Thierry B and Simon P (1985) The tail suspension test: a new method for screening antidepressant drugs. Psychopharmacology; 85:367–370. • Trullas R, Skolnick P (1993) Differences in fear motivated behaviors among inbred mouse strains. Psychopharmacology (Berl); 111(3): 323-31. 80