SlideShare a Scribd company logo
Rare-earthelement
From Wikipedia,the free encyclopedia
Jumpto navigationJumptosearch
Rare-earthelements
inthe periodictable
Hydrogen
Helium
Lithium
Beryllium
Boron
Carbon
Nitrogen
Oxygen
Fluorine
Neon
Sodium
Magnesium
Aluminium
Silicon
Phosphorus
Sulfur
Chlorine
Argon
Potassium
Calcium
Scandium
Titanium
Vanadium
Chromium
Manganese
Iron
Cobalt
Nickel
Copper
Zinc
Gallium
Germanium
Arsenic
Selenium
Bromine
Krypton
Rubidium
Strontium
Yttrium
Zirconium
Niobium
Molybdenum
Technetium
Ruthenium
Rhodium
Palladium
Silver
Cadmium
Indium
Tin
Antimony
Tellurium
Iodine
Xenon
Caesium
Barium
Lanthanum
Cerium
Praseodymium
Neodymium
Promethium
Samarium
Europium
Gadolinium
Terbium
Dysprosium
Holmium
Erbium
Thulium
Ytterbium
Lutetium
Hafnium
Tantalum
Tungsten
Rhenium
Osmium
Iridium
Platinum
Gold
Mercury (element)
Thallium
Lead
Bismuth
Polonium
Astatine
Radon
Francium
Radium
Actinium
Thorium
Protactinium
Uranium
Neptunium
Plutonium
Americium
Curium
Berkelium
Californium
Einsteinium
Fermium
Mendelevium
Nobelium
Lawrencium
Rutherfordium
Dubnium
Seaborgium
Bohrium
Hassium
Meitnerium
Darmstadtium
Roentgenium
Copernicium
Nihonium
Flerovium
Moscovium
Livermorium
Tennessine
Oganesson
Rare-earthore (shownwitha19 mm diameterUS1 centcoin forsize comparison)
Refinedrare-earthoxidesare heavygrittypowdersusuallybrownorblack,butcan be lightercolorsas
shownhere.Legend:
gadolinium·praseodymium·cerium
samarium· lanthanum
neodymium
The rare-earthelements(REE),alsocalledthe rare-earthmetalsor(incontext) rare-earthoxides,orthe
lanthanides[1] (thoughyttriumandscandiumare usuallyincludedasrare-earths) are asetof 17 nearly-
indistinguishable lustroussilvery-whitesoftheavymetals.[2] Scandiumandyttriumare consideredrare-
earthelementsbecausetheytendtooccurin the same ore depositsasthe lanthanidesandexhibit
similarchemical properties,buthave differentelectronicandmagneticproperties.[3][4]
These metalstarnishslowlyinairat room temperature andreactslowlywithcoldwatertoform
hydroxides,liberatinghydrogen.Theyreactwithsteamtoformoxides,andat elevatedtemperature
(400 °C) ignite spontaneously.
These elementsandtheircompoundshave nobiological function.The water-soluble compoundsare
mildlytomoderatelytoxic,butthe insolubleonesare not.[5]
Compoundscontainingrare earthshave diverseapplicationsinelectricalandelectroniccomponents,
lasers,glass,magneticmaterials,andindustrial processes.
Despite theirname,rare-earthelementsare relativelyplentiful inEarth'scrust,withceriumbeingthe
25th mostabundantelementat68 parts per million,more abundantthancopper.All isotopesof
promethiumare radioactive,anditdoesnotoccur naturallyinthe earth'scrust,exceptfora trace
amountgeneratedbyspontaneousfissionof uranium238. Theyare oftenfoundinmineralswith
thorium,andlesscommonlyuranium.Because of theirgeochemical properties,rare-earthelementsare
typicallydispersedandnotoftenfoundconcentratedinrare-earthminerals.Consequently,
economicallyexploitableore depositsare sparse (i.e."rare").[6] The firstrare-earthmineral discovered
(1787) was gadolinite,ablackmineral composedof cerium, yttrium, iron,silicon,andotherelements.
Thismineral wasextractedfroma mine inthe village of YtterbyinSweden;fourof the rare-earth
elementsbearnamesderivedfromthissingle location.
Contents
1 List
2 Discoveryandearlyhistory
2.1 Spectroscopicidentification
2.2 Early classification
2.3 Lightversusheavyclassification
3 Origin
4 Geological distribution
4.1 Geochemistryapplications
5 Production
5.1 China
5.2 Outside China
5.3 Othersources
5.4 Methods
6 Properties
7 Uses
8 Environmental considerations
8.1 RecyclingandreusingREEs
8.2 Impact of REE contamination
8.3 Remediationafterpollution
9 Geo-political considerations
10 See also
11 References
12 External links
List
A table listingthe 17 rare-earthelements,theiratomicnumberandsymbol,the etymologyof their
names,andtheirmainuses(see alsoApplicationsof lanthanides) isprovidedhere.Some of the rare-
earthelementsare namedafterthe scientistswhodiscoveredthem,orelucidatedtheirelemental
properties,andsome afterthe geographical locationswhere discovered.
Overviewof rare-earthmetalproperties
Z Symbol Name Etymology Selectedapplications Abundance[7][8]
(ppm[a])
21 Sc Scandium fromLatin Scandia(Scandinavia). Lightaluminium-scandium
alloysforaerospace components,additiveinmetal-halidelampsandmercury-vaporlamps,[9]
radioactive tracingagentinoil refineries 22
39 Y Yttriumafterthe village of Ytterby,Sweden,wherethe firstrare earthore was
discovered. Yttriumaluminiumgarnet(YAG) laser,yttriumvanadate (YVO4) ashostfor europiumin
televisionredphosphor,YBCOhigh-temperature superconductors,yttria-stabilizedzirconia(YSZ) (used
intooth crowns;as refractorymaterial - inmetal alloysusedinjetengines,andcoatingsof enginesand
industrial gasturbines;electroceramics - formeasuringoxygenandpHof hot watersolutions,i.e.infuel
cells;ceramicelectrolyte - usedinsolidoxide fuel cell;jewelry - foritshardnessandoptical properties;
do-it-yourself hightemperature ceramicsandcementsbasedonwater),yttriumirongarnet (YIG)
microwave filters,[9] energy-efficientlightbulbs(partof triphosphorwhite phosphorcoatingin
fluorescenttubes,CFLsandCCFLs,and yellow phosphorcoatinginwhite LEDs),[10] sparkplugs,gas
mantles,additive tosteel,aluminiumandmagnesium alloys,cancertreatments,cameraandrefractive
telescope lenses(due tohighrefractive indexandverylow thermal expansion),batterycathodes(LYP)
33
57 La Lanthanum fromthe Greek"lanthanein",meaningtobe hidden. Highrefractive
index and alkali-resistantglass,flint,hydrogenstorage,battery-electrodes,cameraandrefractive
telescope lenses,fluidcatalyticcrackingcatalystforoil refineries 39
58 Ce Cerium afterthe dwarf planetCeres,namedafterthe Romangoddessof agriculture.
Chemical oxidizingagent,polishingpowder,yellow colorsinglassandceramics,catalystforself-
cleaningovens,fluidcatalyticcrackingcatalystforoil refineries,ferroceriumflintsforlighters,robust
intrinsicallyhydrophobiccoatingsforturbine blades[11]66.5
59 Pr Praseodymium fromthe Greek"prasios",meaningleek-green,and"didymos",meaning
twin. Rare-earthmagnets,lasers,core material forcarbonarc lighting,colorantinglassesand
enamels,additiveindidymiumglassusedinweldinggoggles,[9] ferroceriumfiresteel (flint) products,
single mode fiberoptical amplifiers(asadopantof fluoride glass) 9.2
60 Nd Neodymium fromthe Greek"neos",meaningnew,and"didymos",meaningtwin.
Rare-earthmagnets,lasers,violetcolorsinglassand ceramics,didymiumglass,ceramic
capacitors,electricmotorsof electricautomobiles 41.5
61 Pm Promethium afterthe Titan Prometheus,whobroughtfire tomortals. Nuclear
batteries,luminouspaint 1×10−15 [12][b]
62 Sm Samarium aftermine official,Vasili Samarsky-Bykhovets. Rare-earthmagnets,
lasers,neutroncapture,masers,control rodsof nuclearreactors7.05
63 Eu Europium afterthe continentof Europe. Redand blue phosphors,lasers,
mercury-vaporlamps,fluorescentlamps,NMRrelaxationagent 2
64 Gd Gadolinium afterJohanGadolin(1760–1852), tohonor hisinvestigationof rare
earths. Highrefractive index glassorgarnets,lasers,X-raytubes,Bubble (computer) memories,neutron
capture,MRI contrast agent,NMR relaxationagent,magnetostrictive alloyssuchasGalfenol,steel and
chromiumalloysadditive,magneticrefrigeration(usingsignificantmagnetocaloriceffect),positron
emissiontomographyscintillatordetectors,substrate formagneto-optical films,highperformance high
temperature superconductors,ceramicelectrolyte usedinsolidoxide fuel cells,oxygendetectors,
possiblyincatalyticconversionof automobile fumes. 6.2
65 Tb Terbium afterthe village of Ytterby,Sweden. Additive inNeodymiumbased
magnets,greenphosphors,lasers,fluorescentlamps(aspartof the white tribandphosphorcoating),
magnetostrictivealloyssuchasterfenol-D,naval sonarsystems,stabilizerof fuel cells 1.2
66 Dy Dysprosium fromthe Greek"dysprositos",meaninghardtoget. Additive in
Neodymiumbasedmagnets,lasers,magnetostrictivealloyssuchasterfenol-D,harddiskdrives 5.2
67 Ho Holmium afterStockholm(inLatin,"Holmia"),nativecityof one of itsdiscoverers.
Lasers,wavelengthcalibrationstandardsforoptical spectrophotometers,magnets 1.3
68 Er Erbium afterthe village of Ytterby,Sweden. Infraredlasers,vanadiumsteel,fiber-
optictechnology 3.5
69 Tm Thulium afterthe mythological northernlandof Thule. Portable X-ray
machines,metal-halidelamps,lasers 0.52
70 Yb Ytterbium afterthe village of Ytterby,Sweden. Infraredlasers,chemical
reducingagent,decoyflares,stainlesssteel,stressgauges,nuclearmedicine,monitoringearthquakes
3.2
71 Lu Lutetium afterLutetia,the citythat laterbecame Paris. Positronemission
tomography – PET scan detectors,high-refractive-indexglass,lutetiumtantalate hostsforphosphors,
catalystusedinrefineries,LEDlightbulb 0.8
Parts permillioninearth'scrust,e.g.Pb=13 ppm
No stable isotopesoccurringinnature.
A mnemonicforthe namesof the sixth-row elementsinorderis"Latelycollegepartiesneverproduce
sexyEuropeangirlsthatdrinkheavilyeventhoughyoulook".[13]
Discoveryandearlyhistory
Rare earthswere mainlydiscoveredascomponentsof minerals.Ytterbiumwasfoundinthe "ytterbite"
(renamedtogadolinitein1800). It wasdiscoveredbyLieutenantCarl Axel Arrheniusin1787 at a quarry
inthe village of Ytterby,Sweden.[14] Arrhenius's"ytterbite"reachedJohanGadolin,aRoyal Academyof
Turku professor,andhisanalysisyieldedanunknownoxide ("earth"),whichhe calledyttria.Anders
Gustav Ekebergisolatedberylliumfromthe gadolinite butfailedtorecognizeotherelementsinthe ore.
Afterthisdiscoveryin1794, a mineral fromBastnäsnearRiddarhyttan,Sweden,whichwasbelievedto
be an iron–tungstenmineral,wasre-examinedbyJönsJacobBerzeliusandWilhelmHisinger.In1803
theyobtainedawhite oxide andcalleditceria.MartinHeinrichKlaprothindependentlydiscoveredthe
same oxide andcalleditochroia. Ittook another30 yearsfor researcherstodeterminethatother
elementswere containedinthe twooresceriaand yttria(the similarityof the rare-earthmetals'
chemical propertiesmade theirseparationdifficult).
In 1839 Carl Gustav Mosander,an assistantof Berzelius,separatedceriabyheatingthe nitrate and
dissolvingthe productinnitricacid.He calledthe oxide of the soluble saltlanthana.Ittookhimthree
more yearsto separate the lanthanafurtherintodidymiaandpure lanthana.Didymia, althoughnot
furtherseparable byMosander'stechniques,wasinfactstill amixture of oxides.
In 1842 Mosanderalsoseparatedthe yttriaintothree oxides:pure yttria,terbiaanderbia(all the names
are derivedfromthe townname "Ytterby").The earth givingpinksaltshe calledterbium;the one that
yieldedyellowperoxide he callederbium.
So in1842 the numberof knownrare-earthelementshadreachedsix:yttrium, cerium,lanthanum,
didymium,erbiumandterbium.
NilsJohanBerlinandMarc Delafontaine triedalsotoseparate the crude yttriaandfoundthe same
substancesthatMosanderobtained,butBerlinnamed(1860) the substance givingpinksaltserbium,
and Delafontaine namedthe substancewiththe yellow peroxide terbium.Thisconfusionledto several
false claimsof newelements,suchasthe mosandriumof J.Lawrence Smith,orthe philippiumand
decipiumof Delafontaine.Due tothe difficultyinseparatingthe metals(anddeterminingthe separation
iscomplete),the total numberof false discoverieswasdozens,[15][16] withsome puttingthe total
numberof discoveriesatoverahundred.[17]
Spectroscopicidentification
There were nofurtherdiscoveriesfor30 years,and the elementdidymiumwaslistedinthe periodic
table of elementswithamolecularmassof 138. In 1879 Delafontaineusedthe new physical processof
optical flame spectroscopyandfoundseveral new spectral linesindidymia.Alsoin1879, the new
elementsamariumwasisolatedbyPaul Émile Lecoqde Boisbaudranfromthe mineral samarskite.
The samaria earthwas furtherseparatedbyLecoqde Boisbaudranin1886, and a similarresultwas
obtainedbyJeanCharlesGalissardde Marignacby directisolationfromsamarskite.Theynamedthe
elementgadoliniumafterJohanGadolin,anditsoxide wasnamed"gadolinia".
Furtherspectroscopicanalysisbetween1886 and 1901 of samaria,yttria,and samarskite byWilliam
Crookes,Lecoqde BoisbaudranandEugène-AnatoleDemarçayyieldedseveral new spectroscopiclines
that indicatedthe existence of anunknownelement.The fractionalcrystallizationof the oxidesthen
yieldedeuropiumin1901.
In 1839 the thirdsource for rare earthsbecame available.Thisisamineral similartogadolinite,
uranotantalum(nowcalled"samarskite").Thismineral fromMiassinthe southernUral Mountainswas
documentedbyGustavRose.The RussianchemistR.Harmannproposedthata new elementhe called
"ilmenium"shouldbe presentinthismineral,butlater,ChristianWilhelmBlomstrand,Galissardde
Marignac, and HeinrichRose foundonlytantalumandniobium(columbium) init.
The exact numberof rare-earthelementsthatexistedwashighlyunclear,andamaximumnumberof 25
was estimated.The use of X-rayspectra(obtainedbyX-raycrystallography)byHenryGwyn Jeffreys
Moseleymade itpossible toassignatomicnumberstothe elements.Moseleyfoundthatthe exact
numberof lanthanideshadtobe 15, and that element61 hadyet to be discovered.
Usingthese factsabout atomicnumbersfromX-raycrystallography, Moseleyalsoshowedthathafnium
(element72) wouldnotbe a rare-earthelement.MoseleywaskilledinWorldWar I in1915, years
before hafniumwasdiscovered.Hence,the claimof GeorgesUrbainthathe had discoveredelement72
was untrue.Hafniumisan elementthatliesinthe periodictable immediatelybelow zirconium,and
hafniumandzirconiumare verysimilarintheirchemical andphysical properties.
Duringthe 1940s, FrankSpeddingandothersinthe UnitedStates(duringthe ManhattanProject)
developedchemical ion-exchangeproceduresforseparatingandpurifyingthe rare-earthelements.This
methodwasfirstappliedtothe actinidesforseparatingplutonium-239andneptuniumfromuranium,
thorium,actinium,andthe otheractinidesinthe materials producedinnuclearreactors.Plutonium-239
was verydesirable because itisafissile material.
The principal sourcesof rare-earthelementsare the mineralsbastnäsite,monazite,andlopariteandthe
lateriticion-adsorptionclays.Despite theirhighrelative abundance,rare-earthmineralsare more
difficulttomine andextractthanequivalentsourcesof transitionmetals(dueinpartto theirsimilar
chemical properties),makingthe rare-earthelementsrelativelyexpensive.Theirindustrial use wasvery
limiteduntilefficientseparationtechniquesweredeveloped,suchasionexchange,fractional
crystallizationandliquid–liquidextractionduringthe late 1950s and early1960s.[18]
Some ilmeniteconcentratescontainsmall amountsof scandiumandother rare-earthelements,which
couldbe analysedbyXRF.[19]
Early classification
Before the time thation-exchangemethodsandelutionwere available,the separationof the rare earths
was primarilyachievedbyrepeatedprecipitationorcrystallization.In those days,the firstseparation
was intotwomaingroups,the ceriumearths(scandium, lanthanum, cerium, praseodymium,
neodymium, andsamarium) andthe yttriumearths(yttrium,dysprosium,holmium, erbium, thulium,
ytterbium,andlutetium).Europium,gadolinium,andterbiumwere eitherconsideredasa separate
groupof rare-earthelements(the terbiumgroup),oreuropiumwasincludedinthe ceriumgroup,and
gadoliniumandterbiumwereincludedinthe yttriumgroup.The reasonforthisdivisionarose from the
difference insolubilityof rare-earthdouble sulfateswithsodiumandpotassium.The sodiumdouble
sulfatesof the ceriumgroupare poorlysoluble,those of the terbiumgroupslightly,andthose of the
yttriumgroupare verysoluble.[20] Sometimes,the yttriumgroupwasfurthersplitintothe erbium
group(dysprosium,holmium,erbium,andthulium)andthe ytterbiumgroup(ytterbiumandlutetium),
but todaythe maingroupingisbetweenthe ceriumandthe yttriumgroups.[21] Today,the rare-earth
elementsare classifiedaslightorheavyrare-earthelements,ratherthaninceriumandyttriumgroups.
Lightversusheavyclassification
The classificationof rare-earthelementsisinconsistentbetweenauthors.[22] The mostcommon
distinctionbetweenrare-earthelementsismade byatomicnumbers;those withlow atomicnumbers
are referredtoas lightrare-earthelements(LREE),those withhighatomicnumbersare the heavyrare-
earthelements(HREE),andthose thatfall inbetweenare typicallyreferredtoas the middle rare-earth
elements(MREE).[23] Commonly,rare-earthelementswithatomicnumbers57to 61 (lanthanumto
promethium) are classifiedaslightandthose withatomicnumbersgreaterthan62[clarificationneeded
>62 or >61?] are classifiedasheavy-rare earthelements.[24] Increasingatomicnumbersbetweenlight
and heavyrare-earthelementsanddecreasingatomicradii throughoutthe seriescauseschemical
variations.[24] Europiumisexemptof thisclassificationasithas twovalence states:Eu2+ and Eu3+.[24]
Yttriumis groupedasheavyrare-earthelementdue tochemical similarities.[25] The breakbetweenthe
twogroups issometimesputelsewhere,suchasbetweenelements63(europium) and64
(gadolinium).[26] The actual metallicdensitiesof these twogroupsoverlap,withthe "light"group
havingdensitiesfrom6.145 (lanthanum) to7.26 (promethium) or7.52 (samarium) g/cc,and the "heavy"
groupfrom 6.965 (ytterbium) to9.32 (thulium),aswell asincludingyttriumat4.47. Europiumhas a
densityof 5.24.
Origin
Rare-earthelements,exceptscandium,are heavierthanironandthus are producedbysupernova
nucleosynthesisorbythe s-processinasymptoticgiantbranchstars. Innature,spontaneousfissionof
uranium-238producestrace amountsof radioactive promethium, butmostpromethiumissynthetically
producedinnuclearreactors.
Due to theirchemical similarity,the concentrationsof rare earthsinrocks are onlyslowlychangedby
geochemical processes,makingtheirproportionsuseful for geochronologyanddatingfossils.
Geological distribution
Abundance of elementsinEarth'scrust permillionSi atoms(yaxisislogarithmic)
As seeninthe chart to the right,rare-earthelementsare foundonearthat similarconcentrationsto
manycommon transitionmetals.The mostabundantrare-earthelementiscerium, whichisactuallythe
25th mostabundantelementinEarth'scrust,having68 parts permillion(aboutascommonas copper).
The exceptionisthe highlyunstable andradioactivepromethium"rare earth"isquite scarce.The
longest-livedisotope of promethiumhasahalf-life of 17.7years,so the elementexistsinnature inonly
negligible amounts(approximately572 g in the entire Earth'scrust).[27] Promethiumisone of the two
elementsthatdonothave stable (non-radioactive) isotopesandare followedby(i.e.withhigheratomic
number) stable elements(the otherbeingtechnetium).
The rare-earthelementsare oftenfoundtogether.Duringthe sequentialaccretionof the Earth,the
dense rare-earthelementswere incorporatedintothe deeperportionsof the planet.Early
differentiationof moltenmaterial largelyincorporatedthe rare-earthsintomantlerocks.[28] The high
fieldstrength[clarificationneeded]andlarge ionicradii of rare-earthsmake themincompatible withthe
crystal latticesof mostrock-formingminerals,soREE will undergostrongpartitioningintoameltphase
if one is present.[28] REEare chemicallyverysimilarandhave alwaysbeendifficulttoseparate,buta
gradual decrease inionicradiusfromlightREE (LREE) to heavyREE (HREE),calledlanthanide
contraction,can produce a broad separationbetweenlightandheavyREE.The larger ionicradii of LREE
make themgenerallymore incompatible thanHREEin rock-formingminerals,andwill partitionmore
stronglyintoa meltphase,whileHREEmay prefertoremaininthe crystalline residue,particularlyif it
containsHREE-compatible mineralslike garnet.[28][29] The resultisthatall magma formedfrompartial
meltingwill alwayshave greaterconcentrationsof LREEthan HREE, and individualmineralsmaybe
dominatedbyeitherHREEor LREE, dependingonwhichrange of ionicradii bestfitsthe crystal
lattice.[28]
Amongthe anhydrousrare-earthphosphates,itisthe tetragonal mineral xenotime thatincorporates
yttriumandthe HREE, whereasthe monoclinicmonazite phase incorporatesceriumandthe LREE
preferentially.The smallersize of the HREEallowsgreatersolidsolubilityinthe rock-formingminerals
that make up Earth's mantle,andthusyttriumand the HREE show lessenrichmentinEarth'scrust
relative tochondriticabundance thandoesceriumandthe LREE. Thishas economicconsequences:large
ore bodiesof LREE are knownaroundthe worldandare beingexploited.Ore bodiesforHREE are more
rare, smaller,andlessconcentrated.Mostof the current supplyof HREE originatesinthe "ion-
absorptionclay"oresof SouthernChina.Some versionsprovide concentratescontainingabout65%
yttriumoxide,withthe HREEbeingpresentinratiosreflectingthe Oddo–Harkinsrule:even-numbered
REE at abundancesof about5% each,and odd-numberedREEat abundancesof about1% each.Similar
compositionsare foundinxenotime orgadolinite.[30]
Well-knownmineralscontainingyttrium,andotherHREE, include gadolinite,xenotime,samarskite,
euxenite,fergusonite,yttrotantalite,yttrotungstite,yttrofluorite(avarietyof fluorite),thalenite,
yttrialite.Small amountsoccurinzircon,whichderivesitstypical yellowfluorescence from some of the
accompanyingHREE. The zirconiummineral eudialyte,suchasisfoundinsouthernGreenland,contains
small butpotentiallyusefulamountsof yttrium.Of the above yttriumminerals,mostplayedapartin
providingresearchquantitiesof lanthanidesduringthe discoverydays.Xenotime isoccasionally
recoveredasa byproductof heavy-sandprocessing,butisnotas abundantas the similarlyrecovered
monazite (whichtypicallycontainsafewpercentof yttrium).UraniumoresfromOntariohave
occasionallyyieldedyttriumasabyproduct.[30]
Well-knownmineralscontainingcerium,andotherLREE, include bastnäsite,monazite,allanite,loparite,
ancylite,parisite,lanthanite,chevkinite,cerite,stillwellite,britholite,fluocerite,andcerianite.Monazite
(marine sandsfromBrazil,India,orAustralia;rockfromSouthAfrica),bastnäsite (fromMountainPass
rare earthmine,or several localitiesinChina),andloparite (KolaPeninsula,Russia)have beenthe
principal oresof ceriumandthe lightlanthanides.[30]
Enricheddepositsof rare-earthelementsatthe surface of the Earth, carbonatitesandpegmatites,are
relatedtoalkaline plutonism,anuncommonkindof magmatismthatoccursin tectonicsettingswhere
there isriftingorthat are near subductionzones.[29] Ina riftsetting,the alkaline magmaisproducedby
verysmall degreesof partial melting(<1%) of garnetperidotiteinthe uppermantle (200to 600 km
depth).[29] Thismeltbecomesenrichedinincompatibleelements,like the rare-earthelements,by
leachingthemoutof the crystalline residue.The resultantmagmarisesasa diapir,ordiatreme,along
pre-existingfractures,andcanbe emplaceddeepinthe crust,oreruptedatthe surface.Typical REE
enricheddepositstypesforminginriftsettingsare carbonatites,andA- andM-Type granitoids.[28][29]
Nearsubductionzones,partial meltingof the subductingplate withinthe asthenosphere (80to200 km
depth) producesavolatile-richmagma(highconcentrationsof CO2andwater),withhigh concentrations
of alkaline elements,andhighelementmobilitythatthe rare-earthsare stronglypartitionedinto.[28]
Thismeltmay alsorise alongpre-existingfractures,andbe emplacedinthe crustabove the subducting
slabor eruptedat the surface. REE enricheddepositsformingfromthesemeltsare typicallyS-Type
granitoids.[28][29]
Alkaline magmasenrichedwithrare-earthelementsincludecarbonatites,peralkalinegranites
(pegmatites),andnephelinesyenite.CarbonatitescrystallizefromCO2-richfluids,whichcanbe
producedbypartial meltingof hydrous-carbonatedlherzolite toproduce aCO2-richprimarymagma, by
fractional crystallizationof analkaline primarymagma,orbyseparationof a CO2-richimmiscible liquid
from.[28][29] These liquidsare mostcommonlyforminginassociationwithverydeepPrecambrian
Cratons,like the onesfoundinAfricaandthe CanadianShield.[28] Ferrocarbonatitesare the most
commontype of carbonatite tobe enrichedinREE, andare oftenemplacedaslate-stage, brecciated
pipesatthe core of igneouscomplexes;theyconsistof fine-grainedcalcite andhematite,sometimes
withsignificantconcentrationsof ankerite andminorconcentrationsof siderite.[28][29] Large
carbonatite depositsenrichedinrare-earthelementsinclude MountWeldinAustralia,ThorLake in
Canada,ZandkopsdriftinSouthAfrica,andMountainPassinthe USA.[29] Peralkalinegranites(A-Type
granitoids) have veryhighconcentrationsof alkaline elementsandverylow concentrationsof
phosphorus;theyare depositedatmoderate depthsinextensionalzones,oftenasigneousring
complexes,oras pipes,massivebodies,andlenses.[28][29] These fluidshave verylow viscositiesand
highelementmobility,whichallowsforcrystallizationof large grains,despite arelativelyshort
crystallizationtimeuponemplacement;theirlarge grainsize iswhythese depositsare commonly
referredtoas pegmatites.[29] Economicallyviable pegmatitesare dividedintoLithium-Cesium-Tantalum
(LCT) and Niobium-Yttrium-Fluorine(NYF) types;NYFtypesare enrichedinrare-earthminerals.
Examplesof rare-earthpegmatitedepositsincludeStrange Lake inCanada,andKhaladean-Buregteyin
Mongolia.[29] Nepheline syenite(M-Type granitoids) depositsare 90% feldsparandfeldspathoid
minerals,andare depositedinsmall,circularmassifs.Theycontainhighconcentrationsof rare-earth-
bearingaccessoryminerals.[28][29] Forthe mostpart these depositsare small butimportantexamples
include Illimaussaq-KvanefeldinGreenland,andLovozerainRussia.[29]
Rare-earthelementscanalsobe enrichedindepositsbysecondaryalterationeitherbyinteractionswith
hydrothermal fluidsormeteoricwaterorbyerosionandtransportof resistate REE-bearingminerals.
Argillizationof primarymineralsenrichesinsolubleelementsbyleachingoutsilicaandothersoluble
elements,recrystallizingfeldsparintoclaymineralssuchkaolinite,halloysiteandmontmorillonite.In
tropical regionswhere precipitationishigh,weatheringformsa thickargillizedregolith,thisprocessis
calledsupergeneenrichmentandproduceslaterite deposits;heavyrare-earthelementsare
incorporatedintothe residual claybyabsorption.Thiskindof depositisonlyminedforREEinSouthern
China,where the majorityof global heavyrare-earthelementproductionoccurs.REE-lateritesdoform
elsewhere,includingoverthe carbonatite atMountWeldinAustralia.REEmay alsoby extractedfrom
placerdepositsif the sedimentaryparentlithologycontainedREE-bearing,heavyresistateminerals.[29]
In 2011, YasuhiroKato, a geologistatthe Universityof Tokyowholedastudyof PacificOceanseabed
mud,publishedresultsindicatingthe mudcouldholdrichconcentrationsof rare-earthminerals.The
deposits,studiedat78 sites,came from"[h]otplumesfromhydrothermal ventspull[ing] these materials
out of seawateranddeposit[ing] themonthe seafloor,bitbybit,overtensof millionsof years.One
square patch of metal-richmud2.3 kilometerswide mightcontain enoughrare earthstomeetmostof
the global demandfora year,Japanese geologistsreportinNature Geoscience.""Ibelieve thatrare[-
]earthresourcesunderseaare muchmore promisingthanon-landresources,"saidKato.
"[C]oncentrationsof rare earths were comparable tothose foundinclaysminedinChina.Some deposits
containedtwice asmuchheavyrare earthssuch as dysprosium, acomponentof magnetsinhybridcar
motors."[30][31]
Geochemistryapplications
The applicationof rare-earthelementsto geologyisimportanttounderstandingthe petrological
processesof igneous,sedimentaryandmetamorphicrockformation.Ingeochemistry,rare-earth
elementscanbe usedtoinferthe petrological mechanismsthathave affectedarockdue to the subtle
atomicsize differencesbetweenthe elements,whichcausespreferentialfractionationof some rare
earthsrelative toothersdependingonthe processesatwork.[23]
In geochemistry,rare-earthelementsare typicallypresentedinnormalized"spider"diagrams,inwhich
concentrationof rare-earthelementsare normalizedtoareference standardandare thenexpressedas
the logarithmtothe base 10 of the value.Commonly,the rare-earthelementsare normalizedto
chondriticmeteorites,asthese are believedtobe the closestrepresentationof unfractionatedsolar
systemmaterial.However,othernormalizingstandardscanbe applieddependingonthe purpose of the
study.Normalizationtoa standardreference value,especiallyof amaterial believedtobe
unfractionated,allowsthe observedabundancestobe comparedtoinitial abundancesof the
element.[23] Normalizationalsoremovesthe pronounced'zig-zag'patterncausedbythe differencesin
abundance betweenevenandoddatomicnumbers.The trendsthatare observed in"spider"diagrams
are typicallyreferredtoas"patterns",whichmaybe diagnosticof petrological processesthathave
affectedthe material of interest.[23]
The rare-earthelementspatternsobservedinigneousrocksare primarilyafunctionof the chemistryof
the source where the rock came from,as well asthe fractionationhistorythe rockhasundergone.[23]
Fractionationisinturna functionof the partitioncoefficientsof eachelement.Partitioncoefficientsare
responsible forthe fractionation of atrace elements(includingrare-earthelements)intothe liquid
phase (the melt/magma) intothe solidphase (the mineral).If anelementpreferentiallyremainsinthe
solidphase itistermed‘compatible’,anditpreferentiallypartitionsintothe meltphase itisdescribedas
‘incompatible’.[23] Eachelementhasa differentpartitioncoefficient,andtherefore fractionatesinto
solidandliquidphasesdistinctly.These conceptsare alsoapplicabletometamorphicandsedimentary
petrology.
In igneous rocks,particularlyinfelsicmelts,the followingobservationsapply:anomaliesineuropiumare
dominatedbythe crystallizationof feldspars.Hornblende,controlsthe enrichmentof MREE compared
to LREE and HREE. Depletionof LREErelative toHREE may be due to the crystallizationof olivine,
orthopyroxene,andclinopyroxene.Onthe otherhand,depletionof HREErelative toLREE may be due to
the presence of garnet,as garnetpreferentiallyincorporatesHREEintoitscrystal structure.The
presence of zirconmayalsocause a similareffect.[23]
In sedimentaryrocks,rare-earthelementsinclasticsedimentsare a representationprovenance.The
rare-earthelementconcentrationsare nottypicallyaffectedbyseaandriverwaters,asrare-earth
elementsare insoluble andthushave verylow concentrationsinthese fluids.Asaresult,whena
sedimentistransported,rare-earthelementconcentrationsare unaffectedbythe fluidandinsteadthe
rock retainsthe rare-earthelementconcentrationfromitssource.[23]
Seaand riverwaterstypicallyhave lowrare-earthelementconcentrations.However,aqueous
geochemistryisstillveryimportant.Inoceans,rare-earthelementsreflectinputfromrivers,
hydrothermal vents,andaeoliansources;[23] thisisimportantin the investigationof oceanmixingand
circulation.[25]
Rare-earthelementsare alsouseful fordatingrocks,assome radioactive isotopesdisplaylonghalf-lives.
Of particularinterestare the 138La-138Ce, 147Sm-143Nd, and 176Lu-176Hf systems.[25]
Production
Global production1950–2000
Until 1948, mostof the world'srare earthswere sourcedfromplacersanddepositsinIndiaandBrazil.
Throughthe 1950s, SouthAfricawas the world'srare-earthsource,froma monazite-richreef atthe
Steenkampskraalmine inWesternCape province.[32] Throughthe 1960s until the 1980s, the Mountain
Passrare earth mine inCaliforniamade the UnitedStatesthe leadingproducer.Today,the Indianand
SouthAfricandepositsstillproduce some rare-earthconcentrates,but theyare dwarfedbythe scale of
Chinese production.In2017, Chinaproduced81% of the world'srare-earthsupply,mostlyinInner
Mongolia,[6][33] althoughithadonly36.7% of reserves.Australiawasthe secondandonlyothermajor
producerwith15% of worldproduction.[34] All of the world'sheavyrare earths(suchasdysprosium)
come from Chinese rare-earthsourcessuchasthe polymetallicBayanObodeposit.[33][35] The Browns
Range mine,located160 kmsoutheast of HallsCreekinnorthernWesternAustralia,iscurrentlyunder
developmentandispositionedtobecome the firstsignificantdysprosiumproduceroutsideof China.[36]
Increaseddemandhasstrainedsupply,andthere isgrowingconcernthatthe worldmay soonface a
shortage of the rare earths.[37] In several yearsfrom2009 worldwide demandforrare-earthelementsis
expectedtoexceedsupplyby40,000 tonnesannuallyunlessmajornew sourcesare developed.[38] In
2013, itwas statedthat the demandforREEs wouldincrease due tothe dependenceof the EU on these
elements,the factthatrare earth elementscannotbe substitutedbyotherelementsandthatREEs have
a lowrecyclingrate.Furthermore,due tothe increaseddemandandlow supply,future pricesare
expectedtoincrease andthere isa chance that countriesotherthanChinawill openREEmines.[39] REE
isincreasingindemanddue tothe fact that theyare essential fornew andinnovative technologythatis
beingcreated.These newproductsthatneedREEsto be producedare hightechnologyequipmentsuch
as smart phones,digital cameras,computerparts,semiconductors,etc.Inaddition,these elementsare
more prevalentinthe followingindustries:renewableenergytechnology,militaryequipment,glass
making,andmetallurgy.[40]
China
See also:Rare earthstrade dispute
These concernshave intensifieddue tothe actionsof China,the predominantsupplier.[41] Specifically,
Chinahas announcedregulationsonexportsandacrackdownon smuggling.[42] OnSeptember1,2009,
Chinaannouncedplanstoreduce itsexportquotato 35,000 tonsper yearin 2010–2015 to conserve
scarce resourcesandprotectthe environment.[43] OnOctober19, 2010, ChinaDaily,citinganunnamed
Ministryof Commerce official,reportedthatChinawill"furtherreduce quotasforrare[-]earthexports
by 30 percentat mostnextyearto protectthe preciousmetalsfromover-exploitation."[44] The
governmentinBeijingfurtherincreaseditscontrol byforcingsmaller,independentminerstomerge into
state-ownedcorporations orface closure.Atthe endof 2010, Chinaannouncedthatthe firstround of
exportquotasin2011 for rare earthswouldbe 14,446 tons,whichwasa 35% decrease fromthe
previousfirstroundof quotasin2010.[45] Chinaannouncedfurtherexportquotason 14 July2011 for
the secondhalf of the yearwithtotal allocationat30,184 tons withtotal productioncappedat93,800
tonnes.[46] InSeptember2011, Chinaannouncedthe haltinproductionof three of itseightmajorrare-
earthmines,responsibleforalmost40%of China'stotal rare-earthproduction.[47] InMarch 2012, the
US, EU, andJapan confrontedChinaatWTO about these exportandproductionrestrictions.China
respondedwithclaimsthatthe restrictionshadenvironmentalprotectioninmind.[48][49] InAugust
2012, Chinaannouncedafurther20% reductioninproduction.[50] The UnitedStates,Japan,andthe
EuropeanUnionfiledajointlawsuitwiththe WorldTrade Organizationin2012 againstChina,arguing
that Chinashouldnotbe able to denysuch importantexports.[49]
In response tothe openingof newminesinothercountries(LynasinAustraliaandMolycorpinthe
UnitedStates),pricesof rare earthsdropped.[51] The price of dysprosiumoxidewas994 USD/kgin
2011, butdroppedto US$265/kg by 2014.[52]
On August29, 2014, the WTO ruledthatChinahad brokenfree-tradeagreements,andthe WTO saidin
the summaryof keyfindingsthat"the overall effectof the foreignanddomesticrestrictionsisto
encourage domesticextractionandsecure preferential use of those materialsbyChinese
manufacturers."Chinadeclaredthatitwouldimplementthe rulingonSeptember26,2014, but would
needsome time todo so.By January5, 2015, Chinahad liftedall quotasfromthe exportof rare earths,
but exportlicenceswill still be required.[53]
In 2019, Chinasuppliedbetween85%and 95% of the global demandforthe 17 rare earth powders,half
of themsourcedfromMyanmar.[54] Afterthe 2021 militarycoupinthat country,future suppliesof
critical oreswere possiblyconstrained.Additionally,itwasspeculatedthatthe PRCcouldagain reduce
rare earthexportstocounter-acteconomicsanctionsimposedbythe US and EU countries.Rare earth
metalsserve ascrucial materialsforEV-manufacturingandhigh-techmilitaryapplications.[55]
Outside China
As a resultof the increaseddemandandtighteningrestrictionsonexportsof the metalsfromChina,
some countriesare stockpilingrare-earthresources.[56] SearchesforalternativesourcesinAustralia,
Brazil, Canada,SouthAfrica,Tanzania,Greenland,andthe UnitedStatesare ongoing.[57] Minesinthese
countrieswere closedwhenChinaundercutworldpricesinthe 1990s, and itwill take a few yearsto
restartproductionas there are many barrierstoentry.[42] One example isthe MountainPassmine in
California,whichannounceditsresumptionof operationsonastart-upbasison August27,
2012.[33][58] OthersignificantsitesunderdevelopmentoutsideChinainclude Steenkampskraalin
SouthAfrica,the world's highestgrade rare earthsand thoriummine,whichisgearingtogoback into
production.Over80% of the infrastructure isalreadycomplete.[59] Otherminesincludethe Nolans
ProjectinCentral Australia,the BokanMountainprojectinAlaska,the remote HoidasLake projectin
northernCanada,[60] and the Mount WeldprojectinAustralia.[33][58][61] The HoidasLake projecthas
the potential tosupplyabout10% of the $1 billionof REEconsumptionthatoccursin NorthAmerica
everyyear.[62] Vietnamsigned anagreementinOctober2010 to supplyJapanwithrare earths[63] from
itsnorthwesternLai ChâuProvince.[64]
In the US, NioCorpDevelopmentLtdhaslauncheda long-shotefforttosecure $1.1 billion[65] toward
openinganiobium,scandium, andtitanium mine atitsElkCreeksite insoutheastNebraska[66] which
may be able to produce as muchas 7200 tonnesof ferroniobiumand95 tonnesof scandiumtrioxide
annually.[67]
Alsounderconsiderationforminingare sitessuchasThor Lake inthe NorthwestTerritories,andvarious
locationsinVietnam.[33][38][68] Additionally,in2010, a large depositof rare-earthmineralswas
discoveredinKvanefjeldinsouthernGreenland.[69] Pre-feasibilitydrillingatthissite hasconfirmed
significantquantitiesof blacklujavrite,whichcontainsabout1% rare-earthoxides(REO).[70] The
EuropeanUnionhas urgedGreenlandtorestrictChinese developmentof rare-earthprojectsthere,but
as of early2013, the governmentof Greenlandhassaidthatit hasno plansto impose such
restrictions.[71] ManyDanishpoliticianshave expressedconcernsthatothernations,includingChina,
couldgaininfluence inthinlypopulatedGreenland,giventhe numberof foreignworkersandinvestment
that couldcome from Chinese companiesinthe nearfuture because of the law passedDecember
2012.[72]
In central Spain,CiudadReal Province,the proposedrare-earthminingproject'Matamulas'mayprovide,
accordingto its developers,upto2,100 Tn/year(33% of the annual UE demand).However,thisproject
has beensuspendedbyregional authoritiesdue tosocial andenvironmentalconcerns.[73]
Addingtopotential mine sites,ASXlistedPeakResourcesannouncedinFebruary2012, that their
Tanzanian-basedNguallaprojectcontainednotonlythe 6th largestdepositbytonnage outsideof China,
but alsothe highestgrade of rare-earthelementsof the 6.[74]
NorthKoreahas beenreportedtohave exportedrare-earthore toChina,aboutUS$1.88 millionworth
duringMay and June 2014.[75][76]
In May 2012, researchersfromtwouniversitiesinJapanannouncedthattheyhaddiscoveredrare earths
inEhime Prefecture,Japan.[77]
Malaysianrefiningplans
In early2011, AustralianminingcompanyLynaswasreportedtobe "hurryingtofinish"aUS$230 million
rare-earthrefineryonthe easterncoastof PeninsularMalaysia'sindustrial portof Kuantan.The plant
wouldrefine ore — lanthanidesconcentratefromthe MountWeldmine inAustralia.The ore wouldbe
truckedto Fremantle andtransportedbycontainership toKuantan.Withintwoyears,Lynaswassaidto
expectthe refinerytobe able tomeetnearlyathirdof the world'sdemandforrare-earthmaterials,not
countingChina.[78] The Kuantandevelopmentbroughtrenewedattentiontothe Malaysiantownof
BukitMerah inPerak,where a rare-earthmine operatedbyaMitsubishi Chemical subsidiary,AsianRare
Earth, closedin1994 and leftcontinuingenvironmentalandhealthconcerns.[79][80] Inmid-2011, after
protests,Malaysiangovernmentrestrictionsonthe Lynas plantwere announced.Atthattime,citing
subscription-onlyDowJonesNewswire reports,aBarronsreportsaidthe Lynas investmentwas$730
million,andthe projectedshare of the global marketitwouldfill putat"abouta sixth."[81] An
independentreviewinitiatedbythe MalaysianGovernment,andconductedbythe InternationalAtomic
EnergyAgency(IAEA) in2011 to addressconcernsof radioactive hazards,foundnonon-compliance with
international radiationsafetystandards.[82]
However,the Malaysian authoritiesconfirmedthatasof October2011, Lynaswas not givenanypermit
to importany rare-earthore intoMalaysia.OnFebruary2, 2012, the MalaysianAELB (AtomicEnergy
LicensingBoard) recommendedthatLynasbe issuedatemporaryoperatinglicense subjecttomeetinga
numberof conditions.On2 September2014, Lynaswas issueda2-yearfull operatingstage licenseby
the AELB.[83]
Othersources
Mine tailings
Significantquantitiesof rare-earthoxidesare foundintailingsaccumulatedfrom50 yearsof uranium
ore,shale andloparite miningatSillamäe,Estonia.[84] Due tothe risingpricesof rare earths,extraction
of these oxideshasbecome economicallyviable.The countrycurrentlyexportsaround3,000 tonnesper
year,representingaround2%of worldproduction.[85] Similarresourcesare suspectedinthe western
UnitedStates,where goldrush-eraminesare believedtohave discardedlarge amountsof rare earths,
because theyhadno value atthe time.[86]
Oceanmining
In January2013 a Japanese deep-searesearchvesselobtainedsevendeep-seamudcore samplesfrom
the PacificOceanseafloorat5,600 to 5,800 metersdepth,approximately250kilometres(160mi) south
of the islandof Minami-Tori-Shima.[87] The researchteamfounda mudlayer2 to 4 metersbeneaththe
seabedwithconcentrationsof upto0.66% rare-earthoxides.A potential depositmightcompare in
grade withthe ion-absorption-type depositsinsouthernChinathatprovide the bulkof Chinese REO
mine production,whichgrade inthe range of 0.05% to 0.5% REO.[88][89]
Waste
Anotherrecentlydevelopedsource of rare earthsiselectronicwaste andotherwastesthathave
significantrare-earthcomponents.[90] Advancesinrecyclingtechnologyhave made extractionof rare
earthsfromthese materialslessexpensive.[91] Recyclingplantsoperate inJapan,whereanestimated
300,000 tonsof rare earths are foundinunusedelectronics.[92] InFrance,the Rhodiagroupissetting
up twofactories,inLa Rochelle andSaint-Fons,thatwill produce 200tons of rare earthsa yearfrom
usedfluorescentlamps,magnetsandbatteries.[93][94] Coal andcoal by-productsare a potential source
of critical elementsincludingrare earthelements(REE) withestimatedamountsinthe range of 50
millionmetrictons.[95]
Methods
One studymixedflyashwithcarbonblackand thensenta 1-secondcurrentpulse throughthe mixture,
heatingitto 3,000 °C (5,430 °F).The flyashcontainsmicroscopicbitsof glassthat encapsulate the
metals.The heatsshattersthe glass,exposingthe rare earths.Flashheatingalsoconvertsphosphates
intooxides,whichare more solubleandextractable.Usinghydrochloricacidat concentrationslessthan
1% of conventional methods,the processextractedtwice asmuchmaterial.[96]
Properties
Accordingto chemistryprofessorAndreaSella,rare-earthelementsdifferfromotherelements,inthat
whenlookedatanalytically,theyare virtuallyinseparable,havingalmostthe same chemical properties.
However,intermsof theirelectronic andmagneticproperties,eachone occupiesaunique technological
niche thatnothingelse can.[3] Forexample,"the rare-earthelementspraseodymium(Pr) and
neodymium(Nd)canbothbe embeddedinside glassandtheycompletelycutoutthe glare fromthe
flame whenone isdoingglass-blowing."[3]
Uses
Global REE consumption,2015[97]
Catalysts,24%(24%)
Magnets,23% (23%)
Polishing,12%(12%)
"other",9%(9%)
Metallurgy,8%(8%)
Batteries,8%(8%)
Glass,7% (7%)
Ceramics,6%(6%)
Phosphorsandpigments,3%(3%)
US consumptionof REE, 2018[98]
Catalysts,60%(60%)
Ceramicsandglass,15% (15%)
Polishing,10%(10%)
"other",5%(5%)
Metallurgy,10%(10%)
The uses,applications,anddemandforrare-earthelementshasexpandedover the years.Globally,most
REEs are usedfor catalystsandmagnets.[97] InUSA, more than half of REEs are usedfor catalysts,and
ceramics,glassand polishingare alsomainuses.[98]
Otherimportantusesof rare-earthelementsare applicable tothe productionof high-performance
magnets,alloys,glasses,andelectronics.Ce andLaare importantas catalysts,andare usedfor
petroleumrefiningandasdiesel additives.Ndisimportantinmagnetproductionintraditional andlow-
carbon technologies.Rare-earthelementsinthiscategoryare usedinthe electricmotorsof hybridand
electricvehicles,generatorsinwindturbines,harddiscdrives,portable electronics,microphones,
speakers.
Ce,La andNd are importantinalloymaking,andinthe production of fuel cellsandnickel-metal hydride
batteries.Ce,Gaand Ndare importantinelectronicsandare usedinthe productionof LCD and plasma
screens,fiberoptics,lasers,[99] aswell asin medical imaging.Additionalusesforrare-earthelements
are as tracers inmedical applications,fertilizers,andinwatertreatment.[25]
REEs have beenusedinagriculture toincrease plantgrowth,productivity,andstressresistance
seeminglywithoutnegative effectsforhumanandanimal consumption.REEsare usedin agriculture
throughREE-enrichedfertilizerswhichisawidelyusedpractice inChina.[100] Inaddition,REEsare feed
additivesforlivestockwhichhasresultedinincreasedproductionsuchaslargeranimalsanda higher
productionof eggsand dairyproducts.However,thispractice hasresultedinREEbio-accumulation
withinlivestockandhasimpactedvegetationandalgae growthinthese agricultural areas.[101]
Additionallywhilenoill effectshave beenobservedatcurrentlow concentrationsthe effects overthe
longtermand withaccumulationovertime are unknownpromptingsome callsformore researchinto
theirpossible effects.[100][102]
Giventhe limitedsupply,industriesdirectlycompete witheachotherforresources,e.g.the electronics
sectoris indirectcompetitionwithrenewable energyuse inwindfarms,solarpanelsandbatteries.[103]
Environmental considerations
REEs are naturallyfoundinverylowconcentrationinthe environment.Minesare oftenincountries
where environmental andsocial standardsare verylow,causinghumanrightsviolations,deforestation
and contaminationof landandwater.[103][104]
Nearminingandindustrial sitesthe concentrationscanrise tomanytimesthe normal background
levels.Once inthe environmentREEs can leachintothe soil where theirtransportisdeterminedby
numerousfactorssuchas erosion,weathering,pH,precipitation,groundwater,etc.Actingmuchlike
metals,theycanspeciate dependingonthe soil conditionbeingeithermotileoradsorbedto soil
particles.Dependingontheirbio-availabilityREEscanbe absorbedintoplantsandlaterconsumedby
humansand animals.The miningof REEs,use of REE-enrichedfertilizers,andthe productionof
phosphorusfertilizersall contributetoREE contamination.[105] Furthermore,strongacidsare used
duringthe extractionprocessof REEs,whichcan thenleachoutinto the environmentandbe
transportedthroughwaterbodiesandresultinthe acidificationof aquaticenvironments.Another
additive of REEminingthatcontributestoREE environmental contaminationisceriumoxide(CeO
2) whichisproducedduringthe combustionof diesel andisreleasedasanexhaustparticulate matter
and contributesheavilytosoil andwatercontamination.[101]
False-colorsatellite imageof the BayanOboMiningDistrict,2006
Mining,refining,andrecyclingof rare earthshave seriousenvironmental consequencesif notproperly
managed.Low-level radioactivetailingsresultingfromthe occurrence of thoriumanduraniuminrare-
earthelementorespresentapotential hazard[106] andimproperhandlingof these substancescan
resultinextensive environmental damage.InMay 2010, Chinaannounceda major,five-month
crackdownon illegal mininginordertoprotectthe environmentanditsresources.Thiscampaignis
expectedtobe concentratedinthe South,[107] where mines –commonlysmall,rural,andillegal
operations –are particularlyprone toreleasingtoxicwaste intothe general watersupply.[33][108]
However,eventhe majoroperationinBaotou,inInnerMongolia,where muchof the world'srare-earth
supplyisrefined,hascausedmajorenvironmental damage.[109] China'sMinistryof Industryand
InformationTechnologyestimatedthatcleanupcostsinJiangxi province at$5.5 billion.[104]
It ishoweverpossible tofilteroutandrecoverany rare earthelementsthatflow outwiththe
wastewaterfromminingfacilities.However,suchfilteringandrecoveryequipmentmaynotalwaysbe
presentonthe outletscarryingthe wastewater.[110][111][112]
RecyclingandreusingREEs
Furtherinformation:CirculareconomyandRenewable energy§Conservationareas,recyclingandrare-
earthelements
Wiki letterw.svg
Thissectionismissinginformationaboutprocessestorecycle/REEsthatare established,demonstrated
experimentallyorunderdevelopmentaswell asrelatedpolicies.Please expandthe sectiontoinclude
thisinformation.Furtherdetailsmayexistonthe talkpage.(March 2022)
Literature publishedin2004 suggeststhat alongwithpreviouslyestablishedpollutionmitigation,amore
circularsupplychainwouldhelpmitigate someof the pollutionatthe extractionpoint.Thismeans
recyclingandreusingREEsthat are alreadyinuse or reachingthe endof theirlife cycle.[102] A study
publishedin2014 suggestsa methodtorecycle REEs fromwaste nickel-metal hydride batteries,the
recoveryrate isfoundto be 95.16%.[113] Rare-earthelementscouldalsobe recoveredfromindustrial
wasteswithpractical potential toreduce environmental/healthimpactsfrommining,waste-generation
and importsif knownandexperimentalprocessesare scaledup.[114][115] A studysuggeststhat
"fulfillmentof the circulareconomyapproachcouldreduce upto 200 timesthe impactinthe climate
change category and up to 70 timesthe cost due to the REE mining."[116] Inmost of the reported
studiesreviewedbyascientificreview,"secondarywaste issubjectedtochemical andor bioleaching
followedbysolventextractionprocessesforcleanseparationof REEs."[117]
Impact of REE contamination
On vegetation
The miningof REEs has causedthe contaminationof soil andwateraroundproductionareas,whichhas
impactedvegetationinthese areasbydecreasingchlorophyll productionwhichaffectsphotosynthesis
and inhibitsthe growthof the plants.[101] However,the impactof REEcontaminationonvegetationis
dependentonthe plantspresentinthe contaminatedenvironment:some plantsretainandabsorbREEs
and some don't.Also,the abilityforthe vegetationtointake the REEis dependentonthe type of REE
presentinthe soil,hence there are amultitude of factorsthatinfluence thisprocess.[118] Agricultural
plantsare the maintype of vegetationaffectedbyREE contaminationinthe environment,the two
plantswitha higherchance of absorbingandstoringREEs beingapplesandbeets.[105] Furthermore,
there isa possibilitythatREEs can leachout intoaquaticenvironmentsandbe absorbedbyaquatic
vegetation,whichcanthenbio-accumulate andpotentiallyenterthe humanfood-chainif livestockor
humanschoose to eatthe vegetation.Anexample of thissituationwasthe case of the water hyacinth
(Eichhorniacrassipes) inChina,where the waterwascontaminateddue toa REE-enrichedfertilizer
beingusedina nearbyagricultural area.The aquaticenvironmentbecame contaminatedwithcerium
and resultedinthe waterhyacinthbecomingthree timesmore concentratedinceriumthanits
surroundingwater.[118]
On humanhealth
REEs are a large groupwithmanydifferentpropertiesandlevelsinthe environment.Becauseof this,
and limitedresearch,ithasbeendifficulttodetermine safe levelsof exposureforhumans.[119] A
numberof studieshave focusedonriskassessmentbasedonroutesof exposure anddivergence from
backgroundlevelsrelatedtonearbyagriculture,mining,andindustry.[120][121] Ithas been
demonstratedthatnumerousREEshave toxicpropertiesandare presentinthe environmentorinwork
places.Exposure tothese canleadto a wide range of negative healthoutcomessuchascancer,
respiratoryissues,dental loss,andevendeath.[39] HoweverREEsare numerousandpresentinmany
differentformsandat differentlevelsof toxicity,makingitdifficulttogive blanketwarningsoncancer
riskand toxicity assome of these are harmlesswhile otherspose arisk.[119][121][120]
What toxicityisshownappearstobe at veryhigh levelsof exposurethroughingestionof contaminated
foodand water,throughinhalationof dust/smoke particleseitherasan occupational hazardor due to
proximitytocontaminatedsitessuchasminesandcities.Therefore,the mainissuesthatthese residents
wouldface isbioaccumulationof REEsand the impacton theirrespiratorysystembutoverall,there can
be otherpossible shorttermandlong-termhealtheffects.[122][101] Itwas foundthatpeople living
nearminesinChinahad manytimesthe levelsof REEsintheirblood,urine,bone andhaircomparedto
controlsfar fromminingsites.Thishigherlevelwasrelatedtothe highlevelsof REEspresentinthe
vegetablestheycultivated,the soil,andthe waterfromthe wells,indicatingthatthe highlevelswere
causedby the nearbymine.[120][121] While REElevelsvariedbetweenmenandwomen,the group
mostat riskwere childrenbecause REEscanimpactthe neurological developmentof children,affecting
theirIQ andpotentiallycausingmemoryloss.[123]
The rare earth miningandsmeltingprocesscanrelease airborne fluoride whichwill associatewithtotal
suspendedparticles(TSP) toformaerosolsthatcanenterhumanrespiratorysystemsandcause damage
and respiratorydiseases.ResearchfromBaotou,Chinashowsthatthe fluoride concentrationinairnear
REE minesishigherthanthe limitvalue fromWHO,whichcanaffectthe surroundingenvironmentand
become a riskto those thatlive or worknearby.[124]
Residentsblamedarare-earthrefineryatBukitMerah forbirthdefectsandeightleukemiacaseswithin
five yearsina communityof 11,000 — aftermany yearswithno leukemiacases.Sevenof the leukemia
victimsdied.OsamuShimizu,adirectorof AsianRare Earth, said"the companymighthave solda few
bags of calciumphosphate fertilizerona trial basisas itsoughtto marketbyproducts;calcium
phosphate isnotradioactive ordangerous"inreplytoa formerresidentof BukitMerahwhosaidthat
"The cows that ate the grass[grownwiththe fertilizer] all died."[125] Malaysia'sSupreme Courtruled
on 23 December1993 that there wasno evidence thatthe local chemical jointventure AsianRare Earth
was contaminatingthe local environment.[126]
On animal health
Experimentsexposingratstovariousceriumcompoundshave foundaccumulationprimarilyinthe lungs
and liver.Thisresultedinvariousnegative healthoutcomesassociatedwiththose organs.[127] REEs
have beenaddedtofeedinlivestocktoincrease theirbodymassandincrease milkproduction.[127]
Theyare mostcommonlyusedtoincrease the bodymassof pigs,andit wasdiscoveredthatREEs
increase the digestibilityandnutrientuse of pigs'digestive systems.[127] Studiespointtoa dose
response whenconsideringtoxicityversuspositive effects.Whilesmall dosesfromthe environmentor
withproperadministrationseemtohave noill effects,largerdoseshave beenshowntohave negative
effectsspecificallyinthe organswhere theyaccumulate.[127] The processof miningREEsinChinahas
resultedinsoil andwatercontaminationincertainareas,whichwhentransportedintoaquaticbodies
couldpotentiallybio-accumulatewithinaquaticbiota.Furthermore,insome casesanimalsthatlive in
the REE-contaminatedareashave beendiagnosedwithorganorsystemproblems.[101] REEshave been
usedinfreshwaterfishfarmingbecauseitprotectsthe fishfrompossible diseases.[127] One main
reasonwhytheyhave beenavidlyusedinanimal livestockfeedingisthattheyhave hadbetterresults
than inorganiclivestockfeedenhancers.[128]
Remediationafterpollution
Ambox currentred.svg
Thissectionneedstobe updated.Please helpupdate thisarticletoreflectrecenteventsornewly
available information.(May2019)
Afterthe 1982 BukitMerah radioactive pollution,the mine inMalaysiahasbeenthe focusof a US$100
millioncleanupthatisproceedingin2011. Afterhavingaccomplishedthe hilltopentombmentof 11,000
truckloadsof radioactivelycontaminatedmaterial,the projectisexpectedtoentail insummer,2011, the
removal of "more than 80,000 steel barrelsof radioactive wastetothe hilltoprepository."[80]
In May 2011, afterthe FukushimaDaiichi nucleardisaster,widespreadproteststookplace inKuantan
overthe Lynas refineryandradioactive waste fromit.The ore tobe processedhasverylow levelsof
thorium,andLynas founderandchief executiveNicholasCurtissaid"There isabsolutelynorisktopublic
health."T.Jayabalan,a doctorwho sayshe has beenmonitoringandtreatingpatientsaffectedbythe
Mitsubishi plant,"iswaryof Lynas'sassurances.The argumentthat low levelsof thoriuminthe ore
make it saferdoesn'tmake sense,he says,because radiationexposureiscumulative."[125] Construction
of the facilityhasbeenhalteduntilanindependentUnitedNationsIAEA panel investigationis
completed,whichisexpectedbythe endof June 2011.[129] New restrictionswere announcedbythe
Malaysiangovernmentinlate June.[81]
IAEA panel investigationiscompletedandnoconstructionhasbeenhalted.Lynasisonbudgetand on
schedule tostartproducing2011. The IAEA reporthas concludedina reportissuedonThursdayJune
2011 saidit didnot findanyinstance of "anynon-compliance withinternational radiationsafety
standards"inthe project.[130]
If the propersafetystandardsare followed,REEminingisrelativelylow impact.Molycorp(beforegoing
bankrupt) oftenexceededenvironmentalregulationstoimprove publicimage.[131]
In Greenlandthere isasignificantdispute onwhethertostarta new rare earthmine inKvanefjelddue
to environmental concerns.[132]
Geo-political considerations
A U.S.G.S.graph of global rare-earth-oxideproductiontrends,1956–2008.
Global rare-earth-oxideproductiontrends,1956-2008 (USGS)
Chinahas officiallycitedresourcedepletionandenvironmental concernsasthe reasonsfora nationwide
crackdownon itsrare-earthmineral productionsector.[47] However,non-environmental motiveshave
alsobeenimputedtoChina'srare-earthpolicy.[109] AccordingtoThe Economist,"Slashingtheirexports
of rare-earthmetals…isall aboutmovingChinese manufacturersupthe supplychain,sotheycansell
valuable finishedgoodstothe worldratherthanlowlyraw materials."[133] Furthermore,China
currentlyhasan effective monopolyonthe world'sREE Value Chain.[134] (all the refineriesand
processingplantsthattransformthe raw ore intovaluable elements[135]).Inthe wordsof Deng
Xiaoping,aChinese politicianfromthe late 1970s to the late 1980s, "The Middle East has oil;we have
rare earths...it isof extremelyimportantstrategicsignificance;we mustbe sure tohandle the rare
earthissue properlyandmake the fullestuse of ourcountry'sadvantage inrare earth resources."[136]
One possible exampleof marketcontrol isthe divisionof General Motorsthatdealswithminiaturized
magnetresearch,whichshutdownitsUS office andmoveditsentire staff toChinain2006[137] (China's
exportquotaonlyappliestothe metal butnotproducts made fromthese metalssuchasmagnets).
It was reported,[138] butofficiallydenied,[139] thatChinainstitutedanexportbanonshipmentsof
rare-earthoxides(butnotalloys)toJapanon 22 September2010, in response tothe detainmentof a
Chinese fishingboatcaptainbythe Japanese CoastGuard.[140][49] On September2,2010, a few days
before the fishingboatincident,The Economistreportedthat"China...inJulyannouncedthe latestina
seriesof annual exportreductions,thistime by40% to precisely30,258 tonnes."[141][49]
The UnitedStatesDepartmentof Energyinits 2010 Critical MaterialsStrategyreportidentified
dysprosiumasthe elementthatwasmostcritical intermsof importreliance.[142]
A 2011 report"China'sRare-EarthIndustry",issuedbythe USGeological SurveyandUS Departmentof
the Interior,outlinesindustrytrendswithinChinaandexaminesnational policiesthatmayguide the
future of the country's production.The reportnotesthatChina'sleadinthe productionof rare-earth
mineralshasacceleratedoverthe pasttwodecades.In1990, Chinaaccountedfor only27% of such
minerals.In2009, worldproductionwas132,000 metrictons;Chinaproduced129,000 of those tons.
Accordingto the report,recentpatternssuggestthatChinawill slow the exportof suchmaterialstothe
world:"Owingtothe increase indomesticdemand,the Governmenthasgraduallyreducedthe export
quotaduringthe past several years."In2006, Chinaallowed47 domesticrare-earthproducersand
tradersand 12 Sino-foreignrare-earthproducerstoexport.Controlshave since tightenedannually;by
2011, only22 domesticrare-earthproducersandtradersand9 Sino-foreignrare-earthproducerswere
authorized.The government'sfuture policieswill likelykeepinplace strictcontrols:"Accordingto
China'sdraftrare-earthdevelopmentplan,annual rare-earthproductionmaybe limitedtobetween
130,000 and140,000 [metrictons] duringthe periodfrom2009 to 2015. The exportquotafor rare-earth
productsmay be about 35,000 [metrictons] andthe Governmentmayallow 20 domesticrare-earth
producersandtraders to exportrare earths."[143]
The UnitedStatesGeological SurveyisactivelysurveyingsouthernAfghanistan forrare-earthdeposits
underthe protectionof UnitedStatesmilitaryforces.Since2009 the USGS has conductedremote
sensingsurveysaswell asfieldworktoverifySovietclaimsthatvolcanicrockscontainingrare-earth
metalsexistinHelmandProvince nearthe village of Khanashin.The USGSstudyteamhas locateda
sizable areaof rocks inthe centerof an extinctvolcanocontaininglightrare-earthelementsincluding
ceriumand neodymium.Ithasmapped1.3 millionmetrictonsof desirable rock,oraboutten yearsof
supplyatcurrent demandlevels.The Pentagonhasestimateditsvalue atabout$7.4 billion.[144]
It has beenarguedthatthe geopolitical importance of rare earthshasbeenexaggeratedinthe literature
on the geopoliticsof renewable energy,underestimatingthe powerof economicincentivesfor
expandedproduction.[145][146] Thisespeciallyconcernsneodymium.Due toitsrole inpermanent
magnetsusedforwindturbines,ithasbeenarguedthatneodymiumwill be one of the mainobjectsof
geopolitical competitioninaworldrunningonrenewable energy.Butthisperspectivehasbeen
criticisedforfailingtorecognisethatmostwindturbineshave gearsanddonot use permanent
magnets.[146]
See also
icon Geologyportal
Rare-earthmineral
Rare-earthmagnet
List of elementsfacingshortage
Material passport:listsusedmaterialsinproducts
Digital ProductPassport:renewedinfunctionof the CircularEconomyActionPlan
PensanaSaltEnd
References
The 1985 International Unionof Pure andAppliedChemistry"RedBook"(p.45) recommendsthat
lanthanoidisusedratherthanlanthanide.The ending"-ide"normallyindicatesanegative ion.However,
owingtowide currentusage,"lanthanide"isstill allowedandisroughlyanalogoustorare earth
element.
N. G. ConnellyandT.Damhus,ed.(2005). Nomenclature of InorganicChemistry:IUPAC
Recommendations2005 (PDF).WithR. M. Hartshorn and A.T. Hutton. Cambridge:RSCPublishing.ISBN
978-0-85404-438-2. Archivedfromthe original (PDF) onMay27, 2008. RetrievedMarch13, 2012.
Professorof ChemistryatUniversityCollegeLondon,AndreaSella,AndreaSella:"Insight:Rare-earth
metals"onYouTube,InterviewonTRT World/ Oct 2016, minutes4:40 - ff.
T Gray (2007). "LanthanumandCerium".The Elements.BlackDog& Leventhal.pp.118–122.
Malhotra, Nemi;Hsu,Hua-Shu;Liang,Sung-Tzu;Roldan,Marri JmelouM.;Lee,Jiann-Shing;Ger,Tzong-
Rong; Hsiao,Chung-Der(September16,2020). "An UpdatedReview of ToxicityEffectof the Rare Earth
Elements(REEs) onAquaticOrganisms".Animals.10(9):1663. doi:10.3390/ani10091663. ISSN 2076-
2615. PMC 552131. PMID 32947815.
Haxel G.; HedrickJ.;Orris J. (2002). "Rare Earth Elements—Critical ResourcesforHighTechnology"
(PDF).EditedbyPeterH.Staufferand JamesW. HendleyII;GraphicdesignbyGordonB. Haxel,Sara
Boore,and SusanMayfield.UnitedStatesGeological Survey.USGSFactSheet:087‐02. RetrievedMarch
13, 2012. However,incontrasttoordinarybase and preciousmetals,REEhave verylittle tendencyto
become concentratedinexploitableore deposits.Consequently,mostof the world'ssupplyof REE
comesfromonlya handful of sources.
KeithR. Long;BradleyS. VanGosen;Nora K.Foley;Daniel Cordier."The Geologyof Rare Earth
Elements".Geology.com.RetrievedJune 19,2018.
Lide (1997).
C. R. Hammond."Section4; The Elements".InDavidR.Lide (ed.).CRCHandbookof Chemistryand
Physics.(InternetVersion2009) (89th ed.).BocaRaton, FL: CRC Press/TaylorandFrancis.
"Rare-earthmetals". ThinkGlobalGreen.Archivedfromthe original onNovember4,2016. Retrieved
February10, 2017.
Fronzi,M (2019). "Theoretical insightsintothe hydrophobicityof low index CeO2surfaces".Applied
Surface Science.478: 68–74. arXiv:1902.02662. Bibcode:2019ApSS..478...68F.
doi:10.1016/j.apsusc.2019.01.208. S2CID 118895100.
Fritz Ullmann,ed.(2003). Ullmann'sEncyclopediaof Industrial Chemistry.Vol.31.Contributor:Matthias
Bohnet(6th ed.).Wiley-VCH.p.24. ISBN 978-3-527-30385-4.
MentionedbyProf.AndreaSellaonaBBC BusinessDailyprogramme,March19, 2014 [1].
Unfortunatelythismnemonicdoesn'tdistinguishverywellbetweenterbiumandthulium.
GschneidnerK.A.,Cappellen,ed.(1987)."1787–1987 TwohundredYearsof Rare Earths". Rare Earth
InformationCenter,IPRT,North-Holland.IS-RIC10.
Historyof the Originof the Chemical ElementsandTheirDiscoverers
StephenDavidBarrett;SarnjeetS.Dhesi (2001). The Structure of Rare-earthMetal Surfaces.World
Scientific.p.4. ISBN 978-1-86094-165-8.
On Rare AndScatteredMetals:TalesAboutMetals,Sergei Venetsky
SpeddingF.,Daane A. H.: "The Rare Earths", JohnWiley&Sons,Inc., 1961.
Qi, Dezhi (2018). Hydrometallurgyof Rare Earths.Elsevier.pp.162–165. ISBN 9780128139202.
B. SmithHopkins:"Chemistryof the rarerelements",D.C.Heath& Company,1923.
McGill,Ian. "Rare Earth Elements".Ullmann'sEncyclopediaof Industrial Chemistry.Vol.31.Weinheim:
Wiley-VCH.p.184. doi:10.1002/14356007.a22_607.
Zepf,Volker(2013).Rare earthelements:anew approachto the nexusof supply,demandanduse :
exemplifiedalongthe use of neodymiuminpermanentmagnets.Berlin;London:Springer.ISBN
9783642354588.
Rollinson,HughR.(1993). Using geochemical data:evaluation,presentation,interpretation.Harlow,
Essex,England:LongmanScientific&Technical.ISBN 9780582067011. OCLC 27937350.
Brownlow,ArthurH (1996). Geochemistry.UpperSaddle River,N.J.:Prentice Hall.ISBN 978-
0133982725. OCLC 33044175.
WorkingGroup (December2011). "Rare Earth Elements"(PDF).Geological Societyof London.Retrieved
May 18, 2018.
"Seltene Erden–Daten& Fakten"(PDF).Öko-Institute.V.January2011.
P. Belli;R.Bernabei;F.Cappella;R.Cerulli;C.J.Dai;F. A.Danevich;A.d'Angelo;A.Incicchitti;V.V.
Kobychev;S.S.Nagorny;S. Nisi;F.Nozzoli;D.Prosperi;V.I.Tretyak;S.S. Yurchenko(2007). "Search for
α decayof natural Europium".NuclearPhysicsA.789 (1–4): 15–29. Bibcode:2007NuPhA.789...15B.
doi:10.1016/j.nuclphysa.2007.03.001.
Winter,JohnD. (2010). Principlesof igneousandmetamorphicpetrology(2nded.).NewYork:Prentice
Hall.ISBN 9780321592576. OCLC 262694332.
Jébrak,Michel;Marcoux,Eric; Laithier,Michelle;Skipwith,Patrick(2014).Geologyof mineral resources
(2nd ed.).St.John's,NL:Geological Associationof Canada.ISBN 9781897095737. OCLC 933724718.
Powell,Devin,"Rare earthelementsplentiful inoceansediments",ScienceNews,3July2011. ViaKurt
Brouwer'sFundmasteryBlog,MarketWatch,2011-07-05. Retrieved2011-07-05.
Kato, Yasuhiro;Fujinaga,Koichiro;Nakamura,Kentaro;Takaya,Yutaro;Kitamura,Kenichi;Ohta,
Junichiro;Toda,Ryuichi;Nakashima,Takuya;Iwamori,Hikaru(2011)."Deep-seamudinthe Pacific
Oceanas a potential resource forrare-earthelements".Nature Geoscience.4(8):535–539.
Bibcode:2011NatGe...4..535K.doi:10.1038/ngeo1185. ISSN 1752-0908.
Rose,Edward Roderick(February4,1960). "Rare Earths of the Grenville Sub-Province,Ontarioand
Quebec"(PDF) (Paper59–10). Ottawa:Geological Surveyof Canada.RetrievedMay18, 2018.
China'sRare Earth Dominance,Wikinvest.Retrievedon11 Aug2010.
Gambogi,Joseph(January2018). "Rare Earths" (PDF).Mineral CommoditySummaries.U.S.Geological
Survey.pp.132–133. RetrievedFebruary14,2018.
Chao E. C. T., Back J. M., MinkinJ.,TatsumotoM., JunwenW.,ConradJ. E., McKee E. H., ZonglinH.,
QingrunM. "Sedimentarycarbonate‐hostedgiantBayanOboREE‐Fe‐Nbore depositof InnerMongolia,
China;a cornerstone exampleforgiantpolymetallicore depositsof hydrothermal origin".1997. United
StatesGeological Survey.29February2008. Bulletin2143.
"Overview".NorthernMineralsLimited.RetrievedApril21,2018.
"Cox C. 2008. Rare earthinnovation.Herndon(VA):The AnchorHouse Inc;".RetrievedApril19,2008.
"As hybridcars gobble rare metals,shortage looms".Reuters.August31, 2009. RetrievedAug31,2009.
Massari, Stefania;Ruberti,Marcello(March1, 2013). "Rare earth elementsascritical raw materials:
Focuson international marketsandfuture strategies".ResourcesPolicy.38(1): 36–43.
doi:10.1016/j.resourpol.2012.07.001. ISSN 0301-4207.
"The Rare-EarthElements—Vital toModernTechnologiesandLifestyles"(PDF).UnitedStated
Geological Survey.November2014. RetrievedMarch13, 2018.
Ma, Damien(April 25,2012). "ChinaDigsIt". ForeignAffairs.RetrievedFebruary10,2017.
Livergood,R.(October5, 2010). "Rare Earth Elements:A Wrenchinthe SupplyChain"(PDF).Centerfor
Strategicand International Studies.RetrievedMarch13, 2012.
"ChinaTo LimitRare Earths Exports".Manufacturing.net,1September2009. Archivedfromthe original
on July26, 2011. RetrievedAugust30,2010.
Ben Geman(October19, 2009). "Chinatocut exportsof 'rare earth' mineralsvital toenergytech".The
Hill'sE2 Wire.Archivedfromthe original onOctober21, 2010. RetrievedOctober19,2010.
Tony Jin(January18, 2011). "China'sRare Earth ExportsSurge inValue".The ChinaPerspective.
Archivedfromthe original onFebruary13, 2011. RetrievedJanuary19,2011.
Zhang Qi;Ding Qingfen;FuJing(July15,2011). "Rare earthsexportquotaunchanged".ChinaDaily.
Archivedfromthe original onJuly24, 2011.
"Chinahaltsrare earth productionatthree mines".Reuters.September6,2011. RetrievedSeptember
7, 2011.
"WRAPUP 4-US, EU, Japan take on Chinaat WTO overrare earths".Reuters.March 13, 2017. Retrieved
February10, 2017.
"Rare Earths: The HiddenCostto TheirMagic", DistillationsPodcastandtranscript,Episode 242".
Science HistoryInstitute.June 25,2019. RetrievedAugust28,2019.
KevinVoigt(August8,2012). "Chinacutsminesvital totech industry".CNN.
Tim Worstall (December23,2012). "El Regman: Too bad,China – I was RIGHT abouthoardingrare
earths".The Register.RetrievedFebruary10,2017.
"Chinascraps quotason rare earthsafterWTO complaint".The Guardian.January5, 2015. Retrieved
January5, 2015.
"DS431: China— MeasuresRelatedtothe Exportationof Rare Earths, TungstenandMolybdenum".
WorldTrade Organization.RetrievedMay1, 2014.
R. Castellano(Jun.02,2019). "ChinaTrade - InvestBasedOnRare Earth Price Hikes".seekingalpha.com.
Retrieved25February2021.
S. Burns (Feb.16, 2021). "Rare earthsare the nextgeopolitical chessgame".MetalMiner.com.Retrieved
25 February2021.
"EU stockpilesrare earthsastensionswithChinarise".Financial Post.Reuters.September6,2011.
RetrievedSeptember7,2011.
"CanadianFirmsStepUp Search forRare-Earth Metals".The New YorkTimes.Reuters.September9,
2009. RetrievedSeptember15, 2009.
Leifert,H.(June 2010). "RestartingUS rare earthproduction?".Earth.pp.20–21.
Editor."AboutThe Mine".Steenkampskraal Rare EarthsMine.RetrievedJuly19,2019. {{cite web}}:
|last=has genericname (help)
Lunn, J. (2006). "Great westernminerals"(PDF).London:InsignerBeaufortEquityResearch.Archived
fromthe original (PDF) onApril 9,2008. RetrievedApril 19,2008.
Gorman, Steve (August30,2009). "Californiamine digsinfor'green'goldrush".Reuters.Retrieved
March 22, 2010.
"HoidasLake,Saskatchewan".GreatWesternMineral GroupLtd. Archivedfromthe original onMarch
31, 2009. RetrievedSeptember24, 2008.
"Rare earthssupplydeal betweenJapanandVietnam".BBCNews.October31, 2010.
"Vietnamsignsmajornuclearpacts".AlJazeera.October31,2010. RetrievedOctober31,2010.
"MiningVenture Draws$200 MillioninTax IncentivesandRedFlags(1)".news.bloombergtax.com.
RetrievedDecember1,2020.
"Long-discussedniobiummine insoutheastNebraskaisreadytomove forward,if itgathers$1 billionin
financing".RetrievedMay18, 2019.
"NioCorpSuperalloyMaterialsThe ElkCreekSuperalloyMaterialsProject"(PDF).RetrievedMay18,
2019.
"Federal ministerapprovesN.W.T.rare earthmine".CBC News.November4,2013. It followsthe
recommendationfromthe MackenzieValleyEnvironmental Review BoardinJuly,andmarksa major
milestoneinthe company'sefforttoturnthe projectintoan operatingmine.AvalonclaimsNechalacho
is“the mostadvancedlarge heavyrare earth developmentprojectinthe world”.
"Rare Earth ElementsatKvanefjeld".GreenlandMineralsandEnergyLtd.Archivedfromthe original on
September18,2010. RetrievedNovember10,2010.
"NewMulti-ElementTargetsandOverall ResourcePotential".GreenlandMineralsandEnergyLtd.
Archivedfromthe original onNovember18,2010. RetrievedNovember10,2010.
Carol Matlack (February10, 2013). "Chinese Workers—inGreenland?".BusinessWeek.
Bomsdorf,Clemens(March13, 2013). "GreenlandVotestoGetTough onInvestors".The Wall Street
Journal.RetrievedFebruary10,2017.
"Hay tierrasraras aquí y están...enunlugarde La Mancha". ELMUNDO (inSpanish).May24, 2019.
RetrievedMay24, 2019.
"MaidenResource,NguallaRare EarthProject"(PDF).ASXRelease.PeakResources.February29,2012.
Petrov,Leonid(August8,2012). "Rare earthsbankroll NorthKorea'sfuture".AsiaTimes.Archivedfrom
the original onAugust8, 2012. RetrievedOctober22, 2018.
"북한, 올 5~6월 희토류중국 수출크게 늘어" [NorthKoreaRare Earth exportsto Chinaincreased
significantlyfromMayto June].voakorea.com(inKorean).July28,2014.
"Japan DiscoversDomesticRare EarthsReserve".BrightWire.Archivedfromthe originalonJuly23,
2012.
Bradsher,Keith(March 8, 2011). "Takinga RiskforRare Earths". The New York Times.(March9, 2011 p.
B1 NY ed.).RetrievedMarch9, 2011.
"Kronologi Peristiwadi KilangNadirBumi,BukitMerah"[Chronologyof Eventsatthe Rare Earth
Factory,Red Hill] (inMalay).PenangConsumerAssociation.RetrievedAugust26,2019.
Bradsher,Keith(March 8, 2011). "Mitsubishi QuietlyCleansUpIts FormerRefinery".The New York
Times.(March 9, 2011 p. B4 NY ed.).RetrievedMarch9, 2011.
Coleman,Murray(June 30, 2011). "Rare Earth ETF JumpsAsPlansTo Break China'sHoldSuffer
Setback".Barron's.Archivedfromthe original onJuly3,2011. RetrievedJune 30,2011.
Reportof the International ReviewMissiononthe RadiationSafetyAspectsof aProposedRare Earths
ProcessingFacility(LynasProject) (PDF).(29May – 3 June 2011). International AtomicEnergyAgency.
2011. Archivedfromthe original (PDF) onNovember12, 2011. RetrievedFebruary15,2018.
Ng, Eileen(September2,2014). "Lynas getsfull operatinglicence before TOLexpirydate".The
MalaysianInsider.Archivedfromthe original onSeptember4,2014. RetrievedSeptember3,2014.
Rofer,Cheryl K.;TõnisKaasik(2000). Turninga ProblemIntoaResource:RemediationandWaste
Managementat the Sillamäe Site,Estonia.Volume 28of NATO science series:Disarmament
technologies.Springer.p.229. ISBN 978-0-7923-6187-9.
Anneli Reigas(November30,2010). "Estonia'srare earthbreakChina'smarketgrip".AFP.Retrieved
December1,2010.
Cone,Tracie (July21, 2013). "GoldRushTrash is InformationAge Treasure".USA Today.RetrievedJuly
21, 2013.
"Seabedoffersbrighterhope inrare-earthhunt".Nikkei AsianReview.Nikkei Inc.November25,2014.
RetrievedDecember11, 2016.
"Discoveryof rare earthsaroundMinami-Torishima".UTokyoResearch.Universityof Tokyo.May2,
2013. RetrievedDecember11, 2016.
Zhi Li,Ling;Yang, Xiaosheng(September4, 2014). China'srare earthore depositsandbeneficiation
techniques(PDF).1stEuropeanRare Earth ResourcesConference.Milos,Greece:EuropeanCommission
for the 'Developmentof asustainable exploitationscheme forEurope'sRare Earth ore deposits'.
RetrievedDecember11, 2016.
Um, Namil (July2017). Hydrometallurgical recoveryprocessof rare earthelementsfromwaste:main
applicationof acidleachingwithdeviseddiagram.INTECH.pp.41–60. ISBN 978-953-51-3401-5.
"Newliquidextractionfrontierforrare earths?".RecyclingInternational.March26, 2013. Retrieved
February10, 2017.
Tabuchi,Hiroko(October5, 2010). "Japan RecyclesMineralsFromUsedElectronics".New YorkTimes.
"Rhodiato recycle rare earthsfrom magnets".Solvay — Rhodia.October3,2011. Archivedfromthe
original onApril 21, 2014.
"Rhodiaexpandsrare earthrecyclingreach".RecyclingInternational.October11,2011. Retrieved
February10, 2017.
Wencai Zhang; MohammadRezaee;AbhijitBhagavatula;Yonggai Li;JohnGroppo;RickHonaker(2015).
"A Reviewof the Occurrence andPromisingRecoveryMethodsof Rare Earth ElementsfromCoal and
Coal By-Products".International Journal of Coal PreparationandUtilization.35(6): 295–330.
doi:10.1080/19392699.2015.1033097. S2CID 128509001.
Kean,Sam (February9,2022). "Anelectricjoltsalvagesvaluablemetalsfromwaste".www.science.org.
RetrievedFebruary15,2022.
Zhou,Baolu;Li, Zhongxue;Chen,Congcong(October25,2017). "Global Potentialof Rare Earth
ResourcesandRare Earth DemandfromCleanTechnologies".Minerals.7(11): 203.
Bibcode:2017Mine....7..203Z.doi:10.3390/min7110203. See productioninFigure 1 onpage 2
"Mineral CommoditySummaries2019". Mineral CommoditySummaries.2019. p.132.
doi:10.3133/70202434. S2CID 239335855.
F. J. Duarte (Ed.),Tunable LasersHandbook(Academic,New York,1995).
Pang, Xin;Li,Decheng;Peng,An(March 1, 2002). "Application of rare-earthelementsinthe agriculture
of Chinaandits environmental behaviorinsoil".Environmental Science andPollutionResearch.9(2):
143–8. doi:10.1007/BF02987462. ISSN 0944-1344. PMID 12008295. S2CID 11359274.
Rim,Kyung-Taek(September1,2016). "Effectsof rare earthelementsonthe environmentandhuman
health:A literature review".ToxicologyandEnvironmental HealthSciences.8(3):189–200.
doi:10.1007/s13530-016-0276-y. ISSN 2005-9752. S2CID 17407586.
Ali,SaleemH.(February13,2014). "Social andEnvironmental Impactof the Rare Earth Industries".
Resources.3 (1):123–134. doi:10.3390/resources3010123.
Rizk,Shirley(June 21,2019). "What colouristhe cloud?".EuropeanInvestmentBank.Retrieved
September17,2020.
Standaert,Michael (July2,2019). "ChinaWrestleswiththe ToxicAftermathof Rare Earth Mining".Yale
Environment360. Yale School of the Environment.RetrievedJune 16,2021.
Volokh,A.A.;Gorbunov,A.V.;Gundorina,S.F.; Revich,B.A.; Frontasyeva,M.V.;ChenSenPal (June 1,
1990). "Phosphorusfertilizerproductionasasource of rare-earthelementspollutionof the
environment".Science of the Total Environment.95:141–148. Bibcode:1990ScTEn..95..141V.
doi:10.1016/0048-9697(90)90059-4. ISSN 0048-9697. PMID 2169646.
Bourzac, Katherine."Canthe USRare-Earth IndustryRebound?"TechnologyReview.October29, 2010.
"Govt cracks whipon rare earthmining".ChinaMiningAssociation.May21, 2010. Archivedfromthe
original onJuly25, 2011. RetrievedJune 3,2010.
Lee Yong-tim(February22, 2008). "SouthChinaVillagersSlamPollutionFromRare EarthMine".Radio
Free Asia.RetrievedMarch16, 2008.
Bradsher,Keith(October29, 2010). "AfterChina'sRare Earth Embargo, a New Calculus".The NewYork
Times.RetrievedOctober30,2010.
Pereao,Omoniyi;Bode-Aluko,Chris;Fatoba,Olanrewaju;Laatikaine,Katri;Petrik,Leslie (2018)."Rare
earthelementsremovaltechniquesfromwater/wastewater:A review".ResearchGate.130:71–86.
doi:10.5004/dwt.2018.22844 – viawww.researchgate.net.
Barros, Óscar; Costa,Lara; Costa,Filomena;Lago,Ana;Rocha,Verónica;Vipotnik,Ziva;Silva,Bruna;
Tavares,Teresa(March 13, 2019). "Recoveryof Rare Earth ElementsfromWastewaterTowardsa
CircularEconomy".Molecules.24(6): 1005. doi:10.3390/molecules24061005. PMC 6471397. PMID
30871164.
"Towardszero-waste valorizationof rare earthelements".
Yang, Xiuli;Zhang,Junwei;Fang,Xihui (August30,2014). "Rare earthelementrecyclingfromwaste
nickel-metal hydride batteries". Journal of HazardousMaterials.279:384–388.
doi:10.1016/j.jhazmat.2014.07.027. ISSN 0304-3894. PMID 25089667.
"Rare earthelementsforsmartphonescanbe extractedfromcoal waste".New Scientist.
"Rare earthelementsfromwaste".Science Advances.
Amato,A.; Becci,A.;Birloaga,I.;De Michelis,I.;Ferella,F.;Innocenzi,V.;Ippolito,N.M.;PillarJimenez
Gomez,C.; Vegliò,F.;Beolchini,F.(May1, 2019). "Sustainabilityanalysisof innovativetechnologiesfor
the rare earth elementsrecovery".Renewable andSustainableEnergyReviews.106: 41–53.
doi:10.1016/j.rser.2019.02.029. ISSN 1364-0321.
Jyothi,RajeshKumar;Thenepalli,Thriveni;Ahn,Ji Whan;Parhi,Pankaj Kumar;Chung,KyeongWoo;Lee,
Jin-Young(September10,2020). "Review of rare earthelementsrecoveryfromsecondaryresourcesfor
cleanenergytechnologies:Grandopportunitiestocreate wealthfromwaste".Journal of Cleaner
Production.267: 122048. doi:10.1016/j.jclepro.2020.122048. ISSN 0959-6526.
Chua, H (June 18, 1998). "Bio-accumulationof environmentalresiduesof rare earthelementsinaquatic
floraEichhorniacrassipes(Mart.) SolmsinGuangdongProvince of China".Scienceof the Total
Environment.214 (1–3): 79–85. Bibcode:1998ScTEn.214...79C. doi:10.1016/S0048-9697(98)00055-2.
ISSN 0048-9697.
Rim,KyungTaek; Koo,KwonHo; Park,JungSun (2013). "Toxicological Evaluationsof Rare Earthsand
TheirHealthImpactsto Workers:A Literature Review".SafetyandHealthatWork. 4 (1):12–26.
doi:10.5491/shaw.2013.4.1.12. PMC 3601293. PMID 23516020.
Sun,Guangyi;Li, Zhonggen;Liu,Ting;Chen,Ji;Wu,Tingting;Feng,Xinbin(December1,2017). "Rare
earthelementsinstreetdustandassociatedhealthriskinamunicipal industrialbase of central China".
Environmental GeochemistryandHealth.39 (6):1469–1486. doi:10.1007/s10653-017-9982-x. ISSN
0269-4042. PMID 28550599. S2CID 31655372.
Ramos,SilvioJ.;Dinali,Guilherme S.;Oliveira,Cynthia;Martins,Gabriel C.;Moreira,CristianoG.;
Siqueira,José O.;Guilherme,LuizR.G.(March 1, 2016). "Rare Earth Elementsinthe Soil Environment".
CurrentPollutionReports.2(1): 28–50. doi:10.1007/s40726-016-0026-4. ISSN 2198-6592.
Li, Xiaofei;Chen,Zhibiao;Chen,Zhiqiang;Zhang,Yonghe (October1,2013). "A humanhealthrisk
assessmentof rare earthelementsinsoil andvegetablesfromaminingareainFujianProvince,
SoutheastChina".Chemosphere.93(6): 1240–1246. Bibcode:2013Chmsp..93.1240L.
doi:10.1016/j.chemosphere.2013.06.085. ISSN 0045-6535. PMID 23891580.
Zhuang,Maoqiang; Wang,Liansen;Wu,Guangjian;Wang,Kebo;Jiang,Xiaofeng;Liu,Taibin;Xiao,
Peirui;Yu,Lianlong;Jiang,Ying(August29,2017). "Healthriskassessmentof rare earthelementsin
cerealsfromminingareainShandong,China".ScientificReports.7(1): 9772.
Bibcode:2017NatSR...7.9772Z. doi:10.1038/s41598-017-10256-7. ISSN 2045-2322. PMC 5575011. PMID
28852170.
Zhong,Buqing;Wang, Lingqing;Liang,Tao;Xing,Baoshan(October2017). "Pollutionleveland
inhalationexposure of ambientaerosolfluoride asaffectedbypolymetallicrare earthminingand
smeltinginBaotou,northChina".AtmosphericEnvironment.167: 40–48. Bibcode:2017AtmEn.167...40Z.
doi:10.1016/j.atmosenv.2017.08.014.
Lee,Yoolim,"MalaysiaRare Earths inLargest Would-Be RefineryIncite Protest",BloombergMarkets
Magazine,May 31, 2011 5:00 PMET.
"Malaysiacourt rejectspollutionsuitagainstARE".WorldInformationService onEnergy.February11,
1994.
Pagano,Giovanni;Aliberti,Francesco;Guida,Marco;Oral,Rahime;Siciliano,Antonietta;Trifuoggi,
Marco; Tommasi,Franca(2015). "Rare earthelementsinhumanandanimal health:State of artand
researchpriorities".EnvironmentalResearch.142:215–220. Bibcode:2015ER....142..215P.
doi:10.1016/j.envres.2015.06.039. PMID 26164116.
Redling,Kerstin(2006).Rare Earth ElementsinAgriculture withEmphasisonAnimal Husbandry
(Dissertation).LMUMünchen:Facultyof VeterinaryMedicine.RetrievedApril 5, 2018.
"UN investigationintoMalaysiarare-earthplantsafety",BBC,30 May 2011 05:52 ET.
IAEA SubmitsLynasReportto MalaysianGovernment.Iaea.org(2011-06-29). Retrievedon2011-09-27.
Tim Heffernan(June 16,2015). "Whyrare-earthmininginthe Westisa bust".HighCountryNews.
Welle (www.dw.com),Deutsche."Greenlandvotes,splitonrare earthmetalsmining|DW |
06.04.2021". DW.COM. RetrievedApril 7,2021.
"The Difference Engine:More preciousthangold".The EconomistSeptember17,2010.
Barakos, G; Gutzmer,J; Mischo,H (2016). "Strategicevaluationsandminingprocessoptimization
towardsa strong global REE supplychain".Journal of SustainableMining.15(1): 26–35.
doi:10.1016/j.jsm.2016.05.002.
"Value Chain".Investopedia.
Dian L. Chu (November11,2010). "SeventeenMetals:'The Middle Easthas oil,Chinahasrare earth'".
BusinessInsider.
Cox,C. (November16, 2006). "Rare earth innovation:the silentshifttoChina".The AnchorHouse,Inc.
Archivedfromthe original onApril 21, 2008. RetrievedFebruary29,2008.
Bradsher,Keith(September22, 2010). "AmidTension,ChinaBlocksVitalExportstoJapan".The New
York TimesCompany.RetrievedSeptember22,2010.
JamesT. Areddy,DavidFicklingAndNorihikoShirouzu(September23, 2010). "ChinaDeniesHalting
Rare-EarthExportsto Japan".Wall StreetJournal.RetrievedSeptember22,2010.
Backlashoverthe allegedChinacurbonmetal exports,DailyTelegraph,London,29 Aug2010. Retrieved
2010-08-30.
"Rare earths:Diggingin"The EconomistSeptember2,2010.
Mills,Mark P. "Tech's Mineral Infrastructure –Time to Emulate China'sRare Earth Policies."Forbes,1
January2010.
"US Geological Survey:China'sRare-EarthIndustry".Journalist'sResource.org.July18,2011.
Simpson,S.(October2011). "Afghanistan'sBuriedRiches".ScientificAmerican.
Trakimavicius,Lukas(February25,2021). "EU, U.S. exploringnew sourcesof Rare Earth Minerals,
shouldChinalimitexports".EnergyPost.RetrievedFebruary25,2021.
Overland,Indra(March 1, 2019). "The geopoliticsof renewable energy:Debunkingfouremerging
myths".EnergyResearch& Social Science.49: 36–40. doi:10.1016/j.erss.2018.10.018. ISSN 2214-6296.
External links
Media relatedtoRare earth elementsatWikimediaCommons
External media
Audio
audioicon"Rare Earths: The HiddenCostto TheirMagic", DistillationsPodcastandtranscript,Episode
242, June 25, 2019, Science HistoryInstitute
Video
videoicon“10 waysrare earthelementsmake life better”,animation,Science HistoryInstitute
videoiconRare Earth Elements:The Intersectionof Science andSociety,presentationanddiscussionled
by Ira Flatow,Science HistoryInstitute,September24,2019
vte
Periodictable
1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18
1
H
He
2
Li
Be
B
C
N
O
F
Ne
3
Na
Mg
Al
Si
P
S
Cl
Ar
4
K
Ca
Sc
Ti
V
Cr
Mn
Fe
Co
Ni
Cu
Zn
Ga
Ge
As
Se
Br
Kr
5
Rb
Sr
Y
Zr
Nb
Mo
Tc
Ru
Rh
Pd
Ag
Cd
In
Sn
Sb
Te
I
Xe
6
Cs
Ba
La
Ce
Pr
Nd
Pm
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tm
Yb
Lu
Hf
Ta
W
Re
Os
Ir
Pt
Au
Hg
Tl
Pb
Bi
Po
At
Rn
7
Fr
Ra
Ac
Th
Pa
U
Np
Pu
Am
Cm
Bk
Cf
Es
Fm
Md
No
Lr
Rf
Db
Sg
Bh
Hs
Mt
Ds
Rg
Cn
Nh
Fl
Mc
Lv
Ts
Og
s-block f-block d-block p-block
vte
Periodictable
vte
Major industries
Natural sector
Industrial sector
Service sector
Informationsector
Related
CategoryCommonsOutline
Authoritycontrol:National librariesEditthisatWikidata
GermanyIsraelUnitedStatesJapan
Categories:Setsof chemical elementsMetallicelements
Navigationmenu
Notloggedin
Talk
Contributions
Create account
Log in
ArticleTalk
ReadEditViewhistory
Search
SearchWikipedia
Main page
Contents
Currentevents
Randomarticle
AboutWikipedia
Contact us
Donate
Contribute
Help
Learn to edit
Communityportal
Recentchanges
Uploadfile
Tools
What linkshere
Relatedchanges
Special pages
Permanentlink
Page information
Cite thispage
Wikidataitem
Print/export
DownloadasPDF
Printable version
In otherprojects
WikimediaCommons
Languages
‫ية‬ ‫عرب‬ ‫ال‬
Español
Français
हिन्दी
Bahasa Indonesia
Bahasa Melayu
Português
Русский
中文
45 more
Editlinks
Thispage waslasteditedon9 April 2022, at 20:43 (UTC).
Textisavailable underthe Creative CommonsAttribution-ShareAlike License 3.0;additional termsmay
apply.Byusingthissite,youagree to the Termsof Use and PrivacyPolicy.Wikipedia® isaregistered
trademarkof the WikimediaFoundation,Inc.,anon-profitorganization.
PrivacypolicyAboutWikipediaDisclaimersContactWikipediaMobile viewDevelopersStatisticsCookie
statementWikimediaFoundationPoweredbyMediaWiki

More Related Content

Similar to Rare.docx

Elements_Pics_11x8.5.pdf
Elements_Pics_11x8.5.pdfElements_Pics_11x8.5.pdf
Elements_Pics_11x8.5.pdf
BiancaCampos66
 
Pyralspite
PyralspitePyralspite
Pyralspite
Pramoda Raj
 
The Chemical Abundances of the Universe Infographic
The Chemical Abundances of the Universe InfographicThe Chemical Abundances of the Universe Infographic
The Chemical Abundances of the Universe Infographicnicolecaven
 
The elements
The elementsThe elements
The elements
Fer Pelaez
 
Introduction to elements & periodic table
Introduction to elements & periodic tableIntroduction to elements & periodic table
Introduction to elements & periodic tableDavid Young
 
2016 topic 0 - elements & periodic table
2016   topic 0 - elements & periodic table2016   topic 0 - elements & periodic table
2016 topic 0 - elements & periodic table
David Young
 
BlueHat v18 || Mstic threat intelligence year in review
BlueHat v18 || Mstic threat intelligence year in reviewBlueHat v18 || Mstic threat intelligence year in review
BlueHat v18 || Mstic threat intelligence year in review
BlueHat Security Conference
 
Elements and symbols
Elements and symbolsElements and symbols
Elements and symbols
sada10000
 

Similar to Rare.docx (8)

Elements_Pics_11x8.5.pdf
Elements_Pics_11x8.5.pdfElements_Pics_11x8.5.pdf
Elements_Pics_11x8.5.pdf
 
Pyralspite
PyralspitePyralspite
Pyralspite
 
The Chemical Abundances of the Universe Infographic
The Chemical Abundances of the Universe InfographicThe Chemical Abundances of the Universe Infographic
The Chemical Abundances of the Universe Infographic
 
The elements
The elementsThe elements
The elements
 
Introduction to elements & periodic table
Introduction to elements & periodic tableIntroduction to elements & periodic table
Introduction to elements & periodic table
 
2016 topic 0 - elements & periodic table
2016   topic 0 - elements & periodic table2016   topic 0 - elements & periodic table
2016 topic 0 - elements & periodic table
 
BlueHat v18 || Mstic threat intelligence year in review
BlueHat v18 || Mstic threat intelligence year in reviewBlueHat v18 || Mstic threat intelligence year in review
BlueHat v18 || Mstic threat intelligence year in review
 
Elements and symbols
Elements and symbolsElements and symbols
Elements and symbols
 

More from AngelDelacruz900577

ups.pptx
ups.pptxups.pptx
Teacher Binder by Slidesgo.pptx
Teacher Binder by Slidesgo.pptxTeacher Binder by Slidesgo.pptx
Teacher Binder by Slidesgo.pptx
AngelDelacruz900577
 
Economics Lesson for Pre-K by Slidesgo.pptx
Economics Lesson for Pre-K by Slidesgo.pptxEconomics Lesson for Pre-K by Slidesgo.pptx
Economics Lesson for Pre-K by Slidesgo.pptx
AngelDelacruz900577
 
printable-cute-greetings-cards-collection-for-elementary.pptx
printable-cute-greetings-cards-collection-for-elementary.pptxprintable-cute-greetings-cards-collection-for-elementary.pptx
printable-cute-greetings-cards-collection-for-elementary.pptx
AngelDelacruz900577
 
wizard-magical-birthday.pptx
wizard-magical-birthday.pptxwizard-magical-birthday.pptx
wizard-magical-birthday.pptx
AngelDelacruz900577
 
Reading Workshop by Slidesgo.pptx
Reading Workshop by Slidesgo.pptxReading Workshop by Slidesgo.pptx
Reading Workshop by Slidesgo.pptx
AngelDelacruz900577
 
Netflix template[159].pptx
Netflix template[159].pptxNetflix template[159].pptx
Netflix template[159].pptx
AngelDelacruz900577
 
gradient-timeline-infographics.pptx
gradient-timeline-infographics.pptxgradient-timeline-infographics.pptx
gradient-timeline-infographics.pptx
AngelDelacruz900577
 
Adaptive immune system.docx
Adaptive immune system.docxAdaptive immune system.docx
Adaptive immune system.docx
AngelDelacruz900577
 
metalllic.docx
metalllic.docxmetalllic.docx
metalllic.docx
AngelDelacruz900577
 
Polythiazyl.docx
Polythiazyl.docxPolythiazyl.docx
Polythiazyl.docx
AngelDelacruz900577
 
nimale husbandry.docx
nimale husbandry.docxnimale husbandry.docx
nimale husbandry.docx
AngelDelacruz900577
 
Page protected with pending changes.docx
Page protected with pending changes.docxPage protected with pending changes.docx
Page protected with pending changes.docx
AngelDelacruz900577
 
Radioactive waste.docx
Radioactive waste.docxRadioactive waste.docx
Radioactive waste.docx
AngelDelacruz900577
 
Major histocompatibility complex.docx
Major histocompatibility complex.docxMajor histocompatibility complex.docx
Major histocompatibility complex.docx
AngelDelacruz900577
 
Electrical conductor.docx
Electrical conductor.docxElectrical conductor.docx
Electrical conductor.docx
AngelDelacruz900577
 
Antigen.docx
Antigen.docxAntigen.docx
Antigen.docx
AngelDelacruz900577
 
climate change.docx
climate change.docxclimate change.docx
climate change.docx
AngelDelacruz900577
 
c
cc

More from AngelDelacruz900577 (20)

ups.pptx
ups.pptxups.pptx
ups.pptx
 
Teacher Binder by Slidesgo.pptx
Teacher Binder by Slidesgo.pptxTeacher Binder by Slidesgo.pptx
Teacher Binder by Slidesgo.pptx
 
Economics Lesson for Pre-K by Slidesgo.pptx
Economics Lesson for Pre-K by Slidesgo.pptxEconomics Lesson for Pre-K by Slidesgo.pptx
Economics Lesson for Pre-K by Slidesgo.pptx
 
printable-cute-greetings-cards-collection-for-elementary.pptx
printable-cute-greetings-cards-collection-for-elementary.pptxprintable-cute-greetings-cards-collection-for-elementary.pptx
printable-cute-greetings-cards-collection-for-elementary.pptx
 
wizard-magical-birthday.pptx
wizard-magical-birthday.pptxwizard-magical-birthday.pptx
wizard-magical-birthday.pptx
 
Reading Workshop by Slidesgo.pptx
Reading Workshop by Slidesgo.pptxReading Workshop by Slidesgo.pptx
Reading Workshop by Slidesgo.pptx
 
Netflix template[159].pptx
Netflix template[159].pptxNetflix template[159].pptx
Netflix template[159].pptx
 
gradient-timeline-infographics.pptx
gradient-timeline-infographics.pptxgradient-timeline-infographics.pptx
gradient-timeline-infographics.pptx
 
Adaptive immune system.docx
Adaptive immune system.docxAdaptive immune system.docx
Adaptive immune system.docx
 
metalllic.docx
metalllic.docxmetalllic.docx
metalllic.docx
 
T.docx
T.docxT.docx
T.docx
 
Polythiazyl.docx
Polythiazyl.docxPolythiazyl.docx
Polythiazyl.docx
 
nimale husbandry.docx
nimale husbandry.docxnimale husbandry.docx
nimale husbandry.docx
 
Page protected with pending changes.docx
Page protected with pending changes.docxPage protected with pending changes.docx
Page protected with pending changes.docx
 
Radioactive waste.docx
Radioactive waste.docxRadioactive waste.docx
Radioactive waste.docx
 
Major histocompatibility complex.docx
Major histocompatibility complex.docxMajor histocompatibility complex.docx
Major histocompatibility complex.docx
 
Electrical conductor.docx
Electrical conductor.docxElectrical conductor.docx
Electrical conductor.docx
 
Antigen.docx
Antigen.docxAntigen.docx
Antigen.docx
 
climate change.docx
climate change.docxclimate change.docx
climate change.docx
 
c
cc
c
 

Recently uploaded

How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
Honest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptxHonest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptx
timhan337
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
SACHIN R KONDAGURI
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Atul Kumar Singh
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Thiyagu K
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
heathfieldcps1
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
kaushalkr1407
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
Sandy Millin
 
678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf
CarlosHernanMontoyab2
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
joachimlavalley1
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
vaibhavrinwa19
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
beazzy04
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
Pavel ( NSTU)
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
siemaillard
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
Atul Kumar Singh
 
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdfAdversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Po-Chuan Chen
 

Recently uploaded (20)

How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
Honest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptxHonest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptx
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
 
678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
 
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdfAdversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
 

Rare.docx

  • 1. Rare-earthelement From Wikipedia,the free encyclopedia Jumpto navigationJumptosearch Rare-earthelements inthe periodictable Hydrogen Helium Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon Potassium Calcium Scandium Titanium Vanadium
  • 5. Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson Rare-earthore (shownwitha19 mm diameterUS1 centcoin forsize comparison) Refinedrare-earthoxidesare heavygrittypowdersusuallybrownorblack,butcan be lightercolorsas shownhere.Legend: gadolinium·praseodymium·cerium samarium· lanthanum neodymium The rare-earthelements(REE),alsocalledthe rare-earthmetalsor(incontext) rare-earthoxides,orthe lanthanides[1] (thoughyttriumandscandiumare usuallyincludedasrare-earths) are asetof 17 nearly- indistinguishable lustroussilvery-whitesoftheavymetals.[2] Scandiumandyttriumare consideredrare- earthelementsbecausetheytendtooccurin the same ore depositsasthe lanthanidesandexhibit similarchemical properties,buthave differentelectronicandmagneticproperties.[3][4] These metalstarnishslowlyinairat room temperature andreactslowlywithcoldwatertoform hydroxides,liberatinghydrogen.Theyreactwithsteamtoformoxides,andat elevatedtemperature (400 °C) ignite spontaneously. These elementsandtheircompoundshave nobiological function.The water-soluble compoundsare mildlytomoderatelytoxic,butthe insolubleonesare not.[5] Compoundscontainingrare earthshave diverseapplicationsinelectricalandelectroniccomponents, lasers,glass,magneticmaterials,andindustrial processes.
  • 6. Despite theirname,rare-earthelementsare relativelyplentiful inEarth'scrust,withceriumbeingthe 25th mostabundantelementat68 parts per million,more abundantthancopper.All isotopesof promethiumare radioactive,anditdoesnotoccur naturallyinthe earth'scrust,exceptfora trace amountgeneratedbyspontaneousfissionof uranium238. Theyare oftenfoundinmineralswith thorium,andlesscommonlyuranium.Because of theirgeochemical properties,rare-earthelementsare typicallydispersedandnotoftenfoundconcentratedinrare-earthminerals.Consequently, economicallyexploitableore depositsare sparse (i.e."rare").[6] The firstrare-earthmineral discovered (1787) was gadolinite,ablackmineral composedof cerium, yttrium, iron,silicon,andotherelements. Thismineral wasextractedfroma mine inthe village of YtterbyinSweden;fourof the rare-earth elementsbearnamesderivedfromthissingle location. Contents 1 List 2 Discoveryandearlyhistory 2.1 Spectroscopicidentification 2.2 Early classification 2.3 Lightversusheavyclassification 3 Origin 4 Geological distribution 4.1 Geochemistryapplications 5 Production 5.1 China 5.2 Outside China 5.3 Othersources 5.4 Methods 6 Properties 7 Uses 8 Environmental considerations 8.1 RecyclingandreusingREEs 8.2 Impact of REE contamination 8.3 Remediationafterpollution
  • 7. 9 Geo-political considerations 10 See also 11 References 12 External links List A table listingthe 17 rare-earthelements,theiratomicnumberandsymbol,the etymologyof their names,andtheirmainuses(see alsoApplicationsof lanthanides) isprovidedhere.Some of the rare- earthelementsare namedafterthe scientistswhodiscoveredthem,orelucidatedtheirelemental properties,andsome afterthe geographical locationswhere discovered. Overviewof rare-earthmetalproperties Z Symbol Name Etymology Selectedapplications Abundance[7][8] (ppm[a]) 21 Sc Scandium fromLatin Scandia(Scandinavia). Lightaluminium-scandium alloysforaerospace components,additiveinmetal-halidelampsandmercury-vaporlamps,[9] radioactive tracingagentinoil refineries 22 39 Y Yttriumafterthe village of Ytterby,Sweden,wherethe firstrare earthore was discovered. Yttriumaluminiumgarnet(YAG) laser,yttriumvanadate (YVO4) ashostfor europiumin televisionredphosphor,YBCOhigh-temperature superconductors,yttria-stabilizedzirconia(YSZ) (used intooth crowns;as refractorymaterial - inmetal alloysusedinjetengines,andcoatingsof enginesand industrial gasturbines;electroceramics - formeasuringoxygenandpHof hot watersolutions,i.e.infuel cells;ceramicelectrolyte - usedinsolidoxide fuel cell;jewelry - foritshardnessandoptical properties; do-it-yourself hightemperature ceramicsandcementsbasedonwater),yttriumirongarnet (YIG) microwave filters,[9] energy-efficientlightbulbs(partof triphosphorwhite phosphorcoatingin fluorescenttubes,CFLsandCCFLs,and yellow phosphorcoatinginwhite LEDs),[10] sparkplugs,gas mantles,additive tosteel,aluminiumandmagnesium alloys,cancertreatments,cameraandrefractive telescope lenses(due tohighrefractive indexandverylow thermal expansion),batterycathodes(LYP) 33 57 La Lanthanum fromthe Greek"lanthanein",meaningtobe hidden. Highrefractive index and alkali-resistantglass,flint,hydrogenstorage,battery-electrodes,cameraandrefractive telescope lenses,fluidcatalyticcrackingcatalystforoil refineries 39 58 Ce Cerium afterthe dwarf planetCeres,namedafterthe Romangoddessof agriculture. Chemical oxidizingagent,polishingpowder,yellow colorsinglassandceramics,catalystforself- cleaningovens,fluidcatalyticcrackingcatalystforoil refineries,ferroceriumflintsforlighters,robust intrinsicallyhydrophobiccoatingsforturbine blades[11]66.5 59 Pr Praseodymium fromthe Greek"prasios",meaningleek-green,and"didymos",meaning twin. Rare-earthmagnets,lasers,core material forcarbonarc lighting,colorantinglassesand
  • 8. enamels,additiveindidymiumglassusedinweldinggoggles,[9] ferroceriumfiresteel (flint) products, single mode fiberoptical amplifiers(asadopantof fluoride glass) 9.2 60 Nd Neodymium fromthe Greek"neos",meaningnew,and"didymos",meaningtwin. Rare-earthmagnets,lasers,violetcolorsinglassand ceramics,didymiumglass,ceramic capacitors,electricmotorsof electricautomobiles 41.5 61 Pm Promethium afterthe Titan Prometheus,whobroughtfire tomortals. Nuclear batteries,luminouspaint 1×10−15 [12][b] 62 Sm Samarium aftermine official,Vasili Samarsky-Bykhovets. Rare-earthmagnets, lasers,neutroncapture,masers,control rodsof nuclearreactors7.05 63 Eu Europium afterthe continentof Europe. Redand blue phosphors,lasers, mercury-vaporlamps,fluorescentlamps,NMRrelaxationagent 2 64 Gd Gadolinium afterJohanGadolin(1760–1852), tohonor hisinvestigationof rare earths. Highrefractive index glassorgarnets,lasers,X-raytubes,Bubble (computer) memories,neutron capture,MRI contrast agent,NMR relaxationagent,magnetostrictive alloyssuchasGalfenol,steel and chromiumalloysadditive,magneticrefrigeration(usingsignificantmagnetocaloriceffect),positron emissiontomographyscintillatordetectors,substrate formagneto-optical films,highperformance high temperature superconductors,ceramicelectrolyte usedinsolidoxide fuel cells,oxygendetectors, possiblyincatalyticconversionof automobile fumes. 6.2 65 Tb Terbium afterthe village of Ytterby,Sweden. Additive inNeodymiumbased magnets,greenphosphors,lasers,fluorescentlamps(aspartof the white tribandphosphorcoating), magnetostrictivealloyssuchasterfenol-D,naval sonarsystems,stabilizerof fuel cells 1.2 66 Dy Dysprosium fromthe Greek"dysprositos",meaninghardtoget. Additive in Neodymiumbasedmagnets,lasers,magnetostrictivealloyssuchasterfenol-D,harddiskdrives 5.2 67 Ho Holmium afterStockholm(inLatin,"Holmia"),nativecityof one of itsdiscoverers. Lasers,wavelengthcalibrationstandardsforoptical spectrophotometers,magnets 1.3 68 Er Erbium afterthe village of Ytterby,Sweden. Infraredlasers,vanadiumsteel,fiber- optictechnology 3.5 69 Tm Thulium afterthe mythological northernlandof Thule. Portable X-ray machines,metal-halidelamps,lasers 0.52 70 Yb Ytterbium afterthe village of Ytterby,Sweden. Infraredlasers,chemical reducingagent,decoyflares,stainlesssteel,stressgauges,nuclearmedicine,monitoringearthquakes 3.2 71 Lu Lutetium afterLutetia,the citythat laterbecame Paris. Positronemission tomography – PET scan detectors,high-refractive-indexglass,lutetiumtantalate hostsforphosphors, catalystusedinrefineries,LEDlightbulb 0.8 Parts permillioninearth'scrust,e.g.Pb=13 ppm No stable isotopesoccurringinnature.
  • 9. A mnemonicforthe namesof the sixth-row elementsinorderis"Latelycollegepartiesneverproduce sexyEuropeangirlsthatdrinkheavilyeventhoughyoulook".[13] Discoveryandearlyhistory Rare earthswere mainlydiscoveredascomponentsof minerals.Ytterbiumwasfoundinthe "ytterbite" (renamedtogadolinitein1800). It wasdiscoveredbyLieutenantCarl Axel Arrheniusin1787 at a quarry inthe village of Ytterby,Sweden.[14] Arrhenius's"ytterbite"reachedJohanGadolin,aRoyal Academyof Turku professor,andhisanalysisyieldedanunknownoxide ("earth"),whichhe calledyttria.Anders Gustav Ekebergisolatedberylliumfromthe gadolinite butfailedtorecognizeotherelementsinthe ore. Afterthisdiscoveryin1794, a mineral fromBastnäsnearRiddarhyttan,Sweden,whichwasbelievedto be an iron–tungstenmineral,wasre-examinedbyJönsJacobBerzeliusandWilhelmHisinger.In1803 theyobtainedawhite oxide andcalleditceria.MartinHeinrichKlaprothindependentlydiscoveredthe same oxide andcalleditochroia. Ittook another30 yearsfor researcherstodeterminethatother elementswere containedinthe twooresceriaand yttria(the similarityof the rare-earthmetals' chemical propertiesmade theirseparationdifficult). In 1839 Carl Gustav Mosander,an assistantof Berzelius,separatedceriabyheatingthe nitrate and dissolvingthe productinnitricacid.He calledthe oxide of the soluble saltlanthana.Ittookhimthree more yearsto separate the lanthanafurtherintodidymiaandpure lanthana.Didymia, althoughnot furtherseparable byMosander'stechniques,wasinfactstill amixture of oxides. In 1842 Mosanderalsoseparatedthe yttriaintothree oxides:pure yttria,terbiaanderbia(all the names are derivedfromthe townname "Ytterby").The earth givingpinksaltshe calledterbium;the one that yieldedyellowperoxide he callederbium. So in1842 the numberof knownrare-earthelementshadreachedsix:yttrium, cerium,lanthanum, didymium,erbiumandterbium. NilsJohanBerlinandMarc Delafontaine triedalsotoseparate the crude yttriaandfoundthe same substancesthatMosanderobtained,butBerlinnamed(1860) the substance givingpinksaltserbium, and Delafontaine namedthe substancewiththe yellow peroxide terbium.Thisconfusionledto several false claimsof newelements,suchasthe mosandriumof J.Lawrence Smith,orthe philippiumand decipiumof Delafontaine.Due tothe difficultyinseparatingthe metals(anddeterminingthe separation iscomplete),the total numberof false discoverieswasdozens,[15][16] withsome puttingthe total numberof discoveriesatoverahundred.[17] Spectroscopicidentification
  • 10. There were nofurtherdiscoveriesfor30 years,and the elementdidymiumwaslistedinthe periodic table of elementswithamolecularmassof 138. In 1879 Delafontaineusedthe new physical processof optical flame spectroscopyandfoundseveral new spectral linesindidymia.Alsoin1879, the new elementsamariumwasisolatedbyPaul Émile Lecoqde Boisbaudranfromthe mineral samarskite. The samaria earthwas furtherseparatedbyLecoqde Boisbaudranin1886, and a similarresultwas obtainedbyJeanCharlesGalissardde Marignacby directisolationfromsamarskite.Theynamedthe elementgadoliniumafterJohanGadolin,anditsoxide wasnamed"gadolinia". Furtherspectroscopicanalysisbetween1886 and 1901 of samaria,yttria,and samarskite byWilliam Crookes,Lecoqde BoisbaudranandEugène-AnatoleDemarçayyieldedseveral new spectroscopiclines that indicatedthe existence of anunknownelement.The fractionalcrystallizationof the oxidesthen yieldedeuropiumin1901. In 1839 the thirdsource for rare earthsbecame available.Thisisamineral similartogadolinite, uranotantalum(nowcalled"samarskite").Thismineral fromMiassinthe southernUral Mountainswas documentedbyGustavRose.The RussianchemistR.Harmannproposedthata new elementhe called "ilmenium"shouldbe presentinthismineral,butlater,ChristianWilhelmBlomstrand,Galissardde Marignac, and HeinrichRose foundonlytantalumandniobium(columbium) init. The exact numberof rare-earthelementsthatexistedwashighlyunclear,andamaximumnumberof 25 was estimated.The use of X-rayspectra(obtainedbyX-raycrystallography)byHenryGwyn Jeffreys Moseleymade itpossible toassignatomicnumberstothe elements.Moseleyfoundthatthe exact numberof lanthanideshadtobe 15, and that element61 hadyet to be discovered. Usingthese factsabout atomicnumbersfromX-raycrystallography, Moseleyalsoshowedthathafnium (element72) wouldnotbe a rare-earthelement.MoseleywaskilledinWorldWar I in1915, years before hafniumwasdiscovered.Hence,the claimof GeorgesUrbainthathe had discoveredelement72 was untrue.Hafniumisan elementthatliesinthe periodictable immediatelybelow zirconium,and hafniumandzirconiumare verysimilarintheirchemical andphysical properties. Duringthe 1940s, FrankSpeddingandothersinthe UnitedStates(duringthe ManhattanProject) developedchemical ion-exchangeproceduresforseparatingandpurifyingthe rare-earthelements.This methodwasfirstappliedtothe actinidesforseparatingplutonium-239andneptuniumfromuranium, thorium,actinium,andthe otheractinidesinthe materials producedinnuclearreactors.Plutonium-239 was verydesirable because itisafissile material.
  • 11. The principal sourcesof rare-earthelementsare the mineralsbastnäsite,monazite,andlopariteandthe lateriticion-adsorptionclays.Despite theirhighrelative abundance,rare-earthmineralsare more difficulttomine andextractthanequivalentsourcesof transitionmetals(dueinpartto theirsimilar chemical properties),makingthe rare-earthelementsrelativelyexpensive.Theirindustrial use wasvery limiteduntilefficientseparationtechniquesweredeveloped,suchasionexchange,fractional crystallizationandliquid–liquidextractionduringthe late 1950s and early1960s.[18] Some ilmeniteconcentratescontainsmall amountsof scandiumandother rare-earthelements,which couldbe analysedbyXRF.[19] Early classification Before the time thation-exchangemethodsandelutionwere available,the separationof the rare earths was primarilyachievedbyrepeatedprecipitationorcrystallization.In those days,the firstseparation was intotwomaingroups,the ceriumearths(scandium, lanthanum, cerium, praseodymium, neodymium, andsamarium) andthe yttriumearths(yttrium,dysprosium,holmium, erbium, thulium, ytterbium,andlutetium).Europium,gadolinium,andterbiumwere eitherconsideredasa separate groupof rare-earthelements(the terbiumgroup),oreuropiumwasincludedinthe ceriumgroup,and gadoliniumandterbiumwereincludedinthe yttriumgroup.The reasonforthisdivisionarose from the difference insolubilityof rare-earthdouble sulfateswithsodiumandpotassium.The sodiumdouble sulfatesof the ceriumgroupare poorlysoluble,those of the terbiumgroupslightly,andthose of the yttriumgroupare verysoluble.[20] Sometimes,the yttriumgroupwasfurthersplitintothe erbium group(dysprosium,holmium,erbium,andthulium)andthe ytterbiumgroup(ytterbiumandlutetium), but todaythe maingroupingisbetweenthe ceriumandthe yttriumgroups.[21] Today,the rare-earth elementsare classifiedaslightorheavyrare-earthelements,ratherthaninceriumandyttriumgroups. Lightversusheavyclassification The classificationof rare-earthelementsisinconsistentbetweenauthors.[22] The mostcommon distinctionbetweenrare-earthelementsismade byatomicnumbers;those withlow atomicnumbers are referredtoas lightrare-earthelements(LREE),those withhighatomicnumbersare the heavyrare- earthelements(HREE),andthose thatfall inbetweenare typicallyreferredtoas the middle rare-earth elements(MREE).[23] Commonly,rare-earthelementswithatomicnumbers57to 61 (lanthanumto promethium) are classifiedaslightandthose withatomicnumbersgreaterthan62[clarificationneeded >62 or >61?] are classifiedasheavy-rare earthelements.[24] Increasingatomicnumbersbetweenlight and heavyrare-earthelementsanddecreasingatomicradii throughoutthe seriescauseschemical variations.[24] Europiumisexemptof thisclassificationasithas twovalence states:Eu2+ and Eu3+.[24] Yttriumis groupedasheavyrare-earthelementdue tochemical similarities.[25] The breakbetweenthe twogroups issometimesputelsewhere,suchasbetweenelements63(europium) and64 (gadolinium).[26] The actual metallicdensitiesof these twogroupsoverlap,withthe "light"group havingdensitiesfrom6.145 (lanthanum) to7.26 (promethium) or7.52 (samarium) g/cc,and the "heavy"
  • 12. groupfrom 6.965 (ytterbium) to9.32 (thulium),aswell asincludingyttriumat4.47. Europiumhas a densityof 5.24. Origin Rare-earthelements,exceptscandium,are heavierthanironandthus are producedbysupernova nucleosynthesisorbythe s-processinasymptoticgiantbranchstars. Innature,spontaneousfissionof uranium-238producestrace amountsof radioactive promethium, butmostpromethiumissynthetically producedinnuclearreactors. Due to theirchemical similarity,the concentrationsof rare earthsinrocks are onlyslowlychangedby geochemical processes,makingtheirproportionsuseful for geochronologyanddatingfossils. Geological distribution Abundance of elementsinEarth'scrust permillionSi atoms(yaxisislogarithmic) As seeninthe chart to the right,rare-earthelementsare foundonearthat similarconcentrationsto manycommon transitionmetals.The mostabundantrare-earthelementiscerium, whichisactuallythe 25th mostabundantelementinEarth'scrust,having68 parts permillion(aboutascommonas copper). The exceptionisthe highlyunstable andradioactivepromethium"rare earth"isquite scarce.The longest-livedisotope of promethiumhasahalf-life of 17.7years,so the elementexistsinnature inonly negligible amounts(approximately572 g in the entire Earth'scrust).[27] Promethiumisone of the two elementsthatdonothave stable (non-radioactive) isotopesandare followedby(i.e.withhigheratomic number) stable elements(the otherbeingtechnetium). The rare-earthelementsare oftenfoundtogether.Duringthe sequentialaccretionof the Earth,the dense rare-earthelementswere incorporatedintothe deeperportionsof the planet.Early differentiationof moltenmaterial largelyincorporatedthe rare-earthsintomantlerocks.[28] The high fieldstrength[clarificationneeded]andlarge ionicradii of rare-earthsmake themincompatible withthe crystal latticesof mostrock-formingminerals,soREE will undergostrongpartitioningintoameltphase if one is present.[28] REEare chemicallyverysimilarandhave alwaysbeendifficulttoseparate,buta gradual decrease inionicradiusfromlightREE (LREE) to heavyREE (HREE),calledlanthanide contraction,can produce a broad separationbetweenlightandheavyREE.The larger ionicradii of LREE make themgenerallymore incompatible thanHREEin rock-formingminerals,andwill partitionmore stronglyintoa meltphase,whileHREEmay prefertoremaininthe crystalline residue,particularlyif it containsHREE-compatible mineralslike garnet.[28][29] The resultisthatall magma formedfrompartial meltingwill alwayshave greaterconcentrationsof LREEthan HREE, and individualmineralsmaybe dominatedbyeitherHREEor LREE, dependingonwhichrange of ionicradii bestfitsthe crystal lattice.[28]
  • 13. Amongthe anhydrousrare-earthphosphates,itisthe tetragonal mineral xenotime thatincorporates yttriumandthe HREE, whereasthe monoclinicmonazite phase incorporatesceriumandthe LREE preferentially.The smallersize of the HREEallowsgreatersolidsolubilityinthe rock-formingminerals that make up Earth's mantle,andthusyttriumand the HREE show lessenrichmentinEarth'scrust relative tochondriticabundance thandoesceriumandthe LREE. Thishas economicconsequences:large ore bodiesof LREE are knownaroundthe worldandare beingexploited.Ore bodiesforHREE are more rare, smaller,andlessconcentrated.Mostof the current supplyof HREE originatesinthe "ion- absorptionclay"oresof SouthernChina.Some versionsprovide concentratescontainingabout65% yttriumoxide,withthe HREEbeingpresentinratiosreflectingthe Oddo–Harkinsrule:even-numbered REE at abundancesof about5% each,and odd-numberedREEat abundancesof about1% each.Similar compositionsare foundinxenotime orgadolinite.[30] Well-knownmineralscontainingyttrium,andotherHREE, include gadolinite,xenotime,samarskite, euxenite,fergusonite,yttrotantalite,yttrotungstite,yttrofluorite(avarietyof fluorite),thalenite, yttrialite.Small amountsoccurinzircon,whichderivesitstypical yellowfluorescence from some of the accompanyingHREE. The zirconiummineral eudialyte,suchasisfoundinsouthernGreenland,contains small butpotentiallyusefulamountsof yttrium.Of the above yttriumminerals,mostplayedapartin providingresearchquantitiesof lanthanidesduringthe discoverydays.Xenotime isoccasionally recoveredasa byproductof heavy-sandprocessing,butisnotas abundantas the similarlyrecovered monazite (whichtypicallycontainsafewpercentof yttrium).UraniumoresfromOntariohave occasionallyyieldedyttriumasabyproduct.[30] Well-knownmineralscontainingcerium,andotherLREE, include bastnäsite,monazite,allanite,loparite, ancylite,parisite,lanthanite,chevkinite,cerite,stillwellite,britholite,fluocerite,andcerianite.Monazite (marine sandsfromBrazil,India,orAustralia;rockfromSouthAfrica),bastnäsite (fromMountainPass rare earthmine,or several localitiesinChina),andloparite (KolaPeninsula,Russia)have beenthe principal oresof ceriumandthe lightlanthanides.[30] Enricheddepositsof rare-earthelementsatthe surface of the Earth, carbonatitesandpegmatites,are relatedtoalkaline plutonism,anuncommonkindof magmatismthatoccursin tectonicsettingswhere there isriftingorthat are near subductionzones.[29] Ina riftsetting,the alkaline magmaisproducedby verysmall degreesof partial melting(<1%) of garnetperidotiteinthe uppermantle (200to 600 km depth).[29] Thismeltbecomesenrichedinincompatibleelements,like the rare-earthelements,by leachingthemoutof the crystalline residue.The resultantmagmarisesasa diapir,ordiatreme,along pre-existingfractures,andcanbe emplaceddeepinthe crust,oreruptedatthe surface.Typical REE enricheddepositstypesforminginriftsettingsare carbonatites,andA- andM-Type granitoids.[28][29] Nearsubductionzones,partial meltingof the subductingplate withinthe asthenosphere (80to200 km depth) producesavolatile-richmagma(highconcentrationsof CO2andwater),withhigh concentrations of alkaline elements,andhighelementmobilitythatthe rare-earthsare stronglypartitionedinto.[28]
  • 14. Thismeltmay alsorise alongpre-existingfractures,andbe emplacedinthe crustabove the subducting slabor eruptedat the surface. REE enricheddepositsformingfromthesemeltsare typicallyS-Type granitoids.[28][29] Alkaline magmasenrichedwithrare-earthelementsincludecarbonatites,peralkalinegranites (pegmatites),andnephelinesyenite.CarbonatitescrystallizefromCO2-richfluids,whichcanbe producedbypartial meltingof hydrous-carbonatedlherzolite toproduce aCO2-richprimarymagma, by fractional crystallizationof analkaline primarymagma,orbyseparationof a CO2-richimmiscible liquid from.[28][29] These liquidsare mostcommonlyforminginassociationwithverydeepPrecambrian Cratons,like the onesfoundinAfricaandthe CanadianShield.[28] Ferrocarbonatitesare the most commontype of carbonatite tobe enrichedinREE, andare oftenemplacedaslate-stage, brecciated pipesatthe core of igneouscomplexes;theyconsistof fine-grainedcalcite andhematite,sometimes withsignificantconcentrationsof ankerite andminorconcentrationsof siderite.[28][29] Large carbonatite depositsenrichedinrare-earthelementsinclude MountWeldinAustralia,ThorLake in Canada,ZandkopsdriftinSouthAfrica,andMountainPassinthe USA.[29] Peralkalinegranites(A-Type granitoids) have veryhighconcentrationsof alkaline elementsandverylow concentrationsof phosphorus;theyare depositedatmoderate depthsinextensionalzones,oftenasigneousring complexes,oras pipes,massivebodies,andlenses.[28][29] These fluidshave verylow viscositiesand highelementmobility,whichallowsforcrystallizationof large grains,despite arelativelyshort crystallizationtimeuponemplacement;theirlarge grainsize iswhythese depositsare commonly referredtoas pegmatites.[29] Economicallyviable pegmatitesare dividedintoLithium-Cesium-Tantalum (LCT) and Niobium-Yttrium-Fluorine(NYF) types;NYFtypesare enrichedinrare-earthminerals. Examplesof rare-earthpegmatitedepositsincludeStrange Lake inCanada,andKhaladean-Buregteyin Mongolia.[29] Nepheline syenite(M-Type granitoids) depositsare 90% feldsparandfeldspathoid minerals,andare depositedinsmall,circularmassifs.Theycontainhighconcentrationsof rare-earth- bearingaccessoryminerals.[28][29] Forthe mostpart these depositsare small butimportantexamples include Illimaussaq-KvanefeldinGreenland,andLovozerainRussia.[29] Rare-earthelementscanalsobe enrichedindepositsbysecondaryalterationeitherbyinteractionswith hydrothermal fluidsormeteoricwaterorbyerosionandtransportof resistate REE-bearingminerals. Argillizationof primarymineralsenrichesinsolubleelementsbyleachingoutsilicaandothersoluble elements,recrystallizingfeldsparintoclaymineralssuchkaolinite,halloysiteandmontmorillonite.In tropical regionswhere precipitationishigh,weatheringformsa thickargillizedregolith,thisprocessis calledsupergeneenrichmentandproduceslaterite deposits;heavyrare-earthelementsare incorporatedintothe residual claybyabsorption.Thiskindof depositisonlyminedforREEinSouthern China,where the majorityof global heavyrare-earthelementproductionoccurs.REE-lateritesdoform elsewhere,includingoverthe carbonatite atMountWeldinAustralia.REEmay alsoby extractedfrom placerdepositsif the sedimentaryparentlithologycontainedREE-bearing,heavyresistateminerals.[29] In 2011, YasuhiroKato, a geologistatthe Universityof Tokyowholedastudyof PacificOceanseabed mud,publishedresultsindicatingthe mudcouldholdrichconcentrationsof rare-earthminerals.The
  • 15. deposits,studiedat78 sites,came from"[h]otplumesfromhydrothermal ventspull[ing] these materials out of seawateranddeposit[ing] themonthe seafloor,bitbybit,overtensof millionsof years.One square patch of metal-richmud2.3 kilometerswide mightcontain enoughrare earthstomeetmostof the global demandfora year,Japanese geologistsreportinNature Geoscience.""Ibelieve thatrare[- ]earthresourcesunderseaare muchmore promisingthanon-landresources,"saidKato. "[C]oncentrationsof rare earths were comparable tothose foundinclaysminedinChina.Some deposits containedtwice asmuchheavyrare earthssuch as dysprosium, acomponentof magnetsinhybridcar motors."[30][31] Geochemistryapplications The applicationof rare-earthelementsto geologyisimportanttounderstandingthe petrological processesof igneous,sedimentaryandmetamorphicrockformation.Ingeochemistry,rare-earth elementscanbe usedtoinferthe petrological mechanismsthathave affectedarockdue to the subtle atomicsize differencesbetweenthe elements,whichcausespreferentialfractionationof some rare earthsrelative toothersdependingonthe processesatwork.[23] In geochemistry,rare-earthelementsare typicallypresentedinnormalized"spider"diagrams,inwhich concentrationof rare-earthelementsare normalizedtoareference standardandare thenexpressedas the logarithmtothe base 10 of the value.Commonly,the rare-earthelementsare normalizedto chondriticmeteorites,asthese are believedtobe the closestrepresentationof unfractionatedsolar systemmaterial.However,othernormalizingstandardscanbe applieddependingonthe purpose of the study.Normalizationtoa standardreference value,especiallyof amaterial believedtobe unfractionated,allowsthe observedabundancestobe comparedtoinitial abundancesof the element.[23] Normalizationalsoremovesthe pronounced'zig-zag'patterncausedbythe differencesin abundance betweenevenandoddatomicnumbers.The trendsthatare observed in"spider"diagrams are typicallyreferredtoas"patterns",whichmaybe diagnosticof petrological processesthathave affectedthe material of interest.[23] The rare-earthelementspatternsobservedinigneousrocksare primarilyafunctionof the chemistryof the source where the rock came from,as well asthe fractionationhistorythe rockhasundergone.[23] Fractionationisinturna functionof the partitioncoefficientsof eachelement.Partitioncoefficientsare responsible forthe fractionation of atrace elements(includingrare-earthelements)intothe liquid phase (the melt/magma) intothe solidphase (the mineral).If anelementpreferentiallyremainsinthe solidphase itistermed‘compatible’,anditpreferentiallypartitionsintothe meltphase itisdescribedas ‘incompatible’.[23] Eachelementhasa differentpartitioncoefficient,andtherefore fractionatesinto solidandliquidphasesdistinctly.These conceptsare alsoapplicabletometamorphicandsedimentary petrology.
  • 16. In igneous rocks,particularlyinfelsicmelts,the followingobservationsapply:anomaliesineuropiumare dominatedbythe crystallizationof feldspars.Hornblende,controlsthe enrichmentof MREE compared to LREE and HREE. Depletionof LREErelative toHREE may be due to the crystallizationof olivine, orthopyroxene,andclinopyroxene.Onthe otherhand,depletionof HREErelative toLREE may be due to the presence of garnet,as garnetpreferentiallyincorporatesHREEintoitscrystal structure.The presence of zirconmayalsocause a similareffect.[23] In sedimentaryrocks,rare-earthelementsinclasticsedimentsare a representationprovenance.The rare-earthelementconcentrationsare nottypicallyaffectedbyseaandriverwaters,asrare-earth elementsare insoluble andthushave verylow concentrationsinthese fluids.Asaresult,whena sedimentistransported,rare-earthelementconcentrationsare unaffectedbythe fluidandinsteadthe rock retainsthe rare-earthelementconcentrationfromitssource.[23] Seaand riverwaterstypicallyhave lowrare-earthelementconcentrations.However,aqueous geochemistryisstillveryimportant.Inoceans,rare-earthelementsreflectinputfromrivers, hydrothermal vents,andaeoliansources;[23] thisisimportantin the investigationof oceanmixingand circulation.[25] Rare-earthelementsare alsouseful fordatingrocks,assome radioactive isotopesdisplaylonghalf-lives. Of particularinterestare the 138La-138Ce, 147Sm-143Nd, and 176Lu-176Hf systems.[25] Production Global production1950–2000 Until 1948, mostof the world'srare earthswere sourcedfromplacersanddepositsinIndiaandBrazil. Throughthe 1950s, SouthAfricawas the world'srare-earthsource,froma monazite-richreef atthe Steenkampskraalmine inWesternCape province.[32] Throughthe 1960s until the 1980s, the Mountain Passrare earth mine inCaliforniamade the UnitedStatesthe leadingproducer.Today,the Indianand SouthAfricandepositsstillproduce some rare-earthconcentrates,but theyare dwarfedbythe scale of Chinese production.In2017, Chinaproduced81% of the world'srare-earthsupply,mostlyinInner Mongolia,[6][33] althoughithadonly36.7% of reserves.Australiawasthe secondandonlyothermajor producerwith15% of worldproduction.[34] All of the world'sheavyrare earths(suchasdysprosium) come from Chinese rare-earthsourcessuchasthe polymetallicBayanObodeposit.[33][35] The Browns Range mine,located160 kmsoutheast of HallsCreekinnorthernWesternAustralia,iscurrentlyunder developmentandispositionedtobecome the firstsignificantdysprosiumproduceroutsideof China.[36]
  • 17. Increaseddemandhasstrainedsupply,andthere isgrowingconcernthatthe worldmay soonface a shortage of the rare earths.[37] In several yearsfrom2009 worldwide demandforrare-earthelementsis expectedtoexceedsupplyby40,000 tonnesannuallyunlessmajornew sourcesare developed.[38] In 2013, itwas statedthat the demandforREEs wouldincrease due tothe dependenceof the EU on these elements,the factthatrare earth elementscannotbe substitutedbyotherelementsandthatREEs have a lowrecyclingrate.Furthermore,due tothe increaseddemandandlow supply,future pricesare expectedtoincrease andthere isa chance that countriesotherthanChinawill openREEmines.[39] REE isincreasingindemanddue tothe fact that theyare essential fornew andinnovative technologythatis beingcreated.These newproductsthatneedREEsto be producedare hightechnologyequipmentsuch as smart phones,digital cameras,computerparts,semiconductors,etc.Inaddition,these elementsare more prevalentinthe followingindustries:renewableenergytechnology,militaryequipment,glass making,andmetallurgy.[40] China See also:Rare earthstrade dispute These concernshave intensifieddue tothe actionsof China,the predominantsupplier.[41] Specifically, Chinahas announcedregulationsonexportsandacrackdownon smuggling.[42] OnSeptember1,2009, Chinaannouncedplanstoreduce itsexportquotato 35,000 tonsper yearin 2010–2015 to conserve scarce resourcesandprotectthe environment.[43] OnOctober19, 2010, ChinaDaily,citinganunnamed Ministryof Commerce official,reportedthatChinawill"furtherreduce quotasforrare[-]earthexports by 30 percentat mostnextyearto protectthe preciousmetalsfromover-exploitation."[44] The governmentinBeijingfurtherincreaseditscontrol byforcingsmaller,independentminerstomerge into state-ownedcorporations orface closure.Atthe endof 2010, Chinaannouncedthatthe firstround of exportquotasin2011 for rare earthswouldbe 14,446 tons,whichwasa 35% decrease fromthe previousfirstroundof quotasin2010.[45] Chinaannouncedfurtherexportquotason 14 July2011 for the secondhalf of the yearwithtotal allocationat30,184 tons withtotal productioncappedat93,800 tonnes.[46] InSeptember2011, Chinaannouncedthe haltinproductionof three of itseightmajorrare- earthmines,responsibleforalmost40%of China'stotal rare-earthproduction.[47] InMarch 2012, the US, EU, andJapan confrontedChinaatWTO about these exportandproductionrestrictions.China respondedwithclaimsthatthe restrictionshadenvironmentalprotectioninmind.[48][49] InAugust 2012, Chinaannouncedafurther20% reductioninproduction.[50] The UnitedStates,Japan,andthe EuropeanUnionfiledajointlawsuitwiththe WorldTrade Organizationin2012 againstChina,arguing that Chinashouldnotbe able to denysuch importantexports.[49] In response tothe openingof newminesinothercountries(LynasinAustraliaandMolycorpinthe UnitedStates),pricesof rare earthsdropped.[51] The price of dysprosiumoxidewas994 USD/kgin 2011, butdroppedto US$265/kg by 2014.[52] On August29, 2014, the WTO ruledthatChinahad brokenfree-tradeagreements,andthe WTO saidin the summaryof keyfindingsthat"the overall effectof the foreignanddomesticrestrictionsisto
  • 18. encourage domesticextractionandsecure preferential use of those materialsbyChinese manufacturers."Chinadeclaredthatitwouldimplementthe rulingonSeptember26,2014, but would needsome time todo so.By January5, 2015, Chinahad liftedall quotasfromthe exportof rare earths, but exportlicenceswill still be required.[53] In 2019, Chinasuppliedbetween85%and 95% of the global demandforthe 17 rare earth powders,half of themsourcedfromMyanmar.[54] Afterthe 2021 militarycoupinthat country,future suppliesof critical oreswere possiblyconstrained.Additionally,itwasspeculatedthatthe PRCcouldagain reduce rare earthexportstocounter-acteconomicsanctionsimposedbythe US and EU countries.Rare earth metalsserve ascrucial materialsforEV-manufacturingandhigh-techmilitaryapplications.[55] Outside China As a resultof the increaseddemandandtighteningrestrictionsonexportsof the metalsfromChina, some countriesare stockpilingrare-earthresources.[56] SearchesforalternativesourcesinAustralia, Brazil, Canada,SouthAfrica,Tanzania,Greenland,andthe UnitedStatesare ongoing.[57] Minesinthese countrieswere closedwhenChinaundercutworldpricesinthe 1990s, and itwill take a few yearsto restartproductionas there are many barrierstoentry.[42] One example isthe MountainPassmine in California,whichannounceditsresumptionof operationsonastart-upbasison August27, 2012.[33][58] OthersignificantsitesunderdevelopmentoutsideChinainclude Steenkampskraalin SouthAfrica,the world's highestgrade rare earthsand thoriummine,whichisgearingtogoback into production.Over80% of the infrastructure isalreadycomplete.[59] Otherminesincludethe Nolans ProjectinCentral Australia,the BokanMountainprojectinAlaska,the remote HoidasLake projectin northernCanada,[60] and the Mount WeldprojectinAustralia.[33][58][61] The HoidasLake projecthas the potential tosupplyabout10% of the $1 billionof REEconsumptionthatoccursin NorthAmerica everyyear.[62] Vietnamsigned anagreementinOctober2010 to supplyJapanwithrare earths[63] from itsnorthwesternLai ChâuProvince.[64] In the US, NioCorpDevelopmentLtdhaslauncheda long-shotefforttosecure $1.1 billion[65] toward openinganiobium,scandium, andtitanium mine atitsElkCreeksite insoutheastNebraska[66] which may be able to produce as muchas 7200 tonnesof ferroniobiumand95 tonnesof scandiumtrioxide annually.[67] Alsounderconsiderationforminingare sitessuchasThor Lake inthe NorthwestTerritories,andvarious locationsinVietnam.[33][38][68] Additionally,in2010, a large depositof rare-earthmineralswas discoveredinKvanefjeldinsouthernGreenland.[69] Pre-feasibilitydrillingatthissite hasconfirmed significantquantitiesof blacklujavrite,whichcontainsabout1% rare-earthoxides(REO).[70] The EuropeanUnionhas urgedGreenlandtorestrictChinese developmentof rare-earthprojectsthere,but as of early2013, the governmentof Greenlandhassaidthatit hasno plansto impose such restrictions.[71] ManyDanishpoliticianshave expressedconcernsthatothernations,includingChina,
  • 19. couldgaininfluence inthinlypopulatedGreenland,giventhe numberof foreignworkersandinvestment that couldcome from Chinese companiesinthe nearfuture because of the law passedDecember 2012.[72] In central Spain,CiudadReal Province,the proposedrare-earthminingproject'Matamulas'mayprovide, accordingto its developers,upto2,100 Tn/year(33% of the annual UE demand).However,thisproject has beensuspendedbyregional authoritiesdue tosocial andenvironmentalconcerns.[73] Addingtopotential mine sites,ASXlistedPeakResourcesannouncedinFebruary2012, that their Tanzanian-basedNguallaprojectcontainednotonlythe 6th largestdepositbytonnage outsideof China, but alsothe highestgrade of rare-earthelementsof the 6.[74] NorthKoreahas beenreportedtohave exportedrare-earthore toChina,aboutUS$1.88 millionworth duringMay and June 2014.[75][76] In May 2012, researchersfromtwouniversitiesinJapanannouncedthattheyhaddiscoveredrare earths inEhime Prefecture,Japan.[77] Malaysianrefiningplans In early2011, AustralianminingcompanyLynaswasreportedtobe "hurryingtofinish"aUS$230 million rare-earthrefineryonthe easterncoastof PeninsularMalaysia'sindustrial portof Kuantan.The plant wouldrefine ore — lanthanidesconcentratefromthe MountWeldmine inAustralia.The ore wouldbe truckedto Fremantle andtransportedbycontainership toKuantan.Withintwoyears,Lynaswassaidto expectthe refinerytobe able tomeetnearlyathirdof the world'sdemandforrare-earthmaterials,not countingChina.[78] The Kuantandevelopmentbroughtrenewedattentiontothe Malaysiantownof BukitMerah inPerak,where a rare-earthmine operatedbyaMitsubishi Chemical subsidiary,AsianRare Earth, closedin1994 and leftcontinuingenvironmentalandhealthconcerns.[79][80] Inmid-2011, after protests,Malaysiangovernmentrestrictionsonthe Lynas plantwere announced.Atthattime,citing subscription-onlyDowJonesNewswire reports,aBarronsreportsaidthe Lynas investmentwas$730 million,andthe projectedshare of the global marketitwouldfill putat"abouta sixth."[81] An independentreviewinitiatedbythe MalaysianGovernment,andconductedbythe InternationalAtomic EnergyAgency(IAEA) in2011 to addressconcernsof radioactive hazards,foundnonon-compliance with international radiationsafetystandards.[82] However,the Malaysian authoritiesconfirmedthatasof October2011, Lynaswas not givenanypermit to importany rare-earthore intoMalaysia.OnFebruary2, 2012, the MalaysianAELB (AtomicEnergy LicensingBoard) recommendedthatLynasbe issuedatemporaryoperatinglicense subjecttomeetinga
  • 20. numberof conditions.On2 September2014, Lynaswas issueda2-yearfull operatingstage licenseby the AELB.[83] Othersources Mine tailings Significantquantitiesof rare-earthoxidesare foundintailingsaccumulatedfrom50 yearsof uranium ore,shale andloparite miningatSillamäe,Estonia.[84] Due tothe risingpricesof rare earths,extraction of these oxideshasbecome economicallyviable.The countrycurrentlyexportsaround3,000 tonnesper year,representingaround2%of worldproduction.[85] Similarresourcesare suspectedinthe western UnitedStates,where goldrush-eraminesare believedtohave discardedlarge amountsof rare earths, because theyhadno value atthe time.[86] Oceanmining In January2013 a Japanese deep-searesearchvesselobtainedsevendeep-seamudcore samplesfrom the PacificOceanseafloorat5,600 to 5,800 metersdepth,approximately250kilometres(160mi) south of the islandof Minami-Tori-Shima.[87] The researchteamfounda mudlayer2 to 4 metersbeneaththe seabedwithconcentrationsof upto0.66% rare-earthoxides.A potential depositmightcompare in grade withthe ion-absorption-type depositsinsouthernChinathatprovide the bulkof Chinese REO mine production,whichgrade inthe range of 0.05% to 0.5% REO.[88][89] Waste Anotherrecentlydevelopedsource of rare earthsiselectronicwaste andotherwastesthathave significantrare-earthcomponents.[90] Advancesinrecyclingtechnologyhave made extractionof rare earthsfromthese materialslessexpensive.[91] Recyclingplantsoperate inJapan,whereanestimated 300,000 tonsof rare earths are foundinunusedelectronics.[92] InFrance,the Rhodiagroupissetting up twofactories,inLa Rochelle andSaint-Fons,thatwill produce 200tons of rare earthsa yearfrom usedfluorescentlamps,magnetsandbatteries.[93][94] Coal andcoal by-productsare a potential source of critical elementsincludingrare earthelements(REE) withestimatedamountsinthe range of 50 millionmetrictons.[95] Methods One studymixedflyashwithcarbonblackand thensenta 1-secondcurrentpulse throughthe mixture, heatingitto 3,000 °C (5,430 °F).The flyashcontainsmicroscopicbitsof glassthat encapsulate the metals.The heatsshattersthe glass,exposingthe rare earths.Flashheatingalsoconvertsphosphates intooxides,whichare more solubleandextractable.Usinghydrochloricacidat concentrationslessthan 1% of conventional methods,the processextractedtwice asmuchmaterial.[96]
  • 21. Properties Accordingto chemistryprofessorAndreaSella,rare-earthelementsdifferfromotherelements,inthat whenlookedatanalytically,theyare virtuallyinseparable,havingalmostthe same chemical properties. However,intermsof theirelectronic andmagneticproperties,eachone occupiesaunique technological niche thatnothingelse can.[3] Forexample,"the rare-earthelementspraseodymium(Pr) and neodymium(Nd)canbothbe embeddedinside glassandtheycompletelycutoutthe glare fromthe flame whenone isdoingglass-blowing."[3] Uses Global REE consumption,2015[97] Catalysts,24%(24%) Magnets,23% (23%) Polishing,12%(12%) "other",9%(9%) Metallurgy,8%(8%) Batteries,8%(8%) Glass,7% (7%) Ceramics,6%(6%) Phosphorsandpigments,3%(3%) US consumptionof REE, 2018[98] Catalysts,60%(60%) Ceramicsandglass,15% (15%) Polishing,10%(10%) "other",5%(5%) Metallurgy,10%(10%) The uses,applications,anddemandforrare-earthelementshasexpandedover the years.Globally,most REEs are usedfor catalystsandmagnets.[97] InUSA, more than half of REEs are usedfor catalysts,and ceramics,glassand polishingare alsomainuses.[98]
  • 22. Otherimportantusesof rare-earthelementsare applicable tothe productionof high-performance magnets,alloys,glasses,andelectronics.Ce andLaare importantas catalysts,andare usedfor petroleumrefiningandasdiesel additives.Ndisimportantinmagnetproductionintraditional andlow- carbon technologies.Rare-earthelementsinthiscategoryare usedinthe electricmotorsof hybridand electricvehicles,generatorsinwindturbines,harddiscdrives,portable electronics,microphones, speakers. Ce,La andNd are importantinalloymaking,andinthe production of fuel cellsandnickel-metal hydride batteries.Ce,Gaand Ndare importantinelectronicsandare usedinthe productionof LCD and plasma screens,fiberoptics,lasers,[99] aswell asin medical imaging.Additionalusesforrare-earthelements are as tracers inmedical applications,fertilizers,andinwatertreatment.[25] REEs have beenusedinagriculture toincrease plantgrowth,productivity,andstressresistance seeminglywithoutnegative effectsforhumanandanimal consumption.REEsare usedin agriculture throughREE-enrichedfertilizerswhichisawidelyusedpractice inChina.[100] Inaddition,REEsare feed additivesforlivestockwhichhasresultedinincreasedproductionsuchaslargeranimalsanda higher productionof eggsand dairyproducts.However,thispractice hasresultedinREEbio-accumulation withinlivestockandhasimpactedvegetationandalgae growthinthese agricultural areas.[101] Additionallywhilenoill effectshave beenobservedatcurrentlow concentrationsthe effects overthe longtermand withaccumulationovertime are unknownpromptingsome callsformore researchinto theirpossible effects.[100][102] Giventhe limitedsupply,industriesdirectlycompete witheachotherforresources,e.g.the electronics sectoris indirectcompetitionwithrenewable energyuse inwindfarms,solarpanelsandbatteries.[103] Environmental considerations REEs are naturallyfoundinverylowconcentrationinthe environment.Minesare oftenincountries where environmental andsocial standardsare verylow,causinghumanrightsviolations,deforestation and contaminationof landandwater.[103][104] Nearminingandindustrial sitesthe concentrationscanrise tomanytimesthe normal background levels.Once inthe environmentREEs can leachintothe soil where theirtransportisdeterminedby numerousfactorssuchas erosion,weathering,pH,precipitation,groundwater,etc.Actingmuchlike metals,theycanspeciate dependingonthe soil conditionbeingeithermotileoradsorbedto soil particles.Dependingontheirbio-availabilityREEscanbe absorbedintoplantsandlaterconsumedby humansand animals.The miningof REEs,use of REE-enrichedfertilizers,andthe productionof phosphorusfertilizersall contributetoREE contamination.[105] Furthermore,strongacidsare used duringthe extractionprocessof REEs,whichcan thenleachoutinto the environmentandbe
  • 23. transportedthroughwaterbodiesandresultinthe acidificationof aquaticenvironments.Another additive of REEminingthatcontributestoREE environmental contaminationisceriumoxide(CeO 2) whichisproducedduringthe combustionof diesel andisreleasedasanexhaustparticulate matter and contributesheavilytosoil andwatercontamination.[101] False-colorsatellite imageof the BayanOboMiningDistrict,2006 Mining,refining,andrecyclingof rare earthshave seriousenvironmental consequencesif notproperly managed.Low-level radioactivetailingsresultingfromthe occurrence of thoriumanduraniuminrare- earthelementorespresentapotential hazard[106] andimproperhandlingof these substancescan resultinextensive environmental damage.InMay 2010, Chinaannounceda major,five-month crackdownon illegal mininginordertoprotectthe environmentanditsresources.Thiscampaignis expectedtobe concentratedinthe South,[107] where mines –commonlysmall,rural,andillegal operations –are particularlyprone toreleasingtoxicwaste intothe general watersupply.[33][108] However,eventhe majoroperationinBaotou,inInnerMongolia,where muchof the world'srare-earth supplyisrefined,hascausedmajorenvironmental damage.[109] China'sMinistryof Industryand InformationTechnologyestimatedthatcleanupcostsinJiangxi province at$5.5 billion.[104] It ishoweverpossible tofilteroutandrecoverany rare earthelementsthatflow outwiththe wastewaterfromminingfacilities.However,suchfilteringandrecoveryequipmentmaynotalwaysbe presentonthe outletscarryingthe wastewater.[110][111][112] RecyclingandreusingREEs Furtherinformation:CirculareconomyandRenewable energy§Conservationareas,recyclingandrare- earthelements Wiki letterw.svg Thissectionismissinginformationaboutprocessestorecycle/REEsthatare established,demonstrated experimentallyorunderdevelopmentaswell asrelatedpolicies.Please expandthe sectiontoinclude thisinformation.Furtherdetailsmayexistonthe talkpage.(March 2022) Literature publishedin2004 suggeststhat alongwithpreviouslyestablishedpollutionmitigation,amore circularsupplychainwouldhelpmitigate someof the pollutionatthe extractionpoint.Thismeans recyclingandreusingREEsthat are alreadyinuse or reachingthe endof theirlife cycle.[102] A study publishedin2014 suggestsa methodtorecycle REEs fromwaste nickel-metal hydride batteries,the recoveryrate isfoundto be 95.16%.[113] Rare-earthelementscouldalsobe recoveredfromindustrial wasteswithpractical potential toreduce environmental/healthimpactsfrommining,waste-generation and importsif knownandexperimentalprocessesare scaledup.[114][115] A studysuggeststhat "fulfillmentof the circulareconomyapproachcouldreduce upto 200 timesthe impactinthe climate
  • 24. change category and up to 70 timesthe cost due to the REE mining."[116] Inmost of the reported studiesreviewedbyascientificreview,"secondarywaste issubjectedtochemical andor bioleaching followedbysolventextractionprocessesforcleanseparationof REEs."[117] Impact of REE contamination On vegetation The miningof REEs has causedthe contaminationof soil andwateraroundproductionareas,whichhas impactedvegetationinthese areasbydecreasingchlorophyll productionwhichaffectsphotosynthesis and inhibitsthe growthof the plants.[101] However,the impactof REEcontaminationonvegetationis dependentonthe plantspresentinthe contaminatedenvironment:some plantsretainandabsorbREEs and some don't.Also,the abilityforthe vegetationtointake the REEis dependentonthe type of REE presentinthe soil,hence there are amultitude of factorsthatinfluence thisprocess.[118] Agricultural plantsare the maintype of vegetationaffectedbyREE contaminationinthe environment,the two plantswitha higherchance of absorbingandstoringREEs beingapplesandbeets.[105] Furthermore, there isa possibilitythatREEs can leachout intoaquaticenvironmentsandbe absorbedbyaquatic vegetation,whichcanthenbio-accumulate andpotentiallyenterthe humanfood-chainif livestockor humanschoose to eatthe vegetation.Anexample of thissituationwasthe case of the water hyacinth (Eichhorniacrassipes) inChina,where the waterwascontaminateddue toa REE-enrichedfertilizer beingusedina nearbyagricultural area.The aquaticenvironmentbecame contaminatedwithcerium and resultedinthe waterhyacinthbecomingthree timesmore concentratedinceriumthanits surroundingwater.[118] On humanhealth REEs are a large groupwithmanydifferentpropertiesandlevelsinthe environment.Becauseof this, and limitedresearch,ithasbeendifficulttodetermine safe levelsof exposureforhumans.[119] A numberof studieshave focusedonriskassessmentbasedonroutesof exposure anddivergence from backgroundlevelsrelatedtonearbyagriculture,mining,andindustry.[120][121] Ithas been demonstratedthatnumerousREEshave toxicpropertiesandare presentinthe environmentorinwork places.Exposure tothese canleadto a wide range of negative healthoutcomessuchascancer, respiratoryissues,dental loss,andevendeath.[39] HoweverREEsare numerousandpresentinmany differentformsandat differentlevelsof toxicity,makingitdifficulttogive blanketwarningsoncancer riskand toxicity assome of these are harmlesswhile otherspose arisk.[119][121][120] What toxicityisshownappearstobe at veryhigh levelsof exposurethroughingestionof contaminated foodand water,throughinhalationof dust/smoke particleseitherasan occupational hazardor due to proximitytocontaminatedsitessuchasminesandcities.Therefore,the mainissuesthatthese residents wouldface isbioaccumulationof REEsand the impacton theirrespiratorysystembutoverall,there can be otherpossible shorttermandlong-termhealtheffects.[122][101] Itwas foundthatpeople living nearminesinChinahad manytimesthe levelsof REEsintheirblood,urine,bone andhaircomparedto
  • 25. controlsfar fromminingsites.Thishigherlevelwasrelatedtothe highlevelsof REEspresentinthe vegetablestheycultivated,the soil,andthe waterfromthe wells,indicatingthatthe highlevelswere causedby the nearbymine.[120][121] While REElevelsvariedbetweenmenandwomen,the group mostat riskwere childrenbecause REEscanimpactthe neurological developmentof children,affecting theirIQ andpotentiallycausingmemoryloss.[123] The rare earth miningandsmeltingprocesscanrelease airborne fluoride whichwill associatewithtotal suspendedparticles(TSP) toformaerosolsthatcanenterhumanrespiratorysystemsandcause damage and respiratorydiseases.ResearchfromBaotou,Chinashowsthatthe fluoride concentrationinairnear REE minesishigherthanthe limitvalue fromWHO,whichcanaffectthe surroundingenvironmentand become a riskto those thatlive or worknearby.[124] Residentsblamedarare-earthrefineryatBukitMerah forbirthdefectsandeightleukemiacaseswithin five yearsina communityof 11,000 — aftermany yearswithno leukemiacases.Sevenof the leukemia victimsdied.OsamuShimizu,adirectorof AsianRare Earth, said"the companymighthave solda few bags of calciumphosphate fertilizerona trial basisas itsoughtto marketbyproducts;calcium phosphate isnotradioactive ordangerous"inreplytoa formerresidentof BukitMerahwhosaidthat "The cows that ate the grass[grownwiththe fertilizer] all died."[125] Malaysia'sSupreme Courtruled on 23 December1993 that there wasno evidence thatthe local chemical jointventure AsianRare Earth was contaminatingthe local environment.[126] On animal health Experimentsexposingratstovariousceriumcompoundshave foundaccumulationprimarilyinthe lungs and liver.Thisresultedinvariousnegative healthoutcomesassociatedwiththose organs.[127] REEs have beenaddedtofeedinlivestocktoincrease theirbodymassandincrease milkproduction.[127] Theyare mostcommonlyusedtoincrease the bodymassof pigs,andit wasdiscoveredthatREEs increase the digestibilityandnutrientuse of pigs'digestive systems.[127] Studiespointtoa dose response whenconsideringtoxicityversuspositive effects.Whilesmall dosesfromthe environmentor withproperadministrationseemtohave noill effects,largerdoseshave beenshowntohave negative effectsspecificallyinthe organswhere theyaccumulate.[127] The processof miningREEsinChinahas resultedinsoil andwatercontaminationincertainareas,whichwhentransportedintoaquaticbodies couldpotentiallybio-accumulatewithinaquaticbiota.Furthermore,insome casesanimalsthatlive in the REE-contaminatedareashave beendiagnosedwithorganorsystemproblems.[101] REEshave been usedinfreshwaterfishfarmingbecauseitprotectsthe fishfrompossible diseases.[127] One main reasonwhytheyhave beenavidlyusedinanimal livestockfeedingisthattheyhave hadbetterresults than inorganiclivestockfeedenhancers.[128] Remediationafterpollution Ambox currentred.svg
  • 26. Thissectionneedstobe updated.Please helpupdate thisarticletoreflectrecenteventsornewly available information.(May2019) Afterthe 1982 BukitMerah radioactive pollution,the mine inMalaysiahasbeenthe focusof a US$100 millioncleanupthatisproceedingin2011. Afterhavingaccomplishedthe hilltopentombmentof 11,000 truckloadsof radioactivelycontaminatedmaterial,the projectisexpectedtoentail insummer,2011, the removal of "more than 80,000 steel barrelsof radioactive wastetothe hilltoprepository."[80] In May 2011, afterthe FukushimaDaiichi nucleardisaster,widespreadproteststookplace inKuantan overthe Lynas refineryandradioactive waste fromit.The ore tobe processedhasverylow levelsof thorium,andLynas founderandchief executiveNicholasCurtissaid"There isabsolutelynorisktopublic health."T.Jayabalan,a doctorwho sayshe has beenmonitoringandtreatingpatientsaffectedbythe Mitsubishi plant,"iswaryof Lynas'sassurances.The argumentthat low levelsof thoriuminthe ore make it saferdoesn'tmake sense,he says,because radiationexposureiscumulative."[125] Construction of the facilityhasbeenhalteduntilanindependentUnitedNationsIAEA panel investigationis completed,whichisexpectedbythe endof June 2011.[129] New restrictionswere announcedbythe Malaysiangovernmentinlate June.[81] IAEA panel investigationiscompletedandnoconstructionhasbeenhalted.Lynasisonbudgetand on schedule tostartproducing2011. The IAEA reporthas concludedina reportissuedonThursdayJune 2011 saidit didnot findanyinstance of "anynon-compliance withinternational radiationsafety standards"inthe project.[130] If the propersafetystandardsare followed,REEminingisrelativelylow impact.Molycorp(beforegoing bankrupt) oftenexceededenvironmentalregulationstoimprove publicimage.[131] In Greenlandthere isasignificantdispute onwhethertostarta new rare earthmine inKvanefjelddue to environmental concerns.[132] Geo-political considerations A U.S.G.S.graph of global rare-earth-oxideproductiontrends,1956–2008. Global rare-earth-oxideproductiontrends,1956-2008 (USGS) Chinahas officiallycitedresourcedepletionandenvironmental concernsasthe reasonsfora nationwide crackdownon itsrare-earthmineral productionsector.[47] However,non-environmental motiveshave alsobeenimputedtoChina'srare-earthpolicy.[109] AccordingtoThe Economist,"Slashingtheirexports of rare-earthmetals…isall aboutmovingChinese manufacturersupthe supplychain,sotheycansell valuable finishedgoodstothe worldratherthanlowlyraw materials."[133] Furthermore,China currentlyhasan effective monopolyonthe world'sREE Value Chain.[134] (all the refineriesand
  • 27. processingplantsthattransformthe raw ore intovaluable elements[135]).Inthe wordsof Deng Xiaoping,aChinese politicianfromthe late 1970s to the late 1980s, "The Middle East has oil;we have rare earths...it isof extremelyimportantstrategicsignificance;we mustbe sure tohandle the rare earthissue properlyandmake the fullestuse of ourcountry'sadvantage inrare earth resources."[136] One possible exampleof marketcontrol isthe divisionof General Motorsthatdealswithminiaturized magnetresearch,whichshutdownitsUS office andmoveditsentire staff toChinain2006[137] (China's exportquotaonlyappliestothe metal butnotproducts made fromthese metalssuchasmagnets). It was reported,[138] butofficiallydenied,[139] thatChinainstitutedanexportbanonshipmentsof rare-earthoxides(butnotalloys)toJapanon 22 September2010, in response tothe detainmentof a Chinese fishingboatcaptainbythe Japanese CoastGuard.[140][49] On September2,2010, a few days before the fishingboatincident,The Economistreportedthat"China...inJulyannouncedthe latestina seriesof annual exportreductions,thistime by40% to precisely30,258 tonnes."[141][49] The UnitedStatesDepartmentof Energyinits 2010 Critical MaterialsStrategyreportidentified dysprosiumasthe elementthatwasmostcritical intermsof importreliance.[142] A 2011 report"China'sRare-EarthIndustry",issuedbythe USGeological SurveyandUS Departmentof the Interior,outlinesindustrytrendswithinChinaandexaminesnational policiesthatmayguide the future of the country's production.The reportnotesthatChina'sleadinthe productionof rare-earth mineralshasacceleratedoverthe pasttwodecades.In1990, Chinaaccountedfor only27% of such minerals.In2009, worldproductionwas132,000 metrictons;Chinaproduced129,000 of those tons. Accordingto the report,recentpatternssuggestthatChinawill slow the exportof suchmaterialstothe world:"Owingtothe increase indomesticdemand,the Governmenthasgraduallyreducedthe export quotaduringthe past several years."In2006, Chinaallowed47 domesticrare-earthproducersand tradersand 12 Sino-foreignrare-earthproducerstoexport.Controlshave since tightenedannually;by 2011, only22 domesticrare-earthproducersandtradersand9 Sino-foreignrare-earthproducerswere authorized.The government'sfuture policieswill likelykeepinplace strictcontrols:"Accordingto China'sdraftrare-earthdevelopmentplan,annual rare-earthproductionmaybe limitedtobetween 130,000 and140,000 [metrictons] duringthe periodfrom2009 to 2015. The exportquotafor rare-earth productsmay be about 35,000 [metrictons] andthe Governmentmayallow 20 domesticrare-earth producersandtraders to exportrare earths."[143] The UnitedStatesGeological SurveyisactivelysurveyingsouthernAfghanistan forrare-earthdeposits underthe protectionof UnitedStatesmilitaryforces.Since2009 the USGS has conductedremote sensingsurveysaswell asfieldworktoverifySovietclaimsthatvolcanicrockscontainingrare-earth metalsexistinHelmandProvince nearthe village of Khanashin.The USGSstudyteamhas locateda sizable areaof rocks inthe centerof an extinctvolcanocontaininglightrare-earthelementsincluding
  • 28. ceriumand neodymium.Ithasmapped1.3 millionmetrictonsof desirable rock,oraboutten yearsof supplyatcurrent demandlevels.The Pentagonhasestimateditsvalue atabout$7.4 billion.[144] It has beenarguedthatthe geopolitical importance of rare earthshasbeenexaggeratedinthe literature on the geopoliticsof renewable energy,underestimatingthe powerof economicincentivesfor expandedproduction.[145][146] Thisespeciallyconcernsneodymium.Due toitsrole inpermanent magnetsusedforwindturbines,ithasbeenarguedthatneodymiumwill be one of the mainobjectsof geopolitical competitioninaworldrunningonrenewable energy.Butthisperspectivehasbeen criticisedforfailingtorecognisethatmostwindturbineshave gearsanddonot use permanent magnets.[146] See also icon Geologyportal Rare-earthmineral Rare-earthmagnet List of elementsfacingshortage Material passport:listsusedmaterialsinproducts Digital ProductPassport:renewedinfunctionof the CircularEconomyActionPlan PensanaSaltEnd References The 1985 International Unionof Pure andAppliedChemistry"RedBook"(p.45) recommendsthat lanthanoidisusedratherthanlanthanide.The ending"-ide"normallyindicatesanegative ion.However, owingtowide currentusage,"lanthanide"isstill allowedandisroughlyanalogoustorare earth element. N. G. ConnellyandT.Damhus,ed.(2005). Nomenclature of InorganicChemistry:IUPAC Recommendations2005 (PDF).WithR. M. Hartshorn and A.T. Hutton. Cambridge:RSCPublishing.ISBN 978-0-85404-438-2. Archivedfromthe original (PDF) onMay27, 2008. RetrievedMarch13, 2012. Professorof ChemistryatUniversityCollegeLondon,AndreaSella,AndreaSella:"Insight:Rare-earth metals"onYouTube,InterviewonTRT World/ Oct 2016, minutes4:40 - ff. T Gray (2007). "LanthanumandCerium".The Elements.BlackDog& Leventhal.pp.118–122. Malhotra, Nemi;Hsu,Hua-Shu;Liang,Sung-Tzu;Roldan,Marri JmelouM.;Lee,Jiann-Shing;Ger,Tzong- Rong; Hsiao,Chung-Der(September16,2020). "An UpdatedReview of ToxicityEffectof the Rare Earth Elements(REEs) onAquaticOrganisms".Animals.10(9):1663. doi:10.3390/ani10091663. ISSN 2076- 2615. PMC 552131. PMID 32947815.
  • 29. Haxel G.; HedrickJ.;Orris J. (2002). "Rare Earth Elements—Critical ResourcesforHighTechnology" (PDF).EditedbyPeterH.Staufferand JamesW. HendleyII;GraphicdesignbyGordonB. Haxel,Sara Boore,and SusanMayfield.UnitedStatesGeological Survey.USGSFactSheet:087‐02. RetrievedMarch 13, 2012. However,incontrasttoordinarybase and preciousmetals,REEhave verylittle tendencyto become concentratedinexploitableore deposits.Consequently,mostof the world'ssupplyof REE comesfromonlya handful of sources. KeithR. Long;BradleyS. VanGosen;Nora K.Foley;Daniel Cordier."The Geologyof Rare Earth Elements".Geology.com.RetrievedJune 19,2018. Lide (1997). C. R. Hammond."Section4; The Elements".InDavidR.Lide (ed.).CRCHandbookof Chemistryand Physics.(InternetVersion2009) (89th ed.).BocaRaton, FL: CRC Press/TaylorandFrancis. "Rare-earthmetals". ThinkGlobalGreen.Archivedfromthe original onNovember4,2016. Retrieved February10, 2017. Fronzi,M (2019). "Theoretical insightsintothe hydrophobicityof low index CeO2surfaces".Applied Surface Science.478: 68–74. arXiv:1902.02662. Bibcode:2019ApSS..478...68F. doi:10.1016/j.apsusc.2019.01.208. S2CID 118895100. Fritz Ullmann,ed.(2003). Ullmann'sEncyclopediaof Industrial Chemistry.Vol.31.Contributor:Matthias Bohnet(6th ed.).Wiley-VCH.p.24. ISBN 978-3-527-30385-4. MentionedbyProf.AndreaSellaonaBBC BusinessDailyprogramme,March19, 2014 [1]. Unfortunatelythismnemonicdoesn'tdistinguishverywellbetweenterbiumandthulium. GschneidnerK.A.,Cappellen,ed.(1987)."1787–1987 TwohundredYearsof Rare Earths". Rare Earth InformationCenter,IPRT,North-Holland.IS-RIC10. Historyof the Originof the Chemical ElementsandTheirDiscoverers StephenDavidBarrett;SarnjeetS.Dhesi (2001). The Structure of Rare-earthMetal Surfaces.World Scientific.p.4. ISBN 978-1-86094-165-8. On Rare AndScatteredMetals:TalesAboutMetals,Sergei Venetsky SpeddingF.,Daane A. H.: "The Rare Earths", JohnWiley&Sons,Inc., 1961. Qi, Dezhi (2018). Hydrometallurgyof Rare Earths.Elsevier.pp.162–165. ISBN 9780128139202. B. SmithHopkins:"Chemistryof the rarerelements",D.C.Heath& Company,1923. McGill,Ian. "Rare Earth Elements".Ullmann'sEncyclopediaof Industrial Chemistry.Vol.31.Weinheim: Wiley-VCH.p.184. doi:10.1002/14356007.a22_607. Zepf,Volker(2013).Rare earthelements:anew approachto the nexusof supply,demandanduse : exemplifiedalongthe use of neodymiuminpermanentmagnets.Berlin;London:Springer.ISBN 9783642354588.
  • 30. Rollinson,HughR.(1993). Using geochemical data:evaluation,presentation,interpretation.Harlow, Essex,England:LongmanScientific&Technical.ISBN 9780582067011. OCLC 27937350. Brownlow,ArthurH (1996). Geochemistry.UpperSaddle River,N.J.:Prentice Hall.ISBN 978- 0133982725. OCLC 33044175. WorkingGroup (December2011). "Rare Earth Elements"(PDF).Geological Societyof London.Retrieved May 18, 2018. "Seltene Erden–Daten& Fakten"(PDF).Öko-Institute.V.January2011. P. Belli;R.Bernabei;F.Cappella;R.Cerulli;C.J.Dai;F. A.Danevich;A.d'Angelo;A.Incicchitti;V.V. Kobychev;S.S.Nagorny;S. Nisi;F.Nozzoli;D.Prosperi;V.I.Tretyak;S.S. Yurchenko(2007). "Search for α decayof natural Europium".NuclearPhysicsA.789 (1–4): 15–29. Bibcode:2007NuPhA.789...15B. doi:10.1016/j.nuclphysa.2007.03.001. Winter,JohnD. (2010). Principlesof igneousandmetamorphicpetrology(2nded.).NewYork:Prentice Hall.ISBN 9780321592576. OCLC 262694332. Jébrak,Michel;Marcoux,Eric; Laithier,Michelle;Skipwith,Patrick(2014).Geologyof mineral resources (2nd ed.).St.John's,NL:Geological Associationof Canada.ISBN 9781897095737. OCLC 933724718. Powell,Devin,"Rare earthelementsplentiful inoceansediments",ScienceNews,3July2011. ViaKurt Brouwer'sFundmasteryBlog,MarketWatch,2011-07-05. Retrieved2011-07-05. Kato, Yasuhiro;Fujinaga,Koichiro;Nakamura,Kentaro;Takaya,Yutaro;Kitamura,Kenichi;Ohta, Junichiro;Toda,Ryuichi;Nakashima,Takuya;Iwamori,Hikaru(2011)."Deep-seamudinthe Pacific Oceanas a potential resource forrare-earthelements".Nature Geoscience.4(8):535–539. Bibcode:2011NatGe...4..535K.doi:10.1038/ngeo1185. ISSN 1752-0908. Rose,Edward Roderick(February4,1960). "Rare Earths of the Grenville Sub-Province,Ontarioand Quebec"(PDF) (Paper59–10). Ottawa:Geological Surveyof Canada.RetrievedMay18, 2018. China'sRare Earth Dominance,Wikinvest.Retrievedon11 Aug2010. Gambogi,Joseph(January2018). "Rare Earths" (PDF).Mineral CommoditySummaries.U.S.Geological Survey.pp.132–133. RetrievedFebruary14,2018. Chao E. C. T., Back J. M., MinkinJ.,TatsumotoM., JunwenW.,ConradJ. E., McKee E. H., ZonglinH., QingrunM. "Sedimentarycarbonate‐hostedgiantBayanOboREE‐Fe‐Nbore depositof InnerMongolia, China;a cornerstone exampleforgiantpolymetallicore depositsof hydrothermal origin".1997. United StatesGeological Survey.29February2008. Bulletin2143. "Overview".NorthernMineralsLimited.RetrievedApril21,2018. "Cox C. 2008. Rare earthinnovation.Herndon(VA):The AnchorHouse Inc;".RetrievedApril19,2008. "As hybridcars gobble rare metals,shortage looms".Reuters.August31, 2009. RetrievedAug31,2009.
  • 31. Massari, Stefania;Ruberti,Marcello(March1, 2013). "Rare earth elementsascritical raw materials: Focuson international marketsandfuture strategies".ResourcesPolicy.38(1): 36–43. doi:10.1016/j.resourpol.2012.07.001. ISSN 0301-4207. "The Rare-EarthElements—Vital toModernTechnologiesandLifestyles"(PDF).UnitedStated Geological Survey.November2014. RetrievedMarch13, 2018. Ma, Damien(April 25,2012). "ChinaDigsIt". ForeignAffairs.RetrievedFebruary10,2017. Livergood,R.(October5, 2010). "Rare Earth Elements:A Wrenchinthe SupplyChain"(PDF).Centerfor Strategicand International Studies.RetrievedMarch13, 2012. "ChinaTo LimitRare Earths Exports".Manufacturing.net,1September2009. Archivedfromthe original on July26, 2011. RetrievedAugust30,2010. Ben Geman(October19, 2009). "Chinatocut exportsof 'rare earth' mineralsvital toenergytech".The Hill'sE2 Wire.Archivedfromthe original onOctober21, 2010. RetrievedOctober19,2010. Tony Jin(January18, 2011). "China'sRare Earth ExportsSurge inValue".The ChinaPerspective. Archivedfromthe original onFebruary13, 2011. RetrievedJanuary19,2011. Zhang Qi;Ding Qingfen;FuJing(July15,2011). "Rare earthsexportquotaunchanged".ChinaDaily. Archivedfromthe original onJuly24, 2011. "Chinahaltsrare earth productionatthree mines".Reuters.September6,2011. RetrievedSeptember 7, 2011. "WRAPUP 4-US, EU, Japan take on Chinaat WTO overrare earths".Reuters.March 13, 2017. Retrieved February10, 2017. "Rare Earths: The HiddenCostto TheirMagic", DistillationsPodcastandtranscript,Episode 242". Science HistoryInstitute.June 25,2019. RetrievedAugust28,2019. KevinVoigt(August8,2012). "Chinacutsminesvital totech industry".CNN. Tim Worstall (December23,2012). "El Regman: Too bad,China – I was RIGHT abouthoardingrare earths".The Register.RetrievedFebruary10,2017. "Chinascraps quotason rare earthsafterWTO complaint".The Guardian.January5, 2015. Retrieved January5, 2015. "DS431: China— MeasuresRelatedtothe Exportationof Rare Earths, TungstenandMolybdenum". WorldTrade Organization.RetrievedMay1, 2014. R. Castellano(Jun.02,2019). "ChinaTrade - InvestBasedOnRare Earth Price Hikes".seekingalpha.com. Retrieved25February2021. S. Burns (Feb.16, 2021). "Rare earthsare the nextgeopolitical chessgame".MetalMiner.com.Retrieved 25 February2021. "EU stockpilesrare earthsastensionswithChinarise".Financial Post.Reuters.September6,2011. RetrievedSeptember7,2011.
  • 32. "CanadianFirmsStepUp Search forRare-Earth Metals".The New YorkTimes.Reuters.September9, 2009. RetrievedSeptember15, 2009. Leifert,H.(June 2010). "RestartingUS rare earthproduction?".Earth.pp.20–21. Editor."AboutThe Mine".Steenkampskraal Rare EarthsMine.RetrievedJuly19,2019. {{cite web}}: |last=has genericname (help) Lunn, J. (2006). "Great westernminerals"(PDF).London:InsignerBeaufortEquityResearch.Archived fromthe original (PDF) onApril 9,2008. RetrievedApril 19,2008. Gorman, Steve (August30,2009). "Californiamine digsinfor'green'goldrush".Reuters.Retrieved March 22, 2010. "HoidasLake,Saskatchewan".GreatWesternMineral GroupLtd. Archivedfromthe original onMarch 31, 2009. RetrievedSeptember24, 2008. "Rare earthssupplydeal betweenJapanandVietnam".BBCNews.October31, 2010. "Vietnamsignsmajornuclearpacts".AlJazeera.October31,2010. RetrievedOctober31,2010. "MiningVenture Draws$200 MillioninTax IncentivesandRedFlags(1)".news.bloombergtax.com. RetrievedDecember1,2020. "Long-discussedniobiummine insoutheastNebraskaisreadytomove forward,if itgathers$1 billionin financing".RetrievedMay18, 2019. "NioCorpSuperalloyMaterialsThe ElkCreekSuperalloyMaterialsProject"(PDF).RetrievedMay18, 2019. "Federal ministerapprovesN.W.T.rare earthmine".CBC News.November4,2013. It followsthe recommendationfromthe MackenzieValleyEnvironmental Review BoardinJuly,andmarksa major milestoneinthe company'sefforttoturnthe projectintoan operatingmine.AvalonclaimsNechalacho is“the mostadvancedlarge heavyrare earth developmentprojectinthe world”. "Rare Earth ElementsatKvanefjeld".GreenlandMineralsandEnergyLtd.Archivedfromthe original on September18,2010. RetrievedNovember10,2010. "NewMulti-ElementTargetsandOverall ResourcePotential".GreenlandMineralsandEnergyLtd. Archivedfromthe original onNovember18,2010. RetrievedNovember10,2010. Carol Matlack (February10, 2013). "Chinese Workers—inGreenland?".BusinessWeek. Bomsdorf,Clemens(March13, 2013). "GreenlandVotestoGetTough onInvestors".The Wall Street Journal.RetrievedFebruary10,2017. "Hay tierrasraras aquí y están...enunlugarde La Mancha". ELMUNDO (inSpanish).May24, 2019. RetrievedMay24, 2019. "MaidenResource,NguallaRare EarthProject"(PDF).ASXRelease.PeakResources.February29,2012.
  • 33. Petrov,Leonid(August8,2012). "Rare earthsbankroll NorthKorea'sfuture".AsiaTimes.Archivedfrom the original onAugust8, 2012. RetrievedOctober22, 2018. "북한, 올 5~6월 희토류중국 수출크게 늘어" [NorthKoreaRare Earth exportsto Chinaincreased significantlyfromMayto June].voakorea.com(inKorean).July28,2014. "Japan DiscoversDomesticRare EarthsReserve".BrightWire.Archivedfromthe originalonJuly23, 2012. Bradsher,Keith(March 8, 2011). "Takinga RiskforRare Earths". The New York Times.(March9, 2011 p. B1 NY ed.).RetrievedMarch9, 2011. "Kronologi Peristiwadi KilangNadirBumi,BukitMerah"[Chronologyof Eventsatthe Rare Earth Factory,Red Hill] (inMalay).PenangConsumerAssociation.RetrievedAugust26,2019. Bradsher,Keith(March 8, 2011). "Mitsubishi QuietlyCleansUpIts FormerRefinery".The New York Times.(March 9, 2011 p. B4 NY ed.).RetrievedMarch9, 2011. Coleman,Murray(June 30, 2011). "Rare Earth ETF JumpsAsPlansTo Break China'sHoldSuffer Setback".Barron's.Archivedfromthe original onJuly3,2011. RetrievedJune 30,2011. Reportof the International ReviewMissiononthe RadiationSafetyAspectsof aProposedRare Earths ProcessingFacility(LynasProject) (PDF).(29May – 3 June 2011). International AtomicEnergyAgency. 2011. Archivedfromthe original (PDF) onNovember12, 2011. RetrievedFebruary15,2018. Ng, Eileen(September2,2014). "Lynas getsfull operatinglicence before TOLexpirydate".The MalaysianInsider.Archivedfromthe original onSeptember4,2014. RetrievedSeptember3,2014. Rofer,Cheryl K.;TõnisKaasik(2000). Turninga ProblemIntoaResource:RemediationandWaste Managementat the Sillamäe Site,Estonia.Volume 28of NATO science series:Disarmament technologies.Springer.p.229. ISBN 978-0-7923-6187-9. Anneli Reigas(November30,2010). "Estonia'srare earthbreakChina'smarketgrip".AFP.Retrieved December1,2010. Cone,Tracie (July21, 2013). "GoldRushTrash is InformationAge Treasure".USA Today.RetrievedJuly 21, 2013. "Seabedoffersbrighterhope inrare-earthhunt".Nikkei AsianReview.Nikkei Inc.November25,2014. RetrievedDecember11, 2016. "Discoveryof rare earthsaroundMinami-Torishima".UTokyoResearch.Universityof Tokyo.May2, 2013. RetrievedDecember11, 2016. Zhi Li,Ling;Yang, Xiaosheng(September4, 2014). China'srare earthore depositsandbeneficiation techniques(PDF).1stEuropeanRare Earth ResourcesConference.Milos,Greece:EuropeanCommission for the 'Developmentof asustainable exploitationscheme forEurope'sRare Earth ore deposits'. RetrievedDecember11, 2016. Um, Namil (July2017). Hydrometallurgical recoveryprocessof rare earthelementsfromwaste:main applicationof acidleachingwithdeviseddiagram.INTECH.pp.41–60. ISBN 978-953-51-3401-5.
  • 34. "Newliquidextractionfrontierforrare earths?".RecyclingInternational.March26, 2013. Retrieved February10, 2017. Tabuchi,Hiroko(October5, 2010). "Japan RecyclesMineralsFromUsedElectronics".New YorkTimes. "Rhodiato recycle rare earthsfrom magnets".Solvay — Rhodia.October3,2011. Archivedfromthe original onApril 21, 2014. "Rhodiaexpandsrare earthrecyclingreach".RecyclingInternational.October11,2011. Retrieved February10, 2017. Wencai Zhang; MohammadRezaee;AbhijitBhagavatula;Yonggai Li;JohnGroppo;RickHonaker(2015). "A Reviewof the Occurrence andPromisingRecoveryMethodsof Rare Earth ElementsfromCoal and Coal By-Products".International Journal of Coal PreparationandUtilization.35(6): 295–330. doi:10.1080/19392699.2015.1033097. S2CID 128509001. Kean,Sam (February9,2022). "Anelectricjoltsalvagesvaluablemetalsfromwaste".www.science.org. RetrievedFebruary15,2022. Zhou,Baolu;Li, Zhongxue;Chen,Congcong(October25,2017). "Global Potentialof Rare Earth ResourcesandRare Earth DemandfromCleanTechnologies".Minerals.7(11): 203. Bibcode:2017Mine....7..203Z.doi:10.3390/min7110203. See productioninFigure 1 onpage 2 "Mineral CommoditySummaries2019". Mineral CommoditySummaries.2019. p.132. doi:10.3133/70202434. S2CID 239335855. F. J. Duarte (Ed.),Tunable LasersHandbook(Academic,New York,1995). Pang, Xin;Li,Decheng;Peng,An(March 1, 2002). "Application of rare-earthelementsinthe agriculture of Chinaandits environmental behaviorinsoil".Environmental Science andPollutionResearch.9(2): 143–8. doi:10.1007/BF02987462. ISSN 0944-1344. PMID 12008295. S2CID 11359274. Rim,Kyung-Taek(September1,2016). "Effectsof rare earthelementsonthe environmentandhuman health:A literature review".ToxicologyandEnvironmental HealthSciences.8(3):189–200. doi:10.1007/s13530-016-0276-y. ISSN 2005-9752. S2CID 17407586. Ali,SaleemH.(February13,2014). "Social andEnvironmental Impactof the Rare Earth Industries". Resources.3 (1):123–134. doi:10.3390/resources3010123. Rizk,Shirley(June 21,2019). "What colouristhe cloud?".EuropeanInvestmentBank.Retrieved September17,2020. Standaert,Michael (July2,2019). "ChinaWrestleswiththe ToxicAftermathof Rare Earth Mining".Yale Environment360. Yale School of the Environment.RetrievedJune 16,2021. Volokh,A.A.;Gorbunov,A.V.;Gundorina,S.F.; Revich,B.A.; Frontasyeva,M.V.;ChenSenPal (June 1, 1990). "Phosphorusfertilizerproductionasasource of rare-earthelementspollutionof the environment".Science of the Total Environment.95:141–148. Bibcode:1990ScTEn..95..141V. doi:10.1016/0048-9697(90)90059-4. ISSN 0048-9697. PMID 2169646. Bourzac, Katherine."Canthe USRare-Earth IndustryRebound?"TechnologyReview.October29, 2010.
  • 35. "Govt cracks whipon rare earthmining".ChinaMiningAssociation.May21, 2010. Archivedfromthe original onJuly25, 2011. RetrievedJune 3,2010. Lee Yong-tim(February22, 2008). "SouthChinaVillagersSlamPollutionFromRare EarthMine".Radio Free Asia.RetrievedMarch16, 2008. Bradsher,Keith(October29, 2010). "AfterChina'sRare Earth Embargo, a New Calculus".The NewYork Times.RetrievedOctober30,2010. Pereao,Omoniyi;Bode-Aluko,Chris;Fatoba,Olanrewaju;Laatikaine,Katri;Petrik,Leslie (2018)."Rare earthelementsremovaltechniquesfromwater/wastewater:A review".ResearchGate.130:71–86. doi:10.5004/dwt.2018.22844 – viawww.researchgate.net. Barros, Óscar; Costa,Lara; Costa,Filomena;Lago,Ana;Rocha,Verónica;Vipotnik,Ziva;Silva,Bruna; Tavares,Teresa(March 13, 2019). "Recoveryof Rare Earth ElementsfromWastewaterTowardsa CircularEconomy".Molecules.24(6): 1005. doi:10.3390/molecules24061005. PMC 6471397. PMID 30871164. "Towardszero-waste valorizationof rare earthelements". Yang, Xiuli;Zhang,Junwei;Fang,Xihui (August30,2014). "Rare earthelementrecyclingfromwaste nickel-metal hydride batteries". Journal of HazardousMaterials.279:384–388. doi:10.1016/j.jhazmat.2014.07.027. ISSN 0304-3894. PMID 25089667. "Rare earthelementsforsmartphonescanbe extractedfromcoal waste".New Scientist. "Rare earthelementsfromwaste".Science Advances. Amato,A.; Becci,A.;Birloaga,I.;De Michelis,I.;Ferella,F.;Innocenzi,V.;Ippolito,N.M.;PillarJimenez Gomez,C.; Vegliò,F.;Beolchini,F.(May1, 2019). "Sustainabilityanalysisof innovativetechnologiesfor the rare earth elementsrecovery".Renewable andSustainableEnergyReviews.106: 41–53. doi:10.1016/j.rser.2019.02.029. ISSN 1364-0321. Jyothi,RajeshKumar;Thenepalli,Thriveni;Ahn,Ji Whan;Parhi,Pankaj Kumar;Chung,KyeongWoo;Lee, Jin-Young(September10,2020). "Review of rare earthelementsrecoveryfromsecondaryresourcesfor cleanenergytechnologies:Grandopportunitiestocreate wealthfromwaste".Journal of Cleaner Production.267: 122048. doi:10.1016/j.jclepro.2020.122048. ISSN 0959-6526. Chua, H (June 18, 1998). "Bio-accumulationof environmentalresiduesof rare earthelementsinaquatic floraEichhorniacrassipes(Mart.) SolmsinGuangdongProvince of China".Scienceof the Total Environment.214 (1–3): 79–85. Bibcode:1998ScTEn.214...79C. doi:10.1016/S0048-9697(98)00055-2. ISSN 0048-9697. Rim,KyungTaek; Koo,KwonHo; Park,JungSun (2013). "Toxicological Evaluationsof Rare Earthsand TheirHealthImpactsto Workers:A Literature Review".SafetyandHealthatWork. 4 (1):12–26. doi:10.5491/shaw.2013.4.1.12. PMC 3601293. PMID 23516020. Sun,Guangyi;Li, Zhonggen;Liu,Ting;Chen,Ji;Wu,Tingting;Feng,Xinbin(December1,2017). "Rare earthelementsinstreetdustandassociatedhealthriskinamunicipal industrialbase of central China".
  • 36. Environmental GeochemistryandHealth.39 (6):1469–1486. doi:10.1007/s10653-017-9982-x. ISSN 0269-4042. PMID 28550599. S2CID 31655372. Ramos,SilvioJ.;Dinali,Guilherme S.;Oliveira,Cynthia;Martins,Gabriel C.;Moreira,CristianoG.; Siqueira,José O.;Guilherme,LuizR.G.(March 1, 2016). "Rare Earth Elementsinthe Soil Environment". CurrentPollutionReports.2(1): 28–50. doi:10.1007/s40726-016-0026-4. ISSN 2198-6592. Li, Xiaofei;Chen,Zhibiao;Chen,Zhiqiang;Zhang,Yonghe (October1,2013). "A humanhealthrisk assessmentof rare earthelementsinsoil andvegetablesfromaminingareainFujianProvince, SoutheastChina".Chemosphere.93(6): 1240–1246. Bibcode:2013Chmsp..93.1240L. doi:10.1016/j.chemosphere.2013.06.085. ISSN 0045-6535. PMID 23891580. Zhuang,Maoqiang; Wang,Liansen;Wu,Guangjian;Wang,Kebo;Jiang,Xiaofeng;Liu,Taibin;Xiao, Peirui;Yu,Lianlong;Jiang,Ying(August29,2017). "Healthriskassessmentof rare earthelementsin cerealsfromminingareainShandong,China".ScientificReports.7(1): 9772. Bibcode:2017NatSR...7.9772Z. doi:10.1038/s41598-017-10256-7. ISSN 2045-2322. PMC 5575011. PMID 28852170. Zhong,Buqing;Wang, Lingqing;Liang,Tao;Xing,Baoshan(October2017). "Pollutionleveland inhalationexposure of ambientaerosolfluoride asaffectedbypolymetallicrare earthminingand smeltinginBaotou,northChina".AtmosphericEnvironment.167: 40–48. Bibcode:2017AtmEn.167...40Z. doi:10.1016/j.atmosenv.2017.08.014. Lee,Yoolim,"MalaysiaRare Earths inLargest Would-Be RefineryIncite Protest",BloombergMarkets Magazine,May 31, 2011 5:00 PMET. "Malaysiacourt rejectspollutionsuitagainstARE".WorldInformationService onEnergy.February11, 1994. Pagano,Giovanni;Aliberti,Francesco;Guida,Marco;Oral,Rahime;Siciliano,Antonietta;Trifuoggi, Marco; Tommasi,Franca(2015). "Rare earthelementsinhumanandanimal health:State of artand researchpriorities".EnvironmentalResearch.142:215–220. Bibcode:2015ER....142..215P. doi:10.1016/j.envres.2015.06.039. PMID 26164116. Redling,Kerstin(2006).Rare Earth ElementsinAgriculture withEmphasisonAnimal Husbandry (Dissertation).LMUMünchen:Facultyof VeterinaryMedicine.RetrievedApril 5, 2018. "UN investigationintoMalaysiarare-earthplantsafety",BBC,30 May 2011 05:52 ET. IAEA SubmitsLynasReportto MalaysianGovernment.Iaea.org(2011-06-29). Retrievedon2011-09-27. Tim Heffernan(June 16,2015). "Whyrare-earthmininginthe Westisa bust".HighCountryNews. Welle (www.dw.com),Deutsche."Greenlandvotes,splitonrare earthmetalsmining|DW | 06.04.2021". DW.COM. RetrievedApril 7,2021. "The Difference Engine:More preciousthangold".The EconomistSeptember17,2010. Barakos, G; Gutzmer,J; Mischo,H (2016). "Strategicevaluationsandminingprocessoptimization towardsa strong global REE supplychain".Journal of SustainableMining.15(1): 26–35. doi:10.1016/j.jsm.2016.05.002.
  • 37. "Value Chain".Investopedia. Dian L. Chu (November11,2010). "SeventeenMetals:'The Middle Easthas oil,Chinahasrare earth'". BusinessInsider. Cox,C. (November16, 2006). "Rare earth innovation:the silentshifttoChina".The AnchorHouse,Inc. Archivedfromthe original onApril 21, 2008. RetrievedFebruary29,2008. Bradsher,Keith(September22, 2010). "AmidTension,ChinaBlocksVitalExportstoJapan".The New York TimesCompany.RetrievedSeptember22,2010. JamesT. Areddy,DavidFicklingAndNorihikoShirouzu(September23, 2010). "ChinaDeniesHalting Rare-EarthExportsto Japan".Wall StreetJournal.RetrievedSeptember22,2010. Backlashoverthe allegedChinacurbonmetal exports,DailyTelegraph,London,29 Aug2010. Retrieved 2010-08-30. "Rare earths:Diggingin"The EconomistSeptember2,2010. Mills,Mark P. "Tech's Mineral Infrastructure –Time to Emulate China'sRare Earth Policies."Forbes,1 January2010. "US Geological Survey:China'sRare-EarthIndustry".Journalist'sResource.org.July18,2011. Simpson,S.(October2011). "Afghanistan'sBuriedRiches".ScientificAmerican. Trakimavicius,Lukas(February25,2021). "EU, U.S. exploringnew sourcesof Rare Earth Minerals, shouldChinalimitexports".EnergyPost.RetrievedFebruary25,2021. Overland,Indra(March 1, 2019). "The geopoliticsof renewable energy:Debunkingfouremerging myths".EnergyResearch& Social Science.49: 36–40. doi:10.1016/j.erss.2018.10.018. ISSN 2214-6296. External links Media relatedtoRare earth elementsatWikimediaCommons External media Audio audioicon"Rare Earths: The HiddenCostto TheirMagic", DistillationsPodcastandtranscript,Episode 242, June 25, 2019, Science HistoryInstitute Video videoicon“10 waysrare earthelementsmake life better”,animation,Science HistoryInstitute videoiconRare Earth Elements:The Intersectionof Science andSociety,presentationanddiscussionled by Ira Flatow,Science HistoryInstitute,September24,2019 vte Periodictable
  • 38. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 H He 2 Li Be B C N O F Ne 3 Na Mg Al Si P S Cl Ar 4 K Ca Sc Ti V
  • 42. Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og s-block f-block d-block p-block vte Periodictable vte Major industries Natural sector Industrial sector Service sector Informationsector Related CategoryCommonsOutline Authoritycontrol:National librariesEditthisatWikidata GermanyIsraelUnitedStatesJapan Categories:Setsof chemical elementsMetallicelements Navigationmenu Notloggedin Talk Contributions
  • 43. Create account Log in ArticleTalk ReadEditViewhistory Search SearchWikipedia Main page Contents Currentevents Randomarticle AboutWikipedia Contact us Donate Contribute Help Learn to edit Communityportal Recentchanges Uploadfile Tools What linkshere Relatedchanges Special pages Permanentlink Page information Cite thispage Wikidataitem Print/export DownloadasPDF
  • 44. Printable version In otherprojects WikimediaCommons Languages ‫ية‬ ‫عرب‬ ‫ال‬ Español Français हिन्दी Bahasa Indonesia Bahasa Melayu Português Русский 中文 45 more Editlinks Thispage waslasteditedon9 April 2022, at 20:43 (UTC). Textisavailable underthe Creative CommonsAttribution-ShareAlike License 3.0;additional termsmay apply.Byusingthissite,youagree to the Termsof Use and PrivacyPolicy.Wikipedia® isaregistered trademarkof the WikimediaFoundation,Inc.,anon-profitorganization. PrivacypolicyAboutWikipediaDisclaimersContactWikipediaMobile viewDevelopersStatisticsCookie statementWikimediaFoundationPoweredbyMediaWiki