SlideShare a Scribd company logo
Objectives
• Examine Design, Performance
& Test Considerations
• Use of Performance Tool in
Evaluating Performance Gains
• Recommendations for
Ensuring Objectives of LP
Turbine Rotor Replacement
Programs are Met
Background
• Majority of U.S. Turbines
Originally GE or Westinghouse
• 104 Turbines - 56 GE, 44
Westinghouse, 3 Siemens and 1
BBC
• LSB - 38” or 43” for GE, 40” or
44” for Westinghouse/Siemens,
52” for BBC
Table 1
1 Westinghouse TC4F-44" LSB 888,315 6,416,567 495.2 12,958 103%
2 Westinghouse TC4F-44" LSB 888,315 6,416,567 495.2 12,958 103%
1 Westinghouse TC6F-44" LSB 1,085,391 7,565,329 742.8 10,185 81%
2 Westinghouse TC6F-44" LSB 1,085,391 7,565,329 742.8 10,185 81%
1 General Electric TC4F-43" LSB 849,206 5,583,138 495.2 11,275 89%
2 General Electric TC4F-43" LSB 849,206 5,583,138 495.2 11,275 89%
1 Westinghouse TC6F-44" LSB 1,085,391 7,565,329 742.8 10,185 81%
2 Westinghouse TC6F-44" LSB 1,085,391 7,565,329 742.8 10,185 81%
1 General Electric TC6F-38" LSB 883,053 5,997,306 634.2 9,456 75%
2 Westinghouse TC6F-40" LSB 877,967 5,869,854 634.2 9,256 73%
1 General Electric TC6F-43" LSB 1,205,091 7,903,237 742.8 10,640 84%
2 General Electric TC6F-43" LSB 1,205,091 7,903,237 742.8 10,640 84%
1 Siemens TC4F-44" LSB 1,160,706 7,960,473 495.2 16,075 ------
2 Siemens TC4F-44" LSB 1,160,706 7,960,473 495.2 16,075 ------
8 Westinghouse TC4F-44" LSB 800,838 5,608,615 495.2 11,326 90%
1 General Electric TC6F-43" LSB 1,089,095 7,686,079 742.8 10,347 82%
2 Brown Boveri TC6F-52" LSB 1,178,674 8,348,511 1055.0 7,913 ------
Plant
5
6
7
9
1
2
3
4
Total LPT
Exhaust
Annulus Area,
sq.ft.
LPT Exhaust
End Loading,
lb/hr/sq.ft
Total LPT
Exhaust Steam
Flow, lb/hr
Rating, KwType
Unit
No.
Original Main Turbine Data
%End
Loading
Manufacturer
Background (contd.)
• Usual Arrangement one HP
and Two or Three LP in
Tandem
• LP Accounts for Bulk of Total
Output with About 10% From
Last Stage
Background (contd.)
• Performance of LP Turbine
–Initial & Final Conditions
–Slope & Shape of Expansion
Line
–Moisture Removal Zones
Effectiveness
–Exhaust Losses
Background (contd.)
• Exhaust Losses
–Leaving Loss
–Hood Loss
• Charged to Last Stage
• End Loading (Flow/Annulus
Area) Critical Consideration in
Operating Range/Losses
Figure 1 – LSB 38” – 40”
Figure 2 – LSB 43” – 44”
Background (contd.)
• End Loading About 13,000
Lb/Hr/Sq.Ft.
• Best Performance Close to
Choke Point (Max. Flow)
• Higher End Loading
–Higher Losses
–Narrower Useful Operating Range
Background (contd.)
• LP Rotors Classification:
–Fully Integral (U.S., European)
–Shrunk-on Disk (U.S.,
European)
–Welded Fabrication (BBC)
• Since 1980’s, Solid
Monoblock Popular
Background (contd.)
• Advantages Cited:
–Elimination of SCC
–Reduced
Inspection/Maintenance
–Improved Efficiencies
–Integrally Shrouded Blades
–Free-Standing, Longer LSB
–End Loadings up to 18,000
Lb/Hr/Sq.Ft.
Fig. 3 – Original LP Rotors
Thermal Kit Heat Balance
NSSS THERMAL POWER = 3423.01 MWT
GENERATOR OUTPUT = 1162.43 MW
0 W
1197.52 H
155,056 W 14,258,423 W
162.87 P 370 W 765.00 P
1264.18 H 1197.52 H 1197.52 H
0.40%M
10,440,812 W 11,054 W
1264.18 H 1197.52 H
2.00 IN.HGA EFF. = 77.00 %
995.70 H 14,865,549 W
PB = 722.93 805.00 P
P1STG = 575.12 1197.52 H
H1STG = 1180.64 0.25%M
DELP = 5.50%
16,745 W PB = 165.23 2,846 W 2,846 W
1166.74 H 1106.95 H 1106.95 H
337 W 337 W
7,262 W 1032.13 H 1056.78 H 1087.89 H 155,056 W 1106.95 H 1106.95 H
1166.74 H 1048.63 H 1070.50 H 1097.60 H 1155.88 H 1155.88 H
168.61 P 1156.98 H 1156.98 H
3.06 P 6.45 P 13.60 P 36.38 P 81.88 P 484.84 F 180.96 P 392.79 P 392.79 P 180.96 P
7,890,612 W 16,745 W 1264.18 H
ELEP = 977.95 H 596,072 W 753.98 P 596,072 W
TEP = 999.09 H TD = 25.00 F
2STG. RHTR. 743.43 P 0 W 596,072 W
142,124 W 171.17 P 509.84 F 1197.52 H 499.69 h
110.20 h 415.96 F Blowdown
60,629 W 16,745 W 1224.92 H 413,020 W 390.82 P 0 W
CWT = 61.45 F 1048.63 H 98,442 W 1166.74 H TD = 25.00 F 411.83 h
HWT = 75.24 F 1.50 IN.HGA 0 W 176.24 h 0 W 1STG. RHTR. 385.35 P 413,020 W
TR = 13.79 F 347,867 W 1166.74 H 173.78 P 440.96 F 0 W 420.10 h
GPM = 1,110,000 0 W Makeup 131,251 W 1097.60 H 520,142 W 1196.20 H 499.69 h
CF = 85.00 % 91.72 F 141.21 h 1149.90 H 179.15 P 1,009,092 W
672,739 W 586,489 W 1106.95 H 0 W 467.12 h
1070.50 H 1207.74 H MSEFF = 100.00 % 10.48 %M 21,418 W 1,156,867 W
250.00 P 1,240,033 W 824,482 W 422.18 h 1156.98 H 373.72 P
59.74 h 6.32 P 13.41 P 33.81 P 77.78 P 176.20 P 171.44 P TD = 5.00 F
8,306 W TD = 5.00 F TD = 5.00 F TD = 5.00 F TD = 5.00 F 344.33 h TD = 5.00 F
10,613,657 W 250.00 P 1099.02 P 14,865,549 W
10,613,657 W 91.83 F 167.31 F 202.40 F 252.25 F 305.10 F 364.11 F 365.51 F 366.99 F 433.00 F
59.74 h 60.51 h 172.31 F 135.86 h 207.40 F 171.04 h 257.25 F 221.33 h 310.10 F 275.30 h 369.11 F 336.78 h 338.26 h 341.06 h 438.00 F 411.83 h
DC = 10.0 F DC = 10.0 F DC = 10.0 F DC = 10.0 F DC = 10.0 F
178.20 h 25,590 W 369.11 F
2,365,236 W 2,356,930 W 1,552,941 W 1,106,631 W 586,489 W 341.96 h
101.83 F 177.31 F 212.40 F 262.25 F 2,187,376 W
69.84 h 145.32 h 180.61 h 231.14 h 376.99 F
350.61 h
4,251,892 W 4,251,892 W
341.96 h 250.00 P
341.96 h
X
TV
CV TV
S
GC
FPT
TV
RSV
A
CONDENSER
TANK
T
STM.
HTG.
FP
LP TURBINE
REGULATOR
CP
HTR.21 HTR.22 HTR.23 HTR.24
N T
HTR.25
MOIST.SEP.
HP TURBINE
M
N
HTR.26
M
N
W W
S
M H
H
X
X A
STEAM
GENERATOR
DP
Original LP Rotors
• From Fig. 3:
–LSB 44”
–Annulus Area 127.4 Sq.Ft.
–Total Exhaust Flow 7,890,612 Lb/Hr
–Exhaust Flow Per End =
7,890,612÷6 = 1,315,102 Lb/Hr
–Maximum Design Exhaust Flow =
1,560,000 Lb/Hr (Fig. 2)
–End Loading = 1,315,012/1,560,000
= 84%
Original LP Rotors (contd.)
• From Fig. 3:
–Annulus Velocity = 1123 Fps
–Exhaust Loss = 21.1 Btu/lb
–HP Shaft Output = 359,763 Kw
–LP Shaft Output = 821,047 Kw
= 70% of Total
• Design Heat Balance Fig. 4
–Uses Thermal Kit/Design Data
–Developed Using Performance
Tool
Fig. 4 – Original LP Rotors
Design Heat Balance
0 W 0 W
745.11 P 1197.52 H
1197.52 H
14,236,296 W
144,230 W 370 W 765.00 P
161.91 P 1197.52 H 1197.52 H
1264.13 H 0.40%M
10,465,299 W 11,063 W
1264.13 H 1197.52 H
2.00 IN.HGA EFF. = 77.00 %
995.94 H 14,842,360 W
PB = 722.48 805.00 P
P1STG = 574.24 1197.52 H
H1STG = 1180.54 0.25%M
DELP = 5.56%
16,744 W PB = 165.62 2,841 W 2,841 W
1166.82 H 1107.04 H 1107.04 H
144,230 W 337 W 337 W
7,262 W 1032.17 H 1056.84 H 1087.62 H 1264.13 H 1107.04 H 1107.04 H
1166.82 H 1048.67 H 1070.56 H 1097.38 H 1156.03 H 1156.03 H
169.00 P 1157.13 H 1157.13 H
3.07 P 6.47 P 13.57 P 36.43 P 82.09 P 484.84 F 181.39 P 393.76 P 393.76 P 181.39 P
7,914,791 W 16,744 W 1264.13 H
ELEP = 977.83 H
TEP = 999.10 H 142,559 W 595,002 W 753.98 P 595,002 W
110.33 h TD = 25.00 F
60,815 W 743.42 P 0 W 595,002 W
1048.67 H 171.57 P 509.84 F 1197.52 H 499.69 h
8,306 W 8,306 W 16,744 W 416.20 F 0 W
CWT = 61.40 F 178.20 h 1163.34 H 98,971 W 1166.82 H 1225.00 H 414,216 W 391.79 P 342.67 h
HWT = 75.21 F 1.50 IN.HGA W 176.13 h 533,424 W W TD = 25.00 F
TR = 13.80 F 377,694 W 1149.85 H 1166.82 H 386.30 P 414,216 W
GPM = 1,110,000 0 W 130,943 W 1097.38 H 174.19 P 441.20 F 420.37 h
CF = 85.00 % 91.72 F 141.35 h 585,183 W 1196.23 H 179.57 P 1,009,218 W
630,400 W 1207.77 H 1107.04 H 467.14 h 0 W
253,781 W 1070.56 H MSEFF = 100.00 % 10.47%M 841,754 W 21,348 W 1,101,743 W 510.68 h
484.70 P 1,240,981 W 1107.04 H 0 W 422.45 h 1157.13 H
61.54 h 176.61 P 499.69 h
344.53 h 0 W
158,888 W 177,808 W 195,061 W 280,585 W 342.67 h
374,363 W
6.34 P 13.38 P 33.86 P 77.98 P 171.84 P 374.64 P
TD = 8.21 F TD = 5.31 F TD = 4.16 F TD = 4.39 F TD = 3.39 F 7,942 W TD = 6.27 F
1196.17 H
3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 4,947,453 W 4,947,453 W
92.24 F 172.44 F 164.23 F 207.30 F 201.98 F 201.84 F 257.33 F 253.18 F 310.28 F 305.89 F 365.90 F 384.70 P 1007.20 P 368.65 F 438.24 F 431.97 F
61.54 h DC = 8.64 F 133.23 h DC = 12.46 F 171.01 h 171.01 h DC = 9.11 F 222.60 h DC = 9.2 F 276.38 h 338.87 h 10,627,317 W 367.03 F 368.65 F 342.67 h DC = 8.31 F 410.60 h
365.90 F 340.06 h 342.67 h
785,539 W 531,758 W 176.69 F 372,869 W 210.95 F 195,061 W 262.33 F 0 W 288,527 W 369.29 F 338.87 h 0 W
100.88 F 68.87 h 144.68 h 179.11 h 231.13 h 342.16 h
0 W 0 W 0 W 0 W 413,660 W 710,770 W 376.96 F 14,842,360 W
253,781 W 158,888 W 177,808 W 195,061 W 280,585 W 350.33 h 374,363 W 336,406 W 431.97 F
6.34 P 13.38 P 10,627,317 W 33.86 P 77.98 P 171.84 P 0 W 374.64 P 410.60 h
TD = 8.21 F TD = 5.31 F 201.84 F TD = 4.16 F TD = 4.39 F TD = 3.39 F 7,942 W 1,405,014 W 384.70 P TD = 6.27 F
171.01 h 1196.17 H 369.29 F 369.86 F
3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 342.16 h 343.06 h 4,947,453 W 4,947,453 W
92.24 F 172.44 F 164.23 F 207.30 F 201.98 F 201.84 F 257.33 F 253.18 F 310.28 F 305.89 F 365.90 F 384.70 P 1007.20 P 368.65 F 438.24 F 431.97 F
61.54 h DC = 8.64 F 133.23 h DC = 12.46 F 171.01 h 171.01 h DC = 9.11 F 222.60 h DC = 9.2 F 276.38 h 338.87 h 367.03 F 368.65 F 342.67 h DC = 8.31 F 410.60 h
340.06 h 342.67 h
785,539 W 531,758 W 176.69 F 372,869 W 210.95 F 195,061 W 262.33 F 0 W 288,527 W 369.29 F 0 W
100.88 F 68.87 h 144.68 h 179.11 h 231.13 h 342.16 h 710,770 W 376.96 F
0 W 253,781 W 0 W 0 W 0 W 413,660 W 350.33 h 336,406 W
158,888 W 177,808 W 195,061 W 280,585 W 1,405,014 W 0 W 374,363 W
6.34 P 13.38 P 33.86 P 77.98 P 171.84 P 369.29 F 374.64 P
TD = 8.21 F TD = 5.31 F TD = 4.16 F TD = 4.39 F TD = 3.39 F 7,942 W 342.16 h TD = 6.27 F
1196.17 H 384.70 P
3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 369.86 F 4,947,453 W 4,947,453 W
92.24 F 172.44 F 164.23 F 207.30 F 201.98 F 201.84 F 257.33 F 253.18 F 257.33 F 305.89 F 365.90 F 343.06 h 368.65 F 438.24 F 431.97 F
61.54 h DC = 8.64 F 133.23 h DC = 12.46 F 171.01 h 171.01 h DC = 9.11 F 222.60 h DC = 9.15 F 276.38 h 338.87 h 342.67 h DC = 8.31 F 410.60 h
0 W
785,539 W 531,758 W 176.69 F 372,869 W 210.95 F 195,061 W 262.33 F 0 W 288,527 W 369.29 F 342.16 h
100.88 F 68.87 h 144.68 h 179.11 h 231.13 h 413,660 W 710,770 W 376.96 F
0 W 0 W 0 W 0 W 350.33 h
1,405,014 W 384.70 P 0 W
369.29 F 369.86 F
342.16 h 343.06 h
S
HDP
TO COND.
TO COND.
TO COND.
TO COND.
TO COND.
TO COND.
TO COND.
TANK
2B
TANK
2C
TANK
2A
SG BLOWDOWN
BYPASS BYPASSBYPASS
Y
TV CV TV
S
FPT
TV
RSV
CONDENSER
T
FP
LP TURBINE
REGULATOR
CP
HTR.21A HTR.22A HTR.23A HTR.24A
MOIST.SEP.
HP TURBINE
HTR.26A
M
N
W
M H
H
X
X A
STEAM
GENERATOR
W
A N T
HTR.21B HTR.22B HTR.23B HTR.24B
GSC
HTR.21C HTR.22C
HTR.23C HTR.24C
COND.
DEMIN.
HTR.25A
HTR.25B
HTR.25C
FP
HTR.26B
HTR.26C
Y
FROM FP
TO MSCDT
SG BLOWDOWN
1STG.RHTR.
2STG.RHTR.
LP EXHAUST
HDP
N
M
TO COND.
TO COND.
TO COND. TO COND.
TO COND.
TO COND.
TO COND.
TO COND.
TO COND.
TO COND.
TO COND.
FPT EXHAUST
HDP
Fig. 5 – Replacement LP Rotors
Thermal Kit Heat Balance
0 W
1197.53 H
154,030 W 14,064,720 W
159.96 P 409 W 765.00 P
1264.36 H 1197.53 H 1197.53 H
0.40%M
10,409,998 W 11,307 W
1264.36 H 1197.53 H
2.00 IN.HGA EFF. = 77.00 %
996.65 H 14,726,960 W
PB = 718.83 805.00 P
P1STG = 548.55 1197.53 H
H1STG = 1179.10 0.25%M
DELP = 6.03%
17,006 W PB = 163.62 2,849 W 2,849 W
1166.93 H 1106.21 H 1106.21 H
337 W 337 W
7,536 W 1024.01 H 1049.91 H 1083.28 H 154,030 W 1106.21 H 1106.21 H
1166.93 H 1041.60 H 1064.62 H 1093.72 H 1152.37 H 1152.37 H
166.96 P 1153.53 H 1153.53 H
2.72 P 5.91 P 13.22 P 35.55 P 79.39 P 484.84 F 179.20 P 367.24 P 367.24 P 179.20 P
7,865,072 W 17,005 W 1264.36 H
ELEP = 977.51 H 650,933 W 753.98 P 650,933 W
TEP = 995.21 H TD = 25.00 F
2STG. RHTR. 743.43 P 0 W 650,933 W
151,655 W 169.50 P 509.84 F 1197.53 H 499.69 h
105.64 h 409.49 F Blowdown
60,508 W 17,006 W 1221.36 H 361,028 W 365.41 P 0 W
CWT = 61.72 F 1041.60 H 105,758 W 1166.93 H TD = 25.00 F 404.44 h
HWT = 75.41 F 1.50 IN.HGA 0 W 174.83 h 0 W 1STG. RHTR. 360.29 P 361,028 W
TR = 13.69 F 373,420 W 1166.93 H 172.09 P 434.49 F 0 W 412.89 h
GPM = 1,110,000 0 W Makeup 140,135 W 1093.72 H 514,486 W 1196.05 H 499.69 h
CF = 85.00 % 91.72 F 137.40 h 1144.59 H 177.41 P 1,011,961 W
626,473 W 581,960 W 1106.21 H 0 W 468.73 h
1064.62 H 1203.50 H MSEFF = 100.00 % 10.54 %M 21,996 W 1,021,994 W
250.00 P 1,244,302 W 844,592 W 414.93 h 1153.53 H 348.23 P
61.14 h 5.79 P 13.12 P 32.84 P 75.49 P 174.48 P 170.19 P TD = 5.00 F
8,619 W TD = 5.00 F TD = 5.00 F TD = 5.00 F TD = 5.00 F 343.48 h TD = 5.00 F
10,582,115 W 250.00 P 1096.00 P 14,726,960 W
10,582,117 W 93.26 F 163.54 F 201.32 F 250.56 F 303.05 F 363.51 F 364.90 F 366.38 F 426.25 F
61.14 h 61.94 h 168.54 F 132.08 h 206.32 F 169.95 h 255.56 F 219.62 h 308.05 F 273.19 h 368.51 F 336.16 h 337.61 h 340.41 h 431.25 F 404.44 h
DC = 10.0 F DC = 10.0 F DC = 10.0 F DC = 10.0 F DC = 10.0 F
178.20 h 23,798 W 368.51 F
2,350,851 W 2,342,232 W 1,575,624 W 1,096,445 W 581,960 W 341.33 h
103.26 F 173.54 F 211.32 F 260.56 F 2,055,950 W
71.27 h 141.53 h 179.52 h 229.41 h 376.38 F
349.93 h
4,144,845 W 4,144,845 W
341.33 h 250.00 P
341.33 h
X
TV CV TV
S
GC
FPT
TV
RSV
A
CONDENSER
TANK
T
STM.
HTG.
FP
LP TURBINE
REGULATOR
CP
HTR.21 HTR.22 HTR.23 HTR.24
N T
HTR.25
MOIST.SEP.
HP TURBINE
M
N
HTR.26
M
N
W W
S
M H
H
X
X A
STEAM
GENERATOR
DP
Replacement LP Rotors
• From Fig. 5:
–LSB 47”
–Annulus Area 139.18 Sq.Ft/End
–Annulus Velocity = 1024 Fps
–Exhaust Loss = 17.7 Btu/lb
–HP Shaft Output = 361,668 Kw
–LP Shaft Output = 838,937 Kw
–Increase in LP Shaft Output = 18
Mw
Fig. 6 – Replacement LP Rotors
Design Heat Balance
0 W 0 W
745.11 P 1197.53 H
1197.53 H
14,055,918 W
143,160 W 409 W 765.00 P
160.28 P 1197.53 H 1197.53 H
1264.32 H 0.40%M
10,432,599 W 11,311 W
1264.32 H 1197.53 H
2.00 IN.HGA EFF. = 77.00 %
996.53 H 14,716,904 W
PB = 718.63 805.00 P
P1STG = 548.23 1197.53 H
H1STG = 1179.10 0.25%M
DELP = 6.06%
17,006 W PB = 163.95 2,847 W 2,847 W
1166.95 H 1106.20 H 1106.20 H
143,160 W 337 W 337 W
7,536 W 1023.99 H 1049.91 H 1083.05 H 1264.32 H 1106.20 H 1106.20 H
1166.95 H 1041.59 H 1064.62 H 1093.52 H 1152.52 H 1152.52 H
167.30 P 1153.68 H 1153.68 H
2.73 P 5.92 P 13.19 P 35.58 P 79.58 P 484.84 F 179.56 P 368.21 P 368.21 P 179.56 P
7,877,284 W 17,004 W 1264.32 H
ELEP = 977.41 H
TEP = 995.17 H 151,954 W 649,675 W 753.98 P 649,675 W
105.70 h TD = 25.00 F
60,603 W 743.42 P 0 W 649,675 W
1041.59 H 169.84 P 509.84 F 1197.53 H 499.69 h
8,619 W 8,619 W 17,006 W 409.74 F 0 W
CWT = 61.76 F 28.06 h 1163.65 H 106,190 W 1166.95 H 1221.46 H 362,395 W 366.37 P 341.96 h
HWT = 75.43 F 1.50 IN.HGA 0 W 174.72 h 530,599 W 0 W TD = 25.00 F
TR = 13.68 F 399,648 W 1144.56 H 1166.95 H 361.24 P 362,395 W
GPM = 1,110,000 0 W 139,867 W 1093.52 H 172.43 P 434.74 F 413.17 h
CF = 85.00 % 91.72 F 137.46 h 580,659 W 1196.08 H 177.76 P 1,012,070 W
595,265 W 1203.57 H 1106.20 H 468.71 h 0 W
245,044 W 1064.62 H MSEFF = 100.00 % 10.54%M 864,371 W 21,937 W 978,099 W 510.68 h
484.70 P 1,246,580 W 1106.20 H 0 W 415.21 h 1153.68 H
61.54 h 174.83 P 499.69 h
343.65 h 0 W
168,613 W 176,866 W 193,553 W 288,124 W 341.96 h
333,345 W
5.80 P 13.09 P 32.87 P 75.66 P 170.53 P 349.15 P
TD = 7.95 F TD = 5.62 F TD = 4.14 F TD = 4.36 F TD = 3.44 F 6,184 W TD = 5.66 F
1196.06 H
3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 4,905,635 W 4,905,635 W
92.24 F 168.60 F 160.65 F 206.21 F 200.59 F 200.45 F 255.61 F 251.47 F 308.21 F 303.85 F 365.23 F 384.70 P 1007.20 P 367.97 F 431.50 F 425.84 F
61.54 h DC = 8.22 F 129.66 h DC = 13.38 F 169.61 h 169.61 h DC = 8.98 F 220.87 h DC = 9.0 F 274.28 h 338.17 h 10,593,848 W 366.36 F 367.97 F 341.96 h DC = 6.86 F 403.90 h
365.23 F 339.35 h 341.96 h
784,076 W 539,032 W 174.03 F 370,419 W 209.43 F 193,553 W 260.48 F 0 W 294,308 W 368.68 F 338.17 h 0 W
100.46 F 68.46 h 142.01 h 177.57 h 229.24 h 341.50 h
0 W 0 W 0 W 0 W 415,527 W 670,702 W 374.83 F 14,716,904 W
245,044 W 168,613 W 176,866 W 193,553 W 288,124 W 348.05 h 333,345 W 337,357 W 425.84 F
5.80 P 13.09 P 10,593,848 W 32.87 P 75.66 P 170.53 P 0 W 349.15 P 403.90 h
TD = 7.95 F TD = 5.62 F 200.45 F TD = 4.14 F TD = 4.36 F TD = 3.44 F 6,184 W 1,374,352 W 384.70 P TD = 5.66 F
169.61 h 1196.06 H 368.68 F 369.24 F
3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 341.50 h 342.41 h 4,905,635 W 4,905,635 W
92.24 F 168.60 F 160.65 F 206.21 F 200.59 F 200.45 F 255.61 F 251.47 F 308.21 F 303.85 F 365.23 F 384.70 P 1007.20 P 367.97 F 431.50 F 425.84 F
61.54 h DC = 8.22 F 129.66 h DC = 13.38 F 169.61 h 169.61 h DC = 8.98 F 220.87 h DC = 9.0 F 274.28 h 338.17 h 366.36 F 367.97 F 341.96 h DC = 6.86 F 403.90 h
339.35 h 341.96 h
784,076 W 539,032 W 174.03 F 370,419 W 209.43 F 193,553 W 260.48 F 0 W 294,308 W 368.68 F 0 W
100.46 F 68.46 h 142.01 h 177.57 h 229.24 h 341.50 h 670,702 W 374.83 F
0 W 245,044 W 0 W 0 W 0 W 415,527 W 348.05 h 337,357 W
168,613 W 176,866 W 193,553 W 288,124 W 1,374,352 W 0 W 333,345 W
5.80 P 13.09 P 32.87 P 75.66 P 170.53 P 368.68 F 349.15 P
TD = 7.95 F TD = 5.62 F TD = 4.14 F TD = 4.36 F TD = 3.44 F 6,184 W 341.50 h TD = 5.66 F
1196.06 H 384.70 P
3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 369.24 F 4,905,635 W 4,905,635 W
92.24 F 168.60 F 160.65 F 206.21 F 200.59 F 200.45 F 255.61 F 251.47 F 255.61 F 303.85 F 365.23 F 342.41 h 367.97 F 431.50 F 425.84 F
61.54 h DC = 8.22 F 129.66 h DC = 13.38 F 169.61 h 169.61 h DC = 8.98 F 220.87 h DC = 9.00 F 274.28 h 338.17 h 341.96 h DC = 6.86 F 403.90 h
0 W
784,076 W 539,032 W 174.03 F 370,419 W 209.43 F 193,553 W 260.48 F 0 W 294,308 W 368.68 F 341.50 h
100.46 F 68.46 h 142.01 h 177.57 h 229.24 h 415,527 W 670,702 W 374.83 F
0 W 0 W 0 W 0 W 348.05 h
1,374,352 W 384.70 P 0 W
368.68 F 369.24 F
341.50 h 342.41 h
S
HDP
TO COND.
TO COND.
TO COND.
TO COND.
TO COND.
TO COND.
TO COND.
TANK
2B
TANK
2C
TANK
2A
SG BLOWDOWN
BYPASS BYPASSBYPASS
Y
TV CV TV
S
FPT
TV
RSV
CONDENSER
T
FP
LP TURBINE
REGULATOR
CP
HTR.21A HTR.22A HTR.23A HTR.24A
MOIST.SEP.
HP TURBINE
HTR.26A
M
N
W
M H
H
X
X A
STEAM
GENERATOR
W
A N T
HTR.21B HTR.22B HTR.23B HTR.24B
GSC
HTR.21C HTR.22C
HTR.23C HTR.24C
COND.
DEMIN.
HTR.25A
HTR.25B
HTR.25C
FP
HTR.26B
HTR.26C
Y
FROM FP
TO MSCDT
SG BLOWDOWN
1STG.RHTR.
2STG.RHTR.
LP EXHAUST
HDP
N
M
TO COND.
TO COND.
TO COND. TO COND.
TO COND.
TO COND.
TO COND.
TO COND.
TO COND.
TO COND.
TO COND.
FPT EXHAUST
HDP
Table 3 Comparison of LP
10,465,299 10,432,599
165.62 163.95
1264.13 1264.32
585,183 580,659
82.09 79.58
1207.77 1203.57
0.4956661 0.485383418
56.36 60.76
5.899E+08 6.338E+08
9,880,115 9,851,940
533,424 530,599
36.43 35.58
1149.85 1144.56
9,346,692 9,321,342
0.4437778 0.447073832
57.916602 59.0066322
5.722E+08 5.813E+08
377,694 399,648
13.57 13.19
1087.62 1083.05
98,971 106,190
176.13 174.72
1097.38 1093.52
0.3724004 0.370675533
62.23 61.51
5.816E+08 5.734E+08
8,870,026 8,815,503
LP Turbine
LP Bowl Flow, lb/hr
LP Bowl Pressure, psia
LP Bowl Enthalpy, btu/lb
Ext. 3 Flow, lb/hr
Ext. 3 Pressure, psia
Ext. 3 Enthalpy, btu/lb
Ext. 3 Press/LP Bowl Press.
Work Done Per lb of Steam
Work Done, btu/hr
FFS3, lb/hr
Ext. 4 Flow, lb/hr
Ext. 4 Pressure, psia
Ext. 4 Enthalpy, btu/lb
FFS4, lb/hr
Ext. 4 Press/Ext. 3 Press.
Work Done Per lb of Steam
Work Done, btu/hr
Ext. 5 Steam Flow, lb/hr
Ext. 5 Pressure, psia
Ext. 5 Enthalpy BMSR, btu/lb
Ext. 5 Moisture Removed, lb/hr
Ext. 5 Moisture Enthalpy, btu/lb
Ext. 5 Enthalpy AMSR, btu/lb
Ext. 5 Press/Ext. 4 Press.
Work Done Per lb of Steam
Work Done, btu/hr
FFS5, lb/hr
Original
Replacement
LP Rotor
Table 3 Comparison of LP (contd.)
630,400 595,265
6.47 5.92
1056.84 1049.91
130,943 139,867
141.35 137.46
1070.56 1064.62
0.4770318 0.449108965
40.54 43.61
3.596E+08 3.844E+08
8,108,683 8,080,371
60,815 60,603
3.07 2.73
1032.17 1023.99
142,559 151,954
110.33 105.70
1048.67 1041.59
0.4744251 0.460255436
38.38 40.63
3.112E+08 3.283E+08
7,905,309 7,867,814
0.736725 0.736725
977.83 977.41
999.10 995.17
0.2399465 0.270262053
49.57 46.42
3.918E+08 3.653E+08
2.806E+09 2.867E+09
822,475 840,092
0.0044483 0.004493594
78.67% 78.95%
72.83% 74.06%
LP Turbine
Ext. 6 Steam Flow, lb/hr
Ext. 6 Pressure, psia
Ext. 6 Enthalpy BMSR, btu/lb
Ext. 6 Moisture Removed, lb/hr
Ext. 6 Moisture Enthalpy, btu/lb
Ext. 6 Enthalpy AMSR, btu/lb
Ext. 6 Press/Ext. 5 Press.
Work Done Per lb of Steam
MRZ Moisture Removed, lb/hr
MRZ Moisture Enthalpy, btu/lb
MRZ Enthalpy AMSR, btu/lb
Work Done, btu/hr
FFS6, lb/hr
MRZ Blowdown Steam Flow, lb/hr
MRZ Pressure, psia
LPT Efficiency (ELEP), %
LPT Efficiency (TEP), %
Original
Work Done Per lb of Steam
Work Done, btu/hr
Total Work Done in LP Turbine, btu/h
Total Work Done in LP Turbine, Kw
LP Exh. Pressure, psia
LPT ELEP, btu/lb
LPT TEP, btu/lb
Replacement
LP Rotor
LP Exhaust/LP Bowl Pressure
LP Exh. Press/Ext. 6 Press.
MRZ Press/Ext. 6 Press.
Work Done Per lb of Steam
Work Done, btu/hr
FFSMRZ, lb/hr
MRZ Enthalpy BMSR, btu/lb
Fig. 7 – Exhaust Loss Curves
0.0
5.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
0 100 200 300 400 500 600 700 800 900 1000
Exhaust Volumetric Flow, million cft/hr
DryExhaustLoss,btu/lb
Original Replacement LP Rotor
Fig. 8 – LP Expansion Lines
950
1000
1100
1200
1.5
1.5
1.6
1.6
1.7
1.7
1.8
1.8 1.9 2.0
600
500
400
300
250
200
150
120
100
80
60
50
40
30
20
16
12
10
8.0
6.0
5.0
4.0
5.00"
5.00"
4.00"
4.00"
3.50"
3.50"
3.00"
3.00"
2.50"
2.50"
2.00"
2.00"
1.50"
1.50"
1.00"
1.00"
0.75
0.75"
0.50"
520
500
480
460
440
420
400
380
360
340
320
300
280
260 240
220
200
180
160
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
9
Replacement LP Rotor
Expansion Line
Original LP
Rotor
Expansion Line
Comparison of Results
• HP Shaft Output About 2 Mw
Higher
• Exhaust Losses About 3.5
Btu/Lb Lower
• LP Shaft Output About 17.6
Mw Higher
• Internal Moisture Removal
Zones Effectiveness Assumed
Unchanged
Recommended Approach - Design
• From Thermal Kit Develop
Licensed Power HB
• Revise to Include Design,
Startup, Test, Plant Data
• Address Cycle Isolation
• Obtain/Develop New Thermal
Kit Data for Replacement LP
• Develop New
Baseline/Correction Factors
Recommended Approach - Test
• Conduct Test Close to
Licensed Thermal Power
• Steady-State Conditions
• Correct for Deviations in
Thermal Power, Throttle
Pressure, LP Exhaust
Pressure, Generator PF, etc.
• Isolate and/or Account for
Leakages
CONCLUSIONS/RECOMMENDATIONS
• Objectives May Be Met By:
–Proper Planning, Preparedness
& Execution
–Essential to Develop Accurate
Baseline Models
–Models Are Invaluable in
Examining Options, What-if
Analysis, etc.

More Related Content

What's hot

Santee Cooper Laydown Yard Project
Santee Cooper Laydown Yard ProjectSantee Cooper Laydown Yard Project
Santee Cooper Laydown Yard Project
TJ Griffin
 
1_Wheatstone Summer_30Dec2010
1_Wheatstone Summer_30Dec20101_Wheatstone Summer_30Dec2010
1_Wheatstone Summer_30Dec2010
CangTo Cheah
 
Sutherland.Padi Audit Results Hvac.V1.06 Oct 07
Sutherland.Padi Audit Results    Hvac.V1.06 Oct 07Sutherland.Padi Audit Results    Hvac.V1.06 Oct 07
Sutherland.Padi Audit Results Hvac.V1.06 Oct 07
pavang
 

What's hot (16)

10 na data sheet - flypartsguy.com - 9.2018
10 na   data sheet - flypartsguy.com - 9.201810 na   data sheet - flypartsguy.com - 9.2018
10 na data sheet - flypartsguy.com - 9.2018
 
Santee Cooper Laydown Yard Project
Santee Cooper Laydown Yard ProjectSantee Cooper Laydown Yard Project
Santee Cooper Laydown Yard Project
 
4 na data sheet - 2.2019
4 na   data sheet - 2.20194 na   data sheet - 2.2019
4 na data sheet - 2.2019
 
1_Wheatstone Summer_30Dec2010
1_Wheatstone Summer_30Dec20101_Wheatstone Summer_30Dec2010
1_Wheatstone Summer_30Dec2010
 
104700-9190 104700-9191
104700-9190 104700-9191104700-9190 104700-9191
104700-9190 104700-9191
 
Session 3 Changing the outdoor landscape with LED. Presented by Darin Ayres
Session 3  Changing the outdoor landscape with LED. Presented by Darin AyresSession 3  Changing the outdoor landscape with LED. Presented by Darin Ayres
Session 3 Changing the outdoor landscape with LED. Presented by Darin Ayres
 
Männer
MännerMänner
Männer
 
Fcf9aa955252ee7629fc934efb9e01b643cf58a4
Fcf9aa955252ee7629fc934efb9e01b643cf58a4Fcf9aa955252ee7629fc934efb9e01b643cf58a4
Fcf9aa955252ee7629fc934efb9e01b643cf58a4
 
Kubota b2110 hdb tractor service repair manual
Kubota b2110 hdb tractor service repair manualKubota b2110 hdb tractor service repair manual
Kubota b2110 hdb tractor service repair manual
 
Kubota b2110 db tractor service repair manual
Kubota b2110 db tractor service repair manualKubota b2110 db tractor service repair manual
Kubota b2110 db tractor service repair manual
 
Sutherland.Padi Audit Results Hvac.V1.06 Oct 07
Sutherland.Padi Audit Results    Hvac.V1.06 Oct 07Sutherland.Padi Audit Results    Hvac.V1.06 Oct 07
Sutherland.Padi Audit Results Hvac.V1.06 Oct 07
 
Aquaculture manual
Aquaculture manualAquaculture manual
Aquaculture manual
 
T12 0636-e s16 r-y2ptaw2-1 std 60hz
T12 0636-e s16 r-y2ptaw2-1 std 60hzT12 0636-e s16 r-y2ptaw2-1 std 60hz
T12 0636-e s16 r-y2ptaw2-1 std 60hz
 
Tg section eqpt details
Tg section eqpt detailsTg section eqpt details
Tg section eqpt details
 
Kubota l5030 tractor service repair manual
Kubota l5030 tractor service repair manualKubota l5030 tractor service repair manual
Kubota l5030 tractor service repair manual
 
Kubota l3830 tractor service repair manual
Kubota l3830 tractor service repair manualKubota l3830 tractor service repair manual
Kubota l3830 tractor service repair manual
 

Viewers also liked

Reaching the Niche You Can't Scratch
Reaching the Niche You Can't ScratchReaching the Niche You Can't Scratch
Reaching the Niche You Can't Scratch
Werkshop Marketing
 

Viewers also liked (11)

Programme
ProgrammeProgramme
Programme
 
José julián martí pérez
José julián martí pérezJosé julián martí pérez
José julián martí pérez
 
Reaching the Niche You Can't Scratch
Reaching the Niche You Can't ScratchReaching the Niche You Can't Scratch
Reaching the Niche You Can't Scratch
 
Documento divulgativo SMART
Documento divulgativo SMARTDocumento divulgativo SMART
Documento divulgativo SMART
 
Neonatologist (doc toon.page)
Neonatologist (doc toon.page)Neonatologist (doc toon.page)
Neonatologist (doc toon.page)
 
The Business of Sports
The Business of SportsThe Business of Sports
The Business of Sports
 
[Research] deploying predictive models with the actor framework - Brian Gawalt
[Research] deploying predictive models with the actor framework - Brian Gawalt[Research] deploying predictive models with the actor framework - Brian Gawalt
[Research] deploying predictive models with the actor framework - Brian Gawalt
 
Notes from 2016 bay area deep learning school
Notes from 2016 bay area deep learning school Notes from 2016 bay area deep learning school
Notes from 2016 bay area deep learning school
 
Marketing Your Youth Sports Programs
Marketing Your Youth Sports ProgramsMarketing Your Youth Sports Programs
Marketing Your Youth Sports Programs
 
Unlock the Magic of PPC Segmentation
Unlock the Magic of PPC SegmentationUnlock the Magic of PPC Segmentation
Unlock the Magic of PPC Segmentation
 
Infection prevention-dialysis-settings
Infection prevention-dialysis-settingsInfection prevention-dialysis-settings
Infection prevention-dialysis-settings
 

Similar to 2005 ASME Power Conference Performance Considerations in Replacement of Low Pressure Turbine Rotors for Nuclear Power Plants - A Case Study Sunder Raj Presentation

2005 ASME Power Conference Analysis of Turbine Cycle Performance Losses Using...
2005 ASME Power Conference Analysis of Turbine Cycle Performance Losses Using...2005 ASME Power Conference Analysis of Turbine Cycle Performance Losses Using...
2005 ASME Power Conference Analysis of Turbine Cycle Performance Losses Using...
Komandur Sunder Raj, P.E.
 
HAOTECH SOLAR MODULE
HAOTECH SOLAR MODULEHAOTECH SOLAR MODULE
HAOTECH SOLAR MODULE
Elmer Wong
 
thermal science Ch 05
thermal science Ch 05thermal science Ch 05
thermal science Ch 05
尚儒 吳
 
Bc l1 45-180 kw 天御参数 2015-7-3
Bc l1 45-180 kw  天御参数 2015-7-3Bc l1 45-180 kw  天御参数 2015-7-3
Bc l1 45-180 kw 天御参数 2015-7-3
Lynette Zhou
 

Similar to 2005 ASME Power Conference Performance Considerations in Replacement of Low Pressure Turbine Rotors for Nuclear Power Plants - A Case Study Sunder Raj Presentation (20)

2005 ASME Power Conference Analysis of Turbine Cycle Performance Losses Using...
2005 ASME Power Conference Analysis of Turbine Cycle Performance Losses Using...2005 ASME Power Conference Analysis of Turbine Cycle Performance Losses Using...
2005 ASME Power Conference Analysis of Turbine Cycle Performance Losses Using...
 
Example kitchen ventilation calculation
Example kitchen ventilation calculationExample kitchen ventilation calculation
Example kitchen ventilation calculation
 
Box type Bitzer condensing unit
Box type Bitzer condensing unitBox type Bitzer condensing unit
Box type Bitzer condensing unit
 
Rosenberg's fans for compressor cooling
Rosenberg's fans for compressor coolingRosenberg's fans for compressor cooling
Rosenberg's fans for compressor cooling
 
More than an advisory committee ingels
More than an advisory committee   ingelsMore than an advisory committee   ingels
More than an advisory committee ingels
 
6. diseño de puente compuesto2
6. diseño de puente compuesto26. diseño de puente compuesto2
6. diseño de puente compuesto2
 
Sb easystream ver.2.0_en
Sb easystream ver.2.0_enSb easystream ver.2.0_en
Sb easystream ver.2.0_en
 
3 calculating condensate loads
3 calculating condensate loads3 calculating condensate loads
3 calculating condensate loads
 
Tabela aplicação compressores tecunseh
Tabela aplicação compressores tecunsehTabela aplicação compressores tecunseh
Tabela aplicação compressores tecunseh
 
HAOTECH SOLAR MODULE
HAOTECH SOLAR MODULEHAOTECH SOLAR MODULE
HAOTECH SOLAR MODULE
 
DESIGN BUILDING BY STAD PRO
DESIGN BUILDING BY STAD PRODESIGN BUILDING BY STAD PRO
DESIGN BUILDING BY STAD PRO
 
Mojtaba Hasanlu's Portfolios in Rotor
Mojtaba Hasanlu's Portfolios in RotorMojtaba Hasanlu's Portfolios in Rotor
Mojtaba Hasanlu's Portfolios in Rotor
 
Rosenberg's OEM Fans for transformer cooling.
Rosenberg's OEM Fans for transformer cooling.Rosenberg's OEM Fans for transformer cooling.
Rosenberg's OEM Fans for transformer cooling.
 
thermal science Ch 05
thermal science Ch 05thermal science Ch 05
thermal science Ch 05
 
Bc l1 45-180 kw 天御参数 2015-7-3
Bc l1 45-180 kw  天御参数 2015-7-3Bc l1 45-180 kw  天御参数 2015-7-3
Bc l1 45-180 kw 天御参数 2015-7-3
 
TABEL BAUT
TABEL BAUTTABEL BAUT
TABEL BAUT
 
Capítulo 14 engrenagens cilíndricas
Capítulo 14   engrenagens cilíndricasCapítulo 14   engrenagens cilíndricas
Capítulo 14 engrenagens cilíndricas
 
GMF Feed pump
GMF Feed pumpGMF Feed pump
GMF Feed pump
 
Rosenberg Canada: Fans for Clean Rooms (Cleanrooms)
Rosenberg Canada: Fans for Clean Rooms (Cleanrooms)Rosenberg Canada: Fans for Clean Rooms (Cleanrooms)
Rosenberg Canada: Fans for Clean Rooms (Cleanrooms)
 
Tabel baja-wf-lrfd
Tabel baja-wf-lrfdTabel baja-wf-lrfd
Tabel baja-wf-lrfd
 

More from Komandur Sunder Raj, P.E.

2015 Lehigh Valley Engineers Week Keynote Speech Sunder Raj Presentation
2015 Lehigh Valley Engineers Week Keynote Speech Sunder Raj Presentation2015 Lehigh Valley Engineers Week Keynote Speech Sunder Raj Presentation
2015 Lehigh Valley Engineers Week Keynote Speech Sunder Raj Presentation
Komandur Sunder Raj, P.E.
 
2003 ASME Power Conference Heat Balance Techniques for Diagnosing and Evaluat...
2003 ASME Power Conference Heat Balance Techniques for Diagnosing and Evaluat...2003 ASME Power Conference Heat Balance Techniques for Diagnosing and Evaluat...
2003 ASME Power Conference Heat Balance Techniques for Diagnosing and Evaluat...
Komandur Sunder Raj, P.E.
 
2003 ASME Power Conference Steam Jet Air Ejector Performance Evaluation for N...
2003 ASME Power Conference Steam Jet Air Ejector Performance Evaluation for N...2003 ASME Power Conference Steam Jet Air Ejector Performance Evaluation for N...
2003 ASME Power Conference Steam Jet Air Ejector Performance Evaluation for N...
Komandur Sunder Raj, P.E.
 
2003 ASME Power Conference Performance Evaluation of Feedwater Heaters for Nu...
2003 ASME Power Conference Performance Evaluation of Feedwater Heaters for Nu...2003 ASME Power Conference Performance Evaluation of Feedwater Heaters for Nu...
2003 ASME Power Conference Performance Evaluation of Feedwater Heaters for Nu...
Komandur Sunder Raj, P.E.
 
2005 ASME Power Conference Lessons Learned - Low Condenser Vacuum/High Dissol...
2005 ASME Power Conference Lessons Learned - Low Condenser Vacuum/High Dissol...2005 ASME Power Conference Lessons Learned - Low Condenser Vacuum/High Dissol...
2005 ASME Power Conference Lessons Learned - Low Condenser Vacuum/High Dissol...
Komandur Sunder Raj, P.E.
 
2006 ASME Power Conference Last Stage Performance Considerations in LP Turbin...
2006 ASME Power Conference Last Stage Performance Considerations in LP Turbin...2006 ASME Power Conference Last Stage Performance Considerations in LP Turbin...
2006 ASME Power Conference Last Stage Performance Considerations in LP Turbin...
Komandur Sunder Raj, P.E.
 
2007 ASME Power Conference Maximizing Value of Existing Nuclear Power Plant G...
2007 ASME Power Conference Maximizing Value of Existing Nuclear Power Plant G...2007 ASME Power Conference Maximizing Value of Existing Nuclear Power Plant G...
2007 ASME Power Conference Maximizing Value of Existing Nuclear Power Plant G...
Komandur Sunder Raj, P.E.
 
2007 ASME Power Conference Troubleshooting Condenser Vacuum Issues At North O...
2007 ASME Power Conference Troubleshooting Condenser Vacuum Issues At North O...2007 ASME Power Conference Troubleshooting Condenser Vacuum Issues At North O...
2007 ASME Power Conference Troubleshooting Condenser Vacuum Issues At North O...
Komandur Sunder Raj, P.E.
 
2012 ICONE20 Power Conference Developing Nuclear Power Plant TPMS Specificati...
2012 ICONE20 Power Conference Developing Nuclear Power Plant TPMS Specificati...2012 ICONE20 Power Conference Developing Nuclear Power Plant TPMS Specificati...
2012 ICONE20 Power Conference Developing Nuclear Power Plant TPMS Specificati...
Komandur Sunder Raj, P.E.
 
2012 ICONE20 Power Conference Optimizing Nuclear Power Plants Capacity Paper ...
2012 ICONE20 Power Conference Optimizing Nuclear Power Plants Capacity Paper ...2012 ICONE20 Power Conference Optimizing Nuclear Power Plants Capacity Paper ...
2012 ICONE20 Power Conference Optimizing Nuclear Power Plants Capacity Paper ...
Komandur Sunder Raj, P.E.
 
2013 ASME Power Conference Analysis of Turbine Cycle Performance, Operation a...
2013 ASME Power Conference Analysis of Turbine Cycle Performance, Operation a...2013 ASME Power Conference Analysis of Turbine Cycle Performance, Operation a...
2013 ASME Power Conference Analysis of Turbine Cycle Performance, Operation a...
Komandur Sunder Raj, P.E.
 
2013 ASME Power Conference Maximizing Power Generating Asset Value Sunder Raj...
2013 ASME Power Conference Maximizing Power Generating Asset Value Sunder Raj...2013 ASME Power Conference Maximizing Power Generating Asset Value Sunder Raj...
2013 ASME Power Conference Maximizing Power Generating Asset Value Sunder Raj...
Komandur Sunder Raj, P.E.
 
2014 ASME Power Conference Performance/Condition Monitoring & Optimization fo...
2014 ASME Power Conference Performance/Condition Monitoring & Optimization fo...2014 ASME Power Conference Performance/Condition Monitoring & Optimization fo...
2014 ASME Power Conference Performance/Condition Monitoring & Optimization fo...
Komandur Sunder Raj, P.E.
 
2015 ASME Power Conference Technical/Technological Advances for Optimizing He...
2015 ASME Power Conference Technical/Technological Advances for Optimizing He...2015 ASME Power Conference Technical/Technological Advances for Optimizing He...
2015 ASME Power Conference Technical/Technological Advances for Optimizing He...
Komandur Sunder Raj, P.E.
 

More from Komandur Sunder Raj, P.E. (14)

2015 Lehigh Valley Engineers Week Keynote Speech Sunder Raj Presentation
2015 Lehigh Valley Engineers Week Keynote Speech Sunder Raj Presentation2015 Lehigh Valley Engineers Week Keynote Speech Sunder Raj Presentation
2015 Lehigh Valley Engineers Week Keynote Speech Sunder Raj Presentation
 
2003 ASME Power Conference Heat Balance Techniques for Diagnosing and Evaluat...
2003 ASME Power Conference Heat Balance Techniques for Diagnosing and Evaluat...2003 ASME Power Conference Heat Balance Techniques for Diagnosing and Evaluat...
2003 ASME Power Conference Heat Balance Techniques for Diagnosing and Evaluat...
 
2003 ASME Power Conference Steam Jet Air Ejector Performance Evaluation for N...
2003 ASME Power Conference Steam Jet Air Ejector Performance Evaluation for N...2003 ASME Power Conference Steam Jet Air Ejector Performance Evaluation for N...
2003 ASME Power Conference Steam Jet Air Ejector Performance Evaluation for N...
 
2003 ASME Power Conference Performance Evaluation of Feedwater Heaters for Nu...
2003 ASME Power Conference Performance Evaluation of Feedwater Heaters for Nu...2003 ASME Power Conference Performance Evaluation of Feedwater Heaters for Nu...
2003 ASME Power Conference Performance Evaluation of Feedwater Heaters for Nu...
 
2005 ASME Power Conference Lessons Learned - Low Condenser Vacuum/High Dissol...
2005 ASME Power Conference Lessons Learned - Low Condenser Vacuum/High Dissol...2005 ASME Power Conference Lessons Learned - Low Condenser Vacuum/High Dissol...
2005 ASME Power Conference Lessons Learned - Low Condenser Vacuum/High Dissol...
 
2006 ASME Power Conference Last Stage Performance Considerations in LP Turbin...
2006 ASME Power Conference Last Stage Performance Considerations in LP Turbin...2006 ASME Power Conference Last Stage Performance Considerations in LP Turbin...
2006 ASME Power Conference Last Stage Performance Considerations in LP Turbin...
 
2007 ASME Power Conference Maximizing Value of Existing Nuclear Power Plant G...
2007 ASME Power Conference Maximizing Value of Existing Nuclear Power Plant G...2007 ASME Power Conference Maximizing Value of Existing Nuclear Power Plant G...
2007 ASME Power Conference Maximizing Value of Existing Nuclear Power Plant G...
 
2007 ASME Power Conference Troubleshooting Condenser Vacuum Issues At North O...
2007 ASME Power Conference Troubleshooting Condenser Vacuum Issues At North O...2007 ASME Power Conference Troubleshooting Condenser Vacuum Issues At North O...
2007 ASME Power Conference Troubleshooting Condenser Vacuum Issues At North O...
 
2012 ICONE20 Power Conference Developing Nuclear Power Plant TPMS Specificati...
2012 ICONE20 Power Conference Developing Nuclear Power Plant TPMS Specificati...2012 ICONE20 Power Conference Developing Nuclear Power Plant TPMS Specificati...
2012 ICONE20 Power Conference Developing Nuclear Power Plant TPMS Specificati...
 
2012 ICONE20 Power Conference Optimizing Nuclear Power Plants Capacity Paper ...
2012 ICONE20 Power Conference Optimizing Nuclear Power Plants Capacity Paper ...2012 ICONE20 Power Conference Optimizing Nuclear Power Plants Capacity Paper ...
2012 ICONE20 Power Conference Optimizing Nuclear Power Plants Capacity Paper ...
 
2013 ASME Power Conference Analysis of Turbine Cycle Performance, Operation a...
2013 ASME Power Conference Analysis of Turbine Cycle Performance, Operation a...2013 ASME Power Conference Analysis of Turbine Cycle Performance, Operation a...
2013 ASME Power Conference Analysis of Turbine Cycle Performance, Operation a...
 
2013 ASME Power Conference Maximizing Power Generating Asset Value Sunder Raj...
2013 ASME Power Conference Maximizing Power Generating Asset Value Sunder Raj...2013 ASME Power Conference Maximizing Power Generating Asset Value Sunder Raj...
2013 ASME Power Conference Maximizing Power Generating Asset Value Sunder Raj...
 
2014 ASME Power Conference Performance/Condition Monitoring & Optimization fo...
2014 ASME Power Conference Performance/Condition Monitoring & Optimization fo...2014 ASME Power Conference Performance/Condition Monitoring & Optimization fo...
2014 ASME Power Conference Performance/Condition Monitoring & Optimization fo...
 
2015 ASME Power Conference Technical/Technological Advances for Optimizing He...
2015 ASME Power Conference Technical/Technological Advances for Optimizing He...2015 ASME Power Conference Technical/Technological Advances for Optimizing He...
2015 ASME Power Conference Technical/Technological Advances for Optimizing He...
 

Recently uploaded

527598851-ppc-due-to-various-govt-policies.pdf
527598851-ppc-due-to-various-govt-policies.pdf527598851-ppc-due-to-various-govt-policies.pdf
527598851-ppc-due-to-various-govt-policies.pdf
rajpreetkaur75080
 

Recently uploaded (15)

Sharpen existing tools or get a new toolbox? Contemporary cluster initiatives...
Sharpen existing tools or get a new toolbox? Contemporary cluster initiatives...Sharpen existing tools or get a new toolbox? Contemporary cluster initiatives...
Sharpen existing tools or get a new toolbox? Contemporary cluster initiatives...
 
05232024 Joint Meeting - Community Networking
05232024 Joint Meeting - Community Networking05232024 Joint Meeting - Community Networking
05232024 Joint Meeting - Community Networking
 
Competition and Regulation in Professional Services – KLEINER – June 2024 OEC...
Competition and Regulation in Professional Services – KLEINER – June 2024 OEC...Competition and Regulation in Professional Services – KLEINER – June 2024 OEC...
Competition and Regulation in Professional Services – KLEINER – June 2024 OEC...
 
123445566544333222333444dxcvbcvcvharsh.pptx
123445566544333222333444dxcvbcvcvharsh.pptx123445566544333222333444dxcvbcvcvharsh.pptx
123445566544333222333444dxcvbcvcvharsh.pptx
 
Hi-Tech Industry 2024-25 Prospective.pptx
Hi-Tech Industry 2024-25 Prospective.pptxHi-Tech Industry 2024-25 Prospective.pptx
Hi-Tech Industry 2024-25 Prospective.pptx
 
Oracle Database Administration I (1Z0-082) Exam Dumps 2024.pdf
Oracle Database Administration I (1Z0-082) Exam Dumps 2024.pdfOracle Database Administration I (1Z0-082) Exam Dumps 2024.pdf
Oracle Database Administration I (1Z0-082) Exam Dumps 2024.pdf
 
Acorn Recovery: Restore IT infra within minutes
Acorn Recovery: Restore IT infra within minutesAcorn Recovery: Restore IT infra within minutes
Acorn Recovery: Restore IT infra within minutes
 
The Canoga Gardens Development Project. PDF
The Canoga Gardens Development Project. PDFThe Canoga Gardens Development Project. PDF
The Canoga Gardens Development Project. PDF
 
Bitcoin Lightning wallet and tic-tac-toe game XOXO
Bitcoin Lightning wallet and tic-tac-toe game XOXOBitcoin Lightning wallet and tic-tac-toe game XOXO
Bitcoin Lightning wallet and tic-tac-toe game XOXO
 
Writing Sample 2 -Bridging the Divide: Enhancing Public Engagement in Urban D...
Writing Sample 2 -Bridging the Divide: Enhancing Public Engagement in Urban D...Writing Sample 2 -Bridging the Divide: Enhancing Public Engagement in Urban D...
Writing Sample 2 -Bridging the Divide: Enhancing Public Engagement in Urban D...
 
527598851-ppc-due-to-various-govt-policies.pdf
527598851-ppc-due-to-various-govt-policies.pdf527598851-ppc-due-to-various-govt-policies.pdf
527598851-ppc-due-to-various-govt-policies.pdf
 
Eureka, I found it! - Special Libraries Association 2021 Presentation
Eureka, I found it! - Special Libraries Association 2021 PresentationEureka, I found it! - Special Libraries Association 2021 Presentation
Eureka, I found it! - Special Libraries Association 2021 Presentation
 
Pollinator Ambassador Earth Steward Day Presentation 2024-05-22
Pollinator Ambassador Earth Steward Day Presentation 2024-05-22Pollinator Ambassador Earth Steward Day Presentation 2024-05-22
Pollinator Ambassador Earth Steward Day Presentation 2024-05-22
 
0x01 - Newton's Third Law: Static vs. Dynamic Abusers
0x01 - Newton's Third Law:  Static vs. Dynamic Abusers0x01 - Newton's Third Law:  Static vs. Dynamic Abusers
0x01 - Newton's Third Law: Static vs. Dynamic Abusers
 
Getting started with Amazon Bedrock Studio and Control Tower
Getting started with Amazon Bedrock Studio and Control TowerGetting started with Amazon Bedrock Studio and Control Tower
Getting started with Amazon Bedrock Studio and Control Tower
 

2005 ASME Power Conference Performance Considerations in Replacement of Low Pressure Turbine Rotors for Nuclear Power Plants - A Case Study Sunder Raj Presentation

  • 1.
  • 2. Objectives • Examine Design, Performance & Test Considerations • Use of Performance Tool in Evaluating Performance Gains • Recommendations for Ensuring Objectives of LP Turbine Rotor Replacement Programs are Met
  • 3. Background • Majority of U.S. Turbines Originally GE or Westinghouse • 104 Turbines - 56 GE, 44 Westinghouse, 3 Siemens and 1 BBC • LSB - 38” or 43” for GE, 40” or 44” for Westinghouse/Siemens, 52” for BBC
  • 4. Table 1 1 Westinghouse TC4F-44" LSB 888,315 6,416,567 495.2 12,958 103% 2 Westinghouse TC4F-44" LSB 888,315 6,416,567 495.2 12,958 103% 1 Westinghouse TC6F-44" LSB 1,085,391 7,565,329 742.8 10,185 81% 2 Westinghouse TC6F-44" LSB 1,085,391 7,565,329 742.8 10,185 81% 1 General Electric TC4F-43" LSB 849,206 5,583,138 495.2 11,275 89% 2 General Electric TC4F-43" LSB 849,206 5,583,138 495.2 11,275 89% 1 Westinghouse TC6F-44" LSB 1,085,391 7,565,329 742.8 10,185 81% 2 Westinghouse TC6F-44" LSB 1,085,391 7,565,329 742.8 10,185 81% 1 General Electric TC6F-38" LSB 883,053 5,997,306 634.2 9,456 75% 2 Westinghouse TC6F-40" LSB 877,967 5,869,854 634.2 9,256 73% 1 General Electric TC6F-43" LSB 1,205,091 7,903,237 742.8 10,640 84% 2 General Electric TC6F-43" LSB 1,205,091 7,903,237 742.8 10,640 84% 1 Siemens TC4F-44" LSB 1,160,706 7,960,473 495.2 16,075 ------ 2 Siemens TC4F-44" LSB 1,160,706 7,960,473 495.2 16,075 ------ 8 Westinghouse TC4F-44" LSB 800,838 5,608,615 495.2 11,326 90% 1 General Electric TC6F-43" LSB 1,089,095 7,686,079 742.8 10,347 82% 2 Brown Boveri TC6F-52" LSB 1,178,674 8,348,511 1055.0 7,913 ------ Plant 5 6 7 9 1 2 3 4 Total LPT Exhaust Annulus Area, sq.ft. LPT Exhaust End Loading, lb/hr/sq.ft Total LPT Exhaust Steam Flow, lb/hr Rating, KwType Unit No. Original Main Turbine Data %End Loading Manufacturer
  • 5. Background (contd.) • Usual Arrangement one HP and Two or Three LP in Tandem • LP Accounts for Bulk of Total Output with About 10% From Last Stage
  • 6. Background (contd.) • Performance of LP Turbine –Initial & Final Conditions –Slope & Shape of Expansion Line –Moisture Removal Zones Effectiveness –Exhaust Losses
  • 7. Background (contd.) • Exhaust Losses –Leaving Loss –Hood Loss • Charged to Last Stage • End Loading (Flow/Annulus Area) Critical Consideration in Operating Range/Losses
  • 8. Figure 1 – LSB 38” – 40”
  • 9. Figure 2 – LSB 43” – 44”
  • 10. Background (contd.) • End Loading About 13,000 Lb/Hr/Sq.Ft. • Best Performance Close to Choke Point (Max. Flow) • Higher End Loading –Higher Losses –Narrower Useful Operating Range
  • 11. Background (contd.) • LP Rotors Classification: –Fully Integral (U.S., European) –Shrunk-on Disk (U.S., European) –Welded Fabrication (BBC) • Since 1980’s, Solid Monoblock Popular
  • 12. Background (contd.) • Advantages Cited: –Elimination of SCC –Reduced Inspection/Maintenance –Improved Efficiencies –Integrally Shrouded Blades –Free-Standing, Longer LSB –End Loadings up to 18,000 Lb/Hr/Sq.Ft.
  • 13. Fig. 3 – Original LP Rotors Thermal Kit Heat Balance NSSS THERMAL POWER = 3423.01 MWT GENERATOR OUTPUT = 1162.43 MW 0 W 1197.52 H 155,056 W 14,258,423 W 162.87 P 370 W 765.00 P 1264.18 H 1197.52 H 1197.52 H 0.40%M 10,440,812 W 11,054 W 1264.18 H 1197.52 H 2.00 IN.HGA EFF. = 77.00 % 995.70 H 14,865,549 W PB = 722.93 805.00 P P1STG = 575.12 1197.52 H H1STG = 1180.64 0.25%M DELP = 5.50% 16,745 W PB = 165.23 2,846 W 2,846 W 1166.74 H 1106.95 H 1106.95 H 337 W 337 W 7,262 W 1032.13 H 1056.78 H 1087.89 H 155,056 W 1106.95 H 1106.95 H 1166.74 H 1048.63 H 1070.50 H 1097.60 H 1155.88 H 1155.88 H 168.61 P 1156.98 H 1156.98 H 3.06 P 6.45 P 13.60 P 36.38 P 81.88 P 484.84 F 180.96 P 392.79 P 392.79 P 180.96 P 7,890,612 W 16,745 W 1264.18 H ELEP = 977.95 H 596,072 W 753.98 P 596,072 W TEP = 999.09 H TD = 25.00 F 2STG. RHTR. 743.43 P 0 W 596,072 W 142,124 W 171.17 P 509.84 F 1197.52 H 499.69 h 110.20 h 415.96 F Blowdown 60,629 W 16,745 W 1224.92 H 413,020 W 390.82 P 0 W CWT = 61.45 F 1048.63 H 98,442 W 1166.74 H TD = 25.00 F 411.83 h HWT = 75.24 F 1.50 IN.HGA 0 W 176.24 h 0 W 1STG. RHTR. 385.35 P 413,020 W TR = 13.79 F 347,867 W 1166.74 H 173.78 P 440.96 F 0 W 420.10 h GPM = 1,110,000 0 W Makeup 131,251 W 1097.60 H 520,142 W 1196.20 H 499.69 h CF = 85.00 % 91.72 F 141.21 h 1149.90 H 179.15 P 1,009,092 W 672,739 W 586,489 W 1106.95 H 0 W 467.12 h 1070.50 H 1207.74 H MSEFF = 100.00 % 10.48 %M 21,418 W 1,156,867 W 250.00 P 1,240,033 W 824,482 W 422.18 h 1156.98 H 373.72 P 59.74 h 6.32 P 13.41 P 33.81 P 77.78 P 176.20 P 171.44 P TD = 5.00 F 8,306 W TD = 5.00 F TD = 5.00 F TD = 5.00 F TD = 5.00 F 344.33 h TD = 5.00 F 10,613,657 W 250.00 P 1099.02 P 14,865,549 W 10,613,657 W 91.83 F 167.31 F 202.40 F 252.25 F 305.10 F 364.11 F 365.51 F 366.99 F 433.00 F 59.74 h 60.51 h 172.31 F 135.86 h 207.40 F 171.04 h 257.25 F 221.33 h 310.10 F 275.30 h 369.11 F 336.78 h 338.26 h 341.06 h 438.00 F 411.83 h DC = 10.0 F DC = 10.0 F DC = 10.0 F DC = 10.0 F DC = 10.0 F 178.20 h 25,590 W 369.11 F 2,365,236 W 2,356,930 W 1,552,941 W 1,106,631 W 586,489 W 341.96 h 101.83 F 177.31 F 212.40 F 262.25 F 2,187,376 W 69.84 h 145.32 h 180.61 h 231.14 h 376.99 F 350.61 h 4,251,892 W 4,251,892 W 341.96 h 250.00 P 341.96 h X TV CV TV S GC FPT TV RSV A CONDENSER TANK T STM. HTG. FP LP TURBINE REGULATOR CP HTR.21 HTR.22 HTR.23 HTR.24 N T HTR.25 MOIST.SEP. HP TURBINE M N HTR.26 M N W W S M H H X X A STEAM GENERATOR DP
  • 14. Original LP Rotors • From Fig. 3: –LSB 44” –Annulus Area 127.4 Sq.Ft. –Total Exhaust Flow 7,890,612 Lb/Hr –Exhaust Flow Per End = 7,890,612÷6 = 1,315,102 Lb/Hr –Maximum Design Exhaust Flow = 1,560,000 Lb/Hr (Fig. 2) –End Loading = 1,315,012/1,560,000 = 84%
  • 15. Original LP Rotors (contd.) • From Fig. 3: –Annulus Velocity = 1123 Fps –Exhaust Loss = 21.1 Btu/lb –HP Shaft Output = 359,763 Kw –LP Shaft Output = 821,047 Kw = 70% of Total • Design Heat Balance Fig. 4 –Uses Thermal Kit/Design Data –Developed Using Performance Tool
  • 16. Fig. 4 – Original LP Rotors Design Heat Balance 0 W 0 W 745.11 P 1197.52 H 1197.52 H 14,236,296 W 144,230 W 370 W 765.00 P 161.91 P 1197.52 H 1197.52 H 1264.13 H 0.40%M 10,465,299 W 11,063 W 1264.13 H 1197.52 H 2.00 IN.HGA EFF. = 77.00 % 995.94 H 14,842,360 W PB = 722.48 805.00 P P1STG = 574.24 1197.52 H H1STG = 1180.54 0.25%M DELP = 5.56% 16,744 W PB = 165.62 2,841 W 2,841 W 1166.82 H 1107.04 H 1107.04 H 144,230 W 337 W 337 W 7,262 W 1032.17 H 1056.84 H 1087.62 H 1264.13 H 1107.04 H 1107.04 H 1166.82 H 1048.67 H 1070.56 H 1097.38 H 1156.03 H 1156.03 H 169.00 P 1157.13 H 1157.13 H 3.07 P 6.47 P 13.57 P 36.43 P 82.09 P 484.84 F 181.39 P 393.76 P 393.76 P 181.39 P 7,914,791 W 16,744 W 1264.13 H ELEP = 977.83 H TEP = 999.10 H 142,559 W 595,002 W 753.98 P 595,002 W 110.33 h TD = 25.00 F 60,815 W 743.42 P 0 W 595,002 W 1048.67 H 171.57 P 509.84 F 1197.52 H 499.69 h 8,306 W 8,306 W 16,744 W 416.20 F 0 W CWT = 61.40 F 178.20 h 1163.34 H 98,971 W 1166.82 H 1225.00 H 414,216 W 391.79 P 342.67 h HWT = 75.21 F 1.50 IN.HGA W 176.13 h 533,424 W W TD = 25.00 F TR = 13.80 F 377,694 W 1149.85 H 1166.82 H 386.30 P 414,216 W GPM = 1,110,000 0 W 130,943 W 1097.38 H 174.19 P 441.20 F 420.37 h CF = 85.00 % 91.72 F 141.35 h 585,183 W 1196.23 H 179.57 P 1,009,218 W 630,400 W 1207.77 H 1107.04 H 467.14 h 0 W 253,781 W 1070.56 H MSEFF = 100.00 % 10.47%M 841,754 W 21,348 W 1,101,743 W 510.68 h 484.70 P 1,240,981 W 1107.04 H 0 W 422.45 h 1157.13 H 61.54 h 176.61 P 499.69 h 344.53 h 0 W 158,888 W 177,808 W 195,061 W 280,585 W 342.67 h 374,363 W 6.34 P 13.38 P 33.86 P 77.98 P 171.84 P 374.64 P TD = 8.21 F TD = 5.31 F TD = 4.16 F TD = 4.39 F TD = 3.39 F 7,942 W TD = 6.27 F 1196.17 H 3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 4,947,453 W 4,947,453 W 92.24 F 172.44 F 164.23 F 207.30 F 201.98 F 201.84 F 257.33 F 253.18 F 310.28 F 305.89 F 365.90 F 384.70 P 1007.20 P 368.65 F 438.24 F 431.97 F 61.54 h DC = 8.64 F 133.23 h DC = 12.46 F 171.01 h 171.01 h DC = 9.11 F 222.60 h DC = 9.2 F 276.38 h 338.87 h 10,627,317 W 367.03 F 368.65 F 342.67 h DC = 8.31 F 410.60 h 365.90 F 340.06 h 342.67 h 785,539 W 531,758 W 176.69 F 372,869 W 210.95 F 195,061 W 262.33 F 0 W 288,527 W 369.29 F 338.87 h 0 W 100.88 F 68.87 h 144.68 h 179.11 h 231.13 h 342.16 h 0 W 0 W 0 W 0 W 413,660 W 710,770 W 376.96 F 14,842,360 W 253,781 W 158,888 W 177,808 W 195,061 W 280,585 W 350.33 h 374,363 W 336,406 W 431.97 F 6.34 P 13.38 P 10,627,317 W 33.86 P 77.98 P 171.84 P 0 W 374.64 P 410.60 h TD = 8.21 F TD = 5.31 F 201.84 F TD = 4.16 F TD = 4.39 F TD = 3.39 F 7,942 W 1,405,014 W 384.70 P TD = 6.27 F 171.01 h 1196.17 H 369.29 F 369.86 F 3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 342.16 h 343.06 h 4,947,453 W 4,947,453 W 92.24 F 172.44 F 164.23 F 207.30 F 201.98 F 201.84 F 257.33 F 253.18 F 310.28 F 305.89 F 365.90 F 384.70 P 1007.20 P 368.65 F 438.24 F 431.97 F 61.54 h DC = 8.64 F 133.23 h DC = 12.46 F 171.01 h 171.01 h DC = 9.11 F 222.60 h DC = 9.2 F 276.38 h 338.87 h 367.03 F 368.65 F 342.67 h DC = 8.31 F 410.60 h 340.06 h 342.67 h 785,539 W 531,758 W 176.69 F 372,869 W 210.95 F 195,061 W 262.33 F 0 W 288,527 W 369.29 F 0 W 100.88 F 68.87 h 144.68 h 179.11 h 231.13 h 342.16 h 710,770 W 376.96 F 0 W 253,781 W 0 W 0 W 0 W 413,660 W 350.33 h 336,406 W 158,888 W 177,808 W 195,061 W 280,585 W 1,405,014 W 0 W 374,363 W 6.34 P 13.38 P 33.86 P 77.98 P 171.84 P 369.29 F 374.64 P TD = 8.21 F TD = 5.31 F TD = 4.16 F TD = 4.39 F TD = 3.39 F 7,942 W 342.16 h TD = 6.27 F 1196.17 H 384.70 P 3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 369.86 F 4,947,453 W 4,947,453 W 92.24 F 172.44 F 164.23 F 207.30 F 201.98 F 201.84 F 257.33 F 253.18 F 257.33 F 305.89 F 365.90 F 343.06 h 368.65 F 438.24 F 431.97 F 61.54 h DC = 8.64 F 133.23 h DC = 12.46 F 171.01 h 171.01 h DC = 9.11 F 222.60 h DC = 9.15 F 276.38 h 338.87 h 342.67 h DC = 8.31 F 410.60 h 0 W 785,539 W 531,758 W 176.69 F 372,869 W 210.95 F 195,061 W 262.33 F 0 W 288,527 W 369.29 F 342.16 h 100.88 F 68.87 h 144.68 h 179.11 h 231.13 h 413,660 W 710,770 W 376.96 F 0 W 0 W 0 W 0 W 350.33 h 1,405,014 W 384.70 P 0 W 369.29 F 369.86 F 342.16 h 343.06 h S HDP TO COND. TO COND. TO COND. TO COND. TO COND. TO COND. TO COND. TANK 2B TANK 2C TANK 2A SG BLOWDOWN BYPASS BYPASSBYPASS Y TV CV TV S FPT TV RSV CONDENSER T FP LP TURBINE REGULATOR CP HTR.21A HTR.22A HTR.23A HTR.24A MOIST.SEP. HP TURBINE HTR.26A M N W M H H X X A STEAM GENERATOR W A N T HTR.21B HTR.22B HTR.23B HTR.24B GSC HTR.21C HTR.22C HTR.23C HTR.24C COND. DEMIN. HTR.25A HTR.25B HTR.25C FP HTR.26B HTR.26C Y FROM FP TO MSCDT SG BLOWDOWN 1STG.RHTR. 2STG.RHTR. LP EXHAUST HDP N M TO COND. TO COND. TO COND. TO COND. TO COND. TO COND. TO COND. TO COND. TO COND. TO COND. TO COND. FPT EXHAUST HDP
  • 17. Fig. 5 – Replacement LP Rotors Thermal Kit Heat Balance 0 W 1197.53 H 154,030 W 14,064,720 W 159.96 P 409 W 765.00 P 1264.36 H 1197.53 H 1197.53 H 0.40%M 10,409,998 W 11,307 W 1264.36 H 1197.53 H 2.00 IN.HGA EFF. = 77.00 % 996.65 H 14,726,960 W PB = 718.83 805.00 P P1STG = 548.55 1197.53 H H1STG = 1179.10 0.25%M DELP = 6.03% 17,006 W PB = 163.62 2,849 W 2,849 W 1166.93 H 1106.21 H 1106.21 H 337 W 337 W 7,536 W 1024.01 H 1049.91 H 1083.28 H 154,030 W 1106.21 H 1106.21 H 1166.93 H 1041.60 H 1064.62 H 1093.72 H 1152.37 H 1152.37 H 166.96 P 1153.53 H 1153.53 H 2.72 P 5.91 P 13.22 P 35.55 P 79.39 P 484.84 F 179.20 P 367.24 P 367.24 P 179.20 P 7,865,072 W 17,005 W 1264.36 H ELEP = 977.51 H 650,933 W 753.98 P 650,933 W TEP = 995.21 H TD = 25.00 F 2STG. RHTR. 743.43 P 0 W 650,933 W 151,655 W 169.50 P 509.84 F 1197.53 H 499.69 h 105.64 h 409.49 F Blowdown 60,508 W 17,006 W 1221.36 H 361,028 W 365.41 P 0 W CWT = 61.72 F 1041.60 H 105,758 W 1166.93 H TD = 25.00 F 404.44 h HWT = 75.41 F 1.50 IN.HGA 0 W 174.83 h 0 W 1STG. RHTR. 360.29 P 361,028 W TR = 13.69 F 373,420 W 1166.93 H 172.09 P 434.49 F 0 W 412.89 h GPM = 1,110,000 0 W Makeup 140,135 W 1093.72 H 514,486 W 1196.05 H 499.69 h CF = 85.00 % 91.72 F 137.40 h 1144.59 H 177.41 P 1,011,961 W 626,473 W 581,960 W 1106.21 H 0 W 468.73 h 1064.62 H 1203.50 H MSEFF = 100.00 % 10.54 %M 21,996 W 1,021,994 W 250.00 P 1,244,302 W 844,592 W 414.93 h 1153.53 H 348.23 P 61.14 h 5.79 P 13.12 P 32.84 P 75.49 P 174.48 P 170.19 P TD = 5.00 F 8,619 W TD = 5.00 F TD = 5.00 F TD = 5.00 F TD = 5.00 F 343.48 h TD = 5.00 F 10,582,115 W 250.00 P 1096.00 P 14,726,960 W 10,582,117 W 93.26 F 163.54 F 201.32 F 250.56 F 303.05 F 363.51 F 364.90 F 366.38 F 426.25 F 61.14 h 61.94 h 168.54 F 132.08 h 206.32 F 169.95 h 255.56 F 219.62 h 308.05 F 273.19 h 368.51 F 336.16 h 337.61 h 340.41 h 431.25 F 404.44 h DC = 10.0 F DC = 10.0 F DC = 10.0 F DC = 10.0 F DC = 10.0 F 178.20 h 23,798 W 368.51 F 2,350,851 W 2,342,232 W 1,575,624 W 1,096,445 W 581,960 W 341.33 h 103.26 F 173.54 F 211.32 F 260.56 F 2,055,950 W 71.27 h 141.53 h 179.52 h 229.41 h 376.38 F 349.93 h 4,144,845 W 4,144,845 W 341.33 h 250.00 P 341.33 h X TV CV TV S GC FPT TV RSV A CONDENSER TANK T STM. HTG. FP LP TURBINE REGULATOR CP HTR.21 HTR.22 HTR.23 HTR.24 N T HTR.25 MOIST.SEP. HP TURBINE M N HTR.26 M N W W S M H H X X A STEAM GENERATOR DP
  • 18. Replacement LP Rotors • From Fig. 5: –LSB 47” –Annulus Area 139.18 Sq.Ft/End –Annulus Velocity = 1024 Fps –Exhaust Loss = 17.7 Btu/lb –HP Shaft Output = 361,668 Kw –LP Shaft Output = 838,937 Kw –Increase in LP Shaft Output = 18 Mw
  • 19. Fig. 6 – Replacement LP Rotors Design Heat Balance 0 W 0 W 745.11 P 1197.53 H 1197.53 H 14,055,918 W 143,160 W 409 W 765.00 P 160.28 P 1197.53 H 1197.53 H 1264.32 H 0.40%M 10,432,599 W 11,311 W 1264.32 H 1197.53 H 2.00 IN.HGA EFF. = 77.00 % 996.53 H 14,716,904 W PB = 718.63 805.00 P P1STG = 548.23 1197.53 H H1STG = 1179.10 0.25%M DELP = 6.06% 17,006 W PB = 163.95 2,847 W 2,847 W 1166.95 H 1106.20 H 1106.20 H 143,160 W 337 W 337 W 7,536 W 1023.99 H 1049.91 H 1083.05 H 1264.32 H 1106.20 H 1106.20 H 1166.95 H 1041.59 H 1064.62 H 1093.52 H 1152.52 H 1152.52 H 167.30 P 1153.68 H 1153.68 H 2.73 P 5.92 P 13.19 P 35.58 P 79.58 P 484.84 F 179.56 P 368.21 P 368.21 P 179.56 P 7,877,284 W 17,004 W 1264.32 H ELEP = 977.41 H TEP = 995.17 H 151,954 W 649,675 W 753.98 P 649,675 W 105.70 h TD = 25.00 F 60,603 W 743.42 P 0 W 649,675 W 1041.59 H 169.84 P 509.84 F 1197.53 H 499.69 h 8,619 W 8,619 W 17,006 W 409.74 F 0 W CWT = 61.76 F 28.06 h 1163.65 H 106,190 W 1166.95 H 1221.46 H 362,395 W 366.37 P 341.96 h HWT = 75.43 F 1.50 IN.HGA 0 W 174.72 h 530,599 W 0 W TD = 25.00 F TR = 13.68 F 399,648 W 1144.56 H 1166.95 H 361.24 P 362,395 W GPM = 1,110,000 0 W 139,867 W 1093.52 H 172.43 P 434.74 F 413.17 h CF = 85.00 % 91.72 F 137.46 h 580,659 W 1196.08 H 177.76 P 1,012,070 W 595,265 W 1203.57 H 1106.20 H 468.71 h 0 W 245,044 W 1064.62 H MSEFF = 100.00 % 10.54%M 864,371 W 21,937 W 978,099 W 510.68 h 484.70 P 1,246,580 W 1106.20 H 0 W 415.21 h 1153.68 H 61.54 h 174.83 P 499.69 h 343.65 h 0 W 168,613 W 176,866 W 193,553 W 288,124 W 341.96 h 333,345 W 5.80 P 13.09 P 32.87 P 75.66 P 170.53 P 349.15 P TD = 7.95 F TD = 5.62 F TD = 4.14 F TD = 4.36 F TD = 3.44 F 6,184 W TD = 5.66 F 1196.06 H 3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 4,905,635 W 4,905,635 W 92.24 F 168.60 F 160.65 F 206.21 F 200.59 F 200.45 F 255.61 F 251.47 F 308.21 F 303.85 F 365.23 F 384.70 P 1007.20 P 367.97 F 431.50 F 425.84 F 61.54 h DC = 8.22 F 129.66 h DC = 13.38 F 169.61 h 169.61 h DC = 8.98 F 220.87 h DC = 9.0 F 274.28 h 338.17 h 10,593,848 W 366.36 F 367.97 F 341.96 h DC = 6.86 F 403.90 h 365.23 F 339.35 h 341.96 h 784,076 W 539,032 W 174.03 F 370,419 W 209.43 F 193,553 W 260.48 F 0 W 294,308 W 368.68 F 338.17 h 0 W 100.46 F 68.46 h 142.01 h 177.57 h 229.24 h 341.50 h 0 W 0 W 0 W 0 W 415,527 W 670,702 W 374.83 F 14,716,904 W 245,044 W 168,613 W 176,866 W 193,553 W 288,124 W 348.05 h 333,345 W 337,357 W 425.84 F 5.80 P 13.09 P 10,593,848 W 32.87 P 75.66 P 170.53 P 0 W 349.15 P 403.90 h TD = 7.95 F TD = 5.62 F 200.45 F TD = 4.14 F TD = 4.36 F TD = 3.44 F 6,184 W 1,374,352 W 384.70 P TD = 5.66 F 169.61 h 1196.06 H 368.68 F 369.24 F 3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 341.50 h 342.41 h 4,905,635 W 4,905,635 W 92.24 F 168.60 F 160.65 F 206.21 F 200.59 F 200.45 F 255.61 F 251.47 F 308.21 F 303.85 F 365.23 F 384.70 P 1007.20 P 367.97 F 431.50 F 425.84 F 61.54 h DC = 8.22 F 129.66 h DC = 13.38 F 169.61 h 169.61 h DC = 8.98 F 220.87 h DC = 9.0 F 274.28 h 338.17 h 366.36 F 367.97 F 341.96 h DC = 6.86 F 403.90 h 339.35 h 341.96 h 784,076 W 539,032 W 174.03 F 370,419 W 209.43 F 193,553 W 260.48 F 0 W 294,308 W 368.68 F 0 W 100.46 F 68.46 h 142.01 h 177.57 h 229.24 h 341.50 h 670,702 W 374.83 F 0 W 245,044 W 0 W 0 W 0 W 415,527 W 348.05 h 337,357 W 168,613 W 176,866 W 193,553 W 288,124 W 1,374,352 W 0 W 333,345 W 5.80 P 13.09 P 32.87 P 75.66 P 170.53 P 368.68 F 349.15 P TD = 7.95 F TD = 5.62 F TD = 4.14 F TD = 4.36 F TD = 3.44 F 6,184 W 341.50 h TD = 5.66 F 1196.06 H 384.70 P 3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 369.24 F 4,905,635 W 4,905,635 W 92.24 F 168.60 F 160.65 F 206.21 F 200.59 F 200.45 F 255.61 F 251.47 F 255.61 F 303.85 F 365.23 F 342.41 h 367.97 F 431.50 F 425.84 F 61.54 h DC = 8.22 F 129.66 h DC = 13.38 F 169.61 h 169.61 h DC = 8.98 F 220.87 h DC = 9.00 F 274.28 h 338.17 h 341.96 h DC = 6.86 F 403.90 h 0 W 784,076 W 539,032 W 174.03 F 370,419 W 209.43 F 193,553 W 260.48 F 0 W 294,308 W 368.68 F 341.50 h 100.46 F 68.46 h 142.01 h 177.57 h 229.24 h 415,527 W 670,702 W 374.83 F 0 W 0 W 0 W 0 W 348.05 h 1,374,352 W 384.70 P 0 W 368.68 F 369.24 F 341.50 h 342.41 h S HDP TO COND. TO COND. TO COND. TO COND. TO COND. TO COND. TO COND. TANK 2B TANK 2C TANK 2A SG BLOWDOWN BYPASS BYPASSBYPASS Y TV CV TV S FPT TV RSV CONDENSER T FP LP TURBINE REGULATOR CP HTR.21A HTR.22A HTR.23A HTR.24A MOIST.SEP. HP TURBINE HTR.26A M N W M H H X X A STEAM GENERATOR W A N T HTR.21B HTR.22B HTR.23B HTR.24B GSC HTR.21C HTR.22C HTR.23C HTR.24C COND. DEMIN. HTR.25A HTR.25B HTR.25C FP HTR.26B HTR.26C Y FROM FP TO MSCDT SG BLOWDOWN 1STG.RHTR. 2STG.RHTR. LP EXHAUST HDP N M TO COND. TO COND. TO COND. TO COND. TO COND. TO COND. TO COND. TO COND. TO COND. TO COND. TO COND. FPT EXHAUST HDP
  • 20. Table 3 Comparison of LP 10,465,299 10,432,599 165.62 163.95 1264.13 1264.32 585,183 580,659 82.09 79.58 1207.77 1203.57 0.4956661 0.485383418 56.36 60.76 5.899E+08 6.338E+08 9,880,115 9,851,940 533,424 530,599 36.43 35.58 1149.85 1144.56 9,346,692 9,321,342 0.4437778 0.447073832 57.916602 59.0066322 5.722E+08 5.813E+08 377,694 399,648 13.57 13.19 1087.62 1083.05 98,971 106,190 176.13 174.72 1097.38 1093.52 0.3724004 0.370675533 62.23 61.51 5.816E+08 5.734E+08 8,870,026 8,815,503 LP Turbine LP Bowl Flow, lb/hr LP Bowl Pressure, psia LP Bowl Enthalpy, btu/lb Ext. 3 Flow, lb/hr Ext. 3 Pressure, psia Ext. 3 Enthalpy, btu/lb Ext. 3 Press/LP Bowl Press. Work Done Per lb of Steam Work Done, btu/hr FFS3, lb/hr Ext. 4 Flow, lb/hr Ext. 4 Pressure, psia Ext. 4 Enthalpy, btu/lb FFS4, lb/hr Ext. 4 Press/Ext. 3 Press. Work Done Per lb of Steam Work Done, btu/hr Ext. 5 Steam Flow, lb/hr Ext. 5 Pressure, psia Ext. 5 Enthalpy BMSR, btu/lb Ext. 5 Moisture Removed, lb/hr Ext. 5 Moisture Enthalpy, btu/lb Ext. 5 Enthalpy AMSR, btu/lb Ext. 5 Press/Ext. 4 Press. Work Done Per lb of Steam Work Done, btu/hr FFS5, lb/hr Original Replacement LP Rotor
  • 21. Table 3 Comparison of LP (contd.) 630,400 595,265 6.47 5.92 1056.84 1049.91 130,943 139,867 141.35 137.46 1070.56 1064.62 0.4770318 0.449108965 40.54 43.61 3.596E+08 3.844E+08 8,108,683 8,080,371 60,815 60,603 3.07 2.73 1032.17 1023.99 142,559 151,954 110.33 105.70 1048.67 1041.59 0.4744251 0.460255436 38.38 40.63 3.112E+08 3.283E+08 7,905,309 7,867,814 0.736725 0.736725 977.83 977.41 999.10 995.17 0.2399465 0.270262053 49.57 46.42 3.918E+08 3.653E+08 2.806E+09 2.867E+09 822,475 840,092 0.0044483 0.004493594 78.67% 78.95% 72.83% 74.06% LP Turbine Ext. 6 Steam Flow, lb/hr Ext. 6 Pressure, psia Ext. 6 Enthalpy BMSR, btu/lb Ext. 6 Moisture Removed, lb/hr Ext. 6 Moisture Enthalpy, btu/lb Ext. 6 Enthalpy AMSR, btu/lb Ext. 6 Press/Ext. 5 Press. Work Done Per lb of Steam MRZ Moisture Removed, lb/hr MRZ Moisture Enthalpy, btu/lb MRZ Enthalpy AMSR, btu/lb Work Done, btu/hr FFS6, lb/hr MRZ Blowdown Steam Flow, lb/hr MRZ Pressure, psia LPT Efficiency (ELEP), % LPT Efficiency (TEP), % Original Work Done Per lb of Steam Work Done, btu/hr Total Work Done in LP Turbine, btu/h Total Work Done in LP Turbine, Kw LP Exh. Pressure, psia LPT ELEP, btu/lb LPT TEP, btu/lb Replacement LP Rotor LP Exhaust/LP Bowl Pressure LP Exh. Press/Ext. 6 Press. MRZ Press/Ext. 6 Press. Work Done Per lb of Steam Work Done, btu/hr FFSMRZ, lb/hr MRZ Enthalpy BMSR, btu/lb
  • 22. Fig. 7 – Exhaust Loss Curves 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 0 100 200 300 400 500 600 700 800 900 1000 Exhaust Volumetric Flow, million cft/hr DryExhaustLoss,btu/lb Original Replacement LP Rotor
  • 23. Fig. 8 – LP Expansion Lines 950 1000 1100 1200 1.5 1.5 1.6 1.6 1.7 1.7 1.8 1.8 1.9 2.0 600 500 400 300 250 200 150 120 100 80 60 50 40 30 20 16 12 10 8.0 6.0 5.0 4.0 5.00" 5.00" 4.00" 4.00" 3.50" 3.50" 3.00" 3.00" 2.50" 2.50" 2.00" 2.00" 1.50" 1.50" 1.00" 1.00" 0.75 0.75" 0.50" 520 500 480 460 440 420 400 380 360 340 320 300 280 260 240 220 200 180 160 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 Replacement LP Rotor Expansion Line Original LP Rotor Expansion Line
  • 24. Comparison of Results • HP Shaft Output About 2 Mw Higher • Exhaust Losses About 3.5 Btu/Lb Lower • LP Shaft Output About 17.6 Mw Higher • Internal Moisture Removal Zones Effectiveness Assumed Unchanged
  • 25. Recommended Approach - Design • From Thermal Kit Develop Licensed Power HB • Revise to Include Design, Startup, Test, Plant Data • Address Cycle Isolation • Obtain/Develop New Thermal Kit Data for Replacement LP • Develop New Baseline/Correction Factors
  • 26. Recommended Approach - Test • Conduct Test Close to Licensed Thermal Power • Steady-State Conditions • Correct for Deviations in Thermal Power, Throttle Pressure, LP Exhaust Pressure, Generator PF, etc. • Isolate and/or Account for Leakages
  • 27. CONCLUSIONS/RECOMMENDATIONS • Objectives May Be Met By: –Proper Planning, Preparedness & Execution –Essential to Develop Accurate Baseline Models –Models Are Invaluable in Examining Options, What-if Analysis, etc.