@doanduyhai
Real time data processing
with Spark & Cassandra
DuyHai DOAN, Technical Advocate
@doanduyhai
Who Am I ?!
Duy Hai DOAN
Cassandra technical advocate
•  talks, meetups, confs
•  open-source devs (Achilles, …)
•  OSS Cassandra point of contact
☞ duy_hai.doan@datastax.com
☞ @doanduyhai
2
@doanduyhai
Datastax!
•  Founded in April 2010 
•  We contribute a lot to Apache Cassandra™
•  400+ customers (25 of the Fortune 100), 200+ employees
•  Headquarter in San Francisco Bay area
•  EU headquarter in London, offices in France and Germany
•  Datastax Enterprise = OSS Cassandra + extra features
3
Spark & Cassandra Integration!
Spark & its eco-system!
Cassandra & token ranges!
Stand-alone cluster deployment!
!
@doanduyhai
What is Apache Spark ?!
Created at 

Apache Project since 2010

General data processing framework

MapReduce is not the A & ΩΩ

One-framework-many-components approach
5
@doanduyhai
Spark characteristics!
Fast
•  10x-100x faster than Hadoop MapReduce
•  In-memory storage
•  Single JVM process per node, multi-threaded

Easy
•  Rich Scala, Java and Python APIs (R is coming …)
•  2x-5x less code
•  Interactive shell

6
@doanduyhai
Spark code example!
Setup
Data-set (can be from text, CSV, JSON, Cassandra, HDFS, …)
val$conf$=$new$SparkConf(true)$
$ .setAppName("basic_example")$
$ .setMaster("local[3]")$
$
val$sc$=$new$SparkContext(conf)$
val$people$=$List(("jdoe","John$DOE",$33),$
$$$$$$$$$$$$$$$$$$("hsue","Helen$SUE",$24),$
$$$$$$$$$$$$$$$$$$("rsmith",$"Richard$Smith",$33))$
7
@doanduyhai
RDDs!
RDD = Resilient Distributed Dataset

val$parallelPeople:$RDD[(String,$String,$Int)]$=$sc.parallelize(people)$
$
val$extractAge:$RDD[(Int,$(String,$String,$Int))]$=$parallelPeople$
$ $ $ $ $ $ .map(tuple$=>$(tuple._3,$tuple))$
$
val$groupByAge:$RDD[(Int,$Iterable[(String,$String,$Int)])]=extractAge.groupByKey()$
$
val$countByAge:$Map[Int,$Long]$=$groupByAge.countByKey()$
8
@doanduyhai
RDDs!
RDD[A] = distributed collection of A 
•  RDD[Person]
•  RDD[(String,Int)], …

RDD[A] split into partitions

Partitions distributed over n workers à parallel computing
9
@doanduyhai
Spark eco-system!
Local Standalone cluster YARN Mesos
Spark Core Engine (Scala/Java/Python)
Spark Streaming MLLibGraphXSpark SQL
Persistence
Cluster Manager
…
10
@doanduyhai
Spark eco-system!
Local Standalone cluster YARN Mesos
Spark Core Engine (Scala/Java/Python)
Spark Streaming MLLibGraphXSpark SQL
Persistence
Cluster Manager
…
11
@doanduyhai
What is Apache Cassandra?!
Created at 

Apache Project since 2009

Distributed NoSQL database

Eventual consistency (A & P of the CAP theorem)

Distributed table abstraction
12
@doanduyhai
Cassandra data distribution reminder!
Random: hash of #partition → token = hash(#p)

Hash: ]-X, X]

X = huge number (264/2)

 n1
n2
n3
n4
n5
n6
n7
n8
13
@doanduyhai
Cassandra token ranges!
A: ]0, X/8]
B: ] X/8, 2X/8]
C: ] 2X/8, 3X/8]
D: ] 3X/8, 4X/8]
E: ] 4X/8, 5X/8]
F: ] 5X/8, 6X/8]
G: ] 6X/8, 7X/8]
H: ] 7X/8, X]

Murmur3 hash function
n1
n2
n3
n4
n5
n6
n7
n8
A
B
C
D
E
F
G
H
14
@doanduyhai
Linear scalability!
n1
n2
n3
n4
n5
n6
n7
n8
A
B
C
D
E
F
G
H
user_id1
user_id2
user_id3
user_id4
user_id5
15
@doanduyhai
Linear scalability!
n1
n2
n3
n4
n5
n6
n7
n8
A
B
C
D
E
F
G
H
user_id1
user_id2
user_id3
user_id4
user_id5
16
@doanduyhai
Cassandra Query Language (CQL)!

INSERT INTO users(login, name, age) VALUES(‘jdoe’, ‘John DOE’, 33);

UPDATE users SET age = 34 WHERE login = ‘jdoe’;

DELETE age FROM users WHERE login = ‘jdoe’;

SELECT age FROM users WHERE login = ‘jdoe’;
17
@doanduyhai
Why Spark on Cassandra ?!
Reliable persistent store (HA)

Structured data (Cassandra CQL à Dataframe API)

Multi data-center !!!

For Spark
18
@doanduyhai
Why Spark on Cassandra ?!
Reliable persistent store (HA)

Structured data (Cassandra CQL à Dataframe API)

Multi data-center !!!

Cross-table operations (JOIN, UNION, etc.)

Real-time/batch processing

Complex analytics (e.g. machine learning)
For Spark
For Cassandra
19
@doanduyhai
Use Cases!
Load data from various
sources
Analytics (join, aggregate, transform, …)
Sanitize, validate, normalize data
Schema migration,
Data conversion
20
@doanduyhai
Cluster deployment!
C*
SparkM
SparkW
C*
SparkW
C*
SparkW
C*
SparkW
C*
SparkW
Stand-alone cluster
21
@doanduyhai
Cluster deployment!
Spark Master
Spark Worker Spark Worker Spark Worker Spark Worker
Executor Executor Executor Executor
Driver Program
Cassandra – Spark placement
1 Cassandra process ⟷ 1 Spark worker
C* C* C* C*
22
Spark & Cassandra Connector!
Core API!
SparkSQL!
SparkStreaming!
@doanduyhai
Connector architecture!
All Cassandra types supported and converted to Scala types

Server side data filtering (SELECT … WHERE …)

Use Java-driver underneath
!
Scala and Java support
24
@doanduyhai
Connector architecture – Core API!
Cassandra tables exposed as Spark RDDs

Read from and write to Cassandra

Mapping of C* tables and rows to Scala objects
•  CassandraRow
•  Scala case class (object mapper)
•  Scala tuples 


25
@doanduyhai
Connector architecture – Spark SQL !

Mapping of Cassandra table to SchemaRDD
•  CassandraSQLRow à SparkRow
•  custom query plan
•  push predicates to CQL for early filtering

SELECT * FROM user_emails WHERE login = ‘jdoe’;
26
@doanduyhai
Connector architecture – Spark Streaming !

Streaming data INTO Cassandra table
•  trivial setup
•  be careful about your Cassandra data model !!!
Streaming data OUT of Cassandra tables ?
•  work in progress …
27
Connector API !
Connector API!
Data Locality Implementation!
@doanduyhai
Connector API!
Connecting to Cassandra
!//!Import!Cassandra.specific!functions!on!SparkContext!and!RDD!objects!
!import!com.datastax.driver.spark._!
!!
!//!Spark!connection!options!
!val!conf!=!new!SparkConf(true)!
! .setMaster("spark://192.168.123.10:7077")!
! .setAppName("cassandra.demo")!
! .set("cassandra.connection.host","192.168.123.10")!//!initial!contact!
! .set("cassandra.username",!"cassandra")!
! .set("cassandra.password",!"cassandra")!
!
!val!sc!=!new!SparkContext(conf)!
29
@doanduyhai
Connector API!
Preparing test data
CREATE&TABLE&test.words&(word&text&PRIMARY&KEY,&count&int);&
&
INSERT&INTO&test.words&(word,&count)&VALUES&('bar',&30);&
INSERT&INTO&test.words&(word,&count)&VALUES&('foo',&20);&
30
@doanduyhai
Connector API!
Reading from Cassandra
!//!Use!table!as!RDD!
!val!rdd!=!sc.cassandraTable("test",!"words")!
!//!rdd:!CassandraRDD[CassandraRow]!=!CassandraRDD[0]!
!
!rdd.toArray.foreach(println)!
!//!CassandraRow[word:!bar,!count:!30]!
!//!CassandraRow[word:!foo,!count:!20]!
!
!rdd.columnNames!!!!//!Stream(word,!count)!
!rdd.size!!!!!!!!!!!//!2!
!
!val!firstRow!=!rdd.first!!//firstRow:CassandraRow=CassandraRow[word:!bar,!count:!30]!
!
!firstRow.getInt("count")!!//!Int!=!30!
31
@doanduyhai
Connector API!
Writing data to Cassandra
!val!newRdd!=!sc.parallelize(Seq(("cat",!40),!("fox",!50)))!!
!//!newRdd:!org.apache.spark.rdd.RDD[(String,!Int)]!=!ParallelCollectionRDD[2]!!!
!
!newRdd.saveToCassandra("test",!"words",!Seq("word",!"count"))!
SELECT&*&FROM&test.words;&
&
&&&&word&|&count&&&
&&&999999+9999999&
&&&&&bar&|&&&&30&
&&&&&foo&|&&&&20&
&&&&&cat&|&&&&40&
&&&&&fox&|&&&&50&&
32
@doanduyhai
Remember token ranges ?!
A: ]0, X/8]
B: ] X/8, 2X/8]
C: ] 2X/8, 3X/8]
D: ] 3X/8, 4X/8]
E: ] 4X/8, 5X/8]
F: ] 5X/8, 6X/8]
G: ] 6X/8, 7X/8]
H: ] 7X/8, X]
n1
n2
n3
n4
n5
n6
n7
n8
A
B
C
D
E
F
G
H
33
@doanduyhai
Data Locality!
C*
SparkM
SparkW
C*
SparkW
C*
SparkW
C*
SparkW
C*
SparkW
Spark partition RDD
Cassandra
tokens ranges
34
@doanduyhai
Data Locality!
C*
SparkM
SparkW
C*
SparkW
C*
SparkW
C*
SparkW
C*
SparkW
Use Murmur3Partitioner

35
@doanduyhai
Read data locality!
Read from Cassandra
Spark shuffle operations
36
@doanduyhai
Repartition before write !
Write to Cassandra
rdd.repartitionByCassandraReplica("keyspace","table")
37
@doanduyhai
Or async batch writes!
Async batches fan-out writes to Cassandra
Spark shuffle operations
38
@doanduyhai
Write data locality!
39
•  either stream data with Spark using repartitionByCassandraReplica()
•  or flush data to Cassandra by async batches
•  in any case, there will be data movement on network (sorry no magic)
@doanduyhai
Joins with data locality!
40

CREATE TABLE artists(name text, style text, … PRIMARY KEY(name));


CREATE TABLE albums(title text, artist text, year int,… PRIMARY KEY(title));
val join: CassandraJoinRDD[(String,Int), (String,String)] =
sc.cassandraTable[(String,Int)](KEYSPACE, ALBUMS)
// Select only useful columns for join and processing
.select("artist","year")
.as((_:String, _:Int))
// Repartition RDDs by "artists" PK, which is "name"
.repartitionByCassandraReplica(KEYSPACE, ARTISTS)
// Join with "artists" table, selecting only "name" and "country" columns
.joinWithCassandraTable[(String,String)](KEYSPACE, ARTISTS, SomeColumns("name","country"))
.on(SomeColumns("name"))
@doanduyhai
Joins pipeline with data locality!
41
val join: CassandraJoinRDD[(String,Int), (String,String)] =
sc.cassandraTable[(String,Int)](KEYSPACE, ALBUMS)
// Select only useful columns for join and processing
.select("artist","year")
.as((_:String, _:Int))
.repartitionByCassandraReplica(KEYSPACE, ARTISTS)
.joinWithCassandraTable[(String,String)](KEYSPACE, ARTISTS, SomeColumns("name","country"))
.on(SomeColumns("name"))
.map(…)
.filter(…)
.groupByKey()
.mapValues(…)
.repartitionByCassandraReplica(KEYSPACE, ARTISTS_RATINGS)
.joinWithCassandraTable(KEYSPACE, ARTISTS_RATINGS)
…
!
!
@doanduyhai
Perfect data locality scenario!
42
•  read localy from Cassandra
•  use operations that do not require shuffle in Spark (map, filter, …)
•  repartitionbyCassandraReplica()
•  à to a table having same partition key as original table
•  save back into this Cassandra table
Demo
https://github.com/doanduyhai/Cassandra-Spark-Demo
@doanduyhai
What’s for future ?!
Datastax Enterprise 4.7 
•  Cassandra + Spark + Solr as your analytics platform

Filter out most data possible with Solr from Cassandra

Fetch the filtered data in Spark and perform aggregations

Save back final data into Cassandra

44
@doanduyhai
What’s for future ?!
What’s about data locality ?
45
@doanduyhai
val join: CassandraJoinRDD[(String,Int), (String,String)] =
sc.cassandraTable[(String,Int)](KEYSPACE, ALBUMS)
// Select only useful columns for join and processing
.select("artist","year").where("solr_query = 'style:*rock* AND ratings:[3 TO *]' ")
.as((_:String, _:Int))
.repartitionByCassandraReplica(KEYSPACE, ARTISTS)
.joinWithCassandraTable[(String,String)](KEYSPACE, ARTISTS, SomeColumns("name","country"))
.on(SomeColumns("name")).where("solr_query = 'age:[20 TO 30]' ")
What’s for future ?!
1.  compute Spark partitions using Cassandra token ranges
2.  on each partition, use Solr for local data filtering (no fan out !)
3.  fetch data back into Spark for aggregations
4.  repeat 1 – 3 as many times as necessary 
46
@doanduyhai
What’s for future ?!
47

SELECT … FROM … 

WHERE token(#partition)> 3X/8 

AND token(#partition)<= 4X/8

AND solr_query='full text search expression';
1
2
3
Advantages of same JVM Cassandra + Solr integration
1
Single-pass local full text search (no fan out) 2
Data retrieval
D: ] 3X/8, 4X/8]
Q & R
! "!
Thank You
@doanduyhai
duy_hai.doan@datastax.com
https://academy.datastax.com/

Real time data processing with spark & cassandra @ NoSQLMatters 2015 Paris

  • 1.
    @doanduyhai Real time dataprocessing with Spark & Cassandra DuyHai DOAN, Technical Advocate
  • 2.
    @doanduyhai Who Am I?! Duy Hai DOAN Cassandra technical advocate •  talks, meetups, confs •  open-source devs (Achilles, …) •  OSS Cassandra point of contact ☞ duy_hai.doan@datastax.com ☞ @doanduyhai 2
  • 3.
    @doanduyhai Datastax! •  Founded inApril 2010 •  We contribute a lot to Apache Cassandra™ •  400+ customers (25 of the Fortune 100), 200+ employees •  Headquarter in San Francisco Bay area •  EU headquarter in London, offices in France and Germany •  Datastax Enterprise = OSS Cassandra + extra features 3
  • 4.
    Spark & CassandraIntegration! Spark & its eco-system! Cassandra & token ranges! Stand-alone cluster deployment! !
  • 5.
    @doanduyhai What is ApacheSpark ?! Created at Apache Project since 2010 General data processing framework MapReduce is not the A & ΩΩ One-framework-many-components approach 5
  • 6.
    @doanduyhai Spark characteristics! Fast •  10x-100xfaster than Hadoop MapReduce •  In-memory storage •  Single JVM process per node, multi-threaded Easy •  Rich Scala, Java and Python APIs (R is coming …) •  2x-5x less code •  Interactive shell 6
  • 7.
    @doanduyhai Spark code example! Setup Data-set(can be from text, CSV, JSON, Cassandra, HDFS, …) val$conf$=$new$SparkConf(true)$ $ .setAppName("basic_example")$ $ .setMaster("local[3]")$ $ val$sc$=$new$SparkContext(conf)$ val$people$=$List(("jdoe","John$DOE",$33),$ $$$$$$$$$$$$$$$$$$("hsue","Helen$SUE",$24),$ $$$$$$$$$$$$$$$$$$("rsmith",$"Richard$Smith",$33))$ 7
  • 8.
    @doanduyhai RDDs! RDD = ResilientDistributed Dataset val$parallelPeople:$RDD[(String,$String,$Int)]$=$sc.parallelize(people)$ $ val$extractAge:$RDD[(Int,$(String,$String,$Int))]$=$parallelPeople$ $ $ $ $ $ $ .map(tuple$=>$(tuple._3,$tuple))$ $ val$groupByAge:$RDD[(Int,$Iterable[(String,$String,$Int)])]=extractAge.groupByKey()$ $ val$countByAge:$Map[Int,$Long]$=$groupByAge.countByKey()$ 8
  • 9.
    @doanduyhai RDDs! RDD[A] = distributedcollection of A •  RDD[Person] •  RDD[(String,Int)], … RDD[A] split into partitions Partitions distributed over n workers à parallel computing 9
  • 10.
    @doanduyhai Spark eco-system! Local Standalonecluster YARN Mesos Spark Core Engine (Scala/Java/Python) Spark Streaming MLLibGraphXSpark SQL Persistence Cluster Manager … 10
  • 11.
    @doanduyhai Spark eco-system! Local Standalonecluster YARN Mesos Spark Core Engine (Scala/Java/Python) Spark Streaming MLLibGraphXSpark SQL Persistence Cluster Manager … 11
  • 12.
    @doanduyhai What is ApacheCassandra?! Created at Apache Project since 2009 Distributed NoSQL database Eventual consistency (A & P of the CAP theorem) Distributed table abstraction 12
  • 13.
    @doanduyhai Cassandra data distributionreminder! Random: hash of #partition → token = hash(#p) Hash: ]-X, X] X = huge number (264/2) n1 n2 n3 n4 n5 n6 n7 n8 13
  • 14.
    @doanduyhai Cassandra token ranges! A:]0, X/8] B: ] X/8, 2X/8] C: ] 2X/8, 3X/8] D: ] 3X/8, 4X/8] E: ] 4X/8, 5X/8] F: ] 5X/8, 6X/8] G: ] 6X/8, 7X/8] H: ] 7X/8, X] Murmur3 hash function n1 n2 n3 n4 n5 n6 n7 n8 A B C D E F G H 14
  • 15.
  • 16.
  • 17.
    @doanduyhai Cassandra Query Language(CQL)! INSERT INTO users(login, name, age) VALUES(‘jdoe’, ‘John DOE’, 33); UPDATE users SET age = 34 WHERE login = ‘jdoe’; DELETE age FROM users WHERE login = ‘jdoe’; SELECT age FROM users WHERE login = ‘jdoe’; 17
  • 18.
    @doanduyhai Why Spark onCassandra ?! Reliable persistent store (HA) Structured data (Cassandra CQL à Dataframe API) Multi data-center !!! For Spark 18
  • 19.
    @doanduyhai Why Spark onCassandra ?! Reliable persistent store (HA) Structured data (Cassandra CQL à Dataframe API) Multi data-center !!! Cross-table operations (JOIN, UNION, etc.) Real-time/batch processing Complex analytics (e.g. machine learning) For Spark For Cassandra 19
  • 20.
    @doanduyhai Use Cases! Load datafrom various sources Analytics (join, aggregate, transform, …) Sanitize, validate, normalize data Schema migration, Data conversion 20
  • 21.
  • 22.
    @doanduyhai Cluster deployment! Spark Master SparkWorker Spark Worker Spark Worker Spark Worker Executor Executor Executor Executor Driver Program Cassandra – Spark placement 1 Cassandra process ⟷ 1 Spark worker C* C* C* C* 22
  • 23.
    Spark & CassandraConnector! Core API! SparkSQL! SparkStreaming!
  • 24.
    @doanduyhai Connector architecture! All Cassandratypes supported and converted to Scala types Server side data filtering (SELECT … WHERE …) Use Java-driver underneath ! Scala and Java support 24
  • 25.
    @doanduyhai Connector architecture –Core API! Cassandra tables exposed as Spark RDDs Read from and write to Cassandra Mapping of C* tables and rows to Scala objects •  CassandraRow •  Scala case class (object mapper) •  Scala tuples 25
  • 26.
    @doanduyhai Connector architecture –Spark SQL ! Mapping of Cassandra table to SchemaRDD •  CassandraSQLRow à SparkRow •  custom query plan •  push predicates to CQL for early filtering SELECT * FROM user_emails WHERE login = ‘jdoe’; 26
  • 27.
    @doanduyhai Connector architecture –Spark Streaming ! Streaming data INTO Cassandra table •  trivial setup •  be careful about your Cassandra data model !!! Streaming data OUT of Cassandra tables ? •  work in progress … 27
  • 28.
    Connector API ! ConnectorAPI! Data Locality Implementation!
  • 29.
    @doanduyhai Connector API! Connecting toCassandra !//!Import!Cassandra.specific!functions!on!SparkContext!and!RDD!objects! !import!com.datastax.driver.spark._! !! !//!Spark!connection!options! !val!conf!=!new!SparkConf(true)! ! .setMaster("spark://192.168.123.10:7077")! ! .setAppName("cassandra.demo")! ! .set("cassandra.connection.host","192.168.123.10")!//!initial!contact! ! .set("cassandra.username",!"cassandra")! ! .set("cassandra.password",!"cassandra")! ! !val!sc!=!new!SparkContext(conf)! 29
  • 30.
    @doanduyhai Connector API! Preparing testdata CREATE&TABLE&test.words&(word&text&PRIMARY&KEY,&count&int);& & INSERT&INTO&test.words&(word,&count)&VALUES&('bar',&30);& INSERT&INTO&test.words&(word,&count)&VALUES&('foo',&20);& 30
  • 31.
    @doanduyhai Connector API! Reading fromCassandra !//!Use!table!as!RDD! !val!rdd!=!sc.cassandraTable("test",!"words")! !//!rdd:!CassandraRDD[CassandraRow]!=!CassandraRDD[0]! ! !rdd.toArray.foreach(println)! !//!CassandraRow[word:!bar,!count:!30]! !//!CassandraRow[word:!foo,!count:!20]! ! !rdd.columnNames!!!!//!Stream(word,!count)! !rdd.size!!!!!!!!!!!//!2! ! !val!firstRow!=!rdd.first!!//firstRow:CassandraRow=CassandraRow[word:!bar,!count:!30]! ! !firstRow.getInt("count")!!//!Int!=!30! 31
  • 32.
    @doanduyhai Connector API! Writing datato Cassandra !val!newRdd!=!sc.parallelize(Seq(("cat",!40),!("fox",!50)))!! !//!newRdd:!org.apache.spark.rdd.RDD[(String,!Int)]!=!ParallelCollectionRDD[2]!!! ! !newRdd.saveToCassandra("test",!"words",!Seq("word",!"count"))! SELECT&*&FROM&test.words;& & &&&&word&|&count&&& &&&999999+9999999& &&&&&bar&|&&&&30& &&&&&foo&|&&&&20& &&&&&cat&|&&&&40& &&&&&fox&|&&&&50&& 32
  • 33.
    @doanduyhai Remember token ranges?! A: ]0, X/8] B: ] X/8, 2X/8] C: ] 2X/8, 3X/8] D: ] 3X/8, 4X/8] E: ] 4X/8, 5X/8] F: ] 5X/8, 6X/8] G: ] 6X/8, 7X/8] H: ] 7X/8, X] n1 n2 n3 n4 n5 n6 n7 n8 A B C D E F G H 33
  • 34.
  • 35.
  • 36.
    @doanduyhai Read data locality! Readfrom Cassandra Spark shuffle operations 36
  • 37.
    @doanduyhai Repartition before write! Write to Cassandra rdd.repartitionByCassandraReplica("keyspace","table") 37
  • 38.
    @doanduyhai Or async batchwrites! Async batches fan-out writes to Cassandra Spark shuffle operations 38
  • 39.
    @doanduyhai Write data locality! 39 • either stream data with Spark using repartitionByCassandraReplica() •  or flush data to Cassandra by async batches •  in any case, there will be data movement on network (sorry no magic)
  • 40.
    @doanduyhai Joins with datalocality! 40 CREATE TABLE artists(name text, style text, … PRIMARY KEY(name)); CREATE TABLE albums(title text, artist text, year int,… PRIMARY KEY(title)); val join: CassandraJoinRDD[(String,Int), (String,String)] = sc.cassandraTable[(String,Int)](KEYSPACE, ALBUMS) // Select only useful columns for join and processing .select("artist","year") .as((_:String, _:Int)) // Repartition RDDs by "artists" PK, which is "name" .repartitionByCassandraReplica(KEYSPACE, ARTISTS) // Join with "artists" table, selecting only "name" and "country" columns .joinWithCassandraTable[(String,String)](KEYSPACE, ARTISTS, SomeColumns("name","country")) .on(SomeColumns("name"))
  • 41.
    @doanduyhai Joins pipeline withdata locality! 41 val join: CassandraJoinRDD[(String,Int), (String,String)] = sc.cassandraTable[(String,Int)](KEYSPACE, ALBUMS) // Select only useful columns for join and processing .select("artist","year") .as((_:String, _:Int)) .repartitionByCassandraReplica(KEYSPACE, ARTISTS) .joinWithCassandraTable[(String,String)](KEYSPACE, ARTISTS, SomeColumns("name","country")) .on(SomeColumns("name")) .map(…) .filter(…) .groupByKey() .mapValues(…) .repartitionByCassandraReplica(KEYSPACE, ARTISTS_RATINGS) .joinWithCassandraTable(KEYSPACE, ARTISTS_RATINGS) … ! !
  • 42.
    @doanduyhai Perfect data localityscenario! 42 •  read localy from Cassandra •  use operations that do not require shuffle in Spark (map, filter, …) •  repartitionbyCassandraReplica() •  à to a table having same partition key as original table •  save back into this Cassandra table
  • 43.
  • 44.
    @doanduyhai What’s for future?! Datastax Enterprise 4.7 •  Cassandra + Spark + Solr as your analytics platform Filter out most data possible with Solr from Cassandra Fetch the filtered data in Spark and perform aggregations Save back final data into Cassandra 44
  • 45.
    @doanduyhai What’s for future?! What’s about data locality ? 45
  • 46.
    @doanduyhai val join: CassandraJoinRDD[(String,Int),(String,String)] = sc.cassandraTable[(String,Int)](KEYSPACE, ALBUMS) // Select only useful columns for join and processing .select("artist","year").where("solr_query = 'style:*rock* AND ratings:[3 TO *]' ") .as((_:String, _:Int)) .repartitionByCassandraReplica(KEYSPACE, ARTISTS) .joinWithCassandraTable[(String,String)](KEYSPACE, ARTISTS, SomeColumns("name","country")) .on(SomeColumns("name")).where("solr_query = 'age:[20 TO 30]' ") What’s for future ?! 1.  compute Spark partitions using Cassandra token ranges 2.  on each partition, use Solr for local data filtering (no fan out !) 3.  fetch data back into Spark for aggregations 4.  repeat 1 – 3 as many times as necessary 46
  • 47.
    @doanduyhai What’s for future?! 47 SELECT … FROM … WHERE token(#partition)> 3X/8 AND token(#partition)<= 4X/8 AND solr_query='full text search expression'; 1 2 3 Advantages of same JVM Cassandra + Solr integration 1 Single-pass local full text search (no fan out) 2 Data retrieval D: ] 3X/8, 4X/8]
  • 48.
  • 49.