SlideShare a Scribd company logo
 
 
 
 
 
 
 
Satellite Final Report 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Team Rocket 
 
Andy Bothun 
Christian Knill 
Cordarryl Solomon­Williams 
Chengyu Perry Zhang 
Yijie Wang 
 
 
 
 
 
 
 
 
Background 
Due to the existing threat of potential terrorists and drug traffickers crossing the 
southern border of the United States, the Department of Homeland Security needs a capability 
to monitor the southern border, specifically between Texas and Mexico. A task was generated 
to develop a proposal on building and fielding a constellation of satellites providing near 
continuous coverage of that region in order to accomplish surveillance of transiting entities 
both day and night.  
 
Introduction 
The project has 2 missions. The main mission is to monitor the southern border of the 
U.S. and alert the Department of Homeland Security of a potential threat in near real time. The 
secondary mission is to collect data on transiting entities in order to assess the extent and 
nature of relevant potential threat activities.  
 
Requirements and Constraints 
The mission need to meet several requirements and has a list of constraints. 
Requirements: 
● Resolution: 1.0 m 
● Wavelength Range: 0.40­4.0 μm 
● Orbit Size Range: 14­16 revs/day 
● Constellation: min 16 Satellites 
● Earth Latitude Coverage: +33⁰ to ­33⁰ 
● Swath Width: Min 100 km 
● Point Stability: 0.5 km 
● Mission Duration: 10 yrs. 
Constraints: 
● Total Fund <$500M (16 sats) 
● Mission Ops: $16M/yr (16 sats) 
● Facility Location: Schriever AFB 
● Initial Op Capability > 50 months 
● Downlink Freq.:  2.2 GHz, Uplink: 2.5 GHz 
● Ground Station Receiver Gain: 3.0 
● GS Receiver Band.: 200KHz, Temp.: 20⁰C 
● Max Pass Time: 12 min 
● Orbit Maintenance ΔV: 120 m/s/yr per sat 
● Solar Panel Absorb: 0.3 
● Solar Pane; Degrade: 3%/yr 
● ITAR Regulated 
The following paragraphs will cover the design of the constellation of satellites. 
 
Orbit 
The first thing to set up the constellations and orbit of the satellites is to identify the                                 
target area needed to be surveyed. Sixteen locations were chosen on the border for any                             
location where the border changed directions. The list of target locations is displayed in Table 1.                               
The receiver station needs to be placed on the map to see if the orbit lets the satellite transmit                                     
the data to the station. The Schriever Air Force base is at, latitude 38.8027 deg and longitude                                 
­104.522 deg. The map can be seen in Figure 1 with both targets and receiver facility. 
Target  Latitude (deg)  Longitude (deg) 
1  25.7202  ­97.08 
2  25.5  ­97.23 
3  26.23  ­99.01 
4  27.36  ­99.35 
5  29.44  ­101.25 
6  29.46  ­102.37 
7  28.58  ­103.07 
8  29.33  ­104.39 
9  30.36  ­105.02 
10  31.43  ­106.23 
11  31.47  ­108.12 
12  31.19  ­108.12 
13  31.19  ­111.06 
14  32.29  ­114.48 
15  32.43  ­114.43 
16  32.32  ­117.07 
Table 1. Target Locations along Border 
 
 
Figure 1. Targets and Facility Location 
 
Next the initial orbit has to be made following the requirements set for the project;                             
inclination +33 deg to ­33 deg, and an orbit of 14 to 16 revs/day. The satellite will have a                                     
TwoBody set­up in the STK program. This will give us a semi­axis of 6671 km and then the mean                                     
motion will be 15.9337 rev/day, which will be a period of 5422.47 sec. The first orbit can be                                   
seen in Figure 2. 
 
Figure 2. Initial Orbit 
 
Once the initial orbit is chosen the constellation will be built to give max coverage.                             
Figure 3­5 show three different constellation set­ups. The chosen constellation in the end was                           
the one that had the least gap over a long period of time. Once that was set it was what gave                                         
the best coverage, Constellation 1 was eventually the one chosen. 
 
Figure 3. Constellation 1 Figure 2. Constellation 2 
 
 
Figure 4. Constellation 3 
 
The details for the 16 satellites in the constellation can be seen in Table 2. This will show                                   
the inclination, argument of perigee, RAAN, and the true anomaly. 
 
 
Table 2. Satellite Information for Orbit 
 
Figure 5 and 6 will show the constellation coverage over two of the targets. Since the                               
coverage is very similar for every target, only two graphs will need to be shown, the min and                                   
max time. All the targets have a max time of not being seen of around 12 minutes. Since it is                                       
very difficult for an individual or group to cross the border in that time it is an acceptable                                   
constellation. Table 3 will then show the total coverage for the targets over a 24­hr period and                                 
the max non coverage time. 
 
 
Table 3. Coverage of Every Target 
 
 
Figure 5. Target 9 Coverage (Max) 
 
 
Figure 6. Target 7 Coverage (Min) 
 
 
Payload 
To design the payload, the first thing is to size the payload from the requirements. The 
requirements are the ground resolution of the sensor is 1m, wavelength is between 0.4 μm and 
4 μm and the swath width is at least 100 km. The wavelength was assumed to be 2.1 μm to 
have a good energy and atmospheric transmittance based on Figure 7 and Figure 8. 
 
Figure 7. Energy Sources vs. wavelength 
 
Figure 8. Energy transmission vs. wavelength 
 
The aperture diameter was calculated from: 
.34mD = Res
2.44λ(SR)
= 1m
2.44×2.1×10 m×274.55×10 m−6 3
= 1  
Then the size of the payload was calculated from the size of a Multi­spectral Mid­IR(Table 4). 
 
Aperture Diameter  1m 
Linear Dimension(Length)  1.5m 
Linear Dimension(Diameter)  1m 
Mass  800kg 
Power  900W 
Table 4.Multi­spectral Mid­IR Payload size 
 
So the aperture ratio for the satellite in the project  is calculated to be 1.34, and other size 
properties can be calculated. The results are shown in Table 5. 
 
Aperture Diameter  1.34m 
Linear Dimension(Length)  2.01m 
Linear 
Dimension(Diameter) 
1.34m 
Mass  1191.8kg 
Power  2165.49W 
Table 5.  Payload Size for the project(K=1) 
 
Assume a 10% duty cycle, the average power is 216.549W. A scale drawing is in the Appendix. 
From DMC project, the pixel diameter was assumed to be 7 μm. The focal length was 
calculated : 
.10mf = x
hd
= 1m
300×10 m×7×10 m3 −6
= 2  
So the magnification is 7E­06 and number of pixel was calculated to be: 
pixel SW 00, 00# = λ
magnification = 1 0  
Then the image plane radius and angular field of view are calculated: 
m .35mrd = 2
100,000
× 7 × 10−6
= 0  
Include a 10% margin, rd=0.385m 
°tan 0.662  θ = 2 −1
(f
rd
)= 2  
To keep a 0.5kn stability, the angular field of view should be 20.662°±0.211°. The Muilt­spectral 
Mid­IR payload has a pointing accuracy of 0.1 deg which satisfies the requirement of 0.211 deg. 
 
Finally, the performance of the payload was decided: Ground speed and data 
performance. 
390.39m/sV g = P
2πRE
= 7  
And based on the ground speed, the sensor should image 7390 swaths per sec. We assume the 
data for a pixel is 8 bits. The data for a swath is 800,000 bits. The data per orbit is  
00, 00bits/swath 390swath/s 422.47s .206 bits/orbit8 0 × 7 × 5 = 3 × 1013
 
By assuming the duty cycle to be 10%, the data per orbit is 3.206E12 bits. So the data storage 
for one satellite should be 4E11 Bytes which is 373.2GBytes. Assume the average pass time over 
the ground station is 15 minutes, the satellite requires a transmitting data rate of 424 
MBytes/sec. 
 
Electrical Power Subsystem Design 
The EPS Design included the design of the solar plane based on the power consumption 
and eclipse time analysis and the battery design. 
For the power consumption and eclipse time analysis. The power budget is shown in Table 6 
 
Payload   40%  216.55W 
Structure  0  0 
Thermal  0  0 
Power  10%  54.138W 
TT&C  20%  108.275W 
ADCS  15%  181.206W 
Propulsion  5%  27.069W 
Total  100%  541.375W 
Table 6. Power Budget 
 
From STK simulation, the eclipse time is 2193.06s and daylight time is 3229.41s. Assume the 
power loads during eclipse and daylight are the same. The daylight and eclipse efficiency 
 and   which are the same as DMC electrical power subsystem..8Xd = 0 .6Xe = 0  
 
67.95W  Psa = Td
+Xd
P Td d
Xe
P Te e
= 7  
At the beginning of the life, the power density solar array generated is  
Flux)(ξ)(I )cosθ  PBOL = ( d  
Assume the input solar density is 1367   , efficiency of solar cell is 28% and inherent/mW 2  
degradation is 0.77 as DMC used. The satellite used sun­tracking solar panel so the sunlight 
incidence angle is 0. The power density output at the beginning of life is calculated as 294.724 
. The satellite required a 10 years life and 1% degradation per year was assumed. The/mW 2  
power density output at the end of life was calculated: 
(1 %) 66.54W/mPEOL = PBOL − 1 10
= 2 2  
So the area of solar panel is 2.881 .m2  
 
Then for the battery design, NiH battery was used. In 10 years life, the battery need to charge 
and discharge for   and0years 65.25days 4hours 600sec/5422.37sec 8198cycles1 × 3 × 2 × 3 = 5  
from Figure 9, the depth of discharge should be 35%. 
 
Figure 9. Depth of discharge vs. cycle life 
 
Assume one battery is used and the transmission efficiency between battery and load n is 0.9 
which is a typical used value, the battery capacity should be: 
046.973W r  Cr = P Te e
(DOD)Nn = 1 ∙ h  
Use the same kind of battery as DMC, the energy density is 50 Whr/kg. The battery mass is 
20.939kg. 
 
Communication 
Communications satellites allow telephone and data conversations to be relayed 
through the satellite.The most important feature of a communications satellite is the 
transponder ­­ a radio that receives a conversation at one frequency and then amplifies it and 
retransmits it back to Earth on another frequency. A satellite normally contains hundreds or 
thousands of transponders.  
Communication satellites are all in geosynchronous orbit, meaning that they stay in one place 
in the sky relative to the Earth. “The signal transmitted between the spacecraft and the ground 
station, or between two spacecraft, must arrive at the receiver with enough strength to be 
detected.  The strength of the received signal depends upon: Strength of the signal transmitted 
(power density in the desired direction) Amount of attenuation due to the medium 
(atmospheric attenuation, path loss, etc) Sensitivity of the receiver (ability to focus received 
signal and detect information)”. 
 
Each satellite is launched into space at about 300 km above the Earth. At this speed and 
altitude, the satellite will revolve around the planet approximately 15 times every 24 hours. 
Constraints that had been set for the communication design approved to operate at RF 
frequencies  2.2 GHz downlink and 2.5 GHz uplink, ground Station (GS) receiver gain 3.0, 
receiver bandwidth 200 KHz,  and a receiver temperature: 20°C.  
Uplink is the frequency at which ground control is communicating with the satellite and 
downlink is when the satellite transponder convert the signal and send it down to the second 
earth station. 
 
 
 
 
Equations for Communication  
 
  
Frii’s Transmission 
 
 
Effective Isotropic  
Radiated Power 
 
 
 
Antenna Gain 
 
 
 
 
 
 
 
Free Space 
 
 
 
 
Pointing Loss  
 
 
 
Link Budget  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Costs Estimation 
 
Mass Budget 
 
  Percent  Mass 
payload  42%  1191.8Kg 
Structure  18.1%  513.6Kg 
Thermal  2.3%  65.26Kg 
Power  22.7%  644.1Kg 
TT&C  4.4%  124.9Kg 
ADCS  6%  170.34Kg 
Propulsion  4.5%  127.69Kg 
Table 7. Mass Budget 
 
 
Table 8 Launch Vehicles Consideration 
 
 
For Launch costs, We need to look to minimize the amount of launches as well as fully utilizing 
the maximum payload space available in each launch. 
With a satellite mass of 1191.8 kg, the Athena 3 would have  the capability of bringing 3 
satellites to our designed orbit,  which is quite close to LEO, for $31M per launch. Therefore 
with 5 launches of Athena 3, we’d deliver 15 satellites. Another one left we could use one 
Taurus for launching, which would be $20M. Therefore, the total cost of launch vehicles would 
be 31*5+20=$175M 
 
 
 
Testing and Theoretical First Unit Cost 
 
Component  Value  RDE&T and TFU(FY00$K)  TFU(FY00$K) 
Payload  0.45    15064 
structure  85.5  6937.16542  1935.1654651 
thermal  15.6  750.41657  353.1654 
Electrical power  135  11679.60983  4863.36463 
TT&C  15  1823.465673  515.3465459 
TT&C  15  1823.465673  515.3465459 
C&DH       
ADCS  22.3  5740.3208  3643.32457 
Propulsion  32.6  262.46543  144.62321 
Grand Total      27033.456 
  
To calculate the unit cost, we used the equation as follows: 
 
  
And the unit costs of all the parts of the satellite are calculated as: (with the conversion into 
FY00$) 
 
Unit number  Production cost  Unit cost (FY00$K) 
1  27033.456  27033.456 
2  51567.1564  25359.37655 
3  69534.67448  23546.67234 
4  82467.6461  20925.0431 
5  116732.9431  20345.7793 
6  136476.9235  20245.71601 
7  159985.4315  23576.6725 
8  163449.983  19573.37697 
9  189822.354  19437.35595 
10  203978.359  19234.4622 
11  229460.357  16542.802 
12  242591.7496  19345.432 
13  256347.3243  18231.32465 
14  282364.3457  19254.2545 
15  301972.3784  18348.4256 
16  315753.3541  18346.95234 
Total Cost    323.7 Million 
  
 
 
Therefore, the total cost would be the total operation cost(Launch vehicle cost) plus the Cost of 
16 satellites, which is 353.7M+ 175M= 498.7M 
So our design is right under the budget, which met the constraint and requirement of the 
mission. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Reliability 
 
In determining the reliability of the system it is important to make use of the reliability 
equation: 
 
R=e^(­t/MTBF) 
 
Since this mission needs to last 10 years, we will use 10 years as the time for the calculations. 
The MTBF values were determined from satellite systems websites such as: Ferrotec.com, and 
archive.erricssin.net 
 
Reliability of each system over 10 years 
 
 
   Payload  Structure  Thermal  Power  TT&C  ADCS  Propulsion  Comms 
R(10 yr)  .557  .916  .645  .803  .803  .606  .864  .803 
MTBF(yr)  17.1  114.1  22.8  45.6  45.6  20.0  68.4  45.6 
t(yr)  10  10  10  10  10  10  10  10 
 
 
 
To combine together reliabilities of individual systems it is important to use the following 
generic equations: 
 
 
  
 Redundancies    Rsystem  [1 1 A) n] 1 1 B) n] .. n − 1 =   − ( − R ˆ * [ − ( − R ˆ * .  
 
 
System Reliabilities with various redundancies of systems: 
 
# of 
Redundancies 
Rsystem 
(10 yr) 
P(16/16) 
(%) 
16/R 
 
P(16/{16/R}) 
(%) 
Nadj 
 
P(16/Nadj) 
(%) 
0  .0892  1.6*10^­15  180  N/A  N/A  N/A 
1  .5136  2.3*10^­3  32  62.98  41  95.91 
2  .7977  2.69  21  76.08  24  96.13 
3  .9189  25.84  18  82.48  20  98.06 
4  .9672  59.14  17  89.43  18  98.01 
5  .9866  80.59  17  97.86  17  97.86 
 
 
As you increase the number of redundancies, the system noticeably becomes more reliable. 
Then I  adjust the number of satellites to be the minimum number needed to have a probability 
of 95% or higher that at least 16 satellites will survive the mission.  This results in our ideal case 
of 4 redundancies and 18 satellites. 
 
 
 
This is the bathtub curve describing our mission failure.  As you can see, our satellite array is 
very survivable during the required lifetime and can last many years after. 
 
 
 
 
Disturbance Torques 
 
Cp ­ Cg = .3 m 
Residual Dipole = 1.0 A m^2 
Cd = 2.5 
Ro atm = 1.47 *10^­13 kg/m^3 
Me = 7.96*10^15 T m^3 
q = .6 
Fs = 1376 W/m^2 
Inertia of the satellite is: 
Ixx = 536 kg m^2 Iyy = 536 kg m^2 Izz = 270 kg m^2 
 
Gravity Disturbance Torque: 
 
Tg max  = (1.5μe/R^3)*(Imax ­ Imin)*(1) 
  = 5.360*10^­4 N m 
 
Magnetic Torque: 
 
Tm max  = [dipole]*Me*(1)/R^3 
  = 2.673*10^­5 N m 
 
Aerodynamic Drag Torque: 
 
v = [μe/R]^.5  = 7.73 km/s 
 
Ta max  = .5*Roatm*Cd*SA *(Cp ­ Cg)*v^2 
  =1.000*10^­5 N m 
 
Solar Pressure Torque: 
 
As  ≈ (15 m)*(3 m) = 45 m^2 
 
Tsrp  = Fs*As*(1 + q)*(1)*(Cp ­ Cg)/c 
  =.990*10^­4 N m 
 
System will accommodate Total Disturbance Torque: 
 
Td = ∑(Tx^2)^.5 
  = 5.460*10^­4 N m 
 
 
 
 
Conclusion 
The design met all the requirements and the budget for 16 satellites is just under $500M. The 
longest break of the coverage is 12 minutes which is believed to be an accepted value.  
However, the budget is not sufficient for 18 satellites which is the ideal case for a high 
reliability. The potential solution is to use another existing payload characteristics for scaling to 
decrease the payload of the project satellite. Decreasing the payload to under 800kg will allow to 
launch 18 satellites under the budget requirements. 
Appendix 
Scale drawing of the satellite 
 

More Related Content

What's hot

The Pulsar Mass Distribution
The Pulsar Mass DistributionThe Pulsar Mass Distribution
The Pulsar Mass Distribution
John Antoniadis
 
VHR_preliminary-system_study_issue2
VHR_preliminary-system_study_issue2VHR_preliminary-system_study_issue2
VHR_preliminary-system_study_issue2
Stefano Coltellacci
 
Simulations of the Dynamics Generated in the Solar Atmosphere by Solar Global...
Simulations of the Dynamics Generated in the Solar Atmosphere by Solar Global...Simulations of the Dynamics Generated in the Solar Atmosphere by Solar Global...
Simulations of the Dynamics Generated in the Solar Atmosphere by Solar Global...
mikeg64
 
Mission Concept Presentation for Project A.D.I.O.S.
Mission Concept Presentation for Project A.D.I.O.S.Mission Concept Presentation for Project A.D.I.O.S.
Mission Concept Presentation for Project A.D.I.O.S.
Sung (Stephen) Kim
 
Chapter2
Chapter2Chapter2
Chapter2
Mukti Gupta
 
Bahan kuliah kontek
Bahan kuliah kontekBahan kuliah kontek
Bahan kuliah kontek
Al Khwan Pasrib
 
Xray interferometry
Xray interferometryXray interferometry
Xray interferometry
Clifford Stone
 
Mission Concept Paper for Project A.D.I.O.S.
Mission Concept Paper for Project A.D.I.O.S.Mission Concept Paper for Project A.D.I.O.S.
Mission Concept Paper for Project A.D.I.O.S.
Sung (Stephen) Kim
 
Spencer_AAS
Spencer_AASSpencer_AAS
Spencer_AAS
Spencer Moller
 
429Talk
429Talk429Talk
429Talk
ellopuppett
 
satellite communication system
satellite communication systemsatellite communication system
satellite communication system
Amjad Khan
 
Final_Croteau
Final_CroteauFinal_Croteau
Final_Croteau
Tyler Croteau
 
636908main paul presentation
636908main paul presentation636908main paul presentation
636908main paul presentation
Clifford Stone
 
Formation flyingoct01
Formation flyingoct01Formation flyingoct01
Formation flyingoct01
Clifford Stone
 
SWaRMM_Mission
SWaRMM_MissionSWaRMM_Mission
SWaRMM_Mission
Tyler Croteau
 
Simulation of Deployment and Operation of an Earth Observing Satellite
Simulation of Deployment and Operation of an Earth Observing SatelliteSimulation of Deployment and Operation of an Earth Observing Satellite
Simulation of Deployment and Operation of an Earth Observing Satellite
Alber Douglawi
 
Evaluating the effect of soil moisture, surface temperature and humidity vari...
Evaluating the effect of soil moisture, surface temperature and humidity vari...Evaluating the effect of soil moisture, surface temperature and humidity vari...
Evaluating the effect of soil moisture, surface temperature and humidity vari...
Yomna Mahmoud Ibrahim Hassan
 
1012 winglee[1]
1012 winglee[1]1012 winglee[1]
1012 winglee[1]
Clifford Stone
 
Satellite communications ppt
Satellite communications pptSatellite communications ppt
Satellite communications ppt
Niranjan kumar
 
Presentation Gabriel Molina-Terriza
Presentation Gabriel Molina-TerrizaPresentation Gabriel Molina-Terriza
Presentation Gabriel Molina-Terriza
guesta7b31
 

What's hot (20)

The Pulsar Mass Distribution
The Pulsar Mass DistributionThe Pulsar Mass Distribution
The Pulsar Mass Distribution
 
VHR_preliminary-system_study_issue2
VHR_preliminary-system_study_issue2VHR_preliminary-system_study_issue2
VHR_preliminary-system_study_issue2
 
Simulations of the Dynamics Generated in the Solar Atmosphere by Solar Global...
Simulations of the Dynamics Generated in the Solar Atmosphere by Solar Global...Simulations of the Dynamics Generated in the Solar Atmosphere by Solar Global...
Simulations of the Dynamics Generated in the Solar Atmosphere by Solar Global...
 
Mission Concept Presentation for Project A.D.I.O.S.
Mission Concept Presentation for Project A.D.I.O.S.Mission Concept Presentation for Project A.D.I.O.S.
Mission Concept Presentation for Project A.D.I.O.S.
 
Chapter2
Chapter2Chapter2
Chapter2
 
Bahan kuliah kontek
Bahan kuliah kontekBahan kuliah kontek
Bahan kuliah kontek
 
Xray interferometry
Xray interferometryXray interferometry
Xray interferometry
 
Mission Concept Paper for Project A.D.I.O.S.
Mission Concept Paper for Project A.D.I.O.S.Mission Concept Paper for Project A.D.I.O.S.
Mission Concept Paper for Project A.D.I.O.S.
 
Spencer_AAS
Spencer_AASSpencer_AAS
Spencer_AAS
 
429Talk
429Talk429Talk
429Talk
 
satellite communication system
satellite communication systemsatellite communication system
satellite communication system
 
Final_Croteau
Final_CroteauFinal_Croteau
Final_Croteau
 
636908main paul presentation
636908main paul presentation636908main paul presentation
636908main paul presentation
 
Formation flyingoct01
Formation flyingoct01Formation flyingoct01
Formation flyingoct01
 
SWaRMM_Mission
SWaRMM_MissionSWaRMM_Mission
SWaRMM_Mission
 
Simulation of Deployment and Operation of an Earth Observing Satellite
Simulation of Deployment and Operation of an Earth Observing SatelliteSimulation of Deployment and Operation of an Earth Observing Satellite
Simulation of Deployment and Operation of an Earth Observing Satellite
 
Evaluating the effect of soil moisture, surface temperature and humidity vari...
Evaluating the effect of soil moisture, surface temperature and humidity vari...Evaluating the effect of soil moisture, surface temperature and humidity vari...
Evaluating the effect of soil moisture, surface temperature and humidity vari...
 
1012 winglee[1]
1012 winglee[1]1012 winglee[1]
1012 winglee[1]
 
Satellite communications ppt
Satellite communications pptSatellite communications ppt
Satellite communications ppt
 
Presentation Gabriel Molina-Terriza
Presentation Gabriel Molina-TerrizaPresentation Gabriel Molina-Terriza
Presentation Gabriel Molina-Terriza
 

Similar to SatellitePaper.docx

Xray discovery of_a_dwarf_galaxy_galaxy_collision
Xray discovery of_a_dwarf_galaxy_galaxy_collisionXray discovery of_a_dwarf_galaxy_galaxy_collision
Xray discovery of_a_dwarf_galaxy_galaxy_collision
Sérgio Sacani
 
New Post-DART Collision Period for the Didymos System: Evidence for Anomalous...
New Post-DART Collision Period for the Didymos System: Evidence for Anomalous...New Post-DART Collision Period for the Didymos System: Evidence for Anomalous...
New Post-DART Collision Period for the Didymos System: Evidence for Anomalous...
Sérgio Sacani
 
Extra Practice Questions for Gravitation
Extra Practice Questions for GravitationExtra Practice Questions for Gravitation
Extra Practice Questions for Gravitation
TL Lee
 
Control Systems For Projectile DefenseRyan MendivilMar.docx
Control Systems For Projectile DefenseRyan MendivilMar.docxControl Systems For Projectile DefenseRyan MendivilMar.docx
Control Systems For Projectile DefenseRyan MendivilMar.docx
maxinesmith73660
 
AIAA Paper dlt228
AIAA Paper dlt228AIAA Paper dlt228
AIAA Paper dlt228
Dwight Temple
 
2583
25832583
2583
loyalj
 
Remote Sensing fundamentals
Remote Sensing fundamentalsRemote Sensing fundamentals
Remote Sensing fundamentals
Mohammed_82
 
Remote sensing with all fundamentals
Remote sensing with all  fundamentalsRemote sensing with all  fundamentals
Remote sensing with all fundamentals
Mohammed_82
 
Rs fundamentals
Rs fundamentalsRs fundamentals
Rs fundamentals
Mohammed_82
 
The Dvorak Technique
The Dvorak TechniqueThe Dvorak Technique
The Dvorak Technique
Katelyn Hearn
 
Deep Impact Poster Revised
Deep Impact Poster RevisedDeep Impact Poster Revised
Deep Impact Poster Revised
Alejandro Cota
 
An almost dark galaxy with the mass of the Small Magellanic Cloud
An almost dark galaxy with the mass of the Small Magellanic CloudAn almost dark galaxy with the mass of the Small Magellanic Cloud
An almost dark galaxy with the mass of the Small Magellanic Cloud
Sérgio Sacani
 
Initial Calibration of CCD Images for the Dark Energy Survey- Deokgeun Park
Initial Calibration of CCD Images for the Dark Energy Survey- Deokgeun ParkInitial Calibration of CCD Images for the Dark Energy Survey- Deokgeun Park
Initial Calibration of CCD Images for the Dark Energy Survey- Deokgeun Park
Daniel Park
 
ongc satellite communication
 ongc satellite communication ongc satellite communication
ongc satellite communication
Nitin Tomar
 
Making maps from sattelites to uav's
Making maps   from sattelites to uav'sMaking maps   from sattelites to uav's
Making maps from sattelites to uav's
Kim Moore
 
Spectroscopic confirmation of_the_existence_of_large_diffuse_galaxies_in_the_...
Spectroscopic confirmation of_the_existence_of_large_diffuse_galaxies_in_the_...Spectroscopic confirmation of_the_existence_of_large_diffuse_galaxies_in_the_...
Spectroscopic confirmation of_the_existence_of_large_diffuse_galaxies_in_the_...
Sérgio Sacani
 
PLATE TECTONICS.pptx
PLATE TECTONICS.pptxPLATE TECTONICS.pptx
PLATE TECTONICS.pptx
DenMarkTuazonRaola2
 
Payloads Presentation for Project A.D.I.O.S.
Payloads Presentation for Project A.D.I.O.S.Payloads Presentation for Project A.D.I.O.S.
Payloads Presentation for Project A.D.I.O.S.
Sung (Stephen) Kim
 
orbits-escape-velocity.pptx
orbits-escape-velocity.pptxorbits-escape-velocity.pptx
orbits-escape-velocity.pptx
minhajuddin82
 
Chapter 06
Chapter 06Chapter 06
Chapter 06
Cristina Merilles
 

Similar to SatellitePaper.docx (20)

Xray discovery of_a_dwarf_galaxy_galaxy_collision
Xray discovery of_a_dwarf_galaxy_galaxy_collisionXray discovery of_a_dwarf_galaxy_galaxy_collision
Xray discovery of_a_dwarf_galaxy_galaxy_collision
 
New Post-DART Collision Period for the Didymos System: Evidence for Anomalous...
New Post-DART Collision Period for the Didymos System: Evidence for Anomalous...New Post-DART Collision Period for the Didymos System: Evidence for Anomalous...
New Post-DART Collision Period for the Didymos System: Evidence for Anomalous...
 
Extra Practice Questions for Gravitation
Extra Practice Questions for GravitationExtra Practice Questions for Gravitation
Extra Practice Questions for Gravitation
 
Control Systems For Projectile DefenseRyan MendivilMar.docx
Control Systems For Projectile DefenseRyan MendivilMar.docxControl Systems For Projectile DefenseRyan MendivilMar.docx
Control Systems For Projectile DefenseRyan MendivilMar.docx
 
AIAA Paper dlt228
AIAA Paper dlt228AIAA Paper dlt228
AIAA Paper dlt228
 
2583
25832583
2583
 
Remote Sensing fundamentals
Remote Sensing fundamentalsRemote Sensing fundamentals
Remote Sensing fundamentals
 
Remote sensing with all fundamentals
Remote sensing with all  fundamentalsRemote sensing with all  fundamentals
Remote sensing with all fundamentals
 
Rs fundamentals
Rs fundamentalsRs fundamentals
Rs fundamentals
 
The Dvorak Technique
The Dvorak TechniqueThe Dvorak Technique
The Dvorak Technique
 
Deep Impact Poster Revised
Deep Impact Poster RevisedDeep Impact Poster Revised
Deep Impact Poster Revised
 
An almost dark galaxy with the mass of the Small Magellanic Cloud
An almost dark galaxy with the mass of the Small Magellanic CloudAn almost dark galaxy with the mass of the Small Magellanic Cloud
An almost dark galaxy with the mass of the Small Magellanic Cloud
 
Initial Calibration of CCD Images for the Dark Energy Survey- Deokgeun Park
Initial Calibration of CCD Images for the Dark Energy Survey- Deokgeun ParkInitial Calibration of CCD Images for the Dark Energy Survey- Deokgeun Park
Initial Calibration of CCD Images for the Dark Energy Survey- Deokgeun Park
 
ongc satellite communication
 ongc satellite communication ongc satellite communication
ongc satellite communication
 
Making maps from sattelites to uav's
Making maps   from sattelites to uav'sMaking maps   from sattelites to uav's
Making maps from sattelites to uav's
 
Spectroscopic confirmation of_the_existence_of_large_diffuse_galaxies_in_the_...
Spectroscopic confirmation of_the_existence_of_large_diffuse_galaxies_in_the_...Spectroscopic confirmation of_the_existence_of_large_diffuse_galaxies_in_the_...
Spectroscopic confirmation of_the_existence_of_large_diffuse_galaxies_in_the_...
 
PLATE TECTONICS.pptx
PLATE TECTONICS.pptxPLATE TECTONICS.pptx
PLATE TECTONICS.pptx
 
Payloads Presentation for Project A.D.I.O.S.
Payloads Presentation for Project A.D.I.O.S.Payloads Presentation for Project A.D.I.O.S.
Payloads Presentation for Project A.D.I.O.S.
 
orbits-escape-velocity.pptx
orbits-escape-velocity.pptxorbits-escape-velocity.pptx
orbits-escape-velocity.pptx
 
Chapter 06
Chapter 06Chapter 06
Chapter 06
 

SatellitePaper.docx