SlideShare a Scribd company logo
6. Bab 15 : Reaksi Kimia
15-1 Bahan Bakar & Pembakaran
15-2 Proses Pembakaran Teoritik & Aktual
15-3 Entalpi Pembentukan & Entalpi Pembakaran
Bahan Bakar & Pembakaran
FIGURE 15–1
Kebanyakan bahan bakar hidrokarbon cair dihasilkan dari
destilasi minyak bumi
Pembakaran  adalah reaksi kimia dimana bahan bakar
dioksidasi & sebagian besar energi dihasilkan.
Pembakaran (Combustion)
FIGURE 15–3
Tiap kmol O2 di udara terdapat
3,76 kmol N2.
FIGURE 15–4
Pada proses pembakaran tunak, komponen-komponen yang masuk ruang
bakar disebut sebagai REAKTAN & komponen yg keluar disebut
sebagai PRODUK.
Rasio udara – bahan bakar (air–fuel ratio, AF)
 biasanya dinyatakan berdasarkan basis massa & didefinisikan
sebagai :
FIGURE 15–6
Rasio udara - bahan bakar (air–fuel ratio, AF) menunjukkan  jumlah
massa udara yg digunakan per satuan massa bahan bakar selama
proses pembakaran.
EXAMPLE 15–1
Balancing the Combustion Equation
1 kmol oktana (C8H18) dibakar dengan udara yg mengandung 20
kmol O2. Asumsikan produk hanya mengandung CO2, H2O, O2,
dan N2, tentukan :
a. Jumlah mol setiap gas dalam produk dan
b. Rasio AF pada proses pembakaran ini.
Solution : Jumlah bahan bakar & oksigen di udara diberikan.
Jumlah produk dan rasio AF ditanyakan.
Asumsi : Produk pembakaran hanya mengandung CO2, H2O, O2, dan N2 .
Properties : Massa molar udara Mair = 28.97 kg/kmol = 29.0 kg/kmol
(Table A–1).
Analysis :
Persamaan kimia untuk proses pembakaran ini dapat ditulis sbb :
Massa Molar dari Udara dapat ditentukan dari :
Jumlah massa atau jumlah mol setiap komponen dari reaktan &
produk harus sama, sehingga :
Dengan mensubstitusikan koefisien di atas, persamaan pembakaran
menjadi :
Rasio Udara – Bahan Bakar (AF) :
Kesimpulan : 24,2 kg udara  digunakan untuk membakar 1 kg
bahan bakar selama proses pembakaran ini.
Pembakaran Teoritik & Aktual
FIGURE 15–8
Proses pembakaran dikatakan lengkap / sempurna
 jika semua komponen yg dapat terbakar dari bahan
bakar terbakar sempurna (tak ada O2 pada produk)
Pembakaran
Aktual
Pembakaran
Teoritik
Proses pembakaran ideal  dimana bahan bakar terbakar secara
sempurna dengan udara teoritik disebut  pembakaran teoritik /
stoikiometri.
Sebagai contoh, pembakaran teoritik metana sbb :
FIGURE 15–9
Proses pembakaran lengkap tanpa
oksigen berlebih pada produk
pembakaran  disebut :
pembakaran teoritik.
EXAMPLE 15–2
Pembakaran Dengan Udara Berlebih
Etana (C2H6) dibakar dengan 20% udara berlebih selama proses
pembakaran. Asumsikan pembakaran sempurna / lengkap yang
berlangsung pada tekanan 100 kPa. Tentukan :
a. Rasio AF
Persamaan Reaksi Pembakaran :
Koefisien ath
 ditentukan dari kesetimbangan O2 antara reaktan & produk sbb :
Sehingga Persamaan Reaksi Pembakaran menjadi :
(a) Rasio AF dapat dihitung sbb :
Entalpi Pembentukan (Enthalpy of Formation) dan
Entalpi Pembakaran (Enthalpy of Combustion)
FIGURE 15–14
Bentuk energi mikroskopik dari
suatu zat  terdiri dari :
1. Energi Sensibel
2. Energi Laten
3. Energi Kimia
4. Energi Nuklir
Sifat ini  disebut Entalpi Reaksi (Enthalpy of Reaction, hR) yang
didefinisikan sebagai  perbedaan antara entalpi Produk pada suatu
kondisi tertentu dengan entalpi Reaktan untuk suatu rekasi sempurna.
FIGURE 15–15
Saat ikatan kimia yg ada rusak
& terbentuk ikatan baru yg lain
selama proses pembakaran
 sejumlah besar energi
sensibel diserap atau
dilepaskan.
Untuk Proses Pembakaran  Entalpi Reaksi biasanya dikenal sebagai
Entalpi Pembakaran (Enthalpy of Combustion, hC) yang menunjukkan
 sejumlah kalor yang dilepaskan selama proses pembakaran tunak
saat 1 kmol (atau 1 kg) bahan bakar secara sempurna terbakar pada
suhu & tekanan tertentu.
Entalpi Reaksi (hR) atau Entalpi Pembakaran (hC) dapat dituliskan sbb :
FIGURE 15–17
Entalpi Pembakaran  menunjukkan
sejumlah energi yang dilepaskan saat
bahan bakar terbakar selama proses
pembakaran tunak pada kondisi tertentu.
Sifat ini disebut juga sebagai  Entalpi Pembentukan (Enthalpy of
Formation, h f) saat dipandang sebagai  entalpi dari suatu zat pada
kondisi tertentu karena komposisi kimia pembentuknya.
FIGURE 15–18
Entalpi Pembentukan dari suatu senyawa
atau molekul  menunjukkan energi
yang diserap atau dilepaskan saat
komponen terbentuk dari elemen-
elemennya selama proses pembakaran
tunak pada kondisi tertentu.
( Tabel A-26 )
Nilai Kalor (Heating value) suatu bahan bakar  didefinisikan sebagai
jumlah kalor yang dilepaskan saat bahan bakar terbakar sempurna.
Dengan kata lain, Nilai Kalor bahan bakar  sama dengan Harga
Mutlak Entalpi Pembakaran dari bahan bakar, & dapat dituliskan
sbb :
Nilai Kalor  tergantung pada fasa H2O pada Produk.
Nilai Kalor disebut  HHV (Higher Heating Value) jika H2O pada
produk berada pada fasa cair.
Nilai Kalor disebut  LHV (Lower Heating Value) jika H2O pada
produk berada pada fasa uap.
FIGURE 15–19
HHV suatu bahan bakar
 sama dengan jumlah dari LHV
dan Kalor Laten Penguapan
H2O pada produk.
Hubungan antara HHV dan LHV sbb :
EXAMPLE 15–5
Evaluation of the Enthalpy of Combustion
Tentukan Entalpi Pembakaran dari Oktana cair (C8H18) pada kondisi
25°C dan 1 atm, menggunakan data Entalpi Pembentukan (Tabel A-26).
Asumsikan H2O pada produk berfasa cair.
Tabel A-26  Entalpi Pembentukan pada 25°C dan 1 atm sbb :
- CO2 (g) = - 393,520 kJ/kmol
- H2O (l) = - 285,830 kJ/kmol
- C8H18 (l) = - 249,950 kJ/kmol
Reaktan & Produk pada kondisi referensi standar (25°C dan 1 atm).
N2 dan O2  adalah elemen yang stabil
 sehingga entalpi pembentukannya sama dengan NOL.
Persamaan stoikiometri pembakaran C8H18 sbb :
Sehingga :
Sehingga Entalpi Pembakaran C8H18 menjadi :
SELESAI
FIRST-LAW ANALYSIS
OF REACTING SYSTEMS
C8H18()
Steady-Flow Systems
the enthalpy of a component on a unit mole basis as (Fig. 15–21)
FIGURE 15–21
The enthalpy of a chemical component
at a specified state is the sum of the
enthalpy of the component at 25C, 1
atm (hf°), and the sensible enthalpy of
the component relative to 25C, 1 atm.
The steady-flow energy balance relation can be expressed for a chemically reacting
steady-flow system more explicitly as
Rate of net energy transfer in by heat,
work, and mass
Rate of net energy transfer out by heat,
work, and mass
In combustion analysis, it is more convenient to work with quantities expressed per
mole of fuel. Such a relation is obtained by dividing each term of the equation above
by the molal flow rate of the fuel, yielding
Energy transfer in per mole of fuel by
heat, work, and mass
Energy transfer out per mole of fuel by
heat, work, and mass
Taking heat transfer to the system and work done by the system to be positive
quantities, the energy balance relation just discussed can be expressed more compactly
as
or as
where
If the enthalpy of combustion h °C for a particular reaction is available, the
steady-flow energy equation per mole of fuel can be expressed as
A combustion chamber normally involves heat output but no heat input. Then the
energy balance for a typical steady-flow combustion process becomes
Energy in by mass per
mole of fuel
Energy out by mass per
mole of fuel
Closed Systems
The general closed-system energy balance relation can be expressed for a stationary
chemically reacting closed system as
To avoid using another property the internal energy of formation u–f°—we utilize
the definition of enthalpy (u– h– Pv– or u– f° u– u–° h° Pv) and express the
above equation as (Fig. 15–22)
FIGURE 15–22
An expression for the internal energy
of a chemical component in terms of
the enthalpy.
EXAMPLE 15–6
First-Law Analysis of Steady-Flow Combustion
Liquid propane (C3H8) enters a combustion chamber at 25°C at a rate of
0.05 kg/min where it is mixed and burned with 50 percent excess air that
enters the combustion chamber at 7°C, as shown in Fig. 15–23. An analysis
of the combustion gases reveals that all the hydrogen in the fuel burns
to H2O but only 90 percent of the carbon burns to CO2, with the remaining
10 percent forming CO. If the exit temperature of the combustion gases is 1500
K, determine (a) the mass flow rate of air and (b) the rate of heat
transfer from the combustion chamber.
Solution Liquid propane is burned steadily with excess air. The mass flow
rate of air and the rate of heat transfer are to be determined.
Assumptions 1 Steady operating conditions exist. 2 Air and the combustion
gases are ideal gases. 3 Kinetic and potential energies are negligible.
Analysis We note that all the hydrogen in the fuel burns to H2O but 10
percent of the carbon burns incompletely and forms CO. Also, the fuel is
burned with excess air and thus there is some free O2 in the product gases.
The theoretical amount of air is determined from the stoichiometric reaction to be
O2 balance:
Then the balanced equation for the actual combustion process with 50 percent
excess air and some CO in the products becomes
(a) The air–fuel ratio for this combustion process is
Thus,
(b) The heat transfer for this steady-flow combustion process is determined from
the steady-flow energy balance Eout Ein applied on the combustion chamber per
unit mole of the fuel,
or
Assuming the air and the combustion products to be ideal gases, we have h h(T
), and we form the following minitable using data from the property tables:
The h–f° of liquid propane is obtained by subtracting the h–fg of propane at 25°C
from the h–f° of gas propane. Substituting gives
Thus 363,880 kJ of heat is transferred from the combustion chamber for each kmol
(44 kg) of propane. This corresponds to 363,880/44 8270 kJ of heat loss per
kilogram of propane. Then the rate of heat transfer for a mass flow rate of 0.05
kg/min for the propane becomes
EXAMPLE 15–7
First-Law Analysis of Combustion in a Bomb
The constant-volume tank shown in Fig. 15–24 contains 1 lbmol of methane (CH4)
gas and 3 lbmol of O2 at 77°F and 1 atm. The contents of the tank are ignited, and
the methane gas burns completely. If the final temperature is 1800 R, determine (a)
the final pressure in the tank and (b) the heat transfer during this process.
Solution Methane is burned in a rigid tank. The final pressure in the tank and the
heat transfer are to be determined.
Assumptions 1 The fuel is burned completely and thus all the carbon in the fuel
burns to CO2 and all the hydrogen to H2O. 2 The fuel, the air, and the combustion
gases are ideal gases. 3 Kinetic and potential energies are negligible. 4 There are no
work interactions involved.
Analysis
The balanced combustion equation is
(a) At 1800 R, water exists in the gas phase. Using the ideal-gas relation for both the
reactants and the products, the final pressure in the tank is determined to be
Substituting, we get
(b) Noting that the process involves no work interactions, the heat transfer during
this constant-volume combustion process can be determined from the energy
balance Ein Eout Esystem applied to the tank,
Since both the reactants and the products are assumed to be ideal gases, all the
internal energy and enthalpies depend on temperature only, and the Pv– terms in
this equation can be replaced by RuT. It yields
since the reactants are at the standard reference temperature of 537 R.
From h – f° and ideal-gas tables in the Appendix,
Substituting, we have
Discussion On a mass basis, the heat transfer from the tank would be 308,730/16
19,300 Btu/lbm of methane.
ADIABATIC FLAME TEMPERATURE
In the absence of any work interactions and any changes in kinetic or potential
energies, the chemical energy released during a combustion process
either is lost as heat to the surroundings or is used internally to raise the
temperature of the combustion products. The smaller the heat loss, the
larger the temperature rise. In the limiting case of no heat loss to the surroundings
(Q 0), the temperature of the products reaches a maximum,
which is called the adiabatic flame or adiabatic combustion temperature
of the reaction (Fig. 15–25).
FIGURE 15–25
The temperature of a combustion
chamber becomes maximum when
combustion is complete and no heat
is lost to the surroundings (Q 0).
The adiabatic flame temperature of a steady-flow combustion process is determined
from Eq. 15–11 by setting Q 0 and W 0. It yields
FIGURE 15–26
The maximum temperature
encountered in a combustion chamber
is lower than the theoretical adiabatic
flame temperature.
EXAMPLE 15–8
Adiabatic Flame Temperature in Steady Combustion
Liquid octane (C8H18) enters the combustion chamber of a gas turbine steadily at
1 atm and 25°C, and it is burned with air that enters the combustion chamber at
the same state, as shown in Fig. 15–27. Determine the adiabatic flame temperature
for (a) complete combustion with 100 percent theoretical air, (b) complete
combustion with 400 percent theoretical air, and (c) incomplete combustion (some
CO in the products) with 90 percent theoretical air.
Solution Liquid octane is burned steadily. The adiabatic flame temperature is to be
determined for different cases.
Assumptions 1 This is a steady-flow combustion process. 2 The combustion
chamber is adiabatic. 3 There are no work interactions. 4 Air and the combustion
gases are ideal gases. 5 Changes in kinetic and potential energies
are negligible.
Analysis
(a) The balanced equation for the combustion process with the theoretical amount of
air is
The adiabatic flame temperature relation Hprod Hreact in this case reduces to
since all the reactants are at the standard reference state and h – f° 0 for O2 and N2.
The h– f° and h values of various components at 298 K are
Substituting, we have
which yields
It appears that we have one equation with three unknowns. Actually we have
only one unknown—the temperature of the products Tprod—since h h(T )
for ideal gases. Therefore, we have to use an equation solver such as EES or
a trial-and-error approach to determine the temperature of the products.
A first guess is obtained by dividing the right-hand side of the equation by the total
number of moles, which yields 5,646,081/(8 + 9 + 47) 88,220 kJ/kmol. This
enthalpy value corresponds to about 2650 K for N2, 2100 K for H2O, and 1800 K
for CO2. Noting that the majority of the moles are N2, we see that Tprod should be
close to 2650 K, but somewhat under it. Therefore, a good first guess is 2400 K. At
this temperature,
This value is higher than 5,646,081 kJ. Therefore, the actual temperature is
slightly under 2400 K. Next we choose 2350 K. It yields
which is lower than 5,646,081 kJ. Therefore, the actual temperature of the products
is between 2350 and 2400 K. By interpolation, it is found to be
(b) The balanced equation for the complete combustion process with 400
percent theoretical air is
By following the procedure used in (a), the adiabatic flame temperature in this case
is determined to be
Notice that the temperature of the products decreases significantly as a result of
using excess air.
(c) The balanced equation for the incomplete combustion process with 90 percent
theoretical air is
Following the procedure used in (a), we find the adiabatic flame temperature in
this case to be
Discussion Notice that the adiabatic flame temperature decreases as a
result of incomplete combustion or using excess air. Also, the maximum
adiabatic flame temperature is achieved when complete combustion occurs
with the theoretical amount of air.

More Related Content

Similar to Reaksi Kimia (Brief).ppt

Lecture 4 Ammonia Production.ppt
Lecture 4  Ammonia Production.pptLecture 4  Ammonia Production.ppt
Lecture 4 Ammonia Production.ppt
FathiShokry
 
Antiknock characteristics of vehicle fuel
Antiknock characteristics of vehicle fuelAntiknock characteristics of vehicle fuel
Antiknock characteristics of vehicle fuel
jiodadi
 
INTRODUCTION TO POWER PLANTS & DIRECT ENERGY CONVERSION
INTRODUCTION TO POWER PLANTS & DIRECT ENERGY CONVERSION INTRODUCTION TO POWER PLANTS & DIRECT ENERGY CONVERSION
INTRODUCTION TO POWER PLANTS & DIRECT ENERGY CONVERSION
S.Vijaya Bhaskar
 
Seminar presenation s8
Seminar presenation s8Seminar presenation s8
Seminar presenation s8
SACHINLAL007
 
REVIEW OF POWER PLANT
REVIEW OF POWER PLANTREVIEW OF POWER PLANT
REVIEW OF POWER PLANT
CharltonInao1
 
Stoichiometric calculations
Stoichiometric calculationsStoichiometric calculations
Stoichiometric calculations
MANJUNATH N
 
Fuel air cycle
Fuel air cycleFuel air cycle
Fuel air cycle
Soumith V
 
Ijetr042158
Ijetr042158Ijetr042158
Thermo-chemistry of Fuel Air Mixtures
Thermo-chemistry of Fuel Air MixturesThermo-chemistry of Fuel Air Mixtures
Thermo-chemistry of Fuel Air Mixtures
Hassan Raza
 
5. COMBUSTION PRINCIPLES.pptx
5. COMBUSTION  PRINCIPLES.pptx5. COMBUSTION  PRINCIPLES.pptx
5. COMBUSTION PRINCIPLES.pptx
RENERGISTICS
 
Gas turbine 2 - regeneration and intercooling
Gas turbine   2 - regeneration and intercoolingGas turbine   2 - regeneration and intercooling
Gas turbine 2 - regeneration and intercooling
Nihal Senanayake
 
Heat_Engines & Refrigerators -EE1104-1.pptx
Heat_Engines & Refrigerators -EE1104-1.pptxHeat_Engines & Refrigerators -EE1104-1.pptx
Heat_Engines & Refrigerators -EE1104-1.pptx
SandaruwanChathurang2
 
Gas turbine details
Gas turbine detailsGas turbine details
Gas turbine details
Aditya Sharma
 
MET 401 Chapter 3 fuels_and_combustion
MET 401 Chapter 3 fuels_and_combustionMET 401 Chapter 3 fuels_and_combustion
MET 401 Chapter 3 fuels_and_combustionIbrahim AboKhalil
 
Calorific Value Lecture 3, Fuel Tech-ll.pdf
Calorific Value Lecture 3, Fuel Tech-ll.pdfCalorific Value Lecture 3, Fuel Tech-ll.pdf
Calorific Value Lecture 3, Fuel Tech-ll.pdf
ShakeelAhmad816993
 
Calorific Value Lecture 3, Fuel Tech-ll.pptx
Calorific Value Lecture 3, Fuel Tech-ll.pptxCalorific Value Lecture 3, Fuel Tech-ll.pptx
Calorific Value Lecture 3, Fuel Tech-ll.pptx
ShakeelAhmad816993
 
COEFFICATION OF HEAT ENGIN Aniket jaiswal. class b.sc sec. semester
COEFFICATION OF HEAT ENGIN Aniket jaiswal. class  b.sc sec. semesterCOEFFICATION OF HEAT ENGIN Aniket jaiswal. class  b.sc sec. semester
COEFFICATION OF HEAT ENGIN Aniket jaiswal. class b.sc sec. semester
Rai Saheb Bhanwar Singh College Nasrullaganj
 
Air-Cycle refrigeration.pdf
Air-Cycle refrigeration.pdfAir-Cycle refrigeration.pdf
Air-Cycle refrigeration.pdf
EssaYimer
 
Proton Exchange Membrane Fuel Cell
Proton Exchange Membrane Fuel CellProton Exchange Membrane Fuel Cell
Proton Exchange Membrane Fuel Cell
Mohit Rajput
 
Fuel and combustion
Fuel and combustionFuel and combustion
Fuel and combustionRaju Mirdha
 

Similar to Reaksi Kimia (Brief).ppt (20)

Lecture 4 Ammonia Production.ppt
Lecture 4  Ammonia Production.pptLecture 4  Ammonia Production.ppt
Lecture 4 Ammonia Production.ppt
 
Antiknock characteristics of vehicle fuel
Antiknock characteristics of vehicle fuelAntiknock characteristics of vehicle fuel
Antiknock characteristics of vehicle fuel
 
INTRODUCTION TO POWER PLANTS & DIRECT ENERGY CONVERSION
INTRODUCTION TO POWER PLANTS & DIRECT ENERGY CONVERSION INTRODUCTION TO POWER PLANTS & DIRECT ENERGY CONVERSION
INTRODUCTION TO POWER PLANTS & DIRECT ENERGY CONVERSION
 
Seminar presenation s8
Seminar presenation s8Seminar presenation s8
Seminar presenation s8
 
REVIEW OF POWER PLANT
REVIEW OF POWER PLANTREVIEW OF POWER PLANT
REVIEW OF POWER PLANT
 
Stoichiometric calculations
Stoichiometric calculationsStoichiometric calculations
Stoichiometric calculations
 
Fuel air cycle
Fuel air cycleFuel air cycle
Fuel air cycle
 
Ijetr042158
Ijetr042158Ijetr042158
Ijetr042158
 
Thermo-chemistry of Fuel Air Mixtures
Thermo-chemistry of Fuel Air MixturesThermo-chemistry of Fuel Air Mixtures
Thermo-chemistry of Fuel Air Mixtures
 
5. COMBUSTION PRINCIPLES.pptx
5. COMBUSTION  PRINCIPLES.pptx5. COMBUSTION  PRINCIPLES.pptx
5. COMBUSTION PRINCIPLES.pptx
 
Gas turbine 2 - regeneration and intercooling
Gas turbine   2 - regeneration and intercoolingGas turbine   2 - regeneration and intercooling
Gas turbine 2 - regeneration and intercooling
 
Heat_Engines & Refrigerators -EE1104-1.pptx
Heat_Engines & Refrigerators -EE1104-1.pptxHeat_Engines & Refrigerators -EE1104-1.pptx
Heat_Engines & Refrigerators -EE1104-1.pptx
 
Gas turbine details
Gas turbine detailsGas turbine details
Gas turbine details
 
MET 401 Chapter 3 fuels_and_combustion
MET 401 Chapter 3 fuels_and_combustionMET 401 Chapter 3 fuels_and_combustion
MET 401 Chapter 3 fuels_and_combustion
 
Calorific Value Lecture 3, Fuel Tech-ll.pdf
Calorific Value Lecture 3, Fuel Tech-ll.pdfCalorific Value Lecture 3, Fuel Tech-ll.pdf
Calorific Value Lecture 3, Fuel Tech-ll.pdf
 
Calorific Value Lecture 3, Fuel Tech-ll.pptx
Calorific Value Lecture 3, Fuel Tech-ll.pptxCalorific Value Lecture 3, Fuel Tech-ll.pptx
Calorific Value Lecture 3, Fuel Tech-ll.pptx
 
COEFFICATION OF HEAT ENGIN Aniket jaiswal. class b.sc sec. semester
COEFFICATION OF HEAT ENGIN Aniket jaiswal. class  b.sc sec. semesterCOEFFICATION OF HEAT ENGIN Aniket jaiswal. class  b.sc sec. semester
COEFFICATION OF HEAT ENGIN Aniket jaiswal. class b.sc sec. semester
 
Air-Cycle refrigeration.pdf
Air-Cycle refrigeration.pdfAir-Cycle refrigeration.pdf
Air-Cycle refrigeration.pdf
 
Proton Exchange Membrane Fuel Cell
Proton Exchange Membrane Fuel CellProton Exchange Membrane Fuel Cell
Proton Exchange Membrane Fuel Cell
 
Fuel and combustion
Fuel and combustionFuel and combustion
Fuel and combustion
 

Recently uploaded

Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Thiyagu K
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
RaedMohamed3
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
camakaiclarkmusic
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
beazzy04
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
MIRIAMSALINAS13
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
Special education needs
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
DeeptiGupta154
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
Jheel Barad
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
Sandy Millin
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
SACHIN R KONDAGURI
 
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdfAdversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Po-Chuan Chen
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Atul Kumar Singh
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
Atul Kumar Singh
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
Tamralipta Mahavidyalaya
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
BhavyaRajput3
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
TechSoup
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
EugeneSaldivar
 

Recently uploaded (20)

Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
 
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdfAdversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
 

Reaksi Kimia (Brief).ppt

  • 1. 6. Bab 15 : Reaksi Kimia 15-1 Bahan Bakar & Pembakaran 15-2 Proses Pembakaran Teoritik & Aktual 15-3 Entalpi Pembentukan & Entalpi Pembakaran
  • 2. Bahan Bakar & Pembakaran FIGURE 15–1 Kebanyakan bahan bakar hidrokarbon cair dihasilkan dari destilasi minyak bumi
  • 3.
  • 4. Pembakaran  adalah reaksi kimia dimana bahan bakar dioksidasi & sebagian besar energi dihasilkan. Pembakaran (Combustion) FIGURE 15–3 Tiap kmol O2 di udara terdapat 3,76 kmol N2.
  • 5. FIGURE 15–4 Pada proses pembakaran tunak, komponen-komponen yang masuk ruang bakar disebut sebagai REAKTAN & komponen yg keluar disebut sebagai PRODUK.
  • 6. Rasio udara – bahan bakar (air–fuel ratio, AF)  biasanya dinyatakan berdasarkan basis massa & didefinisikan sebagai : FIGURE 15–6 Rasio udara - bahan bakar (air–fuel ratio, AF) menunjukkan  jumlah massa udara yg digunakan per satuan massa bahan bakar selama proses pembakaran.
  • 7. EXAMPLE 15–1 Balancing the Combustion Equation 1 kmol oktana (C8H18) dibakar dengan udara yg mengandung 20 kmol O2. Asumsikan produk hanya mengandung CO2, H2O, O2, dan N2, tentukan : a. Jumlah mol setiap gas dalam produk dan b. Rasio AF pada proses pembakaran ini.
  • 8. Solution : Jumlah bahan bakar & oksigen di udara diberikan. Jumlah produk dan rasio AF ditanyakan. Asumsi : Produk pembakaran hanya mengandung CO2, H2O, O2, dan N2 . Properties : Massa molar udara Mair = 28.97 kg/kmol = 29.0 kg/kmol (Table A–1). Analysis : Persamaan kimia untuk proses pembakaran ini dapat ditulis sbb : Massa Molar dari Udara dapat ditentukan dari :
  • 9. Jumlah massa atau jumlah mol setiap komponen dari reaktan & produk harus sama, sehingga : Dengan mensubstitusikan koefisien di atas, persamaan pembakaran menjadi :
  • 10. Rasio Udara – Bahan Bakar (AF) : Kesimpulan : 24,2 kg udara  digunakan untuk membakar 1 kg bahan bakar selama proses pembakaran ini.
  • 11. Pembakaran Teoritik & Aktual FIGURE 15–8 Proses pembakaran dikatakan lengkap / sempurna  jika semua komponen yg dapat terbakar dari bahan bakar terbakar sempurna (tak ada O2 pada produk) Pembakaran Aktual Pembakaran Teoritik
  • 12. Proses pembakaran ideal  dimana bahan bakar terbakar secara sempurna dengan udara teoritik disebut  pembakaran teoritik / stoikiometri. Sebagai contoh, pembakaran teoritik metana sbb : FIGURE 15–9 Proses pembakaran lengkap tanpa oksigen berlebih pada produk pembakaran  disebut : pembakaran teoritik.
  • 13. EXAMPLE 15–2 Pembakaran Dengan Udara Berlebih Etana (C2H6) dibakar dengan 20% udara berlebih selama proses pembakaran. Asumsikan pembakaran sempurna / lengkap yang berlangsung pada tekanan 100 kPa. Tentukan : a. Rasio AF
  • 14. Persamaan Reaksi Pembakaran : Koefisien ath  ditentukan dari kesetimbangan O2 antara reaktan & produk sbb :
  • 15. Sehingga Persamaan Reaksi Pembakaran menjadi : (a) Rasio AF dapat dihitung sbb :
  • 16. Entalpi Pembentukan (Enthalpy of Formation) dan Entalpi Pembakaran (Enthalpy of Combustion) FIGURE 15–14 Bentuk energi mikroskopik dari suatu zat  terdiri dari : 1. Energi Sensibel 2. Energi Laten 3. Energi Kimia 4. Energi Nuklir
  • 17. Sifat ini  disebut Entalpi Reaksi (Enthalpy of Reaction, hR) yang didefinisikan sebagai  perbedaan antara entalpi Produk pada suatu kondisi tertentu dengan entalpi Reaktan untuk suatu rekasi sempurna. FIGURE 15–15 Saat ikatan kimia yg ada rusak & terbentuk ikatan baru yg lain selama proses pembakaran  sejumlah besar energi sensibel diserap atau dilepaskan.
  • 18. Untuk Proses Pembakaran  Entalpi Reaksi biasanya dikenal sebagai Entalpi Pembakaran (Enthalpy of Combustion, hC) yang menunjukkan  sejumlah kalor yang dilepaskan selama proses pembakaran tunak saat 1 kmol (atau 1 kg) bahan bakar secara sempurna terbakar pada suhu & tekanan tertentu. Entalpi Reaksi (hR) atau Entalpi Pembakaran (hC) dapat dituliskan sbb :
  • 19. FIGURE 15–17 Entalpi Pembakaran  menunjukkan sejumlah energi yang dilepaskan saat bahan bakar terbakar selama proses pembakaran tunak pada kondisi tertentu.
  • 20. Sifat ini disebut juga sebagai  Entalpi Pembentukan (Enthalpy of Formation, h f) saat dipandang sebagai  entalpi dari suatu zat pada kondisi tertentu karena komposisi kimia pembentuknya. FIGURE 15–18 Entalpi Pembentukan dari suatu senyawa atau molekul  menunjukkan energi yang diserap atau dilepaskan saat komponen terbentuk dari elemen- elemennya selama proses pembakaran tunak pada kondisi tertentu. ( Tabel A-26 )
  • 21. Nilai Kalor (Heating value) suatu bahan bakar  didefinisikan sebagai jumlah kalor yang dilepaskan saat bahan bakar terbakar sempurna. Dengan kata lain, Nilai Kalor bahan bakar  sama dengan Harga Mutlak Entalpi Pembakaran dari bahan bakar, & dapat dituliskan sbb : Nilai Kalor  tergantung pada fasa H2O pada Produk. Nilai Kalor disebut  HHV (Higher Heating Value) jika H2O pada produk berada pada fasa cair. Nilai Kalor disebut  LHV (Lower Heating Value) jika H2O pada produk berada pada fasa uap.
  • 22. FIGURE 15–19 HHV suatu bahan bakar  sama dengan jumlah dari LHV dan Kalor Laten Penguapan H2O pada produk. Hubungan antara HHV dan LHV sbb :
  • 23. EXAMPLE 15–5 Evaluation of the Enthalpy of Combustion Tentukan Entalpi Pembakaran dari Oktana cair (C8H18) pada kondisi 25°C dan 1 atm, menggunakan data Entalpi Pembentukan (Tabel A-26). Asumsikan H2O pada produk berfasa cair.
  • 24. Tabel A-26  Entalpi Pembentukan pada 25°C dan 1 atm sbb : - CO2 (g) = - 393,520 kJ/kmol - H2O (l) = - 285,830 kJ/kmol - C8H18 (l) = - 249,950 kJ/kmol Reaktan & Produk pada kondisi referensi standar (25°C dan 1 atm). N2 dan O2  adalah elemen yang stabil  sehingga entalpi pembentukannya sama dengan NOL. Persamaan stoikiometri pembakaran C8H18 sbb :
  • 25. Sehingga : Sehingga Entalpi Pembakaran C8H18 menjadi :
  • 28. Steady-Flow Systems the enthalpy of a component on a unit mole basis as (Fig. 15–21) FIGURE 15–21 The enthalpy of a chemical component at a specified state is the sum of the enthalpy of the component at 25C, 1 atm (hf°), and the sensible enthalpy of the component relative to 25C, 1 atm.
  • 29. The steady-flow energy balance relation can be expressed for a chemically reacting steady-flow system more explicitly as Rate of net energy transfer in by heat, work, and mass Rate of net energy transfer out by heat, work, and mass In combustion analysis, it is more convenient to work with quantities expressed per mole of fuel. Such a relation is obtained by dividing each term of the equation above by the molal flow rate of the fuel, yielding Energy transfer in per mole of fuel by heat, work, and mass Energy transfer out per mole of fuel by heat, work, and mass
  • 30. Taking heat transfer to the system and work done by the system to be positive quantities, the energy balance relation just discussed can be expressed more compactly as or as where If the enthalpy of combustion h °C for a particular reaction is available, the steady-flow energy equation per mole of fuel can be expressed as
  • 31. A combustion chamber normally involves heat output but no heat input. Then the energy balance for a typical steady-flow combustion process becomes Energy in by mass per mole of fuel Energy out by mass per mole of fuel
  • 32. Closed Systems The general closed-system energy balance relation can be expressed for a stationary chemically reacting closed system as To avoid using another property the internal energy of formation u–f°—we utilize the definition of enthalpy (u– h– Pv– or u– f° u– u–° h° Pv) and express the above equation as (Fig. 15–22)
  • 33. FIGURE 15–22 An expression for the internal energy of a chemical component in terms of the enthalpy.
  • 34. EXAMPLE 15–6 First-Law Analysis of Steady-Flow Combustion Liquid propane (C3H8) enters a combustion chamber at 25°C at a rate of 0.05 kg/min where it is mixed and burned with 50 percent excess air that enters the combustion chamber at 7°C, as shown in Fig. 15–23. An analysis of the combustion gases reveals that all the hydrogen in the fuel burns to H2O but only 90 percent of the carbon burns to CO2, with the remaining 10 percent forming CO. If the exit temperature of the combustion gases is 1500 K, determine (a) the mass flow rate of air and (b) the rate of heat transfer from the combustion chamber.
  • 35. Solution Liquid propane is burned steadily with excess air. The mass flow rate of air and the rate of heat transfer are to be determined. Assumptions 1 Steady operating conditions exist. 2 Air and the combustion gases are ideal gases. 3 Kinetic and potential energies are negligible. Analysis We note that all the hydrogen in the fuel burns to H2O but 10 percent of the carbon burns incompletely and forms CO. Also, the fuel is burned with excess air and thus there is some free O2 in the product gases. The theoretical amount of air is determined from the stoichiometric reaction to be O2 balance:
  • 36. Then the balanced equation for the actual combustion process with 50 percent excess air and some CO in the products becomes (a) The air–fuel ratio for this combustion process is Thus,
  • 37. (b) The heat transfer for this steady-flow combustion process is determined from the steady-flow energy balance Eout Ein applied on the combustion chamber per unit mole of the fuel, or Assuming the air and the combustion products to be ideal gases, we have h h(T ), and we form the following minitable using data from the property tables:
  • 38. The h–f° of liquid propane is obtained by subtracting the h–fg of propane at 25°C from the h–f° of gas propane. Substituting gives Thus 363,880 kJ of heat is transferred from the combustion chamber for each kmol (44 kg) of propane. This corresponds to 363,880/44 8270 kJ of heat loss per kilogram of propane. Then the rate of heat transfer for a mass flow rate of 0.05 kg/min for the propane becomes
  • 39. EXAMPLE 15–7 First-Law Analysis of Combustion in a Bomb The constant-volume tank shown in Fig. 15–24 contains 1 lbmol of methane (CH4) gas and 3 lbmol of O2 at 77°F and 1 atm. The contents of the tank are ignited, and the methane gas burns completely. If the final temperature is 1800 R, determine (a) the final pressure in the tank and (b) the heat transfer during this process.
  • 40. Solution Methane is burned in a rigid tank. The final pressure in the tank and the heat transfer are to be determined. Assumptions 1 The fuel is burned completely and thus all the carbon in the fuel burns to CO2 and all the hydrogen to H2O. 2 The fuel, the air, and the combustion gases are ideal gases. 3 Kinetic and potential energies are negligible. 4 There are no work interactions involved. Analysis The balanced combustion equation is
  • 41. (a) At 1800 R, water exists in the gas phase. Using the ideal-gas relation for both the reactants and the products, the final pressure in the tank is determined to be Substituting, we get
  • 42. (b) Noting that the process involves no work interactions, the heat transfer during this constant-volume combustion process can be determined from the energy balance Ein Eout Esystem applied to the tank, Since both the reactants and the products are assumed to be ideal gases, all the internal energy and enthalpies depend on temperature only, and the Pv– terms in this equation can be replaced by RuT. It yields since the reactants are at the standard reference temperature of 537 R.
  • 43. From h – f° and ideal-gas tables in the Appendix, Substituting, we have
  • 44. Discussion On a mass basis, the heat transfer from the tank would be 308,730/16 19,300 Btu/lbm of methane.
  • 45. ADIABATIC FLAME TEMPERATURE In the absence of any work interactions and any changes in kinetic or potential energies, the chemical energy released during a combustion process either is lost as heat to the surroundings or is used internally to raise the temperature of the combustion products. The smaller the heat loss, the larger the temperature rise. In the limiting case of no heat loss to the surroundings (Q 0), the temperature of the products reaches a maximum, which is called the adiabatic flame or adiabatic combustion temperature of the reaction (Fig. 15–25). FIGURE 15–25 The temperature of a combustion chamber becomes maximum when combustion is complete and no heat is lost to the surroundings (Q 0).
  • 46. The adiabatic flame temperature of a steady-flow combustion process is determined from Eq. 15–11 by setting Q 0 and W 0. It yields FIGURE 15–26 The maximum temperature encountered in a combustion chamber is lower than the theoretical adiabatic flame temperature.
  • 47. EXAMPLE 15–8 Adiabatic Flame Temperature in Steady Combustion Liquid octane (C8H18) enters the combustion chamber of a gas turbine steadily at 1 atm and 25°C, and it is burned with air that enters the combustion chamber at the same state, as shown in Fig. 15–27. Determine the adiabatic flame temperature for (a) complete combustion with 100 percent theoretical air, (b) complete combustion with 400 percent theoretical air, and (c) incomplete combustion (some CO in the products) with 90 percent theoretical air.
  • 48. Solution Liquid octane is burned steadily. The adiabatic flame temperature is to be determined for different cases. Assumptions 1 This is a steady-flow combustion process. 2 The combustion chamber is adiabatic. 3 There are no work interactions. 4 Air and the combustion gases are ideal gases. 5 Changes in kinetic and potential energies are negligible. Analysis (a) The balanced equation for the combustion process with the theoretical amount of air is
  • 49. The adiabatic flame temperature relation Hprod Hreact in this case reduces to since all the reactants are at the standard reference state and h – f° 0 for O2 and N2. The h– f° and h values of various components at 298 K are
  • 50. Substituting, we have which yields It appears that we have one equation with three unknowns. Actually we have only one unknown—the temperature of the products Tprod—since h h(T ) for ideal gases. Therefore, we have to use an equation solver such as EES or a trial-and-error approach to determine the temperature of the products.
  • 51. A first guess is obtained by dividing the right-hand side of the equation by the total number of moles, which yields 5,646,081/(8 + 9 + 47) 88,220 kJ/kmol. This enthalpy value corresponds to about 2650 K for N2, 2100 K for H2O, and 1800 K for CO2. Noting that the majority of the moles are N2, we see that Tprod should be close to 2650 K, but somewhat under it. Therefore, a good first guess is 2400 K. At this temperature, This value is higher than 5,646,081 kJ. Therefore, the actual temperature is slightly under 2400 K. Next we choose 2350 K. It yields
  • 52. which is lower than 5,646,081 kJ. Therefore, the actual temperature of the products is between 2350 and 2400 K. By interpolation, it is found to be (b) The balanced equation for the complete combustion process with 400 percent theoretical air is By following the procedure used in (a), the adiabatic flame temperature in this case is determined to be Notice that the temperature of the products decreases significantly as a result of using excess air.
  • 53. (c) The balanced equation for the incomplete combustion process with 90 percent theoretical air is Following the procedure used in (a), we find the adiabatic flame temperature in this case to be Discussion Notice that the adiabatic flame temperature decreases as a result of incomplete combustion or using excess air. Also, the maximum adiabatic flame temperature is achieved when complete combustion occurs with the theoretical amount of air.