SlideShare a Scribd company logo
Chapter 10: Parametric Equations and Polar
Coordinates
Section 10.4: Calculus in Polar Coordinates
Alea Wittig
SUNY Albany
Outline
Area
Arc Length
Tangents
Area
Area in Polar Coordinates
▶ The area of a sector of a
circle is
A =
1
2
r2
θ
▶ We use circle sectors to approximate the area of a region
bounded by polar curve r = f (θ) in the same way we use
rectangles to approximate the area of a region bounded by
curve y = f (x).
Area in Polar Coordinates
▶ Let f (θ) be a positive
continuous function on
a ≤ θ ≤ b.
▶ Let R be the region
bounded by polar curve
r = f (θ) and the rays
θ = a and θ = b, where
0 < b − a ≤ 2π
Area in Polar Coordinates
▶ Divide [a, b] into
subintervals with endpoints
θ0, θ1, . . . , θn and equal
width △θ = θi − θi−1.
▶ Choosing θ∗
i in [θi−1, θi ],
△Ai is approximated by the
area of a circle with central
angle △θ and radius f (θ∗
i )
A ≈
n
X
i=1
1
2
[f (θ∗
i )]2
△θ =⇒
A =
Z b
a
1
2
[f (θ)]2
dθ =
Z b
a
1
2
r2
dθ
Example 1
1/3
Find the area enclosed within the four-leafed rose r = cos 2θ.
Example 1
2/3
▶ r is positive for
−π
4 ≤ θ ≤ π
4 , which
corresponds to one leaf of
the rose.
▶ By symmetry, the area
enclosed by the four-leafed
rose is 4 times the area
enclosed in one leaf.
▶ The area of one leaf is
Z π
4
−π
4
1
2
r2
dθ =
1
2
Z π
4
−π
4
cos2
(2θ)dθ
Example 1
3/3
Using the identity : cos2
θ =
1
2

1 + cos 2θ

=⇒
1
2
Z π
4
−π
4
cos2
(2θ)dθ =
1
2
Z π
4
−π
4
1
2
(1 + cos (4θ)dθ [let u = 4θ du = 4dθ]
=
1
4
Z π
−π
(1 + cos (u))
du
4
=
1
16
(u + sin u)
π
−π
=
1
16
(π + sin (π) − (−π + sin (−π))
=
π
16
+
π
16
=
π
8
=⇒
A = 4 ·
π
8
=
π
2
Example 2
1/5
Find the area of the region that lies inside the circle r = 3 sin θ and
outside the cardioid r = 1 + sin θ.
Example 2
2/5
▶ We want to find the area of
the shaded region in graph
to the right.
▶ By symmetry, it is twice the
area of the shaded region
from π
6 to π
2 .
▶ Both r = 3 sin θ and
r = 1 + sin θ are positive on
the entire region
π
6 ≤ θ ≤ 5π
6 . But it will be
simpler to compute area
from π
6 ≤ θ ≤ π
2 and then
multiply by 2.
Area Between Polar Curves
▶ In general, to find the area
of the region enclosed by
positive polar curves
r = f (θ) and r = g(θ) as
in the figure, we have just
subtract:
A =
Z b
a
1
2
[f (θ)]2
dθ −
Z b
a
1
2
[g(θ)]2
dθ
=
1
2
Z b
a
[f (θ)]2
− [g(θ)]2
dθ
Example 2
3/5
▶ So the area of the shaded
region is
2·
1
2
Z π
2
π
6
[3 sin θ]2
−[1+sin θ]2
dθ
=
Z π
2
π
6
9 sin2
θ − 1 + 2 sin θ + sin2
θ

dθ
=
Z π
2
π
6
8 sin2
θ − 1 − 2 sin θdθ
= 8
Z π
2
π
6
sin2
θdθ
| {z }
A
−
Z π
2
π
6
dθ
| {z }
B
− 2
Z π
2
π
6
sin θdθ
| {z }
C
Example 2
4/5
B :
Z π
2
π
6
dθ = θ
π
2
π
6
=
π
2
−
π
6
=
π
3
C : 2
Z π
2
π
6
sin θdθ = −2 cos θ
π
2
π
6
= −2 0 −
√
3
2

=
√
3
A : 8
Z π
2
π
6
sin2
θdθ = 4
Z π
2
π
6
1 − cos (2θ)

dθ

let u = 2θ, du = 2dθ

= 4
Z π
π
3
1 − cos u
du
2
= 2(u − sin u)
π
π
3
= 2

π − 0

−
π
3
−
√
3
2

= 2π −
2π
3
+
√
3
=
4π
3
+
√
3
Example 2
5/5
Area = A − B − C
=
4π
3
+
√
3 −
π
3
−
√
3
=
3π
3
= π
Arc Length
Arc Length
▶ Recall from 10.2: A curve C described by the parametric
equations
x = f (t) y = g(t) α ≤ t ≤ β
where f ′ and g′ are continuous and C is traversed once from
left to right as t increases from α to β, has length
L =
Z β
α
rdx
dt
2
+
dy
dt
2
dt
▶ A polar curve r = f (θ) on α ≤ θ ≤ β, is described by the
parametric equations
x = f (θ) cos θ y = f (θ) sin θ α ≤ θ ≤ β
by the conversion formulas x = r cos θ and y = r sin θ.
Arc Length
▶ So a polar curve r = f (θ) can be viewed as a parametric curve
with parameter θ.
▶ To find arc length of r = f (θ), we want to find dx
dθ and dx
dθ in
terms of θ.
x = f (θ) cos θ =⇒
dx
dθ
= −f (θ) sin θ + f ′
(θ) cos θ

by product rule

= −r sin θ +
dr
dθ
cos θ

since f (θ) = r

▶ And similarly,
y = f (θ) sin θ =⇒
dy
dθ
= f (θ) cos θ + f ′
(θ) sin θ

by product rule

= r cos θ +
dr
dθ
sin θ

since f (θ) = r
Arc Length
▶ Therefore we have
dx
dθ
2
+
dy
dθ
2
=

− r sin θ +
dr
dθ
cos θ
2
+

r cos θ +
dr
dθ
sin θ
2
= r2
(sin2
θ + cos2
θ) +
dr
dθ
2
(cos2
θ + sin2
θ)
= r2
+
dr
dθ
2
▶ Assuming f ′ continuous,
L =
Z β
α
r
r2 +
dr
dθ
2
dθ
Example 3
1/5
Find the length of the cardioid r = 1 + sin θ.
Example 3
2/5
L =
Z 2π
0
r
r2 +
dr
dθ
2
dθ
r = 1 + sin θ =⇒
dr
dθ
= cos θ
L =
Z 2π
0
q
(1 + sin θ)2 + cos2 θdθ
=
Z 2π
0
p
1 + 2 sin θ + sin2
θ + cos2 θdθ
=
Z 2π
0
√
2 + 2 sin θdθ
▶ Now we have an integral which is a little tricky.

More Related Content

Similar to Section 10.4

2016 10 mathematics_sample_paper_sa2_01_ans_z9gf4
2016 10 mathematics_sample_paper_sa2_01_ans_z9gf42016 10 mathematics_sample_paper_sa2_01_ans_z9gf4
2016 10 mathematics_sample_paper_sa2_01_ans_z9gf4
Shreya Sharma
 
Section 8.1
Section 8.1Section 8.1
Section 8.1
CalculusII
 
Chapter 03 drill_solution
Chapter 03 drill_solutionChapter 03 drill_solution
Chapter 03 drill_solution
khalil ur rehman marwat
 
Cat 2005-solutions
Cat 2005-solutionsCat 2005-solutions
Cat 2005-solutions
Saroj Singh
 
CAPS_Discipline_Training
CAPS_Discipline_TrainingCAPS_Discipline_Training
CAPS_Discipline_TrainingHannah Butler
 
Complex analysis notes
Complex analysis notesComplex analysis notes
Complex analysis notes
Prakash Dabhi
 
Section 6.2.pdf
Section 6.2.pdfSection 6.2.pdf
Section 6.2.pdf
CalculusII
 
Escola naval 2015
Escola naval 2015Escola naval 2015
Escola naval 2015
KalculosOnline
 
Questions and Solutions Basic Trigonometry.pdf
Questions and Solutions Basic Trigonometry.pdfQuestions and Solutions Basic Trigonometry.pdf
Questions and Solutions Basic Trigonometry.pdf
erbisyaputra
 
8.5 Polar Form
8.5 Polar Form8.5 Polar Form
8.5 Polar Form
smiller5
 
Math resources trigonometric_formulas
Math resources trigonometric_formulasMath resources trigonometric_formulas
Math resources trigonometric_formulas
Er Deepak Sharma
 
Math resources trigonometric_formulas class 11th and 12th
Math resources trigonometric_formulas class 11th and 12thMath resources trigonometric_formulas class 11th and 12th
Math resources trigonometric_formulas class 11th and 12th
Deepak Kumar
 
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
inventionjournals
 
imc-2018-s.pdf
imc-2018-s.pdfimc-2018-s.pdf
imc-2018-s.pdf
bhartanto5
 
Basic mathematics integration
Basic mathematics integrationBasic mathematics integration
Basic mathematics integrationMuhammad Luthfan
 
solution manual of goldsmith wireless communication
solution manual of goldsmith wireless communicationsolution manual of goldsmith wireless communication
solution manual of goldsmith wireless communication
NIT Raipur
 
Form 5 Additional Maths Note
Form 5 Additional Maths NoteForm 5 Additional Maths Note
Form 5 Additional Maths Note
Chek Wei Tan
 
economics
economicseconomics
economics
SanyiTesfa
 

Similar to Section 10.4 (20)

2016 10 mathematics_sample_paper_sa2_01_ans_z9gf4
2016 10 mathematics_sample_paper_sa2_01_ans_z9gf42016 10 mathematics_sample_paper_sa2_01_ans_z9gf4
2016 10 mathematics_sample_paper_sa2_01_ans_z9gf4
 
Section 8.1
Section 8.1Section 8.1
Section 8.1
 
Chapter 03 drill_solution
Chapter 03 drill_solutionChapter 03 drill_solution
Chapter 03 drill_solution
 
Cat 2005-solutions
Cat 2005-solutionsCat 2005-solutions
Cat 2005-solutions
 
CAPS_Discipline_Training
CAPS_Discipline_TrainingCAPS_Discipline_Training
CAPS_Discipline_Training
 
Complex analysis notes
Complex analysis notesComplex analysis notes
Complex analysis notes
 
Section 6.2.pdf
Section 6.2.pdfSection 6.2.pdf
Section 6.2.pdf
 
Escola naval 2015
Escola naval 2015Escola naval 2015
Escola naval 2015
 
Questions and Solutions Basic Trigonometry.pdf
Questions and Solutions Basic Trigonometry.pdfQuestions and Solutions Basic Trigonometry.pdf
Questions and Solutions Basic Trigonometry.pdf
 
8.5 Polar Form
8.5 Polar Form8.5 Polar Form
8.5 Polar Form
 
Math resources trigonometric_formulas
Math resources trigonometric_formulasMath resources trigonometric_formulas
Math resources trigonometric_formulas
 
Math resources trigonometric_formulas class 11th and 12th
Math resources trigonometric_formulas class 11th and 12thMath resources trigonometric_formulas class 11th and 12th
Math resources trigonometric_formulas class 11th and 12th
 
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
 
imc-2018-s.pdf
imc-2018-s.pdfimc-2018-s.pdf
imc-2018-s.pdf
 
Maths04
Maths04Maths04
Maths04
 
Basic mathematics integration
Basic mathematics integrationBasic mathematics integration
Basic mathematics integration
 
solution manual of goldsmith wireless communication
solution manual of goldsmith wireless communicationsolution manual of goldsmith wireless communication
solution manual of goldsmith wireless communication
 
Form 5 Additional Maths Note
Form 5 Additional Maths NoteForm 5 Additional Maths Note
Form 5 Additional Maths Note
 
economics
economicseconomics
economics
 
Module 3 similarity
Module 3   similarityModule 3   similarity
Module 3 similarity
 

More from CalculusII

Section 6.3.pdf
Section 6.3.pdfSection 6.3.pdf
Section 6.3.pdf
CalculusII
 
Section 11.10
Section 11.10 Section 11.10
Section 11.10
CalculusII
 
Section 11.9
Section 11.9Section 11.9
Section 11.9
CalculusII
 
Section 11.8
Section 11.8 Section 11.8
Section 11.8
CalculusII
 
Section 11.7
Section 11.7 Section 11.7
Section 11.7
CalculusII
 
Section 11.6
Section 11.6Section 11.6
Section 11.6
CalculusII
 
Section 11.5
Section 11.5 Section 11.5
Section 11.5
CalculusII
 
Section 11.4
Section 11.4Section 11.4
Section 11.4
CalculusII
 
Section 11.3
Section 11.3 Section 11.3
Section 11.3
CalculusII
 
Section 11.2
Section 11.2Section 11.2
Section 11.2
CalculusII
 
Section 11.1
Section 11.1 Section 11.1
Section 11.1
CalculusII
 
Section 7.8
Section 7.8Section 7.8
Section 7.8
CalculusII
 
Section 7.4
Section 7.4Section 7.4
Section 7.4
CalculusII
 
Section 7.5
Section 7.5Section 7.5
Section 7.5
CalculusII
 
Section 7.2
Section 7.2 Section 7.2
Section 7.2
CalculusII
 
Section 7.1
Section 7.1Section 7.1
Section 7.1
CalculusII
 
Section 6.1.pdf
Section 6.1.pdfSection 6.1.pdf
Section 6.1.pdf
CalculusII
 

More from CalculusII (17)

Section 6.3.pdf
Section 6.3.pdfSection 6.3.pdf
Section 6.3.pdf
 
Section 11.10
Section 11.10 Section 11.10
Section 11.10
 
Section 11.9
Section 11.9Section 11.9
Section 11.9
 
Section 11.8
Section 11.8 Section 11.8
Section 11.8
 
Section 11.7
Section 11.7 Section 11.7
Section 11.7
 
Section 11.6
Section 11.6Section 11.6
Section 11.6
 
Section 11.5
Section 11.5 Section 11.5
Section 11.5
 
Section 11.4
Section 11.4Section 11.4
Section 11.4
 
Section 11.3
Section 11.3 Section 11.3
Section 11.3
 
Section 11.2
Section 11.2Section 11.2
Section 11.2
 
Section 11.1
Section 11.1 Section 11.1
Section 11.1
 
Section 7.8
Section 7.8Section 7.8
Section 7.8
 
Section 7.4
Section 7.4Section 7.4
Section 7.4
 
Section 7.5
Section 7.5Section 7.5
Section 7.5
 
Section 7.2
Section 7.2 Section 7.2
Section 7.2
 
Section 7.1
Section 7.1Section 7.1
Section 7.1
 
Section 6.1.pdf
Section 6.1.pdfSection 6.1.pdf
Section 6.1.pdf
 

Recently uploaded

678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf
CarlosHernanMontoyab2
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
RaedMohamed3
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
joachimlavalley1
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
Special education needs
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
Jisc
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
Nguyen Thanh Tu Collection
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
DhatriParmar
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
vaibhavrinwa19
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Atul Kumar Singh
 
Honest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptxHonest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptx
timhan337
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
Levi Shapiro
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
BhavyaRajput3
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
camakaiclarkmusic
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
kaushalkr1407
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
Peter Windle
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
TechSoup
 

Recently uploaded (20)

678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
 
Honest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptxHonest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptx
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
 

Section 10.4

  • 1. Chapter 10: Parametric Equations and Polar Coordinates Section 10.4: Calculus in Polar Coordinates Alea Wittig SUNY Albany
  • 4. Area in Polar Coordinates ▶ The area of a sector of a circle is A = 1 2 r2 θ ▶ We use circle sectors to approximate the area of a region bounded by polar curve r = f (θ) in the same way we use rectangles to approximate the area of a region bounded by curve y = f (x).
  • 5. Area in Polar Coordinates ▶ Let f (θ) be a positive continuous function on a ≤ θ ≤ b. ▶ Let R be the region bounded by polar curve r = f (θ) and the rays θ = a and θ = b, where 0 < b − a ≤ 2π
  • 6. Area in Polar Coordinates ▶ Divide [a, b] into subintervals with endpoints θ0, θ1, . . . , θn and equal width △θ = θi − θi−1. ▶ Choosing θ∗ i in [θi−1, θi ], △Ai is approximated by the area of a circle with central angle △θ and radius f (θ∗ i ) A ≈ n X i=1 1 2 [f (θ∗ i )]2 △θ =⇒ A = Z b a 1 2 [f (θ)]2 dθ = Z b a 1 2 r2 dθ
  • 7. Example 1 1/3 Find the area enclosed within the four-leafed rose r = cos 2θ.
  • 8. Example 1 2/3 ▶ r is positive for −π 4 ≤ θ ≤ π 4 , which corresponds to one leaf of the rose. ▶ By symmetry, the area enclosed by the four-leafed rose is 4 times the area enclosed in one leaf. ▶ The area of one leaf is Z π 4 −π 4 1 2 r2 dθ = 1 2 Z π 4 −π 4 cos2 (2θ)dθ
  • 9. Example 1 3/3 Using the identity : cos2 θ = 1 2 1 + cos 2θ =⇒ 1 2 Z π 4 −π 4 cos2 (2θ)dθ = 1 2 Z π 4 −π 4 1 2 (1 + cos (4θ)dθ [let u = 4θ du = 4dθ] = 1 4 Z π −π (1 + cos (u)) du 4 = 1 16 (u + sin u)
  • 10.
  • 11.
  • 12. π −π = 1 16 (π + sin (π) − (−π + sin (−π)) = π 16 + π 16 = π 8 =⇒ A = 4 · π 8 = π 2
  • 13. Example 2 1/5 Find the area of the region that lies inside the circle r = 3 sin θ and outside the cardioid r = 1 + sin θ.
  • 14. Example 2 2/5 ▶ We want to find the area of the shaded region in graph to the right. ▶ By symmetry, it is twice the area of the shaded region from π 6 to π 2 . ▶ Both r = 3 sin θ and r = 1 + sin θ are positive on the entire region π 6 ≤ θ ≤ 5π 6 . But it will be simpler to compute area from π 6 ≤ θ ≤ π 2 and then multiply by 2.
  • 15. Area Between Polar Curves ▶ In general, to find the area of the region enclosed by positive polar curves r = f (θ) and r = g(θ) as in the figure, we have just subtract: A = Z b a 1 2 [f (θ)]2 dθ − Z b a 1 2 [g(θ)]2 dθ = 1 2 Z b a [f (θ)]2 − [g(θ)]2 dθ
  • 16. Example 2 3/5 ▶ So the area of the shaded region is 2· 1 2 Z π 2 π 6 [3 sin θ]2 −[1+sin θ]2 dθ = Z π 2 π 6 9 sin2 θ − 1 + 2 sin θ + sin2 θ dθ = Z π 2 π 6 8 sin2 θ − 1 − 2 sin θdθ = 8 Z π 2 π 6 sin2 θdθ | {z } A − Z π 2 π 6 dθ | {z } B − 2 Z π 2 π 6 sin θdθ | {z } C
  • 17. Example 2 4/5 B : Z π 2 π 6 dθ = θ
  • 18.
  • 19.
  • 20. π 2 π 6 = π 2 − π 6 = π 3 C : 2 Z π 2 π 6 sin θdθ = −2 cos θ
  • 21.
  • 22.
  • 23. π 2 π 6 = −2 0 − √ 3 2 = √ 3 A : 8 Z π 2 π 6 sin2 θdθ = 4 Z π 2 π 6 1 − cos (2θ) dθ let u = 2θ, du = 2dθ = 4 Z π π 3 1 − cos u du 2 = 2(u − sin u)
  • 24.
  • 25.
  • 26. π π 3 = 2 π − 0 − π 3 − √ 3 2 = 2π − 2π 3 + √ 3 = 4π 3 + √ 3
  • 27. Example 2 5/5 Area = A − B − C = 4π 3 + √ 3 − π 3 − √ 3 = 3π 3 = π
  • 29. Arc Length ▶ Recall from 10.2: A curve C described by the parametric equations x = f (t) y = g(t) α ≤ t ≤ β where f ′ and g′ are continuous and C is traversed once from left to right as t increases from α to β, has length L = Z β α rdx dt 2 + dy dt 2 dt ▶ A polar curve r = f (θ) on α ≤ θ ≤ β, is described by the parametric equations x = f (θ) cos θ y = f (θ) sin θ α ≤ θ ≤ β by the conversion formulas x = r cos θ and y = r sin θ.
  • 30. Arc Length ▶ So a polar curve r = f (θ) can be viewed as a parametric curve with parameter θ. ▶ To find arc length of r = f (θ), we want to find dx dθ and dx dθ in terms of θ. x = f (θ) cos θ =⇒ dx dθ = −f (θ) sin θ + f ′ (θ) cos θ by product rule = −r sin θ + dr dθ cos θ since f (θ) = r ▶ And similarly, y = f (θ) sin θ =⇒ dy dθ = f (θ) cos θ + f ′ (θ) sin θ by product rule = r cos θ + dr dθ sin θ since f (θ) = r
  • 31. Arc Length ▶ Therefore we have dx dθ 2 + dy dθ 2 = − r sin θ + dr dθ cos θ 2 + r cos θ + dr dθ sin θ 2 = r2 (sin2 θ + cos2 θ) + dr dθ 2 (cos2 θ + sin2 θ) = r2 + dr dθ 2 ▶ Assuming f ′ continuous, L = Z β α r r2 + dr dθ 2 dθ
  • 32. Example 3 1/5 Find the length of the cardioid r = 1 + sin θ.
  • 33. Example 3 2/5 L = Z 2π 0 r r2 + dr dθ 2 dθ r = 1 + sin θ =⇒ dr dθ = cos θ L = Z 2π 0 q (1 + sin θ)2 + cos2 θdθ = Z 2π 0 p 1 + 2 sin θ + sin2 θ + cos2 θdθ = Z 2π 0 √ 2 + 2 sin θdθ ▶ Now we have an integral which is a little tricky.
  • 34. Example 3 3/5 ▶ We can make the substitution u = 2 + 2 sin θ and get du = 2 cos θdθ =⇒ dθ = du 2 cos θ . Z √ 2 + 2 sin θdθ = Z u2 u1 √ u du 2 cos θ ▶ But then we have to write 2 cos θ in terms of u, where 2 sin θ = u − 2, so we need an identity like: 4 cos2 θ + 4 sin2 θ = 4 =⇒ 2 cos θ = ± q 4 − (2 sin θ)2 ▶ cos θ is positive on the interval [−π 2 , π 2 ] which corresponds to the right half of the cardioid. ▶ By symmetry, the length of the cardioid is twice that of its length on [−π 2 , π 2 ]
  • 35. Example 3 4/5 ▶ So we have Z 2π 0 √ 2 + 2 sin θdθ = 2 Z π 2 −π 2 √ 2 + 2 sin θ dθ = 2 Z u2 u1 √ u du 2 cos θ and on [−π 2 , π 2 ], cos θ ≥ 0 so we have: 2 cos θ = q 4 − (2 sin θ)2 = q 4 − (u − 2)2 = p 4 − u2 + 4u − 4 = p 4u − u2 =⇒ 2 Z u2 u1 √ u du 2 cos θ = 2 Z u2 u1 √ u du √ 4u − u2
  • 36. Example 3 5/5 . . . = 2 Z u2 u1 r u u(4 − u) du = 2 Z u2 u1 1 √ 4 − u du let t = 4 − u, dt = −du = 2 Z 4−u2 4−u1 t−1 2 dt = −4 √ t
  • 37.
  • 38.
  • 39. 4−u2 4−u1 = 4 √ 4 − u1 − 2 √ 4 − u2 = 4 p 4 − (2 + 2 sin θ1) − 4 p 4 − (2 + 2 sin θ2) = 4 r 2 − 2 sin − π 2 − 4 r 2 − 2 sin π 2 = 4 √ 2 + 2 − 4 √ 0 = 8
  • 41. Tangents ▶ We will again use the fact that a polar curve r = f (θ) is a parametric curve described by equations x = f (θ) cos θ y = f (θ) sin θ which yields the derivatives dx dθ = dr dθ sin θ + r cos θ dy dθ = dr dθ cos θ − r sin θ =⇒ dy dx = dr dθ sin θ + r cos θ dr dθ cos θ − r sin θ
  • 42. Example 4 1/7 (a) For the cardioid r = 1 + sin θ, find the slope of the tangent line at θ = π 3 . (b) Find the points on the cardioid where the tangent line is horizontal or vertical.
  • 43. Example 4 2/7 (a) We want to compute dy dx = dr dθ sin θ + r cos θ dr dθ cos θ − r sin θ where r = 1 + sin θ =⇒ dr dθ = cos θ =⇒ dy dx = cos θ sin θ + r cos θ cos2 θ − r sin θ = cos θ sin θ + (1 + sin θ) cos θ cos2 θ − (1 + sin θ) sin θ = cos θ(1 + 2 sin θ) 1 − sin2 θ − (1 + sin θ) sin θ
  • 44. Example 4 3/7 . . . = cos θ(1 + 2 sin θ) (1 − sin θ)(1 + sin θ) − (1 + sin θ) sin θ = cos θ(1 + 2 sin θ) (1 + sin θ)(1 − 2 sin θ) ▶ Using sin π 3 = √ 3 2 , cos π 3 , and r = 1 + sin π 3 = 1 + √ 3 2 : dy dx π 3 = 1 2(1 + √ 3) (1 + √ 3 2 )(1 − √ 3) = 1 + √ 3 (2 + √ 3)(1 − √ 3) = 1 + √ 3 −1 − √ 3 = −1
  • 45. Example 4 4/7 (b) To find the points where the cardioid has horizontal and vertical tangents, we determine where the numerator and denominator are 0. ▶ We will consider all possible values of θ between 0 and 2π. ▶ Horizontal tangent when numerator = 0 and denominator ̸= 0. ▶ Vertical tangent when denominator = 0 and numerator ̸= 0. ▶ If both numerator and denominator are 0, take the limit. ▶ Starting with the numerator we have cos θ(1 + 2 sin θ) = 0 ⇐⇒ cos θ = 0 θ = π 2 or 3π 2 or 1 + 2 sin θ = 0 sin θ = − 1 2 θ = 7π 6 or 11π 6
  • 46. Example 4 5/7 ▶ And the denominator we have: (1 + sin θ)(1 − 2 sin θ) = 0 ⇐⇒ (1 + sin θ) = 0 sin θ = −1 θ = 3π 2 or (1 − 2 sin θ) = 0 sin θ = 1 2 θ = π 6 or 5π 6 ▶ Horizontal tangents at θ = π 2 , 7π 6 , and 11π 6 . ▶ Vertical tangents at θ = π 6 and 5π 6 .
  • 47. Example 4 6/7 ▶ At θ = 3π 2 , both numerator and denominator are zero. ▶ Let’s take the limit: lim θ→ 3π 2 cos θ(1 + 2 sin θ) (1 + sin θ)(1 − 2 sin θ) = 1 + 2 sin 3π 2 1 − 2 sin 3π 2 · lim θ→3π 2 cos θ 1 + sin θ = − 1 3 lim θ→ 3π 2 cos θ 1 + sin θ → 0 0 = − 1 3 lim θ→ 3π 2 − sin θ cos θ by L’Hosp. = 1 3 lim θ→ 3π 2 sin θ cos θ = −∞ since sin 3π 2 = −1 and cos 3π 2 = 0. So the cardioid has a vertical tangent at θ = 3π 2 .