SlideShare a Scribd company logo
1 of 65
Funded by
EU GCC CLEAN ENERGY NETWORK II
Join us: www.eugcc-cleanergy.net
Contact us: contact@eugcc-cleanergy.net
Dra. Ana Rosa Lagunas
Director,
Photovoltaic Solar Energy department
Funded by
Agenda
• Solar potential & technologies
• PV Technology in a simplified way
• Selection criteria
Funded by
EU GCC CLEAN ENERGY NETWORK II
Join us: www.eugcc-cleanergy.net
Contact us: contact@eugcc-cleanergy.net
Funded by
What is solar photovoltaic energy?
Advantages
Photovoltaic Solar Energy obtained by direct conversion of solar radiation into
electricity
• Technical Advantages of a technical nature:
– Direct conversion solar-electricity
– Safe, inexhaustible and non-polluting source
– Modularity of facilities
– Possibility of architectural integration
– Opportunities for technological development and innovation
• Economic and social benefits:
– Proximity citizen-energy distributed
– Return on Investment
– Job creation associated with the manufacture of equipment and the maintenance of the
facilities
– Abundant solar resource
Funded by
Solar photovoltaic cell
Photovoltaic solar cells are the basic constituents of photovoltaic modules:
• Devices that convert light directly into electricity
• Composed of semiconductor materials: silicon or compounds of II-VI, III-V
(multi-junctions), as well as organic and hybrid substances
• Produce direct current
Funded by
Solar photovoltaic cell
• Absorption capacity depending on the technology and the wavelength of the
radiation
Funded by
Solar photovoltaic modules
• Photovoltaic modules formed by the electrical connection (series and
parallel) of the photovoltaic solar cells
Funded by
Solar photovoltaic Systems
• The PV plant includes the PV Generation part (DC) and the Balance of System
(BOS), as the components to convert DC into AC and feed it into the grid (if
needed))
• Prices of BOS have evolved in last 10 years
Source: “A Strategic Research Agenda for Photovoltaic Solar Energy. PV Technology Platform 2007,
Funded by
Solar photovoltaic Systems
• The PV plant includes the PV Generation part (DC) and the Balance of System
(BOS), as the components to convert DC into AC and feed it into the grid (if
needed))
• Prices of BOS have evolved in last 10 years
Source: “A Strategic Research Agenda for Photovoltaic Solar Energy. PV Technology Platform 2007,
Funded by
Solar photovoltaic Systems: Grid
connected
• Usually, electricity is sold to the utility
• Self consumption is increasing its market share
Funded by
Types of photovoltaic installations:
Grid-connected
• Grid-Connected Photovoltaic Systems:
– Mass production plants
– Roofing facilities for buildings
– Architectural integration (facade coverings, parasols, pergolas, slats in windows, tiles ...)
Funded by
Types of photovoltaic installations:
Stand-alone
• Stand-Alone Photovoltaic Systems
– Isolated homes, resorts
– Traffic signals
– Chargers for consumer products
Funded by
EU GCC CLEAN ENERGY NETWORK II
Join us: www.eugcc-cleanergy.net
Contact us: contact@eugcc-cleanergy.net
Funded by
Photovoltaic Technologies
• Based on silicon: monocrystalline silicon, multicrystalline silicon, hybrid cells
• Thin film: amorphous or amorphous / microcrystalline silicon, compounds of
group II-VI, organic materials
• Photovoltaic Concentration (CPV)
• Emerging technologies: perovskites
Funded by
Maximum solar photovoltaic cell
efficiencies evolution
http://www.nrel.gov/pv/assets/images/efficien
cy_chart.jpg
Funded by
Monocrystalline Silicon Photovoltaic
Modules
• Si wafer from monocrystalline Si ingot grown by Czocralski and sliced
• Different technologies, from simple screen printed very mature although
until the highest efficiency
• Rigid module
• Spectacular cost reduction in the last years
• Technological variants for high efficiency
development (PERT, PERC, bifacials, …
• High laboratory cell efficiency: 25.2% (SunPower) for backcontact technology
Funded by
Heterojunction solar cells
• Variant of monocrystalline technology based on
Si wafer combined with thin film processes
• Heterojunction with Intrinsic Thin Layer, Sanyo
HIT)
• Maximum cell efficiency in laboratory up to
September 2016: 25.6% (Panasonic)
Funded by
Heterojunction solar cells
• A combination of heterojunction technology using high-quality amorphous
silicon, low resistance electrode technology, and a back-contact structure
developed by Kaneka Corporation.
• Achievement of the world’s highest conversion efficiency, 26.33%, in a
crystalline silicon solar cell having a practical size (180 cm2). This
achievement breaks the world record of 25.6% by ~0.7%, exceeding 26% for
the first time in the world.
Funded by
Multicrystalline Silicon Photovoltaic
Modules
• c-Si wafer from ingot usually obtained by casting
• Crystals are visible in the range of cm
• Cheaper than the monocrystalline Si because of
the technique of obtaining the ingot uses much
less energy, but sharing the same starting
material
• Production characteristics (screen printed)
similar to monocrystalline Si, but lower
efficiency
• Cost reduction also based on a clear tendency
to reduce the thickness of the wafers
• Maximum cell efficiency in laboratory: 21.25%
(Trina Solar)
Funded by
Bifacial solar cells
• The concept is to use light absorption also
from the albedo.
• it was established that bifacial solar cells
can increase the power density of PV
modules compared to monofacial cells
while reducing area-related costs for PV
R. Guerrero-Lemus et al, Renewable and Sustainable
Energy Reviews, Volume 60, July 2016, Pages 1533–
1549
Funded by
Multijunction solar cells
• Photons with energies below the band gap are not absorbed, whereas
photons with energies above the band gap are not fully converted to
electrical energy because of thermalization of charge
• A single junction solar cell can not produce above its Shocley-Queisser limit
Funded by
Multijunction solar cells
• Reduce thermalization and non-
absorption power losses
Funded by
Thin film technologies
• Very thin layers of semiconductor material, on the order of
several microns
• The most mature technologies are based on silicon (amorphous
and microcrystalline), on CdTe and CI (G) S
• Technologies based on organic materials are not in the same
degree of maturity as the previous ones
• These technologies require a substrate as support.
• Depending on the type of substrate, the module may have
different characteristics such as flexibility and transparency
• Cell and module are manufactured simultaneously, so lower use
of material and in time
• Low consumption of raw materials
• The company First Solar (CdTe)
• Maximum cell efficiency in laboratory: 22.1% (First Solar)
Funded by
Concentrated Photovoltaic
• It uses optical elements (lenses or mirrors) to focus the sunlight on the
photovoltaic cell.
• High concentration: reaches up to 1000x and low concentration below 10x
• It uses only direct solar radiation so it needs precise solar trackers and is only
profitable in specific geographical areas with high direct radiation
• It is in an initial state of commercialization
Funded by
Concentrated Photovoltaic
• It is used with high
performance cells (faces) so
that costs are reduced by
decreasing the amount of
semiconductor material
• Variety of solutions, there is
no single concept (high and
low concentration, different
cells and optical elements)
• Maximum cell efficiency in
laboratory: 46.0% (Fraunhofer
ISE / Soitec)
Funded by
New materials: Perovskites
• Hybrid compound with perovskite structure
formed by organic-inorganic material
• Typical structure CH3NH3PbX3, where X is a
halogen atom such as iodine, bromine or chlorine
• Spectacular increase in efficiency in the last 3 years
• Simple production process; does not need high
temperatures
• Low cost of production
• Problems of degradation
• Transparent, light, flexible and efficient Emerging
technology
• Maximum cell efficiency (not stabilized) in
laboratory: 21.0% (EPFL)
Funded by
EU GCC CLEAN ENERGY NETWORK II
Join us: www.eugcc-cleanergy.net
Contact us: contact@eugcc-cleanergy.net
Funded by
VALUE CHAIN ​​OF PHOTOVOLTAIC SOLAR ENERGY:
CRYSTALLINE SILICON
Polisilicon Ingot Wafer Cell Module System
• Si purification
• Crystallization
• Slicing
• Superficial Processes
(Chemical, thermal…)
• Connections
• Assembly
• Lamination
• Distribution
• Balance of system (BOS)
• Instalation
Funded by
Solar Cell Fabrication (majority
technology)
Texturization P-n junction PSG etching
Anti Reflection
Coating
Contact
Definition
Contact
Formation
Edge Isolation Solar Cell
Characterization
Funded by
Solar Cell Interconnection (majority
technology)
• Electrical connection between cells
• Material: Copper Tape Covered with SnPb
Alloy
• The elimination of Pb presents one of the
technological and cost challenges
Funded by
Solar Module
Glass
Cells
Encapsulant
Backsheet
Connections box
Frame
Encapsulant
Funded by
PV module characterization
MAXIMUM POWER VS TEMPERATURE
70
80
90
100
110
120
130
140
0 20 40 60 80 100 120
TEMPERATURE (ºC)
POWER(W)
Manufacturer Measured Points High Temperature Points Least Squares Straight line Uncertainty+ Uncertainty-
Funded by
PV module characterization
• Visual inspection
• I-V curve
• Isolation tests
• Wet leakage current tests
• Irradiance/Temperature matrix
MAXIMUM POWER VS TEMPERATURE
70
80
90
100
110
120
130
140
0 20 40 60 80 100 120
TEMPERATURE (ºC)
POWER(W)
Manufacturer Measured Points High Temperature Points Least Squares Straight line Uncertainty+ Uncertainty-
Funded by
PV plant components
• Among all the considerations for the cash flow analysis of a PV
plant it is of great importance to have confident values of
performance, cost and durability of PV components
• Groups of experts worldwide are working together in order to
elaborate PV standards that can provide the certitudes for
longterm PV components performance (IEC)
• International standards allow testing the PV components in
order to be able to certify their capacities of operation
• That scheme is also extended to the PV plant itself (IECRE)
Funded by
Certification Scheme
• Why certification tests?
• They are not just a requirement of power companies.
• From the point of view of the end user they serve to:
• Verify that the products are reliable.
• Ensure reasonable and maintained operation for years.
• Avoid risks during installation and operation.
• From the point of view of designers and manufacturers, they serve to:
• Test your designs against parameters common to other
producers.
• Define the scope of the guarantees.
TO CERTIFY TO DECLARE CONFORMITY TO STANDARDS
Funded by
Module Design and Security
Certification
Regulations related to the product qualification-certification
IEC 61215 ed2.0
Crystalline silicon terrestrial photovoltaic (PV) modules - Design
qualification and type approval
International
IEC 61646 ed2.0
Thin-film terrestrial photovoltaic (PV) modules - Design qualification
and type approval
International
IEC 61730-1
ed1.2
Photovoltaic (PV) module safety qualification - Part 1: Requirements
for construction
International
IEC 61730-2
ed1.1
Photovoltaic (PV) module safety qualification - Part 2: Requirements
for testing
International
IEC 62941 TS
Guideline for increased confidence in PV module design qualification
and type approval
International
UL 1703 ed.3 Standard for Flat-Plate Photovoltaic Modules and Panels U.S.
Valid Pending for approval
Funded by
Module Design and Security
Certification
IEC standards in the process of approval applicable to the qualification-certification process
IEC 61215-1 Ed.1 Design qualification and type approval - Part 1: Requirements for testing International
IEC 61215-1-1 Ed. 1
Design qualification and type approval - Part 1-1: Special requirements for testing of
crystalline silicon photovoltaic (PV) modules
International
IEC 61215-1-2 Ed.1
Terrestrial photovoltaic (PV) modules - Design qualification and type approval - Part 1-2:
Special requirements for testing of cadmium telluride (CdTe) photovoltaic (PV) modules
International
IEC 61215-1-3 Ed.1
Terrestrial photovoltaic (PV) modules - Design qualification and type approval - Part 1-3:
Special requirements for testing of amorphous silicon (a-Si) and microcrystalline silicon
(c-Si) photovoltaic (PV) modules
International
IEC 61215-1-4 Ed.1
Terrestrial photovoltaic (PV) modules - Design qualification and type approval - Part 1-4:
Special requirements for testing of copper indium gallium selenide (CIGS) and copper
indium selenide (CIS) photovoltaic (PV) modules
International
IEC 61215-2 Ed.1
Terrestrial photovoltaic (PV) modules - Design qualification and type approval - Part 2:
Test procedures
International
IEC 61730-1 ed2 Photovoltaic (PV) module safety qualification - Part 1: Requirements for construction International
IEC 61730-2 ed2 Photovoltaic (PV) module safety qualification - Part 2: Requirements for testing International
IEC 62915 TS Photovoltaic (PV) modules - Retesting for type approval, design and safety qualification. International
Funded by
Module Operation and Degradation
Degradation standards
Another standard to evaluate operation
EN 50380 Datasheet and nameplate information for photovoltaic modules Europe
IEC 61853-1 ed1.0
Photovoltaic (PV) module performance testing and energy rating - Part 1: Irradiance and temperature
performance measurements and power rating
International
IEC 61853-2 ed.1.0
Photovoltaic (PV) modules performance testing and energy rating - Part 2: Spectral response, incidence
angle and module operating temperature measurements
International
IEC 61853-4 ed.1.0
Photovoltaic (PV) module performance testing and energy rating – Part 4: Standard reference climatic
profiles (proposed IEC 61853-4)
International
IEC 62804 Ed. 1.0 System voltage durability qualification test for crystalline silicon modules International
IEC 61701 ed2.0 Salt mist corrosion testing of photovoltaic (PV) modules International
IEC 62716 Ed.1 Photovoltaic (PV) modules - Ammonia corrosion testing International
ASTM E1597
Standard Test Method for Saltwater Pressure Immersion and Temperature Testing of Photovoltaic
Modules for Marine Environments
U.S.
IEC 60068-2-68 Environmental testing - Part 2: Tests - Test L: Dust and sand International
IEC 61345 ed1.0 UV test for photovoltaic (PV) modules International
IEC 62782 Ed. 1.0 Dynamic mechanical load testing for photovoltaic (PV) modules International
IEC 62938 Ed.1 Non-uniform snow load testing for photovoltaic (PV) modules. International
IEC 62759-1 Ed. 1.0
Transportation testing of photovoltaic (PV) modules - Part 1: Transportation and shipping of PV module
stacks
International
IEC 62916 TS: Bypass diode electrostatic discharge susceptibility testing for photovoltaic modules International
Funded by
Solar Photovoltaic Devices
Characterization
Characterization of solar photovoltaic devices (cells and modules)
IEC 60891 ed2.0
Photovoltaic devices - Procedures for temperature and irradiance corrections to measured I-V
characteristics
International
IEC 60904-1 ed2.0 Photovoltaic devices - Part 1: Measurement of photovoltaic current-voltage characteristics International
IEC 60904-2 ed2.0 Photovoltaic devices - Part 2: Requirements for reference solar devices International
IEC 60904-3 ed2.0
Photovoltaic devices - Part 3: Measurement principles for terrestrial photovoltaic (PV) solar devices
with reference spectral irradiance data
International
IEC 60904-4 ed1.0
Photovoltaic devices - Part 4: Reference solar devices - Procedures for establishing calibration
traceability
International
IEC 60904-5 ed2.0
Photovoltaic devices - Part 5: Determination of the equivalent cell temperature (ECT) of photovoltaic
(PV) devices by the open-circuit voltage method
International
IEC 60904-7 ed3.0
Photovoltaic devices - Part 7: Computation of the spectral mismatch correction for measurements of
photovoltaic devices
International
IEC 60904-8 ed3.0 Photovoltaic devices - Part 8: Measurement of spectral response of a photovoltaic (PV) device International
IEC 60904-9 ed2.0 Photovoltaic devices - Part 9: Solar simulator performance requirements International
IEC 60904-10 ed2.0 Photovoltaic devices - Part 10: Methods of linearity measurement International
Funded by
Solar Photovoltaic Devices
Characterization
Characterization standard drafts
IEC 60904-1 ed3.0 Photovoltaic devices - Part 1: Measurement of photovoltaic current-voltage characteristics International
IEC 60904-1-1 ed1.0
Photovoltaic devices - Part 1-1: Measurement of current-voltage characteristics of multi-junction
photovoltaic devices
International
IEC 60904-3 ed3.0
Photovoltaic devices - Part 3: Measurement principles for terrestrial photovoltaic (PV) solar devices
with reference spectral irradiance data
International
IEC 60904-7 ed4.0
Photovoltaic devices - Part 7: Computation of the spectral mismatch correction for measurements of
photovoltaic devices
International
IEC 60904-8-1:
Photovoltaic devices - Part 8-1: Measurement of spectral responsivity of multi-junction photovoltaic
(PV) devices
International
IEC 60904-9 ed3.0 Photovoltaic devices - Part 9: Solar simulator performance requirements International
IEC 60904-9-1 ed1.0
Photovoltaic devices - Part 9-1: Collimated beam solar simulator performance requirements (proposed
IEC 60904-9-1)
International
IEC 60904-11 ed1.0
Photovoltaic devices - Part 11: Measurement of initial light-induced degradation of crystalline silicon
solar cells and photovoltaic modules
International
IEC/TS 60904-12 Ed1.0 Photovoltaic devices - Part 12: Infrared thermography of photovoltaic modules International
IEC/TS 60904-13 Ed1.0 Photovoltaic devices - Part 13: Electroluminescence of photovoltaic modules (82/901/NP) International
IEC 60904-14 ed1.0
Photovoltaic devices – Part 14: Outdoor infrared thermography of photovoltaic modules and plants
(proposed IEC 60904-14 or alternatively IEC 60904-12-2)
International
IEC 60904-1-2 ed.1
Photovoltaic devices - Part 1-2: Measurement of current-voltage characteristics of bifacial photovoltaic
(PV) devices
International
Funded by
Concentration Photovoltaics (CPV)
IEC 62108 ed1.0 Concentrator photovoltaic (CPV) modules and assemblies - Design qualification and type approval International
IEC 62108 ed2.0 Concentrator photovoltaic (CPV) modules and assemblies - Design qualification and type approval International
IEC 62670-1 ed1.0 Photovoltaic concentrators (CPV) - Performance testing - Part 1: Standard conditions International
IEC 62670-2 Ed. 1.0 Concentrator photovoltaic (CPV) performance testing - Part 2: Energy measurement International
IEC 62670-3 Ed. 1.0
Concentrator photovoltaic (CPV) performance testing - Part 3: Performance Measurements and Power
Rating
International
IEC 62688 ed1.0 Concentrator photovoltaic (CPV) module and assembly safety qualification International
UL 8703 Outline of Investigation for Concentrator Photovoltaic Modules and Assemblies U.S.
IEC 62817 ed1.0 “Photovoltaic systems-Design qualification of solar trackers” International
Funded by
Module Design and Security
Certification
Components
IEC 60529 ed2.2 Degrees of protection provided by enclosures (IP Code) International
IEC 62790 Ed. 1.0 Junction boxes for photovoltaic modules - Safety requirements and tests International
IEC 62852 Ed. 1.0 Connectors for DC-application in photovoltaic systems - Safety requirements and tests International
EN 50521 Connectors for photovoltaic systems - Safety requirements and tests Europe
UL 4703 Outline of Investigation for Photovoltaic Wire U.S.
UL 3730 Outline of Investigation for Photovoltaic Junction Boxes U.S.
UL 6703 Outline of Investigation for Connectors for Use in Photovoltaic Systems U.S.
UL 2703 Rack mounting systems and clamping devices for flat-plate PV modules and panels U.S.
Funded by
Materials
IEC 62788-1-2 Ed.1
Measurement procedures for materials used in photovoltaic modules - Part 1-2: Encapsulants -
Measurement of volume resistivity of photovoltaic encapsulation and backsheet materials
International
IEC 62788-1-4 Ed.1
Measurement procedures for materials used in photovoltaic modules; Part 1-4:Encapsulants -
Measurement of optical transmittance and calculation of the solar-weighted photon transmittance,
yellowness index, and UV cut-off frequency
International
IEC 62788-1-5 Ed.1
Measurement procedures for materials used in photovoltaic modules - Part 1-5: Encapsulants -
Measurement of change in linear dimensions of sheet encapsulation material resulting from applied
thermal conditions
International
IEC 62788-1-6 Ed.1
Encapsulants - Test methods for determining the degree of cure in Ethylene-Vinyl Acetate encapsulation
for photovoltaic module
International
IEC 62788-2 Ed.1
Measurement procedures for materials used in photovoltaic modules - Part 2: Polymeric materials used
for frontsheets and backsheets
International
IEC 62788-5-1 Ed.1
Measurement procedures for materials used in photovoltaic modules – Part 5-1 Suggested test methods
for use with edge seal materials (proposed future IEC 62788-5-1)
International
IEC 62788-6-2 Ed.1.
Measurement procedures for materials used in photovoltaic modules – Part 6-2: Moisture permeation
testing with polymeric films
International
IEC 62788-5-2 Ed.1
Measurement procedures for materials used in photovoltaic modules - Part 5-2: Edge-Seal durability
evaluation guideline
International
IEC 62788-7-2 TS Ed.1
PNW/TS 82-913 Ed.1, Measurement procedures for materials used in photovoltaic modules - Part 7-2:
Environmental exposures - Accelerated weathering tests of polymeric materials
International
IEC 62805-1 Ed.1
IEC 62805-1 Ed.1: Method for measuring photovoltaic (PV) glass - Part 1: Measurement of total haze and
spectral distribution of haze
International
IEC 62805-2 Ed.1
IEC 62805-2 Ed.1: Method for measuring photovoltaic (PV) glass - Part 2: Measurement of transmittance
and reflectance
International
ANSI Z97.1 Safety Glazing Materials Used in Buildings - Safety Performance Specifications and Methods of Test U.S.
Funded by
Other standards: inverters
EN 50530
Overall efficiency of grid connected photovoltaic inverters. Test methods for measuring static and
dynamic efficiency of PV inverters
EU
EN 50524 Data sheet and name plate for photovoltaic inverters EU
IEC 62109-1 ed1.0 Safety of power converters for use in photovoltaic power systems - Part 1: General requirements International
IEC 62109-2 ed1.0
Safety of power converters for use in photovoltaic power systems - Part 2: Particular requirements for
inverters
International
IEC 62116 Utility-interconnected photovoltaic inverters - Test procedure of islanding prevention measures International
IEC 61683 Photovoltaic systems - Power conditioners - Procedure for measuring efficiency International
UL 1741 ed.2
Standard for Inverters, Converters, Controllers and Interconnection System Equipment for Use With
Distributed Energy Resources
U.S.
IEC TS 62910 Ed1 Test procedure of LVRT for utility-interconnected PV inverter International
IEC 62891 Overall efficiency of grid-connected photovoltaic inverters International
UNE 206007-1 Requirements for connecting to the power system. Part 1: Grid-connected inverters Spain
UNE 206007-2
Requirements for connecting to the power system. Part 2: Requirements concerning system security for
installations containing inverters
Spain
Funded by
Other standards: systems
IEC 62446
Grid connected PV systems - Minimum system documentation, commissioning tests and inspection
requirements
International
IEC/TS 62738 Ed.1 Design guidelines and recommendations for photovoltaic power plants International
IEC/TS 61724-1 Ed.1 Photovoltaic system energy performance – Part 1: Monitoring International
IEC/TS 61724-2 Ed.1 Photovoltaic system energy performance – Part 2: Capacity evaluation method International
IEC/TS 61724-3 Ed.1 Photovoltaic system energy performance – Part 3: Energy evaluation method International
IEC/TS 61724-4 Ed.1 Photovoltaic system energy performance – Part 4: Degradation rate evaluation method International
IEC 62446-2 Grid connected photovoltaic (PV) systems – Part 2: Maintenance of PV systems International
IEC 629xx TS Ed.1 Information model for availability of photovoltaic (PV) power systems
International
IEC XXXX Terrestrial photovoltaic (PV) systems - Guideline for increased confidence in PV system installation International
IEC 63027 DC arc detection and interruption in photovoltaic power systems International
Funded by
Durability - Severity
IEC 61215 Increased
• IEC standards for module qualification do not guarantee long-term operation
(reliability) or predict life-time (durability).
• The current trend is to increase the severities specified in IEC 61215 as
follows:
• Increase the number of cycles and duration of the test, typically by a factor
of approximately 2 X
• Increasing the upper temperature limits (eg 90 ° C instead of 85 ° C in
thermal cycles)
• To submit to the same modules to several climatic tests that in the original
norm would go in different sequences.
• Apply current in tests to represent the actual operating conditions (wet heat
with current)
• Add dynamic and static loads to simulate the action of wind and snow
• Increase the number and type of intermediate evaluations and diagnoses
(EL, isolates, dark curves ... ..etc.)
Funded by
Durability - Severity
IEC 61215 Increased
• Very useful for establishing comparisons between different module designs
• Reliably reproduces some degradation mechanisms (PID)
• The extended thermal cycles are effective to reproduce thermomechanical wear
But…
• They do not contemplate the possibility of simultaneously applying degradation
actions that can cause specific failure modes if they occur under real operating
conditions.
• Only degradations are simulated in a limited time
• They do not provide a model to simulate power loss and do not establish
correlation factor between accelerated test and actual operating conditions.
• These tests beyond the qualification are not particularized according to the
climates
• The effects of radiation (especially UV) may be underestimated.
• Most of the tests are performed in dark conditions or by applying polarization
currents that do not have to reproduce the operating conditions of the PV
modules under real solar conditions
Funded by
Durability - Severity IEC 61215 Increased:
New project of standard IEC 62892
• Standardization initiative that aims to provide the end user with the selection of
the PV modules of their installation depending on the climate where they will
operate and the type of installation (above ground or roof)
• Climate zones are described in IEC 60721-2-1 Ed.1 Classification of
environmental conditions - Part 2-1: Environmental conditions that appear in
nature - Temperature and humidity
• Warm climate: (warm temperate and dry)
• Extremely warm and dry: temperature mean values ​​range from + 8 ° C to
+43 ° C and the maximum absolute humidity is 24 g / m3.
• Warm and humid: temperature mean values ​​range from + 17 ° C to +33 ° C
the maximum absolute humidity of 30 g / m3.
IEC 62892 Comparative testing of PV modules to differentiate performance in
multiple climates and applications
Funded by
Durability - Severity IEC 61215 Increased:
Standard IEC 62892
• The purpose of the IEC 62892 standard is to define a classification system
based on specific tests to establish an indicator of the long-term reliability of the
flat PV modules depending on the different types of climate and the conditions of
use.
• Part 1 General test requirements
• Part 2 Mechanical and thermal cycling tests (welding and breaking of cells)
Part 3 Defines the UV aging test. The purpose of the standard is to identify
the effects that can be caused by exposure to sunlight for a prolonged
period.
• Part 4 Specific conditions to demonstrate greater durability in hot climates or
rooftop installations involving high operating temperatures
• Part 5 Specific conditions to demonstrate greater durability in hot and humid
climates
IEC 62892 Comparative testing of PV modules to differentiate performance in
multiple climates and applications
Funded by
Durability - Severity IEC 61215 Increased:
Standard IEC 62892
Funded by
Durability - Severity IEC 61215 Increased:
Standard IEC 62892
Funded by
EU GCC CLEAN ENERGY NETWORK II
Join us: www.eugcc-cleanergy.net
Contact us: contact@eugcc-cleanergy.net
Funded by
Grid connected photovoltaic Systems
• Solar Resource and Electrical Production.
• Design and prior dimensioning of IFVs (pre-projects).
• Analysis of solutions and study of alternatives.
• Optimization of PV projects.
• Technical-Economic Evaluation of PV Projects: Contracts EPCs, O & M and
Due-Diligence.
• Field Measurement / Inspection; Commissioning tests. Analysis of monitored
data
Funded by
Grid connected photovoltaic Systems
Evaluation of the solar resource at the location
0
50
100
150
200
250
Enero
Febrero
M
arzo
Abril
M
ayo
Junio
Julio
Agosto
Septiem
bre
O
ctubre
N
oviem
bre
D
iciem
bre
kWh/m2
PVGIS
Meteonorm
SoDa
0
50
100
150
200
250
Enero
Febrero
M
arzo
Abril
M
ayo
Junio
Julio
Agosto
Septiem
bre
O
ctubre
Noviem
bre
Diciem
bre
Energía(kWh)
0
50
100
150
200
250
Radiación(kWh/m2)
Energía horizontal
Energía inclinada
Radiación horizontal
Radiación inclinada
Mean solar irradiance values ​​in the
horizontal plane for the considered
location.
Funded by
Grid connected photovoltaic Systems
Design of the photovoltaic system (I)
Evaluation of various configurations:
• Planning of the installation: power to install, technical characteristics of the
possible components, modularity of the different sub-installations, distribution on
the ground, among others
• Calculation of the installation: studies of solar tracking, possibilities of grouping
module / inverter and simulation of the complete configuration chosen for each
of the sub-installations.
• Technical design, which will include the electrical design, lay-out of the plant
monitoring systems and civil works in every case.
• Economic report of the project
• Calculation of PR
• Calculation of LCOE
 decision among the various alternatives
Funded by
Grid connected photovoltaic Systems
Design of the photovoltaic system (II)
Project design of the PV plant:
• Site identification
• Solar resource evaluation
• PV plant components
• Technical design of the PV plant
• Modularity
• Selection of components
• Simulation of the PV plant
• Energy production after simulation
• Economic analysis of the design
• Costs (CAPEX, OPEX)
• Considerations for economic analysis
• LCOE calculations
Funded by
Grid connected photovoltaic Systems
Funded by
Grid connected photovoltaic Systems
Trackers
2-axes Azimut
Funded by
Grid connected photovoltaic Systems
Trackers
Polar Horizontal
Funded by
Grid connected photovoltaic Systems
Construction of the PV plant
• Civil works
• General construction and installation of components
Main points to consider:
• Quality of components
• Plant commissioning
• Maintenance and Operation activities.
Funded by
Basic concepts for Quality of components
• All equipment certified and manufacturer with regular
factory audits by certification entity
• Selected samples for tracking and control of potential lost of
efficiency associated to shipment
• On arrival, in plant inspection sampling (mostly if access
route is complex): Electroluminescence, I-V curve
• Similar tests when installation finished (analysis of induced
stresses) mostly if mobile parts exist
Funded by
Grid connected photovoltaic Systems:
Commissioning activities
Initial acceptance tests:
• Monitoring of energy production of sub-
plants
• Performance ratio evaluation (PR)
• Follow-up of trends in main indicators of
plant performance
• Specifics of sandy environment
• Control of components guarantees
• M&O general activities (including
monitoring system M&O)
 Reference level established
Final acceptance tests
• Establish control strategies
• Continue with control of components
guarantees
• Optimize M&O operations
Funded by
Basic concepts for M&O operations
• Optimum monitoring system with detection of trends
towards failure
• For PV modules regular guarantee controls (power and
construction)
• Very well trained people in all activities
Funded by
Grid connected photovoltaic Systems:
Commissioning activities
Initial acceptance tests:
• Monitoring of energy production of sub-
plants
• Performance ratio evaluation (PR)
• Follow-up of trends in main indicators of
plant performance
• Specifics of sandy environment
• Control of components guarantees
• M&O general activities (including
monitoring system M&O)
 Reference level established
Final acceptance tests
• Establish control strategies
• Continue with control of components
guarantees
• Optimize M&O operations
Funded by

More Related Content

What's hot

Rooftop Solar Systems
Rooftop Solar SystemsRooftop Solar Systems
Rooftop Solar SystemsJay Ranvir
 
Solar energy and PV cells
Solar energy and PV cellsSolar energy and PV cells
Solar energy and PV cellsSurbhi Agarwal
 
A presentation on solar inverter
A presentation on solar inverterA presentation on solar inverter
A presentation on solar inverterVishal Biswakarma
 
Photovoltaic(pv) module and transparent solar panels
Photovoltaic(pv) module and transparent solar panelsPhotovoltaic(pv) module and transparent solar panels
Photovoltaic(pv) module and transparent solar panelspadamatikona swapnika
 
Performance Improvement of Solar PV Cells using Various Cooling Methods: A Re...
Performance Improvement of Solar PV Cells using Various Cooling Methods: A Re...Performance Improvement of Solar PV Cells using Various Cooling Methods: A Re...
Performance Improvement of Solar PV Cells using Various Cooling Methods: A Re...rahulmonikasharma
 
Solar photovoltaic technology
Solar photovoltaic technologySolar photovoltaic technology
Solar photovoltaic technologyEr Madhuri More
 
Solar photovoltaic systems
Solar photovoltaic systemsSolar photovoltaic systems
Solar photovoltaic systemsanish_hercules
 
A Report on solar power plant installation
A Report on solar power plant installationA Report on solar power plant installation
A Report on solar power plant installationAmitesh Kumar
 
Bidirectional DC-DC isolated converter
Bidirectional DC-DC isolated converterBidirectional DC-DC isolated converter
Bidirectional DC-DC isolated converterVasudeva Guptha
 
Design and Development of 5MW Solar PV Grid Connected Power Plant using PVsyst
Design and Development of 5MW Solar PV Grid Connected Power Plant using PVsystDesign and Development of 5MW Solar PV Grid Connected Power Plant using PVsyst
Design and Development of 5MW Solar PV Grid Connected Power Plant using PVsystIRJET Journal
 
MPPT Solar Charge Controller
MPPT Solar Charge ControllerMPPT Solar Charge Controller
MPPT Solar Charge ControllerShashank Narayan
 
Assessment of Photovoltaic Module Failures in the Field
Assessment of Photovoltaic Module Failures in the FieldAssessment of Photovoltaic Module Failures in the Field
Assessment of Photovoltaic Module Failures in the FieldLeonardo ENERGY
 
Solar PV design and installation
Solar PV design and installationSolar PV design and installation
Solar PV design and installationAYISHA NAZIBA
 
How solar rooftop system works
How solar rooftop system worksHow solar rooftop system works
How solar rooftop system worksHardik Parmar
 
Solar PV Model With MPPT (P & O method)
Solar PV Model With MPPT (P & O method)Solar PV Model With MPPT (P & O method)
Solar PV Model With MPPT (P & O method)SURBHI PATHAK
 

What's hot (20)

Rooftop Solar Systems
Rooftop Solar SystemsRooftop Solar Systems
Rooftop Solar Systems
 
Solar energy and PV cells
Solar energy and PV cellsSolar energy and PV cells
Solar energy and PV cells
 
A presentation on solar inverter
A presentation on solar inverterA presentation on solar inverter
A presentation on solar inverter
 
Designing Solar PV Systems (Rooftops)
Designing Solar PV Systems(Rooftops)Designing Solar PV Systems(Rooftops)
Designing Solar PV Systems (Rooftops)
 
Photovoltaic(pv) module and transparent solar panels
Photovoltaic(pv) module and transparent solar panelsPhotovoltaic(pv) module and transparent solar panels
Photovoltaic(pv) module and transparent solar panels
 
Performance Improvement of Solar PV Cells using Various Cooling Methods: A Re...
Performance Improvement of Solar PV Cells using Various Cooling Methods: A Re...Performance Improvement of Solar PV Cells using Various Cooling Methods: A Re...
Performance Improvement of Solar PV Cells using Various Cooling Methods: A Re...
 
Understanding Solar Energy
Understanding Solar EnergyUnderstanding Solar Energy
Understanding Solar Energy
 
Solar photovoltaic technology
Solar photovoltaic technologySolar photovoltaic technology
Solar photovoltaic technology
 
Solar photovoltaic systems
Solar photovoltaic systemsSolar photovoltaic systems
Solar photovoltaic systems
 
Solar PV System
Solar PV SystemSolar PV System
Solar PV System
 
A Report on solar power plant installation
A Report on solar power plant installationA Report on solar power plant installation
A Report on solar power plant installation
 
Solar system design
Solar system designSolar system design
Solar system design
 
Bidirectional DC-DC isolated converter
Bidirectional DC-DC isolated converterBidirectional DC-DC isolated converter
Bidirectional DC-DC isolated converter
 
Jakson_report_Final
Jakson_report_FinalJakson_report_Final
Jakson_report_Final
 
Design and Development of 5MW Solar PV Grid Connected Power Plant using PVsyst
Design and Development of 5MW Solar PV Grid Connected Power Plant using PVsystDesign and Development of 5MW Solar PV Grid Connected Power Plant using PVsyst
Design and Development of 5MW Solar PV Grid Connected Power Plant using PVsyst
 
MPPT Solar Charge Controller
MPPT Solar Charge ControllerMPPT Solar Charge Controller
MPPT Solar Charge Controller
 
Assessment of Photovoltaic Module Failures in the Field
Assessment of Photovoltaic Module Failures in the FieldAssessment of Photovoltaic Module Failures in the Field
Assessment of Photovoltaic Module Failures in the Field
 
Solar PV design and installation
Solar PV design and installationSolar PV design and installation
Solar PV design and installation
 
How solar rooftop system works
How solar rooftop system worksHow solar rooftop system works
How solar rooftop system works
 
Solar PV Model With MPPT (P & O method)
Solar PV Model With MPPT (P & O method)Solar PV Model With MPPT (P & O method)
Solar PV Model With MPPT (P & O method)
 

Viewers also liked

S4 oman wind energy potential anemometers 2016
S4 oman wind energy potential   anemometers 2016S4 oman wind energy potential   anemometers 2016
S4 oman wind energy potential anemometers 2016CETN
 
Tracxn Research - Solar Energy Landscape, February 2017
Tracxn Research - Solar Energy Landscape, February 2017Tracxn Research - Solar Energy Landscape, February 2017
Tracxn Research - Solar Energy Landscape, February 2017Tracxn
 
Solar energy
Solar energySolar energy
Solar energyAmeenah
 
Project on Solar Energy
Project on Solar EnergyProject on Solar Energy
Project on Solar Energygagneeshkaur
 
Presentation on Solar energy, Wind energy and Nuclear energy.
Presentation on Solar energy, Wind energy and Nuclear energy.Presentation on Solar energy, Wind energy and Nuclear energy.
Presentation on Solar energy, Wind energy and Nuclear energy.Ishan Trivedi
 
S4 oman wind energy environment + wind 2016
S4 oman wind energy environment + wind 2016S4 oman wind energy environment + wind 2016
S4 oman wind energy environment + wind 2016CETN
 
Solar Energy Presentation
Solar Energy PresentationSolar Energy Presentation
Solar Energy PresentationKurt Kublbeck
 
Solar energy power point presentation
Solar energy power point presentation Solar energy power point presentation
Solar energy power point presentation Shrijeet Modi
 
Solar energy ppt
Solar energy pptSolar energy ppt
Solar energy pptshubhajit_b
 
Understanding the Science behind Solar Energy
Understanding the Science behind Solar EnergyUnderstanding the Science behind Solar Energy
Understanding the Science behind Solar EnergyArturo Pelayo
 
Solar energy, Uneven Heating of Earth, Wind, and Ocean Currents
Solar energy, Uneven Heating of Earth, Wind, and Ocean CurrentsSolar energy, Uneven Heating of Earth, Wind, and Ocean Currents
Solar energy, Uneven Heating of Earth, Wind, and Ocean Currentsjdlowe78
 
SOLAR ENERGY TECHNOLOGY
SOLAR ENERGY TECHNOLOGYSOLAR ENERGY TECHNOLOGY
SOLAR ENERGY TECHNOLOGYVanita Thakkar
 
Solar energy
Solar energy Solar energy
Solar energy Vivek Raj
 
Tracxn Research: Solar Energy Startup Landscape, September 2016
Tracxn Research: Solar Energy Startup Landscape, September 2016Tracxn Research: Solar Energy Startup Landscape, September 2016
Tracxn Research: Solar Energy Startup Landscape, September 2016Tracxn
 
wind energy Seminar
 wind energy Seminar wind energy Seminar
wind energy Seminarashine288
 
A Business Model for Solar Energy - SunEdison
A Business Model for Solar Energy - SunEdisonA Business Model for Solar Energy - SunEdison
A Business Model for Solar Energy - SunEdisonAlexander Osterwalder
 
Solar product business plan
Solar product business planSolar product business plan
Solar product business planIndrajith Nair
 

Viewers also liked (20)

S4 oman wind energy potential anemometers 2016
S4 oman wind energy potential   anemometers 2016S4 oman wind energy potential   anemometers 2016
S4 oman wind energy potential anemometers 2016
 
Tracxn Research - Solar Energy Landscape, February 2017
Tracxn Research - Solar Energy Landscape, February 2017Tracxn Research - Solar Energy Landscape, February 2017
Tracxn Research - Solar Energy Landscape, February 2017
 
Solar energy
Solar energySolar energy
Solar energy
 
Project on Solar Energy
Project on Solar EnergyProject on Solar Energy
Project on Solar Energy
 
Presentation on Solar energy, Wind energy and Nuclear energy.
Presentation on Solar energy, Wind energy and Nuclear energy.Presentation on Solar energy, Wind energy and Nuclear energy.
Presentation on Solar energy, Wind energy and Nuclear energy.
 
S4 oman wind energy environment + wind 2016
S4 oman wind energy environment + wind 2016S4 oman wind energy environment + wind 2016
S4 oman wind energy environment + wind 2016
 
Solar Energy Presentation
Solar Energy PresentationSolar Energy Presentation
Solar Energy Presentation
 
Solar energy power point presentation
Solar energy power point presentation Solar energy power point presentation
Solar energy power point presentation
 
Solar energy ppt
Solar energy pptSolar energy ppt
Solar energy ppt
 
Solar Energy
Solar EnergySolar Energy
Solar Energy
 
Solar Energy
Solar EnergySolar Energy
Solar Energy
 
Understanding the Science behind Solar Energy
Understanding the Science behind Solar EnergyUnderstanding the Science behind Solar Energy
Understanding the Science behind Solar Energy
 
Solar energy, Uneven Heating of Earth, Wind, and Ocean Currents
Solar energy, Uneven Heating of Earth, Wind, and Ocean CurrentsSolar energy, Uneven Heating of Earth, Wind, and Ocean Currents
Solar energy, Uneven Heating of Earth, Wind, and Ocean Currents
 
SOLAR ENERGY TECHNOLOGY
SOLAR ENERGY TECHNOLOGYSOLAR ENERGY TECHNOLOGY
SOLAR ENERGY TECHNOLOGY
 
Solar energy
Solar energy Solar energy
Solar energy
 
Tracxn Research: Solar Energy Startup Landscape, September 2016
Tracxn Research: Solar Energy Startup Landscape, September 2016Tracxn Research: Solar Energy Startup Landscape, September 2016
Tracxn Research: Solar Energy Startup Landscape, September 2016
 
A Hybrid Wind and Solar Energy System with Battery Energy Storage for an Isol...
A Hybrid Wind and Solar Energy System with Battery Energy Storage for an Isol...A Hybrid Wind and Solar Energy System with Battery Energy Storage for an Isol...
A Hybrid Wind and Solar Energy System with Battery Energy Storage for an Isol...
 
wind energy Seminar
 wind energy Seminar wind energy Seminar
wind energy Seminar
 
A Business Model for Solar Energy - SunEdison
A Business Model for Solar Energy - SunEdisonA Business Model for Solar Energy - SunEdison
A Business Model for Solar Energy - SunEdison
 
Solar product business plan
Solar product business planSolar product business plan
Solar product business plan
 

Similar to S2 solar energy i pv

Building Integrated Photovoltaic Solar Glazing, Current & Emerging Technologies
Building Integrated Photovoltaic Solar Glazing, Current & Emerging TechnologiesBuilding Integrated Photovoltaic Solar Glazing, Current & Emerging Technologies
Building Integrated Photovoltaic Solar Glazing, Current & Emerging TechnologiesGavin Harper
 
Crystalline Silicon Solar Cells.pptx
Crystalline Silicon Solar Cells.pptxCrystalline Silicon Solar Cells.pptx
Crystalline Silicon Solar Cells.pptxPeeyush Mishra
 
Building integrated photovoltaic panels
Building integrated photovoltaic panelsBuilding integrated photovoltaic panels
Building integrated photovoltaic panelsaudrey Manga
 
CIGS Solar Cells: How and Why is their Cost Falling?
CIGS Solar Cells: How and Why is their Cost Falling?CIGS Solar Cells: How and Why is their Cost Falling?
CIGS Solar Cells: How and Why is their Cost Falling?Jeffrey Funk
 
PhotoVoltaic Panel (Theory presentation).pdf
PhotoVoltaic Panel (Theory presentation).pdfPhotoVoltaic Panel (Theory presentation).pdf
PhotoVoltaic Panel (Theory presentation).pdfFaizanAhmed396943
 
Building integrated PV - technical issues - part 1
Building integrated PV - technical issues - part 1Building integrated PV - technical issues - part 1
Building integrated PV - technical issues - part 1ENBC
 
Solar photovoltaics
Solar photovoltaicsSolar photovoltaics
Solar photovoltaicsArvind Kumar
 
Ppt on design of solar photovoltaic generation for residential building
Ppt on design of solar photovoltaic generation for residential buildingPpt on design of solar photovoltaic generation for residential building
Ppt on design of solar photovoltaic generation for residential buildingSiya Agarwal
 
GreenStudio - Chapter 4 5 4 Photovoltaics2
GreenStudio - Chapter 4 5 4 Photovoltaics2GreenStudio - Chapter 4 5 4 Photovoltaics2
GreenStudio - Chapter 4 5 4 Photovoltaics2Galala University
 
GreenStudio - Chapter 4 5 4 Photovoltaics
GreenStudio - Chapter 4 5 4 PhotovoltaicsGreenStudio - Chapter 4 5 4 Photovoltaics
GreenStudio - Chapter 4 5 4 PhotovoltaicsGalala University
 
Photovoltaic Installations
Photovoltaic InstallationsPhotovoltaic Installations
Photovoltaic InstallationsLeonardo ENERGY
 

Similar to S2 solar energy i pv (20)

Final presentation
Final presentationFinal presentation
Final presentation
 
Final presentation
Final presentationFinal presentation
Final presentation
 
seminar ppt
seminar pptseminar ppt
seminar ppt
 
Solar Companies
Solar CompaniesSolar Companies
Solar Companies
 
Pv cell
Pv cellPv cell
Pv cell
 
Building Integrated Photovoltaic Solar Glazing, Current & Emerging Technologies
Building Integrated Photovoltaic Solar Glazing, Current & Emerging TechnologiesBuilding Integrated Photovoltaic Solar Glazing, Current & Emerging Technologies
Building Integrated Photovoltaic Solar Glazing, Current & Emerging Technologies
 
Crystalline Silicon Solar Cells.pptx
Crystalline Silicon Solar Cells.pptxCrystalline Silicon Solar Cells.pptx
Crystalline Silicon Solar Cells.pptx
 
Photo
PhotoPhoto
Photo
 
Building integrated photovoltaic panels
Building integrated photovoltaic panelsBuilding integrated photovoltaic panels
Building integrated photovoltaic panels
 
Lecture 10: Solar Cell Technologies
Lecture 10: Solar Cell TechnologiesLecture 10: Solar Cell Technologies
Lecture 10: Solar Cell Technologies
 
Photovoltaic Systems
Photovoltaic SystemsPhotovoltaic Systems
Photovoltaic Systems
 
Solar Cell
Solar CellSolar Cell
Solar Cell
 
CIGS Solar Cells: How and Why is their Cost Falling?
CIGS Solar Cells: How and Why is their Cost Falling?CIGS Solar Cells: How and Why is their Cost Falling?
CIGS Solar Cells: How and Why is their Cost Falling?
 
PhotoVoltaic Panel (Theory presentation).pdf
PhotoVoltaic Panel (Theory presentation).pdfPhotoVoltaic Panel (Theory presentation).pdf
PhotoVoltaic Panel (Theory presentation).pdf
 
Building integrated PV - technical issues - part 1
Building integrated PV - technical issues - part 1Building integrated PV - technical issues - part 1
Building integrated PV - technical issues - part 1
 
Solar photovoltaics
Solar photovoltaicsSolar photovoltaics
Solar photovoltaics
 
Ppt on design of solar photovoltaic generation for residential building
Ppt on design of solar photovoltaic generation for residential buildingPpt on design of solar photovoltaic generation for residential building
Ppt on design of solar photovoltaic generation for residential building
 
GreenStudio - Chapter 4 5 4 Photovoltaics2
GreenStudio - Chapter 4 5 4 Photovoltaics2GreenStudio - Chapter 4 5 4 Photovoltaics2
GreenStudio - Chapter 4 5 4 Photovoltaics2
 
GreenStudio - Chapter 4 5 4 Photovoltaics
GreenStudio - Chapter 4 5 4 PhotovoltaicsGreenStudio - Chapter 4 5 4 Photovoltaics
GreenStudio - Chapter 4 5 4 Photovoltaics
 
Photovoltaic Installations
Photovoltaic InstallationsPhotovoltaic Installations
Photovoltaic Installations
 

More from CETN

Transforming the gcc power sector wouters cenii 17052016
Transforming the gcc power sector   wouters cenii 17052016Transforming the gcc power sector   wouters cenii 17052016
Transforming the gcc power sector wouters cenii 17052016CETN
 
Energy auditing and energy efficiency indicators
Energy auditing and energy efficiency indicatorsEnergy auditing and energy efficiency indicators
Energy auditing and energy efficiency indicatorsCETN
 
Session 2 jaap vente ecn_cenii
Session 2 jaap vente ecn_ceniiSession 2 jaap vente ecn_cenii
Session 2 jaap vente ecn_ceniiCETN
 
Session 1 daniel jansen ecn_cenii
Session 1 daniel jansen ecn_ceniiSession 1 daniel jansen ecn_cenii
Session 1 daniel jansen ecn_ceniiCETN
 
S5 RES Technical Considerations
S5 RES Technical ConsiderationsS5 RES Technical Considerations
S5 RES Technical ConsiderationsCETN
 
S4 oman wind energy the technology 2016
S4 oman wind energy the technology 2016S4 oman wind energy the technology 2016
S4 oman wind energy the technology 2016CETN
 
S4 oman wind energy speed direction 2016
S4 oman wind energy speed direction 2016S4 oman wind energy speed direction 2016
S4 oman wind energy speed direction 2016CETN
 
S4 oman wind energy site selection 2016
S4 oman wind energy site selection 2016S4 oman wind energy site selection 2016
S4 oman wind energy site selection 2016CETN
 
S4 oman wind energy potential - anemometers 2016
S4 oman wind energy potential - anemometers 2016S4 oman wind energy potential - anemometers 2016
S4 oman wind energy potential - anemometers 2016CETN
 
S4 oman wind energy lidar sodar 2016
S4 oman wind energy lidar sodar 2016S4 oman wind energy lidar sodar 2016
S4 oman wind energy lidar sodar 2016CETN
 
S3 solar energy
S3 solar energyS3 solar energy
S3 solar energyCETN
 
S1 brief description of renewable energy options muscat
S1 brief description of renewable energy options muscatS1 brief description of renewable energy options muscat
S1 brief description of renewable energy options muscatCETN
 

More from CETN (12)

Transforming the gcc power sector wouters cenii 17052016
Transforming the gcc power sector   wouters cenii 17052016Transforming the gcc power sector   wouters cenii 17052016
Transforming the gcc power sector wouters cenii 17052016
 
Energy auditing and energy efficiency indicators
Energy auditing and energy efficiency indicatorsEnergy auditing and energy efficiency indicators
Energy auditing and energy efficiency indicators
 
Session 2 jaap vente ecn_cenii
Session 2 jaap vente ecn_ceniiSession 2 jaap vente ecn_cenii
Session 2 jaap vente ecn_cenii
 
Session 1 daniel jansen ecn_cenii
Session 1 daniel jansen ecn_ceniiSession 1 daniel jansen ecn_cenii
Session 1 daniel jansen ecn_cenii
 
S5 RES Technical Considerations
S5 RES Technical ConsiderationsS5 RES Technical Considerations
S5 RES Technical Considerations
 
S4 oman wind energy the technology 2016
S4 oman wind energy the technology 2016S4 oman wind energy the technology 2016
S4 oman wind energy the technology 2016
 
S4 oman wind energy speed direction 2016
S4 oman wind energy speed direction 2016S4 oman wind energy speed direction 2016
S4 oman wind energy speed direction 2016
 
S4 oman wind energy site selection 2016
S4 oman wind energy site selection 2016S4 oman wind energy site selection 2016
S4 oman wind energy site selection 2016
 
S4 oman wind energy potential - anemometers 2016
S4 oman wind energy potential - anemometers 2016S4 oman wind energy potential - anemometers 2016
S4 oman wind energy potential - anemometers 2016
 
S4 oman wind energy lidar sodar 2016
S4 oman wind energy lidar sodar 2016S4 oman wind energy lidar sodar 2016
S4 oman wind energy lidar sodar 2016
 
S3 solar energy
S3 solar energyS3 solar energy
S3 solar energy
 
S1 brief description of renewable energy options muscat
S1 brief description of renewable energy options muscatS1 brief description of renewable energy options muscat
S1 brief description of renewable energy options muscat
 

Recently uploaded

885MTAMount DMU University Bachelor's Diploma in Education
885MTAMount DMU University Bachelor's Diploma in Education885MTAMount DMU University Bachelor's Diploma in Education
885MTAMount DMU University Bachelor's Diploma in Educationz xss
 
Russian Call Girls Nashik Anjali 7001305949 Independent Escort Service Nashik
Russian Call Girls Nashik Anjali 7001305949 Independent Escort Service NashikRussian Call Girls Nashik Anjali 7001305949 Independent Escort Service Nashik
Russian Call Girls Nashik Anjali 7001305949 Independent Escort Service Nashikranjana rawat
 
Philippines-Native-Chicken.pptx file copy
Philippines-Native-Chicken.pptx file copyPhilippines-Native-Chicken.pptx file copy
Philippines-Native-Chicken.pptx file copyKristineRoseCorrales
 
Sustainable Clothing Strategies and Challenges
Sustainable Clothing Strategies and ChallengesSustainable Clothing Strategies and Challenges
Sustainable Clothing Strategies and ChallengesDr. Salem Baidas
 
9873940964 High Profile Call Girls Delhi |Defence Colony ( MAYA CHOPRA ) DE...
9873940964 High Profile  Call Girls  Delhi |Defence Colony ( MAYA CHOPRA ) DE...9873940964 High Profile  Call Girls  Delhi |Defence Colony ( MAYA CHOPRA ) DE...
9873940964 High Profile Call Girls Delhi |Defence Colony ( MAYA CHOPRA ) DE...Delhi Escorts
 
Hi FI Call Girl Ahmedabad 7397865700 Independent Call Girls
Hi FI Call Girl Ahmedabad 7397865700 Independent Call GirlsHi FI Call Girl Ahmedabad 7397865700 Independent Call Girls
Hi FI Call Girl Ahmedabad 7397865700 Independent Call Girlsssuser7cb4ff
 
Call Girls South Delhi Delhi reach out to us at ☎ 9711199012
Call Girls South Delhi Delhi reach out to us at ☎ 9711199012Call Girls South Delhi Delhi reach out to us at ☎ 9711199012
Call Girls South Delhi Delhi reach out to us at ☎ 9711199012sapnasaifi408
 
9873940964 Full Enjoy 24/7 Call Girls Near Shangri La’s Eros Hotel, New Delhi
9873940964 Full Enjoy 24/7 Call Girls Near Shangri La’s Eros Hotel, New Delhi9873940964 Full Enjoy 24/7 Call Girls Near Shangri La’s Eros Hotel, New Delhi
9873940964 Full Enjoy 24/7 Call Girls Near Shangri La’s Eros Hotel, New Delhidelih Escorts
 
VIP Kolkata Call Girl Kalighat 👉 8250192130 Available With Room
VIP Kolkata Call Girl Kalighat 👉 8250192130  Available With RoomVIP Kolkata Call Girl Kalighat 👉 8250192130  Available With Room
VIP Kolkata Call Girl Kalighat 👉 8250192130 Available With Roomdivyansh0kumar0
 
Dwarka Call Girls 9643097474 Phone Number 24x7 Best Services
Dwarka Call Girls 9643097474 Phone Number 24x7 Best ServicesDwarka Call Girls 9643097474 Phone Number 24x7 Best Services
Dwarka Call Girls 9643097474 Phone Number 24x7 Best Servicesnajka9823
 
Air pollution soli pollution water pollution noise pollution land pollution
Air pollution soli pollution water pollution noise pollution land pollutionAir pollution soli pollution water pollution noise pollution land pollution
Air pollution soli pollution water pollution noise pollution land pollutionrgxv72jrgc
 
VIP Call Girls Service Bandlaguda Hyderabad Call +91-8250192130
VIP Call Girls Service Bandlaguda Hyderabad Call +91-8250192130VIP Call Girls Service Bandlaguda Hyderabad Call +91-8250192130
VIP Call Girls Service Bandlaguda Hyderabad Call +91-8250192130Suhani Kapoor
 
原版定制copy澳洲詹姆斯库克大学毕业证JCU毕业证成绩单留信学历认证保障质量
原版定制copy澳洲詹姆斯库克大学毕业证JCU毕业证成绩单留信学历认证保障质量原版定制copy澳洲詹姆斯库克大学毕业证JCU毕业证成绩单留信学历认证保障质量
原版定制copy澳洲詹姆斯库克大学毕业证JCU毕业证成绩单留信学历认证保障质量sehgh15heh
 
Mumbai Call Girls, 💞 Prity 9892124323, Navi Mumbai Call girls
Mumbai Call Girls, 💞  Prity 9892124323, Navi Mumbai Call girlsMumbai Call Girls, 💞  Prity 9892124323, Navi Mumbai Call girls
Mumbai Call Girls, 💞 Prity 9892124323, Navi Mumbai Call girlsPooja Nehwal
 

Recently uploaded (20)

885MTAMount DMU University Bachelor's Diploma in Education
885MTAMount DMU University Bachelor's Diploma in Education885MTAMount DMU University Bachelor's Diploma in Education
885MTAMount DMU University Bachelor's Diploma in Education
 
Russian Call Girls Nashik Anjali 7001305949 Independent Escort Service Nashik
Russian Call Girls Nashik Anjali 7001305949 Independent Escort Service NashikRussian Call Girls Nashik Anjali 7001305949 Independent Escort Service Nashik
Russian Call Girls Nashik Anjali 7001305949 Independent Escort Service Nashik
 
Sexy Call Girls Patel Nagar New Delhi +918448380779 Call Girls Service in Del...
Sexy Call Girls Patel Nagar New Delhi +918448380779 Call Girls Service in Del...Sexy Call Girls Patel Nagar New Delhi +918448380779 Call Girls Service in Del...
Sexy Call Girls Patel Nagar New Delhi +918448380779 Call Girls Service in Del...
 
Philippines-Native-Chicken.pptx file copy
Philippines-Native-Chicken.pptx file copyPhilippines-Native-Chicken.pptx file copy
Philippines-Native-Chicken.pptx file copy
 
Sustainable Clothing Strategies and Challenges
Sustainable Clothing Strategies and ChallengesSustainable Clothing Strategies and Challenges
Sustainable Clothing Strategies and Challenges
 
9873940964 High Profile Call Girls Delhi |Defence Colony ( MAYA CHOPRA ) DE...
9873940964 High Profile  Call Girls  Delhi |Defence Colony ( MAYA CHOPRA ) DE...9873940964 High Profile  Call Girls  Delhi |Defence Colony ( MAYA CHOPRA ) DE...
9873940964 High Profile Call Girls Delhi |Defence Colony ( MAYA CHOPRA ) DE...
 
Hot Sexy call girls in Nehru Place, 🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Nehru Place, 🔝 9953056974 🔝 escort ServiceHot Sexy call girls in Nehru Place, 🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Nehru Place, 🔝 9953056974 🔝 escort Service
 
Green Banking
Green Banking Green Banking
Green Banking
 
Hi FI Call Girl Ahmedabad 7397865700 Independent Call Girls
Hi FI Call Girl Ahmedabad 7397865700 Independent Call GirlsHi FI Call Girl Ahmedabad 7397865700 Independent Call Girls
Hi FI Call Girl Ahmedabad 7397865700 Independent Call Girls
 
Call Girls South Delhi Delhi reach out to us at ☎ 9711199012
Call Girls South Delhi Delhi reach out to us at ☎ 9711199012Call Girls South Delhi Delhi reach out to us at ☎ 9711199012
Call Girls South Delhi Delhi reach out to us at ☎ 9711199012
 
9873940964 Full Enjoy 24/7 Call Girls Near Shangri La’s Eros Hotel, New Delhi
9873940964 Full Enjoy 24/7 Call Girls Near Shangri La’s Eros Hotel, New Delhi9873940964 Full Enjoy 24/7 Call Girls Near Shangri La’s Eros Hotel, New Delhi
9873940964 Full Enjoy 24/7 Call Girls Near Shangri La’s Eros Hotel, New Delhi
 
VIP Kolkata Call Girl Kalighat 👉 8250192130 Available With Room
VIP Kolkata Call Girl Kalighat 👉 8250192130  Available With RoomVIP Kolkata Call Girl Kalighat 👉 8250192130  Available With Room
VIP Kolkata Call Girl Kalighat 👉 8250192130 Available With Room
 
Gandhi Nagar (Delhi) 9953330565 Escorts, Call Girls Services
Gandhi Nagar (Delhi) 9953330565 Escorts, Call Girls ServicesGandhi Nagar (Delhi) 9953330565 Escorts, Call Girls Services
Gandhi Nagar (Delhi) 9953330565 Escorts, Call Girls Services
 
Dwarka Call Girls 9643097474 Phone Number 24x7 Best Services
Dwarka Call Girls 9643097474 Phone Number 24x7 Best ServicesDwarka Call Girls 9643097474 Phone Number 24x7 Best Services
Dwarka Call Girls 9643097474 Phone Number 24x7 Best Services
 
FULL ENJOY Call Girls In kashmiri gate (Delhi) Call Us 9953056974
FULL ENJOY Call Girls In  kashmiri gate (Delhi) Call Us 9953056974FULL ENJOY Call Girls In  kashmiri gate (Delhi) Call Us 9953056974
FULL ENJOY Call Girls In kashmiri gate (Delhi) Call Us 9953056974
 
Air pollution soli pollution water pollution noise pollution land pollution
Air pollution soli pollution water pollution noise pollution land pollutionAir pollution soli pollution water pollution noise pollution land pollution
Air pollution soli pollution water pollution noise pollution land pollution
 
VIP Call Girls Service Bandlaguda Hyderabad Call +91-8250192130
VIP Call Girls Service Bandlaguda Hyderabad Call +91-8250192130VIP Call Girls Service Bandlaguda Hyderabad Call +91-8250192130
VIP Call Girls Service Bandlaguda Hyderabad Call +91-8250192130
 
Call Girls In R.K. Puram 9953056974 Escorts ServiCe In Delhi Ncr
Call Girls In R.K. Puram 9953056974 Escorts ServiCe In Delhi NcrCall Girls In R.K. Puram 9953056974 Escorts ServiCe In Delhi Ncr
Call Girls In R.K. Puram 9953056974 Escorts ServiCe In Delhi Ncr
 
原版定制copy澳洲詹姆斯库克大学毕业证JCU毕业证成绩单留信学历认证保障质量
原版定制copy澳洲詹姆斯库克大学毕业证JCU毕业证成绩单留信学历认证保障质量原版定制copy澳洲詹姆斯库克大学毕业证JCU毕业证成绩单留信学历认证保障质量
原版定制copy澳洲詹姆斯库克大学毕业证JCU毕业证成绩单留信学历认证保障质量
 
Mumbai Call Girls, 💞 Prity 9892124323, Navi Mumbai Call girls
Mumbai Call Girls, 💞  Prity 9892124323, Navi Mumbai Call girlsMumbai Call Girls, 💞  Prity 9892124323, Navi Mumbai Call girls
Mumbai Call Girls, 💞 Prity 9892124323, Navi Mumbai Call girls
 

S2 solar energy i pv

  • 1. Funded by EU GCC CLEAN ENERGY NETWORK II Join us: www.eugcc-cleanergy.net Contact us: contact@eugcc-cleanergy.net Dra. Ana Rosa Lagunas Director, Photovoltaic Solar Energy department
  • 2. Funded by Agenda • Solar potential & technologies • PV Technology in a simplified way • Selection criteria
  • 3. Funded by EU GCC CLEAN ENERGY NETWORK II Join us: www.eugcc-cleanergy.net Contact us: contact@eugcc-cleanergy.net
  • 4. Funded by What is solar photovoltaic energy? Advantages Photovoltaic Solar Energy obtained by direct conversion of solar radiation into electricity • Technical Advantages of a technical nature: – Direct conversion solar-electricity – Safe, inexhaustible and non-polluting source – Modularity of facilities – Possibility of architectural integration – Opportunities for technological development and innovation • Economic and social benefits: – Proximity citizen-energy distributed – Return on Investment – Job creation associated with the manufacture of equipment and the maintenance of the facilities – Abundant solar resource
  • 5. Funded by Solar photovoltaic cell Photovoltaic solar cells are the basic constituents of photovoltaic modules: • Devices that convert light directly into electricity • Composed of semiconductor materials: silicon or compounds of II-VI, III-V (multi-junctions), as well as organic and hybrid substances • Produce direct current
  • 6. Funded by Solar photovoltaic cell • Absorption capacity depending on the technology and the wavelength of the radiation
  • 7. Funded by Solar photovoltaic modules • Photovoltaic modules formed by the electrical connection (series and parallel) of the photovoltaic solar cells
  • 8. Funded by Solar photovoltaic Systems • The PV plant includes the PV Generation part (DC) and the Balance of System (BOS), as the components to convert DC into AC and feed it into the grid (if needed)) • Prices of BOS have evolved in last 10 years Source: “A Strategic Research Agenda for Photovoltaic Solar Energy. PV Technology Platform 2007,
  • 9. Funded by Solar photovoltaic Systems • The PV plant includes the PV Generation part (DC) and the Balance of System (BOS), as the components to convert DC into AC and feed it into the grid (if needed)) • Prices of BOS have evolved in last 10 years Source: “A Strategic Research Agenda for Photovoltaic Solar Energy. PV Technology Platform 2007,
  • 10. Funded by Solar photovoltaic Systems: Grid connected • Usually, electricity is sold to the utility • Self consumption is increasing its market share
  • 11. Funded by Types of photovoltaic installations: Grid-connected • Grid-Connected Photovoltaic Systems: – Mass production plants – Roofing facilities for buildings – Architectural integration (facade coverings, parasols, pergolas, slats in windows, tiles ...)
  • 12. Funded by Types of photovoltaic installations: Stand-alone • Stand-Alone Photovoltaic Systems – Isolated homes, resorts – Traffic signals – Chargers for consumer products
  • 13. Funded by EU GCC CLEAN ENERGY NETWORK II Join us: www.eugcc-cleanergy.net Contact us: contact@eugcc-cleanergy.net
  • 14. Funded by Photovoltaic Technologies • Based on silicon: monocrystalline silicon, multicrystalline silicon, hybrid cells • Thin film: amorphous or amorphous / microcrystalline silicon, compounds of group II-VI, organic materials • Photovoltaic Concentration (CPV) • Emerging technologies: perovskites
  • 15. Funded by Maximum solar photovoltaic cell efficiencies evolution http://www.nrel.gov/pv/assets/images/efficien cy_chart.jpg
  • 16. Funded by Monocrystalline Silicon Photovoltaic Modules • Si wafer from monocrystalline Si ingot grown by Czocralski and sliced • Different technologies, from simple screen printed very mature although until the highest efficiency • Rigid module • Spectacular cost reduction in the last years • Technological variants for high efficiency development (PERT, PERC, bifacials, … • High laboratory cell efficiency: 25.2% (SunPower) for backcontact technology
  • 17. Funded by Heterojunction solar cells • Variant of monocrystalline technology based on Si wafer combined with thin film processes • Heterojunction with Intrinsic Thin Layer, Sanyo HIT) • Maximum cell efficiency in laboratory up to September 2016: 25.6% (Panasonic)
  • 18. Funded by Heterojunction solar cells • A combination of heterojunction technology using high-quality amorphous silicon, low resistance electrode technology, and a back-contact structure developed by Kaneka Corporation. • Achievement of the world’s highest conversion efficiency, 26.33%, in a crystalline silicon solar cell having a practical size (180 cm2). This achievement breaks the world record of 25.6% by ~0.7%, exceeding 26% for the first time in the world.
  • 19. Funded by Multicrystalline Silicon Photovoltaic Modules • c-Si wafer from ingot usually obtained by casting • Crystals are visible in the range of cm • Cheaper than the monocrystalline Si because of the technique of obtaining the ingot uses much less energy, but sharing the same starting material • Production characteristics (screen printed) similar to monocrystalline Si, but lower efficiency • Cost reduction also based on a clear tendency to reduce the thickness of the wafers • Maximum cell efficiency in laboratory: 21.25% (Trina Solar)
  • 20. Funded by Bifacial solar cells • The concept is to use light absorption also from the albedo. • it was established that bifacial solar cells can increase the power density of PV modules compared to monofacial cells while reducing area-related costs for PV R. Guerrero-Lemus et al, Renewable and Sustainable Energy Reviews, Volume 60, July 2016, Pages 1533– 1549
  • 21. Funded by Multijunction solar cells • Photons with energies below the band gap are not absorbed, whereas photons with energies above the band gap are not fully converted to electrical energy because of thermalization of charge • A single junction solar cell can not produce above its Shocley-Queisser limit
  • 22. Funded by Multijunction solar cells • Reduce thermalization and non- absorption power losses
  • 23. Funded by Thin film technologies • Very thin layers of semiconductor material, on the order of several microns • The most mature technologies are based on silicon (amorphous and microcrystalline), on CdTe and CI (G) S • Technologies based on organic materials are not in the same degree of maturity as the previous ones • These technologies require a substrate as support. • Depending on the type of substrate, the module may have different characteristics such as flexibility and transparency • Cell and module are manufactured simultaneously, so lower use of material and in time • Low consumption of raw materials • The company First Solar (CdTe) • Maximum cell efficiency in laboratory: 22.1% (First Solar)
  • 24. Funded by Concentrated Photovoltaic • It uses optical elements (lenses or mirrors) to focus the sunlight on the photovoltaic cell. • High concentration: reaches up to 1000x and low concentration below 10x • It uses only direct solar radiation so it needs precise solar trackers and is only profitable in specific geographical areas with high direct radiation • It is in an initial state of commercialization
  • 25. Funded by Concentrated Photovoltaic • It is used with high performance cells (faces) so that costs are reduced by decreasing the amount of semiconductor material • Variety of solutions, there is no single concept (high and low concentration, different cells and optical elements) • Maximum cell efficiency in laboratory: 46.0% (Fraunhofer ISE / Soitec)
  • 26. Funded by New materials: Perovskites • Hybrid compound with perovskite structure formed by organic-inorganic material • Typical structure CH3NH3PbX3, where X is a halogen atom such as iodine, bromine or chlorine • Spectacular increase in efficiency in the last 3 years • Simple production process; does not need high temperatures • Low cost of production • Problems of degradation • Transparent, light, flexible and efficient Emerging technology • Maximum cell efficiency (not stabilized) in laboratory: 21.0% (EPFL)
  • 27. Funded by EU GCC CLEAN ENERGY NETWORK II Join us: www.eugcc-cleanergy.net Contact us: contact@eugcc-cleanergy.net
  • 28. Funded by VALUE CHAIN ​​OF PHOTOVOLTAIC SOLAR ENERGY: CRYSTALLINE SILICON Polisilicon Ingot Wafer Cell Module System • Si purification • Crystallization • Slicing • Superficial Processes (Chemical, thermal…) • Connections • Assembly • Lamination • Distribution • Balance of system (BOS) • Instalation
  • 29. Funded by Solar Cell Fabrication (majority technology) Texturization P-n junction PSG etching Anti Reflection Coating Contact Definition Contact Formation Edge Isolation Solar Cell Characterization
  • 30. Funded by Solar Cell Interconnection (majority technology) • Electrical connection between cells • Material: Copper Tape Covered with SnPb Alloy • The elimination of Pb presents one of the technological and cost challenges
  • 32. Funded by PV module characterization MAXIMUM POWER VS TEMPERATURE 70 80 90 100 110 120 130 140 0 20 40 60 80 100 120 TEMPERATURE (ºC) POWER(W) Manufacturer Measured Points High Temperature Points Least Squares Straight line Uncertainty+ Uncertainty-
  • 33. Funded by PV module characterization • Visual inspection • I-V curve • Isolation tests • Wet leakage current tests • Irradiance/Temperature matrix MAXIMUM POWER VS TEMPERATURE 70 80 90 100 110 120 130 140 0 20 40 60 80 100 120 TEMPERATURE (ºC) POWER(W) Manufacturer Measured Points High Temperature Points Least Squares Straight line Uncertainty+ Uncertainty-
  • 34. Funded by PV plant components • Among all the considerations for the cash flow analysis of a PV plant it is of great importance to have confident values of performance, cost and durability of PV components • Groups of experts worldwide are working together in order to elaborate PV standards that can provide the certitudes for longterm PV components performance (IEC) • International standards allow testing the PV components in order to be able to certify their capacities of operation • That scheme is also extended to the PV plant itself (IECRE)
  • 35. Funded by Certification Scheme • Why certification tests? • They are not just a requirement of power companies. • From the point of view of the end user they serve to: • Verify that the products are reliable. • Ensure reasonable and maintained operation for years. • Avoid risks during installation and operation. • From the point of view of designers and manufacturers, they serve to: • Test your designs against parameters common to other producers. • Define the scope of the guarantees. TO CERTIFY TO DECLARE CONFORMITY TO STANDARDS
  • 36. Funded by Module Design and Security Certification Regulations related to the product qualification-certification IEC 61215 ed2.0 Crystalline silicon terrestrial photovoltaic (PV) modules - Design qualification and type approval International IEC 61646 ed2.0 Thin-film terrestrial photovoltaic (PV) modules - Design qualification and type approval International IEC 61730-1 ed1.2 Photovoltaic (PV) module safety qualification - Part 1: Requirements for construction International IEC 61730-2 ed1.1 Photovoltaic (PV) module safety qualification - Part 2: Requirements for testing International IEC 62941 TS Guideline for increased confidence in PV module design qualification and type approval International UL 1703 ed.3 Standard for Flat-Plate Photovoltaic Modules and Panels U.S. Valid Pending for approval
  • 37. Funded by Module Design and Security Certification IEC standards in the process of approval applicable to the qualification-certification process IEC 61215-1 Ed.1 Design qualification and type approval - Part 1: Requirements for testing International IEC 61215-1-1 Ed. 1 Design qualification and type approval - Part 1-1: Special requirements for testing of crystalline silicon photovoltaic (PV) modules International IEC 61215-1-2 Ed.1 Terrestrial photovoltaic (PV) modules - Design qualification and type approval - Part 1-2: Special requirements for testing of cadmium telluride (CdTe) photovoltaic (PV) modules International IEC 61215-1-3 Ed.1 Terrestrial photovoltaic (PV) modules - Design qualification and type approval - Part 1-3: Special requirements for testing of amorphous silicon (a-Si) and microcrystalline silicon (c-Si) photovoltaic (PV) modules International IEC 61215-1-4 Ed.1 Terrestrial photovoltaic (PV) modules - Design qualification and type approval - Part 1-4: Special requirements for testing of copper indium gallium selenide (CIGS) and copper indium selenide (CIS) photovoltaic (PV) modules International IEC 61215-2 Ed.1 Terrestrial photovoltaic (PV) modules - Design qualification and type approval - Part 2: Test procedures International IEC 61730-1 ed2 Photovoltaic (PV) module safety qualification - Part 1: Requirements for construction International IEC 61730-2 ed2 Photovoltaic (PV) module safety qualification - Part 2: Requirements for testing International IEC 62915 TS Photovoltaic (PV) modules - Retesting for type approval, design and safety qualification. International
  • 38. Funded by Module Operation and Degradation Degradation standards Another standard to evaluate operation EN 50380 Datasheet and nameplate information for photovoltaic modules Europe IEC 61853-1 ed1.0 Photovoltaic (PV) module performance testing and energy rating - Part 1: Irradiance and temperature performance measurements and power rating International IEC 61853-2 ed.1.0 Photovoltaic (PV) modules performance testing and energy rating - Part 2: Spectral response, incidence angle and module operating temperature measurements International IEC 61853-4 ed.1.0 Photovoltaic (PV) module performance testing and energy rating – Part 4: Standard reference climatic profiles (proposed IEC 61853-4) International IEC 62804 Ed. 1.0 System voltage durability qualification test for crystalline silicon modules International IEC 61701 ed2.0 Salt mist corrosion testing of photovoltaic (PV) modules International IEC 62716 Ed.1 Photovoltaic (PV) modules - Ammonia corrosion testing International ASTM E1597 Standard Test Method for Saltwater Pressure Immersion and Temperature Testing of Photovoltaic Modules for Marine Environments U.S. IEC 60068-2-68 Environmental testing - Part 2: Tests - Test L: Dust and sand International IEC 61345 ed1.0 UV test for photovoltaic (PV) modules International IEC 62782 Ed. 1.0 Dynamic mechanical load testing for photovoltaic (PV) modules International IEC 62938 Ed.1 Non-uniform snow load testing for photovoltaic (PV) modules. International IEC 62759-1 Ed. 1.0 Transportation testing of photovoltaic (PV) modules - Part 1: Transportation and shipping of PV module stacks International IEC 62916 TS: Bypass diode electrostatic discharge susceptibility testing for photovoltaic modules International
  • 39. Funded by Solar Photovoltaic Devices Characterization Characterization of solar photovoltaic devices (cells and modules) IEC 60891 ed2.0 Photovoltaic devices - Procedures for temperature and irradiance corrections to measured I-V characteristics International IEC 60904-1 ed2.0 Photovoltaic devices - Part 1: Measurement of photovoltaic current-voltage characteristics International IEC 60904-2 ed2.0 Photovoltaic devices - Part 2: Requirements for reference solar devices International IEC 60904-3 ed2.0 Photovoltaic devices - Part 3: Measurement principles for terrestrial photovoltaic (PV) solar devices with reference spectral irradiance data International IEC 60904-4 ed1.0 Photovoltaic devices - Part 4: Reference solar devices - Procedures for establishing calibration traceability International IEC 60904-5 ed2.0 Photovoltaic devices - Part 5: Determination of the equivalent cell temperature (ECT) of photovoltaic (PV) devices by the open-circuit voltage method International IEC 60904-7 ed3.0 Photovoltaic devices - Part 7: Computation of the spectral mismatch correction for measurements of photovoltaic devices International IEC 60904-8 ed3.0 Photovoltaic devices - Part 8: Measurement of spectral response of a photovoltaic (PV) device International IEC 60904-9 ed2.0 Photovoltaic devices - Part 9: Solar simulator performance requirements International IEC 60904-10 ed2.0 Photovoltaic devices - Part 10: Methods of linearity measurement International
  • 40. Funded by Solar Photovoltaic Devices Characterization Characterization standard drafts IEC 60904-1 ed3.0 Photovoltaic devices - Part 1: Measurement of photovoltaic current-voltage characteristics International IEC 60904-1-1 ed1.0 Photovoltaic devices - Part 1-1: Measurement of current-voltage characteristics of multi-junction photovoltaic devices International IEC 60904-3 ed3.0 Photovoltaic devices - Part 3: Measurement principles for terrestrial photovoltaic (PV) solar devices with reference spectral irradiance data International IEC 60904-7 ed4.0 Photovoltaic devices - Part 7: Computation of the spectral mismatch correction for measurements of photovoltaic devices International IEC 60904-8-1: Photovoltaic devices - Part 8-1: Measurement of spectral responsivity of multi-junction photovoltaic (PV) devices International IEC 60904-9 ed3.0 Photovoltaic devices - Part 9: Solar simulator performance requirements International IEC 60904-9-1 ed1.0 Photovoltaic devices - Part 9-1: Collimated beam solar simulator performance requirements (proposed IEC 60904-9-1) International IEC 60904-11 ed1.0 Photovoltaic devices - Part 11: Measurement of initial light-induced degradation of crystalline silicon solar cells and photovoltaic modules International IEC/TS 60904-12 Ed1.0 Photovoltaic devices - Part 12: Infrared thermography of photovoltaic modules International IEC/TS 60904-13 Ed1.0 Photovoltaic devices - Part 13: Electroluminescence of photovoltaic modules (82/901/NP) International IEC 60904-14 ed1.0 Photovoltaic devices – Part 14: Outdoor infrared thermography of photovoltaic modules and plants (proposed IEC 60904-14 or alternatively IEC 60904-12-2) International IEC 60904-1-2 ed.1 Photovoltaic devices - Part 1-2: Measurement of current-voltage characteristics of bifacial photovoltaic (PV) devices International
  • 41. Funded by Concentration Photovoltaics (CPV) IEC 62108 ed1.0 Concentrator photovoltaic (CPV) modules and assemblies - Design qualification and type approval International IEC 62108 ed2.0 Concentrator photovoltaic (CPV) modules and assemblies - Design qualification and type approval International IEC 62670-1 ed1.0 Photovoltaic concentrators (CPV) - Performance testing - Part 1: Standard conditions International IEC 62670-2 Ed. 1.0 Concentrator photovoltaic (CPV) performance testing - Part 2: Energy measurement International IEC 62670-3 Ed. 1.0 Concentrator photovoltaic (CPV) performance testing - Part 3: Performance Measurements and Power Rating International IEC 62688 ed1.0 Concentrator photovoltaic (CPV) module and assembly safety qualification International UL 8703 Outline of Investigation for Concentrator Photovoltaic Modules and Assemblies U.S. IEC 62817 ed1.0 “Photovoltaic systems-Design qualification of solar trackers” International
  • 42. Funded by Module Design and Security Certification Components IEC 60529 ed2.2 Degrees of protection provided by enclosures (IP Code) International IEC 62790 Ed. 1.0 Junction boxes for photovoltaic modules - Safety requirements and tests International IEC 62852 Ed. 1.0 Connectors for DC-application in photovoltaic systems - Safety requirements and tests International EN 50521 Connectors for photovoltaic systems - Safety requirements and tests Europe UL 4703 Outline of Investigation for Photovoltaic Wire U.S. UL 3730 Outline of Investigation for Photovoltaic Junction Boxes U.S. UL 6703 Outline of Investigation for Connectors for Use in Photovoltaic Systems U.S. UL 2703 Rack mounting systems and clamping devices for flat-plate PV modules and panels U.S.
  • 43. Funded by Materials IEC 62788-1-2 Ed.1 Measurement procedures for materials used in photovoltaic modules - Part 1-2: Encapsulants - Measurement of volume resistivity of photovoltaic encapsulation and backsheet materials International IEC 62788-1-4 Ed.1 Measurement procedures for materials used in photovoltaic modules; Part 1-4:Encapsulants - Measurement of optical transmittance and calculation of the solar-weighted photon transmittance, yellowness index, and UV cut-off frequency International IEC 62788-1-5 Ed.1 Measurement procedures for materials used in photovoltaic modules - Part 1-5: Encapsulants - Measurement of change in linear dimensions of sheet encapsulation material resulting from applied thermal conditions International IEC 62788-1-6 Ed.1 Encapsulants - Test methods for determining the degree of cure in Ethylene-Vinyl Acetate encapsulation for photovoltaic module International IEC 62788-2 Ed.1 Measurement procedures for materials used in photovoltaic modules - Part 2: Polymeric materials used for frontsheets and backsheets International IEC 62788-5-1 Ed.1 Measurement procedures for materials used in photovoltaic modules – Part 5-1 Suggested test methods for use with edge seal materials (proposed future IEC 62788-5-1) International IEC 62788-6-2 Ed.1. Measurement procedures for materials used in photovoltaic modules – Part 6-2: Moisture permeation testing with polymeric films International IEC 62788-5-2 Ed.1 Measurement procedures for materials used in photovoltaic modules - Part 5-2: Edge-Seal durability evaluation guideline International IEC 62788-7-2 TS Ed.1 PNW/TS 82-913 Ed.1, Measurement procedures for materials used in photovoltaic modules - Part 7-2: Environmental exposures - Accelerated weathering tests of polymeric materials International IEC 62805-1 Ed.1 IEC 62805-1 Ed.1: Method for measuring photovoltaic (PV) glass - Part 1: Measurement of total haze and spectral distribution of haze International IEC 62805-2 Ed.1 IEC 62805-2 Ed.1: Method for measuring photovoltaic (PV) glass - Part 2: Measurement of transmittance and reflectance International ANSI Z97.1 Safety Glazing Materials Used in Buildings - Safety Performance Specifications and Methods of Test U.S.
  • 44. Funded by Other standards: inverters EN 50530 Overall efficiency of grid connected photovoltaic inverters. Test methods for measuring static and dynamic efficiency of PV inverters EU EN 50524 Data sheet and name plate for photovoltaic inverters EU IEC 62109-1 ed1.0 Safety of power converters for use in photovoltaic power systems - Part 1: General requirements International IEC 62109-2 ed1.0 Safety of power converters for use in photovoltaic power systems - Part 2: Particular requirements for inverters International IEC 62116 Utility-interconnected photovoltaic inverters - Test procedure of islanding prevention measures International IEC 61683 Photovoltaic systems - Power conditioners - Procedure for measuring efficiency International UL 1741 ed.2 Standard for Inverters, Converters, Controllers and Interconnection System Equipment for Use With Distributed Energy Resources U.S. IEC TS 62910 Ed1 Test procedure of LVRT for utility-interconnected PV inverter International IEC 62891 Overall efficiency of grid-connected photovoltaic inverters International UNE 206007-1 Requirements for connecting to the power system. Part 1: Grid-connected inverters Spain UNE 206007-2 Requirements for connecting to the power system. Part 2: Requirements concerning system security for installations containing inverters Spain
  • 45. Funded by Other standards: systems IEC 62446 Grid connected PV systems - Minimum system documentation, commissioning tests and inspection requirements International IEC/TS 62738 Ed.1 Design guidelines and recommendations for photovoltaic power plants International IEC/TS 61724-1 Ed.1 Photovoltaic system energy performance – Part 1: Monitoring International IEC/TS 61724-2 Ed.1 Photovoltaic system energy performance – Part 2: Capacity evaluation method International IEC/TS 61724-3 Ed.1 Photovoltaic system energy performance – Part 3: Energy evaluation method International IEC/TS 61724-4 Ed.1 Photovoltaic system energy performance – Part 4: Degradation rate evaluation method International IEC 62446-2 Grid connected photovoltaic (PV) systems – Part 2: Maintenance of PV systems International IEC 629xx TS Ed.1 Information model for availability of photovoltaic (PV) power systems International IEC XXXX Terrestrial photovoltaic (PV) systems - Guideline for increased confidence in PV system installation International IEC 63027 DC arc detection and interruption in photovoltaic power systems International
  • 46. Funded by Durability - Severity IEC 61215 Increased • IEC standards for module qualification do not guarantee long-term operation (reliability) or predict life-time (durability). • The current trend is to increase the severities specified in IEC 61215 as follows: • Increase the number of cycles and duration of the test, typically by a factor of approximately 2 X • Increasing the upper temperature limits (eg 90 ° C instead of 85 ° C in thermal cycles) • To submit to the same modules to several climatic tests that in the original norm would go in different sequences. • Apply current in tests to represent the actual operating conditions (wet heat with current) • Add dynamic and static loads to simulate the action of wind and snow • Increase the number and type of intermediate evaluations and diagnoses (EL, isolates, dark curves ... ..etc.)
  • 47. Funded by Durability - Severity IEC 61215 Increased • Very useful for establishing comparisons between different module designs • Reliably reproduces some degradation mechanisms (PID) • The extended thermal cycles are effective to reproduce thermomechanical wear But… • They do not contemplate the possibility of simultaneously applying degradation actions that can cause specific failure modes if they occur under real operating conditions. • Only degradations are simulated in a limited time • They do not provide a model to simulate power loss and do not establish correlation factor between accelerated test and actual operating conditions. • These tests beyond the qualification are not particularized according to the climates • The effects of radiation (especially UV) may be underestimated. • Most of the tests are performed in dark conditions or by applying polarization currents that do not have to reproduce the operating conditions of the PV modules under real solar conditions
  • 48. Funded by Durability - Severity IEC 61215 Increased: New project of standard IEC 62892 • Standardization initiative that aims to provide the end user with the selection of the PV modules of their installation depending on the climate where they will operate and the type of installation (above ground or roof) • Climate zones are described in IEC 60721-2-1 Ed.1 Classification of environmental conditions - Part 2-1: Environmental conditions that appear in nature - Temperature and humidity • Warm climate: (warm temperate and dry) • Extremely warm and dry: temperature mean values ​​range from + 8 ° C to +43 ° C and the maximum absolute humidity is 24 g / m3. • Warm and humid: temperature mean values ​​range from + 17 ° C to +33 ° C the maximum absolute humidity of 30 g / m3. IEC 62892 Comparative testing of PV modules to differentiate performance in multiple climates and applications
  • 49. Funded by Durability - Severity IEC 61215 Increased: Standard IEC 62892 • The purpose of the IEC 62892 standard is to define a classification system based on specific tests to establish an indicator of the long-term reliability of the flat PV modules depending on the different types of climate and the conditions of use. • Part 1 General test requirements • Part 2 Mechanical and thermal cycling tests (welding and breaking of cells) Part 3 Defines the UV aging test. The purpose of the standard is to identify the effects that can be caused by exposure to sunlight for a prolonged period. • Part 4 Specific conditions to demonstrate greater durability in hot climates or rooftop installations involving high operating temperatures • Part 5 Specific conditions to demonstrate greater durability in hot and humid climates IEC 62892 Comparative testing of PV modules to differentiate performance in multiple climates and applications
  • 50. Funded by Durability - Severity IEC 61215 Increased: Standard IEC 62892
  • 51. Funded by Durability - Severity IEC 61215 Increased: Standard IEC 62892
  • 52. Funded by EU GCC CLEAN ENERGY NETWORK II Join us: www.eugcc-cleanergy.net Contact us: contact@eugcc-cleanergy.net
  • 53. Funded by Grid connected photovoltaic Systems • Solar Resource and Electrical Production. • Design and prior dimensioning of IFVs (pre-projects). • Analysis of solutions and study of alternatives. • Optimization of PV projects. • Technical-Economic Evaluation of PV Projects: Contracts EPCs, O & M and Due-Diligence. • Field Measurement / Inspection; Commissioning tests. Analysis of monitored data
  • 54. Funded by Grid connected photovoltaic Systems Evaluation of the solar resource at the location 0 50 100 150 200 250 Enero Febrero M arzo Abril M ayo Junio Julio Agosto Septiem bre O ctubre N oviem bre D iciem bre kWh/m2 PVGIS Meteonorm SoDa 0 50 100 150 200 250 Enero Febrero M arzo Abril M ayo Junio Julio Agosto Septiem bre O ctubre Noviem bre Diciem bre Energía(kWh) 0 50 100 150 200 250 Radiación(kWh/m2) Energía horizontal Energía inclinada Radiación horizontal Radiación inclinada Mean solar irradiance values ​​in the horizontal plane for the considered location.
  • 55. Funded by Grid connected photovoltaic Systems Design of the photovoltaic system (I) Evaluation of various configurations: • Planning of the installation: power to install, technical characteristics of the possible components, modularity of the different sub-installations, distribution on the ground, among others • Calculation of the installation: studies of solar tracking, possibilities of grouping module / inverter and simulation of the complete configuration chosen for each of the sub-installations. • Technical design, which will include the electrical design, lay-out of the plant monitoring systems and civil works in every case. • Economic report of the project • Calculation of PR • Calculation of LCOE  decision among the various alternatives
  • 56. Funded by Grid connected photovoltaic Systems Design of the photovoltaic system (II) Project design of the PV plant: • Site identification • Solar resource evaluation • PV plant components • Technical design of the PV plant • Modularity • Selection of components • Simulation of the PV plant • Energy production after simulation • Economic analysis of the design • Costs (CAPEX, OPEX) • Considerations for economic analysis • LCOE calculations
  • 57. Funded by Grid connected photovoltaic Systems
  • 58. Funded by Grid connected photovoltaic Systems Trackers 2-axes Azimut
  • 59. Funded by Grid connected photovoltaic Systems Trackers Polar Horizontal
  • 60. Funded by Grid connected photovoltaic Systems Construction of the PV plant • Civil works • General construction and installation of components Main points to consider: • Quality of components • Plant commissioning • Maintenance and Operation activities.
  • 61. Funded by Basic concepts for Quality of components • All equipment certified and manufacturer with regular factory audits by certification entity • Selected samples for tracking and control of potential lost of efficiency associated to shipment • On arrival, in plant inspection sampling (mostly if access route is complex): Electroluminescence, I-V curve • Similar tests when installation finished (analysis of induced stresses) mostly if mobile parts exist
  • 62. Funded by Grid connected photovoltaic Systems: Commissioning activities Initial acceptance tests: • Monitoring of energy production of sub- plants • Performance ratio evaluation (PR) • Follow-up of trends in main indicators of plant performance • Specifics of sandy environment • Control of components guarantees • M&O general activities (including monitoring system M&O)  Reference level established Final acceptance tests • Establish control strategies • Continue with control of components guarantees • Optimize M&O operations
  • 63. Funded by Basic concepts for M&O operations • Optimum monitoring system with detection of trends towards failure • For PV modules regular guarantee controls (power and construction) • Very well trained people in all activities
  • 64. Funded by Grid connected photovoltaic Systems: Commissioning activities Initial acceptance tests: • Monitoring of energy production of sub- plants • Performance ratio evaluation (PR) • Follow-up of trends in main indicators of plant performance • Specifics of sandy environment • Control of components guarantees • M&O general activities (including monitoring system M&O)  Reference level established Final acceptance tests • Establish control strategies • Continue with control of components guarantees • Optimize M&O operations