SlideShare a Scribd company logo
1 of 20
Reduced-cost ensemble Kalman filter
for parameter estimation!
Application to front-tracking problems!
Mélanie Rochoux!
in collaboration with S.Ricci, D. Lucor, B. Cuenot & A. Trouvé!
*	
  melanie.rochoux@cerfacs.fr!
MS-10 Reduced-order models for stochastic inverse problems – U626	
  
INTRODUCTION ●●●●
Data assimilation: why? how?!
2 !Rochoux et al. – UNCECOMP 2015 – MS-10!
➙ Key idea: “optimal combination of observations and forward model”!
Determine best estimate of a dynamical system
given 
 Weather forecast!
Atm. chemistry!
Hydrology!
Biomechanics!
- Sparse and imperfect 
- Relation between
observations and model
outputs
Observations
 Numerical model
Model formulation
Model parameters
Initial condition
Forcing data
Mathematical technique based on estimation theory
•  The “true state” is unknown and should be estimated
•  Measurements and models are imperfect
•  The estimate should be an optimal combination of both
measurements and models ➙ error minimization problem
Ex. applications
INTRODUCTION ●●●●
Data assimilation: why? how?!
➙ Key idea: “optimal combination of observations and forward model”!
Ensemble Kalman filter (EnKF)
•  Forecast step ➙ uncertainty propagation

- Explicit propagation of the error statistics

- Nonlinear extension of the Kalman filter
•  Analysis step ➙ Kalman filter update equation 

!
reality
	
  
	
  
model forecast
Diagnostic!
	
   	
  
	
  
	
  
	
  
measurements
analysis
Time!
Sequential approach
	
  =	
  	
  	
  	
  	
  	
  	
  	
  +	
  	
  	
  K	
  [	
  	
  	
  	
  	
  	
  -­‐	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ]	
  	
  	
  	
  	
  
Distance to observations!
G( )
Kalman gain matrix!
Stochastic characterization
Estimation of error
covariance matrices
Control variables!
3 !Rochoux et al. – UNCECOMP 2015 – MS-10!
INTRODUCTION ●●●●
Uncertainty quantification!
➙ Challenging idea: Use uncertainty quantification to overcome the slow
convergence rate and sampling errors of the Monte Carlo-based EnKF!







!
reality
	
  
	
  
model forecast
Diagnostic!
	
   	
  
	
  
	
  
	
  
measurements
analysis
Time!
Sequential approach
Npc
X
k=1
ˆck k( )	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ●	
  
Basis functions
4 !Rochoux et al. – UNCECOMP 2015 – MS-10!
	
  =	
  	
  	
  	
  	
  	
  	
  	
  +	
  	
  	
  K	
  [	
  	
  	
  	
  	
  	
  -­‐	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ]	
  	
  	
  	
  	
  G( )
Control variables!
Hybrid Ensemble Kalman filter (PC-EnKF)
•  Forecast step ➙ uncertainty propagation

- Use of surrogate model to compute model trajectories

- Polynomial Chaos (PC) expansion
•  Analysis step ➙ Kalman filter update equation 

!
INTRODUCTION ●●●●
Parameter estimation!
➙ Objective: Improvement of the forecast performance
•  State estimation limitation ➙ no long persistence of the initial condition for a chaotic system
•  Parameter estimation ➙ accounting for the temporal variability in the errors
Difficulties 
➙ Possible nonlinear relationship between input parameters and model counterparts of the observations 
➙ Existence of an evolution model for parameters?

!
Forward
model
Parameters
Initial condition
Boundary conditions
Comparison
Model outputs
Observations
Ensemble Kalman filter
Parameter estimation
State estimation
5 !Rochoux et al. – UNCECOMP 2015 – MS-10!
INTRODUCTION ●●●●
Outline!
!
Reduced-cost ensemble Kalman filter for parameter
estimation (PC-EnKF)!
!
u  Algorithm!
u  Application to wildfire spread forecasting!
•  Front-tracking problem
•  Synthetic case
•  Controlled fire experiment
6 !Rochoux et al. – UNCECOMP 2015 – MS-10!
ALGORITHM ●●●
Standard EnKF!
Cxy = Pt
f
Gt
T
xt
a,(k)
= xt
f,(k)
+Cxy (Cyy + R)−1
(yt
o
+ξo,(k)
− yt
f,(k)
)
Prior
parameters
Prior
fire fronts
Posterior
parameters
xt
f,(1)
xt
f,(2)
xt
f,(Ne )
yt
f,(1)
yt
f,(2)
yt
f,(Ne )
Covariance matrices
EnKF
update
Cyy = GtPt
f
Gt
T
xt
a,(1)
xt
a,(2)
xt
a,(Ne )
yt
o
+ξo,(1)
Ke
t
Posterior
fire fronts
yt
a,(1)
yt
a,(2)
yt
a,(Ne )
EnKF
prediction
FORECAST ANALYSIS
EnKF
prediction
yt
o
+ξo,(Ne )
yt
o
+ξo,(2)
Gt Gt
➙ Key idea: 3D-Var approach with stochastically-based estimation of the error
covariance matrices over the assimilation cycle [t-1, t]
Specificities!!
•  Random walk model for
parameter evolution

•  Data randomization
➙ Burgers et al. 1998

•  Limitations
➙ Slow convergence
rate (large number of
members)
➙ Sampling errors (Li
2008) – local & global
7 !Rochoux et al. – UNCECOMP 2015 – MS-10!
ALGORITHM ●●●
Hybrid PC-EnKF!
➙ Objective: Reduce computational cost of forward model integration
•  Integrating Polynomial Chaos (PC) into forecast
•  Control parameters projected onto a stochastic space spanned by orthogonal PC functions of
independent Gaussian random variables
Surrogate model!
Model inputs!
Model outputs!
Random event!
•  Easy access to statistics (mean, covariance, ensemble sampling)
Ensemble sampling!
•  Integrating Polynomial Chaos (PC) into observation
•  Use the same basis for the model and for the data space (not obvious since observations and model
counterparts should remain uncorrelated, Evensen 2009)
8 !Rochoux et al. – UNCECOMP 2015 – MS-10!
ALGORITHM ●●●
Coupling PC and EnKF approaches!
EnKF prediction
Surrogate model
Surrogate model
Forward modelHermite quadrature Simulated fire fronts
Hermite polynomials Surrogate model
Forecast !
distribution!
➀!
Monte-Carlo sampling Predicted fire front
positions
Posterior estimate of
parameters
Updated fire front
positions
➁
➂
EnKF update
('q)q = 1, · · · , Npc
k = 1, · · · , Ne
k = 1, · · · , Ne
EnKF prediction
k = 1, · · · , Ne
k = 1, · · · , Ne
FIREFLY
j = 1, · · · , (Nquad)n
j = 1, · · · , (Nquad)n
⇣
x
f,(j)
t , !j
⌘ ⇣
y
f,(j)
t
⌘
pf
(xt)
yf
t = Gpc,t(xf
t)
⇣
x
f,(k)
t
⌘
⇣
x
a,(k)
t
⌘ ⇣
y
a,(k)
t
⌘
⇣
y
f,(k)
t
⌘
➙ Non-intrusive approach: PC used to build a surrogate model
of the observation operator
9 !Rochoux et al. – UNCECOMP 2015 – MS-10!
WILDFIRE SPREAD APPLICATION ●●●
Front-tracking problem!
Experimental grassland fire
(100m x 100m), N.S. Cheney,
Annaburroo site (Australia)!
➙ Wildfires feature a front-like
geometry at regional scales!
FRONT!
•  Scales ranging from meters up to
several kilometers
•  Thin flame zone propagating normal
to itself towards unburnt vegetation
•  Local propagation speed of the front
called “rate of spread” (ROS)
10 !Rochoux et al. – UNCECOMP 2015 – MS-10!
WILDFIRE SPREAD APPLICATION ●●●
Front-tracking problem!
•  2-D state variable: reaction progress variable c 

•  Front marker: contour line c = 0.5
•  Submodel for the local ROS along the normal
direction to the front
•  Semi-empirical formulation (Rothermel)
•  Function of the local environmental conditions
➙ Level-set-based front propagation simulator
ROS = f(uw, ↵sl, Mv, v, ⌃v, ...)
Simulated front c= 0.5 !
(x1
, y1
)
(x2
, y2
)
(x3
, y3
)
(x4
, y4
)
@c
@t
= ROS |rc|
11 !Rochoux et al. – UNCECOMP 2015 – MS-10!
WILDFIRE SPREAD APPLICATION ●●●
Front-tracking problem!
•  2-D state variable: reaction progress variable c 

•  Front marker: contour line c = 0.5
•  Submodel for the local ROS along the normal
direction to the front
•  Semi-empirical formulation (Rothermel)
•  Function of the local environmental conditions
➙ Level-set-based front propagation simulator
ROS = f(uw, ↵sl, Mv, v, ⌃v, ...)
Simulated front c= 0.5 !
(x1
, y1
)
(x2
, y2
)
(x3
, y3
)
(x4
, y4
)
@c
@t
= ROS |rc|➙ Observation represented as a
discretized fire front!!
raw data: infrared imagery

12 !Rochoux et al. – UNCECOMP 2015 – MS-10!
WILDFIRE SPREAD APPLICATION ●●●
Synthetic experiment!
•  Estimation of a uniform proportionality coefficient P in the ROS formulation
•  True parameter at the tail of the Gaussian distribution associated with the forecast estimates
•  Reduced-cost approach: 
•  5 model integrations to build the surrogate model
•  1000 members in the ensemble
•  Observation error STD = 2 m
!
75 85 95 105 115 125
75
85
95
105
115
125
x [m]
y[m]
m
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
75
85
95
105
115
125
P [1/s]x−coordinate[m]
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
75
85
95
105
115
125
P [1/s]
y−coordinate[m]
forecast true
trueforecast
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
75
85
95
105
115
125
P [1/s]
x−coordinate[m]
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
75
85
95
105
115
125
y−coordinate[m]
analysis
analysis true
true
- forecast
- analysis
+ observations
quadrature points
▾ Response surface for the x-coordinate front marker m
◀ Fire front positions at time 50 s (analysis time)
13 !Rochoux et al. – UNCECOMP 2015 – MS-10!
WILDFIRE SPREAD APPLICATION ●●●
Controlled fire experiment!
•  Reduced scale fire experiment (4 m x 4 m) over quasi-homogeneous short grass
!
1min32s
50s
 1min46s
1min04s
 1min18s
Wind 1m/s
0 0.5 1 1.5 2 2.5 3 3.5
0
0.5
1
1.5
2
x [m]
y [m]
•  Mid-Infrared imaging

•  Quasi-homogeneous short
grass (22% moisture content)
•  Mean wind speed: 1m/s in
northwestern direction
•  Mean ROS = 2 cm/s

•  Max. ROS = 5 cm/s
ANALYSIS 
TIME
FORECAST 
TIME
14 !Rochoux et al. – UNCECOMP 2015 – MS-10!
WILDFIRE SPREAD APPLICATION ●●●
Controlled fire experiment!
•  Reduced scale fire experiment (4 m x 4 m) over quasi-homogeneous short grass
•  Estimation of 2 biomass fuel parameters: moisture content (Mv), geometrical parameter (Σv)
•  Reduced-cost approach: 
•  25 model integrations to build the surrogate model
•  1000 members in the ensemble
•  Observation error STD = 5 cm
!
15 11500
Σv [1/m]Mv [%]
Σv [1/m]Mv [%]
15 11500
x-coordinate[m]y-coordinate[m]
13.8 2234513.8 22345
13.8 22345
Σv [1/m]Mv [%]
x-coordinate[m]y-coordinate[m]
0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2
0
0.5
1
1.5
2
x [m]
y[m]
m
▾ Response surface for the x-coordinate front marker m
◀ Fire front positions at time 1min18 s
quadrature
points
forecast!
analysis!
- Forecast (PC-EnKF)
- Analysis (PC-EnKF)
□ Analysis (standard EnKF)
+ observations
ANALYSIS TIME
15 !Rochoux et al. – UNCECOMP 2015 – MS-10!
WILDFIRE SPREAD APPLICATION ●●●
Controlled fire experiment!
•  Reduced scale fire experiment (4 m x 4 m) over quasi-homogeneous short grass
•  Estimation of 2 biomass fuel parameters: moisture content (Mv), geometrical parameter (Σv)
•  Reduced-cost approach: 
•  25 model integrations to build the surrogate model
•  1000 members in the ensemble
•  Observation error STD = 5 cm
!
0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2
0
0.5
1
1.5
2
x [m]
y[m]
m
ANALYSIS TIME
0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2
0
0.5
1
1.5
2
x [m]
y[m]
- Forecast (PC-EnKF)
- Analysis (PC-EnKF)
□ Analysis (standard EnKF)
+ observations
FORECAST TIME
Good behavior
of the PC
surrogate model!
16 !Rochoux et al. – UNCECOMP 2015 – MS-10!
CONCLUSION
Key ideas!
Rochoux et al (2014), NHESS!
Rochoux et al (2012), CTR brief!
➙ Reduced-cost ensemble Kalman filter (PC-EnKF)
for parameter estimation in front-tracking problems!
•  Stand-alone parameter estimation ➙ forecast improvement!
•  Prototype able to address multi-parameter sequential estimation at a reduced cost
•  Spatially-uniform and constant parameters over the time window
•  Application: Reduced-scale wildfire spread problem
➙ Need to extend the strategy at regional scales
➙ Need to combine parameter estimation and state estimation approaches to
treat anisotropic uncertainties
!
17 !Rochoux et al. – UNCECOMP 2015 – MS-10!
CONCLUSION
Key ideas!
Rochoux et al (2014), NHESS!
Rochoux et al (2012), CTR brief!
➙ Reduced-cost ensemble Kalman filter (PC-EnKF)
for parameter estimation in front-tracking problems!
•  Stand-alone parameter estimation ➙ forecast improvement!
•  Prototype able to address multi-parameter sequential estimation at a reduced cost
•  Spatially-uniform and constant parameters over the time window
•  Application: Reduced-scale wildfire spread problem
➙ Need to extend the strategy at regional scales 
➙ Need to combine parameter estimation and state estimation approaches to
treat anisotropic uncertainties

•  Front-tracking problem ➙ dynamically-evolving observation operator over time!
•  Prototype able to track coherent features
•  Unusual application of the EnKF algorithm
➙ Need to test the sensitivity of the hybrid data assimilation algorithm to different
representations of the front

!
18 !Rochoux et al. – UNCECOMP 2015 – MS-10!
*	
  Melanie.Rochoux@cerfacs.fr
Thank you for your attention!
Any question?
Cxy = Pt
f
Gt
T
xt
a,(k)
= xt
f,(k)
+Cxy (Cyy + R)−1
(yt
o
+ξo,(k)
− yt
f,(k)
)
Prior
parameters
Prior
fire fronts
Posterior
parameters
xt
f,(1)
xt
f,(2)
xt
f,(Ne )
yt
f,(1)
yt
f,(2)
yt
f,(Ne )
Covariance matrices
EnKF
update
Cyy = GtPt
f
Gt
T
xt
a,(1)
xt
a,(2)
xt
a,(Ne )
yt
o
+ξo,(1)
Ke
t
Posterior
fire fronts
yt
a,(1)
yt
a,(2)
yt
a,(Ne )
EnKF
prediction
FORECAST ANALYSIS
EnKF
prediction
yt
o
+ξo,(Ne )
yt
o
+ξo,(2)
Gt Gt
ALGORITHM ●●●
Standard EnKF!
➙ Key idea: 3D-Var approach with stochastically-based estimation of the error
covariance matrices over the assimilation cycle [t-1, t]
!
•  Local error (over one assimilation cycle) 
!
•  Global error (over all assimilation cycles) 
Specificities!!
•  Random walk model for
parameter evolution

•  Data randomization
➙ Burgers et al. 1998

•  Limitations
➙ Slow convergence
rate (large number of
members)
➙ Sampling errors (Li
2008) – local & global
20 !Rochoux et al. – UNCECOMP 2015 – MS-10!

More Related Content

What's hot

Maximum Entropy Reinforcement Learning (Stochastic Control)
Maximum Entropy Reinforcement Learning (Stochastic Control)Maximum Entropy Reinforcement Learning (Stochastic Control)
Maximum Entropy Reinforcement Learning (Stochastic Control)Dongmin Lee
 
Causal discovery and prediction mechanisms
Causal discovery and prediction mechanismsCausal discovery and prediction mechanisms
Causal discovery and prediction mechanismsShiga University, RIKEN
 
Reinforcement Learning 2. Multi-armed Bandits
Reinforcement Learning 2. Multi-armed BanditsReinforcement Learning 2. Multi-armed Bandits
Reinforcement Learning 2. Multi-armed BanditsSeung Jae Lee
 
Quantum computing
Quantum computingQuantum computing
Quantum computingEmrah Semiz
 
Quantum Computing and Quantum Supremacy at Google
Quantum Computing and Quantum Supremacy at GoogleQuantum Computing and Quantum Supremacy at Google
Quantum Computing and Quantum Supremacy at Googleinside-BigData.com
 
Hidden Markov Model - The Most Probable Path
Hidden Markov Model - The Most Probable PathHidden Markov Model - The Most Probable Path
Hidden Markov Model - The Most Probable PathLê Hòa
 
Optic flow estimation with deep learning
Optic flow estimation with deep learningOptic flow estimation with deep learning
Optic flow estimation with deep learningYu Huang
 
変分ベイズ法の説明
変分ベイズ法の説明変分ベイズ法の説明
変分ベイズ法の説明Haruka Ozaki
 
Recurrent neural networks rnn
Recurrent neural networks   rnnRecurrent neural networks   rnn
Recurrent neural networks rnnKuppusamy P
 
Video Transformers.pptx
Video Transformers.pptxVideo Transformers.pptx
Video Transformers.pptxSangmin Woo
 
Lecture 7: Hidden Markov Models (HMMs)
Lecture 7: Hidden Markov Models (HMMs)Lecture 7: Hidden Markov Models (HMMs)
Lecture 7: Hidden Markov Models (HMMs)Marina Santini
 
PRML輪読#12
PRML輪読#12PRML輪読#12
PRML輪読#12matsuolab
 
Quantum error correction
Quantum error correctionQuantum error correction
Quantum error correctionPhelim Bradley
 
クラシックな機械学習の入門  10. マルコフ連鎖モンテカルロ 法
クラシックな機械学習の入門  10. マルコフ連鎖モンテカルロ 法クラシックな機械学習の入門  10. マルコフ連鎖モンテカルロ 法
クラシックな機械学習の入門  10. マルコフ連鎖モンテカルロ 法Hiroshi Nakagawa
 
Explicit Density Models
Explicit Density ModelsExplicit Density Models
Explicit Density ModelsSangwoo Mo
 
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis taeseon ryu
 
On First-Order Meta-Learning Algorithms
On First-Order Meta-Learning AlgorithmsOn First-Order Meta-Learning Algorithms
On First-Order Meta-Learning AlgorithmsYoonho Lee
 

What's hot (20)

Maximum Entropy Reinforcement Learning (Stochastic Control)
Maximum Entropy Reinforcement Learning (Stochastic Control)Maximum Entropy Reinforcement Learning (Stochastic Control)
Maximum Entropy Reinforcement Learning (Stochastic Control)
 
Causal discovery and prediction mechanisms
Causal discovery and prediction mechanismsCausal discovery and prediction mechanisms
Causal discovery and prediction mechanisms
 
Reinforcement Learning 2. Multi-armed Bandits
Reinforcement Learning 2. Multi-armed BanditsReinforcement Learning 2. Multi-armed Bandits
Reinforcement Learning 2. Multi-armed Bandits
 
Quantum computing
Quantum computingQuantum computing
Quantum computing
 
Quantum Computing and Quantum Supremacy at Google
Quantum Computing and Quantum Supremacy at GoogleQuantum Computing and Quantum Supremacy at Google
Quantum Computing and Quantum Supremacy at Google
 
Hidden Markov Model - The Most Probable Path
Hidden Markov Model - The Most Probable PathHidden Markov Model - The Most Probable Path
Hidden Markov Model - The Most Probable Path
 
Optic flow estimation with deep learning
Optic flow estimation with deep learningOptic flow estimation with deep learning
Optic flow estimation with deep learning
 
変分ベイズ法の説明
変分ベイズ法の説明変分ベイズ法の説明
変分ベイズ法の説明
 
Recurrent neural networks rnn
Recurrent neural networks   rnnRecurrent neural networks   rnn
Recurrent neural networks rnn
 
Video Transformers.pptx
Video Transformers.pptxVideo Transformers.pptx
Video Transformers.pptx
 
Lecture 7: Hidden Markov Models (HMMs)
Lecture 7: Hidden Markov Models (HMMs)Lecture 7: Hidden Markov Models (HMMs)
Lecture 7: Hidden Markov Models (HMMs)
 
PRML輪読#12
PRML輪読#12PRML輪読#12
PRML輪読#12
 
Prml nn
Prml nnPrml nn
Prml nn
 
Quantum error correction
Quantum error correctionQuantum error correction
Quantum error correction
 
クラシックな機械学習の入門  10. マルコフ連鎖モンテカルロ 法
クラシックな機械学習の入門  10. マルコフ連鎖モンテカルロ 法クラシックな機械学習の入門  10. マルコフ連鎖モンテカルロ 法
クラシックな機械学習の入門  10. マルコフ連鎖モンテカルロ 法
 
PRML 5.5.6-5.6
PRML 5.5.6-5.6PRML 5.5.6-5.6
PRML 5.5.6-5.6
 
Explicit Density Models
Explicit Density ModelsExplicit Density Models
Explicit Density Models
 
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
 
Chainerで流体計算
Chainerで流体計算Chainerで流体計算
Chainerで流体計算
 
On First-Order Meta-Learning Algorithms
On First-Order Meta-Learning AlgorithmsOn First-Order Meta-Learning Algorithms
On First-Order Meta-Learning Algorithms
 

Similar to Reduced-cost ensemble Kalman filter for front-tracking problems

Testing Dynamic Behavior in Executable Software Models - Making Cyber-physica...
Testing Dynamic Behavior in Executable Software Models - Making Cyber-physica...Testing Dynamic Behavior in Executable Software Models - Making Cyber-physica...
Testing Dynamic Behavior in Executable Software Models - Making Cyber-physica...Lionel Briand
 
DSD-NL 2018 Inverse Analysis for Workshop Anura3D MPM - Ghasemi Martinelli
DSD-NL 2018 Inverse Analysis for Workshop Anura3D MPM - Ghasemi MartinelliDSD-NL 2018 Inverse Analysis for Workshop Anura3D MPM - Ghasemi Martinelli
DSD-NL 2018 Inverse Analysis for Workshop Anura3D MPM - Ghasemi MartinelliDeltares
 
Wqtc2013 invest ofperformanceprobswitheds-20130910
Wqtc2013 invest ofperformanceprobswitheds-20130910Wqtc2013 invest ofperformanceprobswitheds-20130910
Wqtc2013 invest ofperformanceprobswitheds-20130910John B. Cook, PE, CEO
 
Sampling-SDM2012_Jun
Sampling-SDM2012_JunSampling-SDM2012_Jun
Sampling-SDM2012_JunMDO_Lab
 
Efficient analytical and hybrid simulations using OpenSees
Efficient analytical and hybrid simulations using OpenSeesEfficient analytical and hybrid simulations using OpenSees
Efficient analytical and hybrid simulations using OpenSeesopenseesdays
 
Universal approximators for Direct Policy Search in multi-purpose water reser...
Universal approximators for Direct Policy Search in multi-purpose water reser...Universal approximators for Direct Policy Search in multi-purpose water reser...
Universal approximators for Direct Policy Search in multi-purpose water reser...Andrea Castelletti
 
EGUE Technikrom Final_8_12_13
EGUE Technikrom Final_8_12_13EGUE Technikrom Final_8_12_13
EGUE Technikrom Final_8_12_13Paul Brodbeck
 
ADAPT: Analysis of Dynamic Adaptations in Parameter Trajectories
ADAPT: Analysis of Dynamic Adaptations in Parameter Trajectories ADAPT: Analysis of Dynamic Adaptations in Parameter Trajectories
ADAPT: Analysis of Dynamic Adaptations in Parameter Trajectories Natal van Riel
 
Data-driven wildfire spread modeling - Extension to cases with complex terrai...
Data-driven wildfire spread modeling - Extension to cases with complex terrai...Data-driven wildfire spread modeling - Extension to cases with complex terrai...
Data-driven wildfire spread modeling - Extension to cases with complex terrai...Mélanie Rochoux
 
Process systems engineering lessons learned from the pulp and paper industr...
Process systems engineering   lessons learned from the pulp and paper industr...Process systems engineering   lessons learned from the pulp and paper industr...
Process systems engineering lessons learned from the pulp and paper industr...pablo-rolandi
 
Improving Genetic Algorithm (GA) based NoC mapping algorithm using a formal ...
Improving Genetic Algorithm (GA)  based NoC mapping algorithm using a formal ...Improving Genetic Algorithm (GA)  based NoC mapping algorithm using a formal ...
Improving Genetic Algorithm (GA) based NoC mapping algorithm using a formal ...Vinita Palaniveloo
 
Monte carlo presentation for analysis of business growth
Monte carlo presentation for analysis of business growthMonte carlo presentation for analysis of business growth
Monte carlo presentation for analysis of business growthAsif Anik
 
Bayesian Inference for front-tracking problems - 2013 IPDO conference
Bayesian Inference for front-tracking problems - 2013 IPDO conferenceBayesian Inference for front-tracking problems - 2013 IPDO conference
Bayesian Inference for front-tracking problems - 2013 IPDO conferenceMélanie Rochoux
 
Implementation of the fully adaptive radar framework: Practical limitations
Implementation of the fully adaptive radar framework: Practical limitationsImplementation of the fully adaptive radar framework: Practical limitations
Implementation of the fully adaptive radar framework: Practical limitationsLuis Úbeda Medina
 
Gaze estimation using transformer
Gaze estimation using transformerGaze estimation using transformer
Gaze estimation using transformerJaey Jeong
 
Modelling & Control of Drinkable Water Networks
Modelling & Control of Drinkable Water NetworksModelling & Control of Drinkable Water Networks
Modelling & Control of Drinkable Water NetworksPantelis Sopasakis
 
6Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)
6Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)6Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)
6Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)Bibhuti Prasad Nanda
 

Similar to Reduced-cost ensemble Kalman filter for front-tracking problems (20)

Modeling full scale-data(2)
Modeling full scale-data(2)Modeling full scale-data(2)
Modeling full scale-data(2)
 
Testing Dynamic Behavior in Executable Software Models - Making Cyber-physica...
Testing Dynamic Behavior in Executable Software Models - Making Cyber-physica...Testing Dynamic Behavior in Executable Software Models - Making Cyber-physica...
Testing Dynamic Behavior in Executable Software Models - Making Cyber-physica...
 
DSD-NL 2018 Inverse Analysis for Workshop Anura3D MPM - Ghasemi Martinelli
DSD-NL 2018 Inverse Analysis for Workshop Anura3D MPM - Ghasemi MartinelliDSD-NL 2018 Inverse Analysis for Workshop Anura3D MPM - Ghasemi Martinelli
DSD-NL 2018 Inverse Analysis for Workshop Anura3D MPM - Ghasemi Martinelli
 
Wqtc2013 invest ofperformanceprobswitheds-20130910
Wqtc2013 invest ofperformanceprobswitheds-20130910Wqtc2013 invest ofperformanceprobswitheds-20130910
Wqtc2013 invest ofperformanceprobswitheds-20130910
 
Sampling-SDM2012_Jun
Sampling-SDM2012_JunSampling-SDM2012_Jun
Sampling-SDM2012_Jun
 
Efficient analytical and hybrid simulations using OpenSees
Efficient analytical and hybrid simulations using OpenSeesEfficient analytical and hybrid simulations using OpenSees
Efficient analytical and hybrid simulations using OpenSees
 
Universal approximators for Direct Policy Search in multi-purpose water reser...
Universal approximators for Direct Policy Search in multi-purpose water reser...Universal approximators for Direct Policy Search in multi-purpose water reser...
Universal approximators for Direct Policy Search in multi-purpose water reser...
 
EGUE Technikrom Final_8_12_13
EGUE Technikrom Final_8_12_13EGUE Technikrom Final_8_12_13
EGUE Technikrom Final_8_12_13
 
ADAPT: Analysis of Dynamic Adaptations in Parameter Trajectories
ADAPT: Analysis of Dynamic Adaptations in Parameter Trajectories ADAPT: Analysis of Dynamic Adaptations in Parameter Trajectories
ADAPT: Analysis of Dynamic Adaptations in Parameter Trajectories
 
Data-driven wildfire spread modeling - Extension to cases with complex terrai...
Data-driven wildfire spread modeling - Extension to cases with complex terrai...Data-driven wildfire spread modeling - Extension to cases with complex terrai...
Data-driven wildfire spread modeling - Extension to cases with complex terrai...
 
Process systems engineering lessons learned from the pulp and paper industr...
Process systems engineering   lessons learned from the pulp and paper industr...Process systems engineering   lessons learned from the pulp and paper industr...
Process systems engineering lessons learned from the pulp and paper industr...
 
How to Accelerate Molecular Simulations with Data? by Žofia Trsťanová, Machin...
How to Accelerate Molecular Simulations with Data? by Žofia Trsťanová, Machin...How to Accelerate Molecular Simulations with Data? by Žofia Trsťanová, Machin...
How to Accelerate Molecular Simulations with Data? by Žofia Trsťanová, Machin...
 
Improving Genetic Algorithm (GA) based NoC mapping algorithm using a formal ...
Improving Genetic Algorithm (GA)  based NoC mapping algorithm using a formal ...Improving Genetic Algorithm (GA)  based NoC mapping algorithm using a formal ...
Improving Genetic Algorithm (GA) based NoC mapping algorithm using a formal ...
 
Monte carlo presentation for analysis of business growth
Monte carlo presentation for analysis of business growthMonte carlo presentation for analysis of business growth
Monte carlo presentation for analysis of business growth
 
Bayesian Inference for front-tracking problems - 2013 IPDO conference
Bayesian Inference for front-tracking problems - 2013 IPDO conferenceBayesian Inference for front-tracking problems - 2013 IPDO conference
Bayesian Inference for front-tracking problems - 2013 IPDO conference
 
Implementation of the fully adaptive radar framework: Practical limitations
Implementation of the fully adaptive radar framework: Practical limitationsImplementation of the fully adaptive radar framework: Practical limitations
Implementation of the fully adaptive radar framework: Practical limitations
 
Gaze estimation using transformer
Gaze estimation using transformerGaze estimation using transformer
Gaze estimation using transformer
 
MUMS: Transition & SPUQ Workshop - Gradient-Free Construction of Active Subsp...
MUMS: Transition & SPUQ Workshop - Gradient-Free Construction of Active Subsp...MUMS: Transition & SPUQ Workshop - Gradient-Free Construction of Active Subsp...
MUMS: Transition & SPUQ Workshop - Gradient-Free Construction of Active Subsp...
 
Modelling & Control of Drinkable Water Networks
Modelling & Control of Drinkable Water NetworksModelling & Control of Drinkable Water Networks
Modelling & Control of Drinkable Water Networks
 
6Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)
6Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)6Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)
6Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)
 

Recently uploaded

insect anatomy and insect body wall and their physiology
insect anatomy and insect body wall and their  physiologyinsect anatomy and insect body wall and their  physiology
insect anatomy and insect body wall and their physiologyDrAnita Sharma
 
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
TOTAL CHOLESTEROL (lipid profile test).pptx
TOTAL CHOLESTEROL (lipid profile test).pptxTOTAL CHOLESTEROL (lipid profile test).pptx
TOTAL CHOLESTEROL (lipid profile test).pptxdharshini369nike
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trssuser06f238
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...lizamodels9
 
Welcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work DayWelcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work DayZachary Labe
 
Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Temporomandibular joint Muscles of Mastication
Temporomandibular joint Muscles of MasticationTemporomandibular joint Muscles of Mastication
Temporomandibular joint Muscles of Masticationvidulajaib
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.PraveenaKalaiselvan1
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzohaibmir069
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxyaramohamed343013
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
 
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tantaDashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tantaPraksha3
 
Cytokinin, mechanism and its application.pptx
Cytokinin, mechanism and its application.pptxCytokinin, mechanism and its application.pptx
Cytokinin, mechanism and its application.pptxVarshiniMK
 
Solution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsSolution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsHajira Mahmood
 
‏‏VIRUS - 123455555555555555555555555555555555555555
‏‏VIRUS -  123455555555555555555555555555555555555555‏‏VIRUS -  123455555555555555555555555555555555555555
‏‏VIRUS - 123455555555555555555555555555555555555555kikilily0909
 

Recently uploaded (20)

insect anatomy and insect body wall and their physiology
insect anatomy and insect body wall and their  physiologyinsect anatomy and insect body wall and their  physiology
insect anatomy and insect body wall and their physiology
 
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
TOTAL CHOLESTEROL (lipid profile test).pptx
TOTAL CHOLESTEROL (lipid profile test).pptxTOTAL CHOLESTEROL (lipid profile test).pptx
TOTAL CHOLESTEROL (lipid profile test).pptx
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 tr
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
 
Welcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work DayWelcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work Day
 
Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Temporomandibular joint Muscles of Mastication
Temporomandibular joint Muscles of MasticationTemporomandibular joint Muscles of Mastication
Temporomandibular joint Muscles of Mastication
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistan
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -I
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docx
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
 
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tantaDashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
 
Cytokinin, mechanism and its application.pptx
Cytokinin, mechanism and its application.pptxCytokinin, mechanism and its application.pptx
Cytokinin, mechanism and its application.pptx
 
Solution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsSolution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutions
 
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort ServiceHot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
 
‏‏VIRUS - 123455555555555555555555555555555555555555
‏‏VIRUS -  123455555555555555555555555555555555555555‏‏VIRUS -  123455555555555555555555555555555555555555
‏‏VIRUS - 123455555555555555555555555555555555555555
 

Reduced-cost ensemble Kalman filter for front-tracking problems

  • 1. Reduced-cost ensemble Kalman filter for parameter estimation! Application to front-tracking problems! Mélanie Rochoux! in collaboration with S.Ricci, D. Lucor, B. Cuenot & A. Trouvé! *  melanie.rochoux@cerfacs.fr! MS-10 Reduced-order models for stochastic inverse problems – U626  
  • 2. INTRODUCTION ●●●● Data assimilation: why? how?! 2 !Rochoux et al. – UNCECOMP 2015 – MS-10! ➙ Key idea: “optimal combination of observations and forward model”! Determine best estimate of a dynamical system given Weather forecast! Atm. chemistry! Hydrology! Biomechanics! - Sparse and imperfect - Relation between observations and model outputs Observations Numerical model Model formulation Model parameters Initial condition Forcing data Mathematical technique based on estimation theory •  The “true state” is unknown and should be estimated •  Measurements and models are imperfect •  The estimate should be an optimal combination of both measurements and models ➙ error minimization problem Ex. applications
  • 3. INTRODUCTION ●●●● Data assimilation: why? how?! ➙ Key idea: “optimal combination of observations and forward model”! Ensemble Kalman filter (EnKF) •  Forecast step ➙ uncertainty propagation - Explicit propagation of the error statistics - Nonlinear extension of the Kalman filter •  Analysis step ➙ Kalman filter update equation ! reality     model forecast Diagnostic!           measurements analysis Time! Sequential approach  =                +      K  [            -­‐                        ]           Distance to observations! G( ) Kalman gain matrix! Stochastic characterization Estimation of error covariance matrices Control variables! 3 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  • 4. INTRODUCTION ●●●● Uncertainty quantification! ➙ Challenging idea: Use uncertainty quantification to overcome the slow convergence rate and sampling errors of the Monte Carlo-based EnKF! ! reality     model forecast Diagnostic!           measurements analysis Time! Sequential approach Npc X k=1 ˆck k( )                          ●   Basis functions 4 !Rochoux et al. – UNCECOMP 2015 – MS-10!  =                +      K  [            -­‐                        ]          G( ) Control variables! Hybrid Ensemble Kalman filter (PC-EnKF) •  Forecast step ➙ uncertainty propagation - Use of surrogate model to compute model trajectories - Polynomial Chaos (PC) expansion •  Analysis step ➙ Kalman filter update equation !
  • 5. INTRODUCTION ●●●● Parameter estimation! ➙ Objective: Improvement of the forecast performance •  State estimation limitation ➙ no long persistence of the initial condition for a chaotic system •  Parameter estimation ➙ accounting for the temporal variability in the errors Difficulties ➙ Possible nonlinear relationship between input parameters and model counterparts of the observations ➙ Existence of an evolution model for parameters? ! Forward model Parameters Initial condition Boundary conditions Comparison Model outputs Observations Ensemble Kalman filter Parameter estimation State estimation 5 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  • 6. INTRODUCTION ●●●● Outline! ! Reduced-cost ensemble Kalman filter for parameter estimation (PC-EnKF)! ! u  Algorithm! u  Application to wildfire spread forecasting! •  Front-tracking problem •  Synthetic case •  Controlled fire experiment 6 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  • 7. ALGORITHM ●●● Standard EnKF! Cxy = Pt f Gt T xt a,(k) = xt f,(k) +Cxy (Cyy + R)−1 (yt o +ξo,(k) − yt f,(k) ) Prior parameters Prior fire fronts Posterior parameters xt f,(1) xt f,(2) xt f,(Ne ) yt f,(1) yt f,(2) yt f,(Ne ) Covariance matrices EnKF update Cyy = GtPt f Gt T xt a,(1) xt a,(2) xt a,(Ne ) yt o +ξo,(1) Ke t Posterior fire fronts yt a,(1) yt a,(2) yt a,(Ne ) EnKF prediction FORECAST ANALYSIS EnKF prediction yt o +ξo,(Ne ) yt o +ξo,(2) Gt Gt ➙ Key idea: 3D-Var approach with stochastically-based estimation of the error covariance matrices over the assimilation cycle [t-1, t] Specificities!! •  Random walk model for parameter evolution •  Data randomization ➙ Burgers et al. 1998 •  Limitations ➙ Slow convergence rate (large number of members) ➙ Sampling errors (Li 2008) – local & global 7 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  • 8. ALGORITHM ●●● Hybrid PC-EnKF! ➙ Objective: Reduce computational cost of forward model integration •  Integrating Polynomial Chaos (PC) into forecast •  Control parameters projected onto a stochastic space spanned by orthogonal PC functions of independent Gaussian random variables Surrogate model! Model inputs! Model outputs! Random event! •  Easy access to statistics (mean, covariance, ensemble sampling) Ensemble sampling! •  Integrating Polynomial Chaos (PC) into observation •  Use the same basis for the model and for the data space (not obvious since observations and model counterparts should remain uncorrelated, Evensen 2009) 8 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  • 9. ALGORITHM ●●● Coupling PC and EnKF approaches! EnKF prediction Surrogate model Surrogate model Forward modelHermite quadrature Simulated fire fronts Hermite polynomials Surrogate model Forecast ! distribution! ➀! Monte-Carlo sampling Predicted fire front positions Posterior estimate of parameters Updated fire front positions ➁ ➂ EnKF update ('q)q = 1, · · · , Npc k = 1, · · · , Ne k = 1, · · · , Ne EnKF prediction k = 1, · · · , Ne k = 1, · · · , Ne FIREFLY j = 1, · · · , (Nquad)n j = 1, · · · , (Nquad)n ⇣ x f,(j) t , !j ⌘ ⇣ y f,(j) t ⌘ pf (xt) yf t = Gpc,t(xf t) ⇣ x f,(k) t ⌘ ⇣ x a,(k) t ⌘ ⇣ y a,(k) t ⌘ ⇣ y f,(k) t ⌘ ➙ Non-intrusive approach: PC used to build a surrogate model of the observation operator 9 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  • 10. WILDFIRE SPREAD APPLICATION ●●● Front-tracking problem! Experimental grassland fire (100m x 100m), N.S. Cheney, Annaburroo site (Australia)! ➙ Wildfires feature a front-like geometry at regional scales! FRONT! •  Scales ranging from meters up to several kilometers •  Thin flame zone propagating normal to itself towards unburnt vegetation •  Local propagation speed of the front called “rate of spread” (ROS) 10 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  • 11. WILDFIRE SPREAD APPLICATION ●●● Front-tracking problem! •  2-D state variable: reaction progress variable c •  Front marker: contour line c = 0.5 •  Submodel for the local ROS along the normal direction to the front •  Semi-empirical formulation (Rothermel) •  Function of the local environmental conditions ➙ Level-set-based front propagation simulator ROS = f(uw, ↵sl, Mv, v, ⌃v, ...) Simulated front c= 0.5 ! (x1 , y1 ) (x2 , y2 ) (x3 , y3 ) (x4 , y4 ) @c @t = ROS |rc| 11 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  • 12. WILDFIRE SPREAD APPLICATION ●●● Front-tracking problem! •  2-D state variable: reaction progress variable c •  Front marker: contour line c = 0.5 •  Submodel for the local ROS along the normal direction to the front •  Semi-empirical formulation (Rothermel) •  Function of the local environmental conditions ➙ Level-set-based front propagation simulator ROS = f(uw, ↵sl, Mv, v, ⌃v, ...) Simulated front c= 0.5 ! (x1 , y1 ) (x2 , y2 ) (x3 , y3 ) (x4 , y4 ) @c @t = ROS |rc|➙ Observation represented as a discretized fire front!! raw data: infrared imagery 12 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  • 13. WILDFIRE SPREAD APPLICATION ●●● Synthetic experiment! •  Estimation of a uniform proportionality coefficient P in the ROS formulation •  True parameter at the tail of the Gaussian distribution associated with the forecast estimates •  Reduced-cost approach: •  5 model integrations to build the surrogate model •  1000 members in the ensemble •  Observation error STD = 2 m ! 75 85 95 105 115 125 75 85 95 105 115 125 x [m] y[m] m 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 75 85 95 105 115 125 P [1/s]x−coordinate[m] 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 75 85 95 105 115 125 P [1/s] y−coordinate[m] forecast true trueforecast 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 75 85 95 105 115 125 P [1/s] x−coordinate[m] 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 75 85 95 105 115 125 y−coordinate[m] analysis analysis true true - forecast - analysis + observations quadrature points ▾ Response surface for the x-coordinate front marker m ◀ Fire front positions at time 50 s (analysis time) 13 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  • 14. WILDFIRE SPREAD APPLICATION ●●● Controlled fire experiment! •  Reduced scale fire experiment (4 m x 4 m) over quasi-homogeneous short grass ! 1min32s 50s 1min46s 1min04s 1min18s Wind 1m/s 0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 x [m] y [m] •  Mid-Infrared imaging •  Quasi-homogeneous short grass (22% moisture content) •  Mean wind speed: 1m/s in northwestern direction •  Mean ROS = 2 cm/s •  Max. ROS = 5 cm/s ANALYSIS TIME FORECAST TIME 14 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  • 15. WILDFIRE SPREAD APPLICATION ●●● Controlled fire experiment! •  Reduced scale fire experiment (4 m x 4 m) over quasi-homogeneous short grass •  Estimation of 2 biomass fuel parameters: moisture content (Mv), geometrical parameter (Σv) •  Reduced-cost approach: •  25 model integrations to build the surrogate model •  1000 members in the ensemble •  Observation error STD = 5 cm ! 15 11500 Σv [1/m]Mv [%] Σv [1/m]Mv [%] 15 11500 x-coordinate[m]y-coordinate[m] 13.8 2234513.8 22345 13.8 22345 Σv [1/m]Mv [%] x-coordinate[m]y-coordinate[m] 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 0 0.5 1 1.5 2 x [m] y[m] m ▾ Response surface for the x-coordinate front marker m ◀ Fire front positions at time 1min18 s quadrature points forecast! analysis! - Forecast (PC-EnKF) - Analysis (PC-EnKF) □ Analysis (standard EnKF) + observations ANALYSIS TIME 15 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  • 16. WILDFIRE SPREAD APPLICATION ●●● Controlled fire experiment! •  Reduced scale fire experiment (4 m x 4 m) over quasi-homogeneous short grass •  Estimation of 2 biomass fuel parameters: moisture content (Mv), geometrical parameter (Σv) •  Reduced-cost approach: •  25 model integrations to build the surrogate model •  1000 members in the ensemble •  Observation error STD = 5 cm ! 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 0 0.5 1 1.5 2 x [m] y[m] m ANALYSIS TIME 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 0 0.5 1 1.5 2 x [m] y[m] - Forecast (PC-EnKF) - Analysis (PC-EnKF) □ Analysis (standard EnKF) + observations FORECAST TIME Good behavior of the PC surrogate model! 16 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  • 17. CONCLUSION Key ideas! Rochoux et al (2014), NHESS! Rochoux et al (2012), CTR brief! ➙ Reduced-cost ensemble Kalman filter (PC-EnKF) for parameter estimation in front-tracking problems! •  Stand-alone parameter estimation ➙ forecast improvement! •  Prototype able to address multi-parameter sequential estimation at a reduced cost •  Spatially-uniform and constant parameters over the time window •  Application: Reduced-scale wildfire spread problem ➙ Need to extend the strategy at regional scales ➙ Need to combine parameter estimation and state estimation approaches to treat anisotropic uncertainties ! 17 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  • 18. CONCLUSION Key ideas! Rochoux et al (2014), NHESS! Rochoux et al (2012), CTR brief! ➙ Reduced-cost ensemble Kalman filter (PC-EnKF) for parameter estimation in front-tracking problems! •  Stand-alone parameter estimation ➙ forecast improvement! •  Prototype able to address multi-parameter sequential estimation at a reduced cost •  Spatially-uniform and constant parameters over the time window •  Application: Reduced-scale wildfire spread problem ➙ Need to extend the strategy at regional scales ➙ Need to combine parameter estimation and state estimation approaches to treat anisotropic uncertainties •  Front-tracking problem ➙ dynamically-evolving observation operator over time! •  Prototype able to track coherent features •  Unusual application of the EnKF algorithm ➙ Need to test the sensitivity of the hybrid data assimilation algorithm to different representations of the front ! 18 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  • 19. *  Melanie.Rochoux@cerfacs.fr Thank you for your attention! Any question?
  • 20. Cxy = Pt f Gt T xt a,(k) = xt f,(k) +Cxy (Cyy + R)−1 (yt o +ξo,(k) − yt f,(k) ) Prior parameters Prior fire fronts Posterior parameters xt f,(1) xt f,(2) xt f,(Ne ) yt f,(1) yt f,(2) yt f,(Ne ) Covariance matrices EnKF update Cyy = GtPt f Gt T xt a,(1) xt a,(2) xt a,(Ne ) yt o +ξo,(1) Ke t Posterior fire fronts yt a,(1) yt a,(2) yt a,(Ne ) EnKF prediction FORECAST ANALYSIS EnKF prediction yt o +ξo,(Ne ) yt o +ξo,(2) Gt Gt ALGORITHM ●●● Standard EnKF! ➙ Key idea: 3D-Var approach with stochastically-based estimation of the error covariance matrices over the assimilation cycle [t-1, t] ! •  Local error (over one assimilation cycle) ! •  Global error (over all assimilation cycles) Specificities!! •  Random walk model for parameter evolution •  Data randomization ➙ Burgers et al. 1998 •  Limitations ➙ Slow convergence rate (large number of members) ➙ Sampling errors (Li 2008) – local & global 20 !Rochoux et al. – UNCECOMP 2015 – MS-10!