SlideShare a Scribd company logo
Lanthanide
From Wikipedia,the free encyclopedia
Jumpto navigationJumptosearch
Lanthanidesinthe periodictable
Hydrogen
Helium
Lithium
Beryllium
Boron
Carbon
Nitrogen
Oxygen
Fluorine
Neon
Sodium
Magnesium
Aluminium
Silicon
Phosphorus
Sulfur
Chlorine
Argon
Potassium
Calcium
Scandium
Titanium
Vanadium
Chromium
Manganese
Iron
Cobalt
Nickel
Copper
Zinc
Gallium
Germanium
Arsenic
Selenium
Bromine
Krypton
Rubidium
Strontium
Yttrium
Zirconium
Niobium
Molybdenum
Technetium
Ruthenium
Rhodium
Palladium
Silver
Cadmium
Indium
Tin
Antimony
Tellurium
Iodine
Xenon
Caesium
Barium
Lanthanum
Cerium
Praseodymium
Neodymium
Promethium
Samarium
Europium
Gadolinium
Terbium
Dysprosium
Holmium
Erbium
Thulium
Ytterbium
Lutetium
Hafnium
Tantalum
Tungsten
Rhenium
Osmium
Iridium
Platinum
Gold
Mercury (element)
Thallium
Lead
Bismuth
Polonium
Astatine
Radon
Francium
Radium
Actinium
Thorium
Protactinium
Uranium
Neptunium
Plutonium
Americium
Curium
Berkelium
Californium
Einsteinium
Fermium
Mendelevium
Nobelium
Lawrencium
Rutherfordium
Dubnium
Seaborgium
Bohrium
Hassium
Meitnerium
Darmstadtium
Roentgenium
Copernicium
Nihonium
Flerovium
Moscovium
Livermorium
Tennessine
Oganesson
Part of a seriesonthe
Periodictable
Periodictable forms
Periodictable history
Setsof elements
By periodictable structure
By metallicclassification
Metals
alkalialkaline earth
transitionpost-transition
lanthanideactinide (superactinide)
Metalloids
dividingmetalsandnonmetals
Nonmetals
unclassifiednonmetal halogennoblegas
By othercharacteristics
Elements
List of chemical elements
Propertiesof elements
Data pagesfor elements
CategoryChemistryPortal
vte
The lanthanide (/ˈlænθənaɪd/) orlanthanoid(/ˈlænθənɔɪd/) seriesof chemical elements[1] comprises
the 15 metallicchemical elementswithatomicnumbers57–71, from lanthanumthrough
lutetium.[2][3][4] These elements,alongwiththe chemicallysimilarelementsscandiumandyttrium,are
oftencollectivelyknownasthe rare-earthelementsorrare-earthmetals.
The informal chemical symbol Lnisused ingeneral discussionsof lanthanidechemistrytorefertoany
lanthanide.Allbutone of the lanthanidesare f-blockelements,correspondingtothe fillingof the 4f
electronshell.There issome disputeonwhetherlanthanumorlutetiumisad-blockelement,but
lutetiumisusuallyconsideredsobythose whostudythe matter;[5][6] itisincludeddue toitschemical
similaritieswiththe other14.[7] All lanthanide elementsformtrivalentcations,Ln3+,whose chemistry
islargelydeterminedbythe ionicradius,whichdecreasessteadilyfromlanthanumtolutetium.
These elementsare calledlanthanidesbecausethe elementsinthe seriesare chemicallysimilarto
lanthanum.Since "lanthanide"means"likelanthanum",ithasbeenarguedthatlanthanumcannot
logicallybe alanthanide,butthe International Unionof Pure andAppliedChemistry(IUPAC)
acknowledgesitsinclusionbasedoncommonusage.[8]
In presentationsof the periodictable,the f-blockelementsare customarilyshownastwoadditional
rowsbelowthe mainbodyof the table,[2] Thisconventionisentirelyamatterof aestheticsand
formattingpracticality;ararelyusedwide-formattedperiodictable insertsthe 4f and5f seriesintheir
properplaces,asparts of the table'ssixthandseventhrows (periods).
The 1985 IUPAC"RedBook"(p. 45) recommendsthat"lanthanoid"isusedratherthan"lanthanide",as
the ending"-ide"normallyindicatesanegative ion.However,owingtowide currentuse,"lanthanide"is
still allowed.
vte
Lanthanides
Lan-thanum
57
La
138.91
Cerium
58
Ce
140.12
Praseo-dymium
59
Pr
140.91
Neo-dymium
60
Nd
144.24
Prome-thium
61
Pm
[145]
Sama-rium
62
Sm
150.36
Europ-ium
63
Eu
151.96
Gadolin-ium
64
Gd
157.25
Ter-bium
65
Tb
158.93
Dyspro-sium
66
Dy
162.50
Hol-mium
67
Ho
164.93
Erbium
68
Er
167.26
Thulium
69
Tm
168.93
Ytter-bium
70
Yb
173.05
Lute-tium
71
Lu
174.97
Primordial From decay Synthetic Bordershowsnatural occurrence of the element
Contents
1 Etymology
2 Physical propertiesof the elements
3 Chemistryand compounds
3.1 Effectof 4f orbitals
3.2 Lanthanide oxidationstates
3.3 Separationof lanthanides
3.4 Coordinationchemistryandcatalysis
3.4.1 Ln(III) compounds
3.4.2 Ln(II) andLn(IV) compounds
3.4.3 Hydrides
3.4.4 Halides
3.4.5 Oxidesandhydroxides
3.4.6 Chalcogenides(S,Se,Te)
3.4.7 Pnictides(group15)
3.4.8 Carbides
3.4.9 Borides
3.4.10 Organometalliccompounds
4 Physical properties
4.1 Magneticand spectroscopic
5 Occurrence
6 Applications
6.1 Industrial
6.2 Life science
6.3 Possible medical uses
7 Biological effects
8 See also
9 References
10 Citedsources
11 External links
Etymology
The term "lanthanide"wasintroducedbyVictorGoldschmidtin1925.[9][10] Despite theirabundance,
the technical term"lanthanides"isinterpretedtoreflectasense of elusivenessonthe partof these
elements,asitcomesfromthe Greekλανθανειν (lanthanein),"tolie hidden".[11]
Ratherthan referringtotheirnatural abundance,the wordreflectstheirpropertyof "hiding"behind
each otherinminerals.The termderivesfromlanthanum, firstdiscoveredin1838, at that time a so-
callednewrare-earthelement"lyinghidden"or"escapingnotice"inaceriummineral,[12] anditis an
ironythat lanthanumwaslateridentifiedasthe firstinan entire seriesof chemicallysimilarelements
and gave itsname to the whole series.
Togetherwiththe twoelementsatthe topof group 3, scandiumand yttrium, the trivial name "rare
earths"issometimesusedtodescribe all the lanthanides;adefinitionof rare earthsincludingthe group
3, lanthanide,andactinide elementsisalsooccasionallyseen,andrarelySc+ Y + lanthanides+
thorium.[citationneeded] The "earth"inthe name "rare earths"arisesfromthe mineralsfromwhich
theywere isolated,whichwere uncommonoxide-typeminerals.However,these elementsare neither
rare inabundance nor "earths"(anobsolete termforwater-insoluble stronglybasicoxidesof
electropositive metalsincapableof beingsmeltedintometal usinglate 18thcenturytechnology).Group
2 isknownas the alkaline earthelementsformuchthe same reason.
The "rare" in the "rare earths"name hasmuch more to do withthe difficultyof separatingouteachof
the individual lanthanide elementsthanscarcityof any of them.By wayof the Greek"dysprositos"for
"hard to getat," element66,dysprosiumwassimilarlynamed;lanthanumitselfisnamedafteraword
for "hidden."The elements57(La) to 71 (Lu) are verysimilarchemicallytoone anotherandfrequently
occur togetherinnature,oftenanywhere fromthree toall 15 of the lanthanides(alongwithyttriumasa
16th) occur inmineralssuchassamarskite,monazite andmanyotherswhichcanalsocontainthe other
twogroup 3 elementsaswell asthoriumandoccasionallyotheractinidesaswell.[13] A majorityof the
rare earthswere discoveredatthe same mine inYtterby,Swedenandfourof themare named(yttrium,
ytterbium,erbium,terbium) afterthe cityanda fifth*(holmium) afterStockholm;scandiumisnamed
afterScandinavia,thuliumafterthe oldname Thule,andthe immediately-followinggroup4element
(number72) hafniumisnamedforthe Latinname of the city of Copenhagen.[13]
Samarskite (amineral whichisthe source of the name of the elementsamarium) andothersimilar
mineralsinparticularalsohave these elementsinassociationwiththe nearbymetalstantalum, niobium,
hafnium,zirconium,vanadium,andtitanium, fromgroup4and group 5 ofteninsimilaroxidationstates.
Monazite isa phosphate of numerousgroup3 + lanthanide +actinide metalsandminedespeciallyfor
the thoriumcontentandspecificrare earthsespeciallylanthanum,yttriumandcerium.Ceriumand
lanthanumaswell asothermembersof the rare earthseriesare oftenproducedasa metal called
mischmetal containingavariable mixtureof these elementswithceriumandlanthanumpredominating;
it hasdirectusessuch as lighterflintsandothersparksourceswhichdonotrequire extensive
purificationof one of these metals.[13]
There are alsorare earth-bearingmineralsbasedongroup2 elementssuchasyttrocalcite,yttrocerite,
yttrofluorite whichvaryincontentof yttrium, cerium, andlanthanuminaparticularas well asvarying
amountsof the others.[14] Otherlanthanide/rare earthmineralsincludebastnäsite,florencite,
chernovite,perovskite,xenotime,cerite,gadolinite,lanthanite,fergusonite,polycrase,blomstrandine,
håleniusite,miserite,loparite,lepersonnite,euxenite,all of whichhave arange of relative element
concentrationandmayhave the symbol of a predominatingone suchasmonazite-ce;group3elements
do notoccur as native elementmineralsinthe fashionof gold,silver,tantalumandmanyotherson
earthbut may inlunarregolith.Veryrare cerium, lanthanum, andpresumablyotherlanthanide/group3
halides,feldsparsandgarnetsare alsoknowntoexist.[15]
All of thisis the resultof the orderin whichthe electronshellsof these elementsare filled—the
outermosthasthe same configurationforall of them, anda deepershellisprogressivelyfilledwith
electronsasthe atomicnumberincreasesfrom57 towards71.[13] For manyyears,mixturesof more
than one rare earthwere consideredtobe single elements,suchasneodymiumandpraseodymium
beingthoughttobe the single elementdidymiumandsoon.[16] Verysmall differencesinsolubilityare
usedinsolventandion-exchange purificationmethodsforthese elementswhichrequireagreatdeal of
repeatingtogeta purifiedmetal.The refinedmetalsandtheircompoundshave subtle andstark
differencesamongstthemselvesinelectronic,electrical,optical,andmagneticpropertieswhichaccount
for theirmanyniche uses.[13]
By wayof examplesof the termmeaningthe above considerationsratherthantheirscarcity,ceriumis
the 26th mostabundantelementinthe Earth'scrust and more abundantthan copper,[13] neodymium
ismore abundantthangold;thulium(the secondleastcommonnaturallyoccurringlanthanide)ismore
abundantthan iodine,[17] whichisitself commonenoughforbiologytohave evolvedcritical usages
thereof,andeventhe lone radioactive elementinthe series,promethium, ismore commonthanthe
tworarest naturallyoccurringelements,franciumandastatine,combined.
Physical propertiesof the elements
Chemical element La Ce Pr Nd Pm Sm Eu Gd Tb Dy
Ho Er Tm Yb Lu
Atomicnumber57 58 59 60 61 62 63 64 65 66 67
68 69 70 71
Image Lanthanum-2.jpg Cerium2.jpg Praseodymium.jpg Neodymium2.jpg
Samarium-2.jpgEuropium.jpg Gadolinium-4.jpg Terbium-2.jpg Dy chips.jpg
Holmium2.jpg Erbium-crop.jpgThuliumsublimeddendriticand1cm3 cube.jpg Ytterbium-3.jpg
Lutetiumsublimeddendriticand1cm3 cube.jpg
Density(g/cm3)6.162 6.770 6.77 7.01 7.26 7.52 5.244 7.90 8.23 8.540 8.79
9.066 9.32 6.90 9.841
Meltingpoint(°C) 920 795 935 1024 1042 1072 826 1312 1356 1407
1461 1529 1545 824 1652
Boilingpoint(°C) 3464 3443 3520 3074 3000 1794 1529 3273 3230 2567
2720 2868 1950 1196 3402
Atomicelectronconfiguration
(gasphase)* 5d1 4f15d1 4f3 4f4 4f5 4f6 4f7 4f75d1 4f9 4f10 4f11
4f12 4f13 4f14 4f145d1
Metal lattice (RT) dhcp fcc dhcp dhcp dhcp ** bcc hcp hcp hcp
hcp hcp hcp fcc hcp
Metallicradius(pm) 162 181.8 182.4 181.4 183.4 180.4 208.4 180.4 177.3 178.1
176.2 176.1 175.9 193.3 173.8
Resistivityat25 °C (μΩ·cm) 57–80
20 °C 73 68 64 88 90 134 114 57 87 87 79
29 79
Magneticsusceptibility
χmol /10−6(cm3·mol−1)+95.9 +2500 (β) +5530(α) +5930 (α) +1278(α)
+30900 +185000
(350 K) +170000 (α) +98000 +72900 +48000 +24700 +67 (β) +183
* BetweeninitialXe andfinal 6s2 electronicshells
** Sm has a close packedstructure like mostof the lanthanidesbuthasanunusual 9 layerrepeat
GschneiderandDaane (1988) attribute the trendinmeltingpointwhichincreasesacrossthe series,
(lanthanum(920 °C) – lutetium(1622 °C)) to the extentof hybridizationof the 6s,5d, and 4f orbitals.
The hybridizationisbelievedtobe at itsgreatestforcerium, whichhasthe lowestmeltingpointof all,
795 °C.[18] The lanthanide metalsare soft;theirhardnessincreasesacrossthe series.[8] Europium
standsout, as ithas the lowestdensityinthe seriesat5.24 g/cm3 and the largestmetallicradiusinthe
seriesat208.4 pm.It can be comparedto barium, whichhasa metallicradiusof 222 pm.It is believed
that the metal containsthe largerEu2+ ionand that there are onlytwoelectronsinthe conduction
band.Ytterbiumalsohasa large metallicradius,andasimilarexplanationissuggested.[8] The
resistivitiesof the lanthanidemetalsare relativelyhigh,rangingfrom29 to 134 μΩ·cm.These valuescan
be comparedto a good conductorsuch as aluminium, whichhasa resistivityof 2.655 μΩ·cm. Withthe
exceptionsof La,Yb,and Lu (whichhave nounpairedf electrons),the lanthanidesare strongly
paramagnetic,andthisisreflectedintheirmagneticsusceptibilities.Gadoliniumbecomesferromagnetic
at below16 °C (Curie point).The otherheavierlanthanides –terbium, dysprosium,holmium, erbium,
thulium,andytterbium –become ferromagneticatmuchlowertemperatures.[19]
Chemistryandcompounds
Chemical element La Ce Pr Nd Pm Sm Eu Gd Tb Dy
Ho Er Tm Yb Lu
Atomicnumber57 58 59 60 61 62 63 64 65 66 67
68 69 70 71
Ln3+ electronconfiguration*[20] 4f0 4f1 4f2 4f3 4f4 4f5 4f6 4f7
4f8 4f9 4f10 4f11 4f12 4f13
4f14
Ln3+ radius(pm)[8] 103 102 99 98.3 97 95.8 94.7 93.8 92.3 91.2
90.1 89 88 86.8 86.1
Ln4+ ioncolor inaqueoussolution[21] — Orange-yellow Yellow Blue-violet — —
— — Red-brown Orange-yellow — — — — —
Ln3+ ioncolor inaqueoussolution[20] Colorless Colorless Green Violet Pink Pale
yellow Colorless Colorless V.pale pink Pale yellow Yellow Rose Pale green
Colorless Colorless
Ln2+ ioncolor inaqueoussolution[8] — — — — — Bloodred
Colorless — — — — — Violet-red Yellow-green —
* Notincludinginitial [Xe] core
f → f transitionsare symmetryforbidden(orLaporte-forbidden),whichisalsotrue of transitionmetals.
However,transitionmetalsare able touse vibroniccouplingtobreakthisrule.The valence orbitalsin
lanthanidesare almostentirelynon-bondingandassuch little effective vibroniccouplingtakes,hence
the spectra fromf → f transitionsare muchweakerandnarrowerthan those fromd → d transitions.In
general thismakesthe colorsof lanthanide complexesfarfainterthanthose of transitionmetal
complexes.
Approximate colorsof lanthanide ionsinaqueoussolution[8][22][23]
Oxidationstate 57 58 59 60 61 62 63 64 65 66 67
68 69 70 71
+2 Sm2+ Eu2+
Tm2+ Yb2+
+3 La3+ Ce3+ Pr3+ Nd3+ Pm3+ Sm3+ Eu3+ Gd3+ Tb3+ Dy3+ Ho3+ Er3+
Tm3+ Yb3+ Lu3+
+4 Ce4+ Pr4+ Nd4+ Tb4+ Dy4+
Effectof 4f orbitals
Goingacross the lanthanidesinthe periodictable,the 4f orbitalsare usuallybeingfilled.The effectof
the 4f orbitalson the chemistryof the lanthanidesisprofoundandisthe factorthat distinguishesthem
fromthe transition metals.There are seven4f orbitals,andthere are twodifferentwaysinwhichthey
are depicted:asa "cubicset"or as a general set.The cubicsetis fz3,fxz2,fyz2, fxyz,fz(x2−y2),
fx(x2−3y2) andfy(3x2−y2).The 4f orbitalspenetrate the [Xe] core andare isolated,andthustheydonot
participate inbonding.Thisexplainswhycrystal fieldeffectsare small andwhytheydonot formπ
bonds.[20] Asthere are seven4f orbitals,the numberof unpairedelectronscanbe ashighas 7, which
givesrise tothe large magneticmomentsobservedforlanthanidecompounds.
Measuringthe magneticmomentcanbe usedto investigate the 4f electronconfiguration,andthisisa
useful tool inprovidinganinsightintothe chemical bonding.[24] The lanthanide contraction,i.e.the
reductioninsize of the Ln3+ ionfromLa3+ (103 pm) to Lu3+ (86.1 pm),is oftenexplainedbythe poor
shieldingof the 5s and 5p electronsbythe 4f electrons.[20]
Lanthanide oxides:clockwise fromtopcenter:praseodymium, cerium, lanthanum,neodymium,
samariumand gadolinium.
The electronicstructure of the lanthanide elements,withminorexceptions,is[Xe]6s24fn.The chemistry
of the lanthanidesisdominatedbythe +3 oxidationstate,andinLnIIIcompoundsthe 6selectronsand
(usually) one 4f electronare lostandthe ionshave the configuration[Xe]4fm.[25] All the lanthanide
elementsexhibitthe oxidationstate +3.In addition,Ce3+can lose itssingle f electrontoformCe4+ with
the stable electronicconfigurationof xenon.Also,Eu3+can gain an electrontoformEu2+ withthe f7
configurationthathasthe extrastabilityof a half-filledshell.OtherthanCe(IV) andEu(II),none of the
lanthanidesare stable inoxidationstatesotherthan+3 in aqueoussolution.
In termsof reductionpotentials,the Ln0/3+ couplesare nearlythe same forall lanthanides,ranging
from−1.99 (forEu) to −2.35 V (forPr).Thus these metalsare highlyreducing,withreducingpower
similartoalkaline earthmetalssuchasMg (−2.36 V).[8]
Lanthanide oxidationstates
Ionizationenergiesandreductionpotentialsof the elements
The ionizationenergiesforthe lanthanidescanbe comparedwithaluminium.Inaluminiumthe sumof
the firstthree ionizationenergiesis5139 kJ·mol−1,whereasthe lanthanides fall inthe range 3455 –
4186 kJ·mol−1.Thiscorrelateswiththe highlyreactivenature of the lanthanides.
The sum of the firsttwoionizationenergiesforeuropium,1632 kJ·mol−1can be comparedwiththatof
barium1468.1 kJ·mol−1and europium'sthird ionizationenergyisthe highestof the lanthanides.The
sumof the firsttwo ionizationenergiesforytterbiumare the secondlowestinthe seriesanditsthird
ionizationenergyisthe secondhighest.The highthirdionizationenergyforEuand Yb correlate withthe
half filling4f7andcomplete filling4f14 of the 4f subshell,andthe stabilityaffordedbysuch
configurationsdue toexchange energy.[20] Europiumandytterbiumformsaltlike compoundswith
Eu2+ and Yb2+, for example the saltlike dihydrides.[26] Botheuropiumandytterbiumdissolve inliquid
ammoniaformingsolutionsof Ln2+(NH3)x againdemonstratingtheirsimilaritiestothe alkalineearth
metals.[8]
The relative ease withwhichthe 4thelectroncanbe removedinceriumand(toa lesser extent
praseodymium)indicateswhyCe(IV)andPr(IV) compoundscanbe formed,forexample CeO2isformed
rather thanCe2O3 whenceriumreactswithoxygen.
Separationof lanthanides
The similarityinionicradiusbetweenadjacentlanthanideelementsmakes itdifficulttoseparate them
fromeach otherinnaturallyoccurringoresand othermixtures.Historically,the verylaboriousprocesses
of cascadingand fractional crystallizationwere used.Because the lanthanideionshave slightlydifferent
radii,the lattice energyof theirsaltsandhydrationenergiesof the ionswill be slightlydifferent,leading
to a small difference insolubility.Saltsof the formulaLn(NO3)3·2NH4NO3·4H2Ocan be used.
Industrially,the elementsare separatedfromeachotherbysolventextraction.Typicallyanaqueous
solutionof nitratesisextractedintokerosenecontainingtri-n-butylphosphate.The strengthof the
complexesformedincreasesasthe ionicradiusdecreases,sosolubilityinthe organicphase increases.
Complete separationcanbe achievedcontinuouslybyuse of countercurrentexchangemethods.The
elementscanalsobe separatedbyion-exchangechromatography,makinguse of the factthat the
stabilityconstantforformationof EDTA complexesincreasesforlogK≈ 15.5 for[La(EDTA)]−to logK ≈
19.8 for [Lu(EDTA)]−.[8][27]
Coordinationchemistryandcatalysis
Wheninthe formof coordinationcomplexes,lanthanidesexistoverwhelminglyintheir+3oxidation
state,althoughparticularlystable 4f configurationscanalso give +4 (Ce,Tb) or +2 (Eu, Yb) ions.All of
these formsare stronglyelectropositive andthuslanthanide ionsare hardLewisacids.The oxidation
statesare alsoverystable;withthe exceptionsof SmI2[28] andcerium(IV) salts,[29] lanthanidesare not
usedforredox chemistry.4f electronshave ahighprobabilityof beingfoundclose tothe nucleusand
are thusstronglyaffectedasthe nuclearcharge increasesacrossthe series;thisresultsina
correspondingdecreaseinionicradii referredtoasthe lanthanide contraction.
The lowprobabilityof the 4f electronsexistingatthe outerregionof the atom or ionpermitslittle
effectiveoverlapbetweenthe orbitalsof alanthanide ionandanybindingligand.Thuslanthanide
complexestypicallyhave little ornocovalentcharacterand are not influencedbyorbital geometries.
The lack of orbital interactionalsomeansthatvaryingthe metal typicallyhaslittleeffectonthe complex
(otherthansize),especiallywhencomparedtotransitionmetals.Complexes are heldtogetherby
weakerelectrostaticforceswhichare omni-directionalandthusthe ligandsalone dictate the symmetry
and coordinationof complexes.Stericfactorstherefore dominate,withcoordinative saturationof the
metal beingbalancedagainst inter-ligandrepulsion.Thisresultsinadiverse range of coordination
geometries,manyof whichare irregular,[30] andalsomanifestsitself inthe highlyfluxional nature of
the complexes.Asthere isnoenergeticreasontobe lockedintoasingle geometry,rapidintramolecular
and intermolecularligandexchangewilltake place.Thistypicallyresultsincomplexesthatrapidly
fluctuate betweenall possible configurations.
Many of these featuresmake lanthanidecomplexeseffectivecatalysts.HardLewis acidsare able to
polarise bondsuponcoordinationandthusalterthe electrophilicityof compounds,withaclassic
example beingthe Luche reduction.The large size of the ionscoupledwiththeirlabile ionicbonding
allowsevenbulkycoordinatingspecies tobindanddissociate rapidly,resultinginveryhighturnover
rates;thus excellentyieldscanoftenbe achievedwithloadingsof onlyafew mol%.[31] The lackof
orbital interactionscombinedwiththe lanthanide contractionmeansthatthe lanthanideschange insize
across the seriesbutthat theirchemistryremainsmuchthe same.Thisallowsforeasytuningof the
stericenvironmentsandexamplesexistwhere thishasbeenusedtoimprove the catalyticactivityof the
complex[32][33][34] andchange the nuclearityof metal clusters.[35][36]
Despite this,the use of lanthanidecoordinationcomplexesashomogeneouscatalystsislargely
restrictedtothe laboratoryand there are currentlyfew examplesthembeingusedonanindustrial
scale.[37] Lanthanidesexistinmanyformsotherthancoordinationcomplexesandmanyof these are
industriallyuseful.Inparticularlanthanidemetal oxidesare usedasheterogeneouscatalystsinvarious
industrial processes.
Ln(III) compounds
The trivalentlanthanidesmostlyformionicsalts.The trivalentionsare hardacceptorsand formmore
stable complexeswithoxygen-donorligandsthanwithnitrogen-donorligands.The largerionsare 9-
coordinate inaqueoussolution,[Ln(H2O)9]3+butthe smallerionsare 8-coordinate,[Ln(H2O)8]3+.
There issome evidence thatthe laterlanthanideshave more watermoleculesinthe second
coordinationsphere.[38] Complexationwithmonodentateligandsisgenerallyweakbecauseitis
difficulttodisplace watermoleculesfromthe firstcoordinationsphere.Strongercomplexesare formed
withchelatingligandsbecause of the chelate effect,suchasthe tetra-anionderivedfrom1,4,7,10-
tetraazacyclododecane-1,4,7,10-tetraaceticacid(DOTA).
Samplesof lanthanide nitratesintheirhexahydrateform.Fromlefttoright:La, Ce,Pr, Nd,Sm, Eu, Gd,
Tb, Dy,Ho, Er, Tm,Yb, Lu.
Ln(II) andLn(IV) compounds
The most commondivalentderivativesof the lanthanidesare forEu(II),whichachievesafavorable f7
configuration.Divalenthalidederivativesare knownforall of the lanthanides.Theyare either
conventional saltsorare Ln(III) "electride"-like salts.The simple saltsincludeYbI2,EuI2,and SmI2. The
electride-like salts,describedasLn3+, 2I−, e−, include LaI2,CeI2 andGdI2. Many of the iodidesform
soluble complexeswithethers,e.g.TmI2(dimethoxyethane)3.[39] Samarium(II) iodide isauseful
reducingagent.Ln(II) complexescanbe synthesizedbytransmetalationreactions.The normal range of
oxidationstatescanbe expandedviathe use of stericallybulkycyclopentadienyl ligands,inthisway
manylanthanidescanbe isolatedasLn(II) compounds.[40]
Ce(IV) incericammoniumnitrate isauseful oxidizingagent.The Ce(IV) isthe exceptionowingtothe
tendencytoforman unfilledf shell.Otherwise tetravalentlanthanidesare rare.However,recently
Tb(IV)[41][42][43] andPr(IV)[44] complexeshave beenshowntoexist.
Hydrides
Chemical element La Ce Pr Nd Pm Sm Eu Gd Tb Dy
Ho Er Tm Yb Lu
Lanthanide metalsreactexothermicallywithhydrogento formLnH2,dihydrides.[26] Withthe exception
of Eu andYb, whichresemble the BaandCa hydrides(non-conducting,transparentsalt-like
compounds),theyformblackpyrophoric,conductingcompounds[49] where the metalsub-lattice isface
centredcubicand the H atomsoccupy tetrahedral sites.[26] Furtherhydrogenationproducesa
trihydride whichisnon-stoichiometric,non-conducting,more saltlike.The formationof trihydride is
associatedwithandincrease in8–10% volume andthisislinkedtogreaterlocalizationof charge onthe
hydrogenatomswhichbecome more anionic(H−hydride anion) incharacter.[26]
Halides
Lanthanide halides[8][50][51][49]
The onlytetrahalidesknownare the tetrafluoridesof cerium, praseodymium,terbium, neodymiumand
dysprosium,the lasttwoknownonlyundermatrix isolationconditions.[8][54] All of the lanthanides
formtrihalideswithfluorine,chlorine,bromineandiodine.Theyare all highmeltingandpredominantly
ionicinnature.[8] The fluoridesare onlyslightlysoluble inwaterandare not sensitive toair,andthis
contrastswiththe other halideswhichare airsensitive,readilysoluble inwaterandreactat high
temperature toformoxohalides.[55]
The trihalideswere importantaspure metal can be preparedfromthem.[8] Inthe gas phase the
trihalidesare planarorapproximatelyplanar,the lighterlanthanideshave alower% of dimers,the
heavierlanthanidesahigherproportion.The dimershave asimilarstructure toAl2Cl6.[56]
Some of the dihalidesare conducting while the restare insulators.The conductingformscanbe
consideredasLnIIIelectridecompoundswhere the electronisdelocalisedintoaconductionband,Ln3+
(X−)2(e−).All of the diodideshave relativelyshortmetal-metalseparations.[50] The CuTi2structure of
the lanthanum,ceriumandpraseodymiumdiodidesalongwithHP-NdI2contain44 netsof metal and
iodine atomswithshortmetal-metal bonds(393-386 La-Pr).[50] these compoundsshouldbe considered
to be two-dimensional metals(two-dimensional in the same waythatgraphite is).The salt-like dihalides
include those of Eu,Dy,Tm, and Yb. The formationof a relativelystable+2oxidationstate forEu andYb
isusuallyexplainedbythe stability(exchange energy) of half filled(f7) andfullyfilled f14.GdI2
possessesthe layeredMoS2structure,isferromagneticandexhibitscolossal magnetoresistance[50]
The sesquihalidesLn2X3andthe Ln7I12 compoundslistedinthe table containmetal clusters,discrete
Ln6I12 clustersinLn7I12 and condensedclustersformingchainsinthe sesquihalides.Scandiumformsa
similarclustercompoundwithchlorine,Sc7Cl12[8] Unlike manytransitionmetal clustersthese
lanthanide clustersdonothave strongmetal-metal interactionsandthisisdue to the low numberof
valence electronsinvolved,butinsteadare stabilisedbythe surroundinghalogenatoms.[50]
LaI is the onlyknownmonohalide.Preparedfromthe reactionof LaI3and La metal,ithasa NiAstype
structure and can be formulatedLa3+ (I−)(e−)2.[53]
Oxidesandhydroxides
All of the lanthanidesformsesquioxides,Ln2O3.The lighter/largerlanthanidesadoptahexagonal 7-
coordinate structure while the heavier/smalleronesadoptacubic6-coordinate "C-M2O3" structure.[51]
All of the sesquioxidesare basic,and absorbwaterand carbon dioxide fromairtoformcarbonates,
hydroxidesandhydroxycarbonates.[57] Theydissolve inacidstoformsalts.[20]
Ceriumformsa stoichiometricdioxide,CeO2,where ceriumhasanoxidationstate of +4. CeO2 isbasic
and dissolveswithdifficultyinacidtoformCe4+ solutions,fromwhichCeIV saltscanbe isolated,for
example the hydratednitrateCe(NO3)4.5H2O.CeO2isusedas an oxidationcatalystincatalytic
converters.[20] Praseodymiumandterbiumformnon-stoichiometricoxidescontainingLnIV,[20]
althoughmore extreme reactionconditionscanproduce stoichiometric(ornearstoichiometric) PrO2
and TbO2.[8]
Europiumandytterbiumformsalt-like monoxides,EuOandYbO, whichhave a rock saltstructure.[20]
EuO isferromagneticatlowtemperatures,[8] andisa semiconductorwithpossible applicationsin
spintronics.[58] A mixedEuII/EuIIIoxide Eu3O4can be producedbyreducingEu2O3 in a streamof
hydrogen.[57] Neodymiumandsamariumalsoformmonoxides,butthese are shiny conducting
solids,[8] althoughthe existence of samariummonoxideisconsidereddubious.[57]
All of the lanthanidesformhydroxides,Ln(OH)3.Withthe exceptionof lutetiumhydroxide,whichhasa
cubic structure,theyhave the hexagonal UCl3structure.[57] The hydroxidescanbe precipitatedfrom
solutionsof LnIII.[20] Theycanalsobe formedbythe reactionof the sesquioxide,Ln2O3,withwater,
but althoughthisreactionisthermodynamicallyfavorable itiskineticallyslowforthe heaviermembers
of the series.[57] Fajans'rulesindicate thatthe smallerLn3+ionswill be more polarizingandtheirsalts
correspondinglylessionic.The hydroxidesof the heavierlanthanidesbecomelessbasic,forexample
Yb(OH)3and Lu(OH)3 are still basichydroxidesbutwill dissolve inhotconcentratedNaOH.[8]
Chalcogenides(S,Se,Te)
All of the lanthanidesformLn2Q3 (Q=S, Se,Te).[20] The sesquisulfidescanbe producedbyreactionof
the elementsor(withthe exceptionof Eu2S3) sulfidizingthe oxide(Ln2O3) withH2S.[20] The
sesquisulfides,Ln2S3generallylosesulfurwhenheatedandcanforma range of compositionsbetween
Ln2S3 and Ln3S4. The sesquisulfidesare insulatorsbutsome of the Ln3S4 are metallicconductors(e.g.
Ce3S4) formulated(Ln3+)3(S2−)4(e−),while others(e.g.Eu3S4andSm3S4) are semiconductors.[20]
Structurallythe sesquisulfidesadoptstructuresthatvaryaccordingto the size of the Ln metal.The
lighterandlargerlanthanidesfavoring7-coordinatemetal atoms,the heaviestandsmallestlanthanides
(Yb andLu) favoring6 coordinationandthe reststructureswitha mixture of 6 and 7 coordination.[20]
Polymorphismiscommonamongstthe sesquisulfides.[59] The colorsof the sesquisulfidesvarymetal to
metal anddependonthe polymorphicform. The colorsof the γ-sesquisulfidesare La2S3, white/yellow;
Ce2S3, dark red;Pr2S3, green;Nd2S3, lightgreen;Gd2S3,sand; Tb2S3, lightyellow andDy2S3,
orange.[60] The shade of γ-Ce2S3can be variedbydopingwithNaor Ca withhuesrangingfromdark
redto yellow,[50][60] andCe2S3 basedpigmentsare usedcommerciallyandare seenaslow toxicity
substitutesforcadmiumbasedpigments.[60]
All of the lanthanidesformmonochalcogenides,LnQ,(Q=S,Se,Te).[20] The majorityof the
monochalcogenidesare conducting,indicatingaformulationLnIIIQ2−(e-) wherethe electronisin
conductionbands.The exceptionsare SmQ,EuQ andYbQ whichare semiconductorsorinsulatorsbut
exhibitapressure inducedtransitiontoa conductingstate.[59] CompoundsLnQ2are knownbutthese
do notcontainLnIV butare LnIIIcompoundscontainingpolychalcogenide anions.[61]
OxysulfidesLn2O2Sare well known,theyall have the same structure with7-coordinate Lnatoms,and3
sulfurand4 oxygenatomsasnear neighbours.[62] Dopingthese withotherlanthanide elements
producesphosphors.Asanexample,gadoliniumoxysulfide,Gd2O2SdopedwithTb3+ producesvisible
photonswhenirradiatedwithhighenergyX-raysandisusedasa scintillatorinflatpanel detectors.[63]
Whenmischmetal,analloyof lanthanidemetals,isaddedtomoltensteel toremove oxygenandsulfur,
stable oxysulfidesare producedthatformanimmiscible solid.[20]
Pnictides(group15)
All of the lanthanidesformamononitride,LnN,withthe rocksaltstructure.The mononitrideshave
attractedinterestbecause of theirunusual physical properties.SmN andEuN are reportedasbeing"half
metals".[50] NdN,GdN,TbN andDyN are ferromagnetic,SmN isantiferromagnetic.[64] Applicationsin
the fieldof spintronics are beinginvestigated.[58] CeN isunusual asitis a metallicconductor,
contrastingwiththe othernitridesalsowiththe otherceriumpnictides.A simple descriptionisCe4+N3−
(e–) butthe interatomicdistancesare a bettermatchfor the trivalentstate ratherthanfor the
tetravalentstate.A numberof differentexplanationshave beenoffered.[65] The nitridescanbe
preparedbythe reactionof lanthanummetalswithnitrogen.Somenitrideisproducedalongwiththe
oxide,whenlanthanummetalsare ignitedinair.[20] Alternativemethodsof synthesisare ahigh
temperature reactionof lanthanide metalswithammoniaorthe decompositionof lanthanide amides,
Ln(NH2)3.Achievingpure stoichiometriccompounds,andcrystalswithlow defectdensityhasproved
difficult.[58] The lanthanidenitridesare sensitive toairandhydrolyse producingammonia.[49]
The other pnictidesphosphorus,arsenic,antimonyandbismuthalsoreactwiththe lanthanidemetalsto
formmonopnictides,LnQ.Additionallyarange of other compoundscan be producedwithvarying
stoichiometries,suchasLnP2, LnP5, LnP7, Ln3As,Ln5As3 and LnAs2.[66]
Carbides
Carbidesof varyingstoichiometriesare knownforthe lanthanides.Non-stoichiometryiscommon.All of
the lanthanidesformLnC2and Ln2C3 whichbothcontainC2 units.The dicarbideswithexceptionof
EuC2, are metallicconductorswiththe calciumcarbide structure andcanbe formulatedasLn3+C22−(e–
).The C-Cbond lengthislongerthanthatin CaC2, whichcontainsthe C22− anion,indicatingthatthe
antibondingorbitalsof the C22− anionare involvedinthe conductionband.These dicarbideshydrolyse
to formhydrogenanda mixture of hydrocarbons.[67] EuC2and to a lesserextentYbC2hydrolyse
differentlyproducingahigherpercentage of acetylene(ethyne).[68] The sesquicarbides,Ln2C3can be
formulatedasLn4(C2)3.
These compoundsadoptthe Pu2C3 structure[50] whichhasbeendescribedashavingC22− anionsin
bisphenoidholesformedbyeightnearLnneighbours.[69] The lengtheningof the C-Cbondisless
markedinthe sesquicarbidesthaninthe dicarbides,withthe exceptionof Ce2C3.[67] Othercarbonrich
stoichiometriesare knownforsome lanthanides.Ln3C4(Ho-Lu) containingC,C2 and C3 units;[70] Ln4C7
(Ho-Lu) containC atomsand C3 units[71] and Ln4C5 (Gd-Ho) containingCandC2 units.[72] Metal rich
carbidescontaininterstitial Catomsandno C2 or C3 units.These are Ln4C3 (Tb andLu); Ln2C (Dy, Ho,
Tm)[73][74] and Ln3C[50] (Sm-Lu).
Borides
All of the lanthanidesformanumber of borides.The "higher"borides(LnBx where x >12) are
insulators/semiconductorswhereasthe lowerboridesare typicallyconducting.The lowerborideshave
stoichiometriesof LnB2,LnB4, LnB6 and LnB12.[75] Applicationsinthe fieldof spintronicsare being
investigated.[58] The range of boridesformedbythe lanthanidescanbe comparedto those formedby
the transitionmetals.The boronrichboridesare typical of the lanthanides(andgroups1–3) whereasfor
the transitionmetalstendtoformmetal rich,"lower"borides.[76] The lanthanideboridesare typically
groupedtogetherwiththe group3 metalswithwhichtheyshare manysimilaritiesof reactivity,
stoichiometryandstructure.Collectivelythese are thentermedthe rare earthborides.[75]
Many methodsof producinglanthanide borideshave beenused,amongstthemare directreactionof
the elements;the reductionof Ln2O3withboron; reductionof boronoxide,B2O3,andLn2O3 together
withcarbon; reductionof metal oxide withboroncarbide,B4C.[75][76][77][78] Producinghighpurity
sampleshasprovedtobe difficult.[78] Single crystalsof the higherborideshave beengrowninalow
meltingmetal (e.g.Sn,Cu,Al).[75]
Diborides,LnB2,have beenreportedforSm, Gd,Tb, Dy,Ho, Er, Tm, Yb andLu. All have the same,AlB2,
structure containingagraphiticlayerof boron atoms.Low temperature ferromagnetictransitionsforTb,
Dy, Ho and Er. TmB2 isferromagneticat7.2 K.[50]
Tetraborides,LnB4have beenreportedforall of the lanthanidesexceptEuB4,all have the same UB4
structure.The structure has a boron sub-lattice consistsof chainsof octahedral B6 clusterslinkedby
boronatoms.The unitcell decreasesinsize successivelyfromLaB4 to LuB4. The tetraboridesof the
lighterlanthanidesmeltwithdecompositiontoLnB6.[78] Attemptstomake EuB4 have failed.[77] The
LnB4 are good conductors[75] and typicallyantiferromagnetic.[50]
Hexaborides,LnB6have beenreportedforall of the lanthanides.Theyall have the CaB6structure,
containingB6 clusters.Theyare non-stoichiometricdue tocationdefects.The hexaboridesof the lighter
lanthanides(La–Sm) meltwithoutdecomposition,EuB6decomposestoboronandmetal and the
heavierlanthanidesdecomposetoLnB4 withexceptionof YbB6 whichdecomposesformingYbB12.The
stabilityhasinpart beencorrelatedtodifferencesinvolatilitybetweenthe lanthanide metals.[78] In
EuB6 andYbB6 the metalshave an oxidationstate of +2 whereasinthe restof the lanthanide
hexaboridesitis+3. Thisrationalisesthe differencesinconductivity,the extraelectronsinthe LnIII
hexaboridesenteringconductionbands.EuB6isa semiconductorandthe restare good
conductors.[50][78] LaB6 and CeB6 are thermionicemitters,used,forexample,inscanningelectron
microscopes.[79]
Dodecaborides,LnB12,are formedbythe heaviersmallerlanthanides,butnotbythe lighterlarger
metals,La – Eu. Withthe exceptionYbB12(where Ybtakesan intermediate valenceandisa Kondo
insulator),the dodecaboridesare all metalliccompounds.Theyall have the UB12 structure containinga
3 dimensional frameworkof cubooctahedral B12clusters.[75]
The higherboride LnB66 is knownforall lanthanide metals.The compositionisapproximate asthe
compoundsare non-stoichiometric.[75] Theyall have similarcomplex structure withover1600 atomsin
the unitcell.The boroncubic sublattice containssupericosahedramade upof a central B12 icosahedra
surroundedby12 others,B12(B12)12.[75] Othercomplex higherboridesLnB50(Tb,Dy, Ho Er Tm Lu)
and LnB25 are known(Gd,Tb,Dy, Ho, Er) and these containboronicosahedrainthe boron
framework.[75]
Organometalliccompounds
Lanthanide-carbonσbondsare well known;howeverasthe 4f electronshave alow probabilityof
existingatthe outerregionof the atom there islittle effectiveorbital overlap,resultinginbondswith
significantioniccharacter.Assuch organo-lanthanide compoundsexhibitcarbanion-like behavior,unlike
the behaviorintransitionmetal organometalliccompounds.Because of theirlarge size,lanthanides
tendto formmore stable organometallicderivativeswithbulkyligandstogive compoundssuchas
Ln[CH(SiMe3)3].[80] Analoguesof uranoceneare derivedfromdilithiocyclooctatetraene,Li2C8H8.
Organiclanthanide(II) compoundsare alsoknown,suchasCp*2Eu.[39]
Physical properties
Magneticand spectroscopic
All the trivalentlanthanide ions,exceptlanthanumandlutetium,have unpairedf electrons.However,
the magneticmomentsdeviateconsiderablyfromthe spin-onlyvaluesbecauseof strongspin-orbit
coupling.The maximumnumberof unpairedelectronsis7,inGd3+, witha magneticmomentof 7.94
B.M., but the largestmagneticmoments,at10.4–10.7 B.M., are exhibitedbyDy3+ and Ho3+. However,
inGd3+ all the electronshave parallel spinandthispropertyisimportantforthe use of gadolinium
complexesascontrastreagentinMRI scans.
A solutionof 4%holmiumoxide in10%perchloricacid,permanentlyfusedintoaquartzcuvette as a
wavelengthcalibrationstandard
Crystal fieldsplittingisrathersmall forthe lanthanideionsandislessimportantthanspin-orbitcoupling
inregard to energylevels.[8] Transitionsof electronsbetweenf orbitalsare forbiddenbythe Laporte
rule.Furthermore,becauseof the "buried"nature of the f orbitals,couplingwithmolecularvibrationsis
weak.Consequently,the spectraof lanthanideionsare ratherweakandthe absorptionbandsare
similarlynarrow.Glasscontainingholmiumoxideandholmiumoxidesolutions(usuallyinperchloric
acid) have sharp optical absorptionpeaksinthe spectral range 200–900 nm and can be usedas a
wavelengthcalibrationstandardforoptical spectrophotometers,[81] andare available
commercially.[82]
As f-f transitionsare Laporte-forbidden,once anelectronhasbeenexcited,decaytothe groundstate
will be slow.Thismakesthemsuitable foruse inlasersasitmakesthe populationinversioneasyto
achieve.The Nd:YAGlaserisone that iswidelyused.Europium-dopedyttrium vanadatewasthe firstred
phosphortoenable the developmentof colortelevisionscreens.[83] Lanthanide ionshave notable
luminescentpropertiesdue totheirunique4f orbitals.Laporte forbiddenf-f transitionscanbe activated
by excitationof abound "antenna"ligand.Thisleadstosharpemissionbandsthroughoutthe visible,
NIR,and IR and relativelylongluminescence lifetimes.[84]
Occurrence
Main article:Rare-earthelement§Geological distribution
The lanthanide contractionisresponsibleforthe greatgeochemical dividethatsplitsthe lanthanides
intolightandheavy-lanthanideenrichedminerals,the latterbeingalmostinevitablyassociatedwithand
dominatedbyyttrium.Thisdivideisreflectedinthe firsttwo"rare earths"thatwere discovered:yttria
(1794) and ceria(1803). The geochemical divide hasputmore of the lightlanthanidesinthe Earth's
crust, butmore of the heavymembersinthe Earth's mantle.The resultisthatalthoughlarge richore-
bodiesare foundthatare enrichedinthe lightlanthanides,correspondinglylarge ore-bodiesforthe
heavymembersare few.The principal oresare monazite andbastnäsite.Monazite sandsusuallycontain
all the lanthanide elements,butthe heavierelementsare lackinginbastnäsite.The lanthanidesobey
the Oddo-Harkinsrule –odd-numberedelementsare lessabundantthantheireven-numbered
neighbors.
Three of the lanthanide elementshave radioactiveisotopeswithlonghalf-lives(138La,147Sm and
176Lu) that can be usedto date mineralsandrocks fromEarth, the Moon and meteorites.[85]
Promethiumiseffectivelyaman-made element,asall itsisotopesare radioactivewithhalf-livesshorter
than 20 years.
Applications
Industrial
Lanthanide elementsandtheircompoundshave manyusesbutthe quantitiesconsumedare relatively
small incomparisontootherelements.About15000 ton/yearof the lanthanidesare consumedas
catalystsand inthe productionof glasses.This15000 tonscorrespondstoabout 85% of the lanthanide
production.Fromthe perspectiveof value,however,applicationsinphosphorsandmagnetsare more
important.[86]
The deviceslanthanideelementsare usedininclude superconductors,samarium-cobaltand
neodymium-iron-boronhigh-fluxrare-earthmagnets,magnesiumalloys,electronicpolishers,refining
catalystsand hybridcar components(primarilybatteriesandmagnets).[87] Lanthanide ionsare usedas
the active ionsinluminescentmaterialsusedinoptoelectronicsapplications,mostnotablythe Nd:YAG
laser.Erbium-dopedfiberamplifiersare significantdevicesinoptical-fibercommunicationsystems.
Phosphorswithlanthanide dopantsare alsowidelyusedincathode raytube technologysuchas
televisionsets.The earliestcolortelevisionCRTshada poor-qualityred;europiumas aphosphordopant
made goodred phosphorspossible.Yttriumirongarnet(YIG) spherescanact as tunable microwave
resonators.
Lanthanide oxidesare mixedwithtungstentoimprove theirhightemperature propertiesforTIG
welding,replacingthorium,whichwasmildlyhazardoustoworkwith.Manydefense-relatedproducts
alsouse lanthanide elementssuchasnightvisiongogglesandrangefinders.The SPY-1radar usedin
some Aegisequippedwarships,andthe hybridpropulsionsystemof ArleighBurke-classdestroyersall
use rare earthmagnetsincritical capacities.[88] The price forlanthanumoxide usedinfluidcatalytic
cracking hasrisenfrom$5 per kilograminearly2010 to $140 per kilograminJune 2011.[89]
Most lanthanidesare widelyusedinlasers, andas(co-)dopantsindoped-fiberoptical amplifiers;for
example,inEr-dopedfiberamplifiers,whichare usedasrepeatersinthe terrestrial andsubmarine fiber-
optictransmissionlinksthatcarryinternettraffic.These elementsdeflectultravioletandinfrared
radiationandare commonlyusedinthe productionof sunglasslenses.Otherapplicationsare
summarizedinthe followingtable:[17]
Application Percentage
Catalyticconverters 45%
Petroleumrefiningcatalysts 25%
Permanentmagnets 12%
Glasspolishingandceramics 7%
Metallurgical 7%
Phosphors 3%
Other 1%
The complex Gd(DOTA) isusedinmagneticresonance imaging.
Life science
Lanthanide complexescanbe usedforoptical imaging.Applicationsare limitedbythe labilityof the
complexes.[90]
Some applicationsdependonthe unique luminescence propertiesof lanthanide chelatesor
cryptates).[91][92] These are well-suitedforthisapplicationdue totheirlarge Stokesshiftsand
extremelylongemissionlifetimes(frommicrosecondstomilliseconds) comparedtomore traditional
fluorophores(e.g.,fluorescein,allophycocyanin,phycoerythrin,andrhodamine).
The biological fluidsorserumcommonlyusedinthese researchapplicationscontainmanycompounds
and proteinswhichare naturallyfluorescent. Therefore,the use of conventional,steady-state
fluorescencemeasurementpresentsseriouslimitationsinassaysensitivity.Long-livedfluorophores,
such as lanthanides,combinedwithtime-resolveddetection(adelaybetweenexcitationandemission
detection) minimizespromptfluorescence interference.
Time-resolvedfluorometry(TRF) combinedwithfluorescence resonance energytransfer(FRET) offersa
powerful tool fordrugdiscoveryresearchers:Time-ResolvedFluorescence Resonance EnergyTransferor
TR-FRET. TR-FRET combinesthe lowbackgroundaspectof TRFwiththe homogeneousassayformatof
FRET. The resultingassayprovidesanincrease inflexibility,reliabilityandsensitivityinadditiontohigher
throughputandfewerfalse positive/falsenegative results.
Thismethodinvolvestwofluorophores:adonorand an acceptor.Excitationof the donor fluorophore(in
thiscase,the lanthanide ioncomplex) byanenergysource (e.g.flashlamporlaser) producesanenergy
transferto the acceptorfluorophore if theyare withinagivenproximitytoeachother(knownasthe
Förster'sradius).The acceptorfluorophore inturnemitslightatitscharacteristicwavelength.
The two mostcommonlyusedlanthanidesinlifescience assaysare shownbelow alongwiththeir
correspondingacceptordye aswell astheirexcitationandemissionwavelengthsandresultantStokes
shift(separationof excitationandemissionwavelengths).
Donor Excitation⇒Emissionλ(nm) Acceptor Excitation⇒Emissionλ(nm) Stoke'sShift
(nm)
Eu3+ 340⇒615 Allophycocyanin 615⇒660 320
Tb3+ 340⇒545 Phycoerythrin 545⇒575 235
Possible medical uses
Currentlythere isresearchshowingthatlanthanide elementscanbe usedasanticanceragents.The
mainrole of the lanthanidesinthesestudiesisto inhibitproliferationof the cancercells.Specifically
ceriumand lanthanumhave beenstudiedfortheirrole asanti-canceragents.
One of the specificelementsfromthe lanthanide groupthathasbeentestedandusediscerium(Ce).
There have beenstudiesthatuse aprotein-ceriumcomplex toobserve the effectof ceriumonthe
cancer cells.The hope wasto inhibitcell proliferationandpromote cytotoxicity.[93] Transferrin
receptorsincancer cells,suchasthose in breastcancer cellsandepithelialcervical cells,promotethe
cell proliferationandmalignancyof the cancer.[93] Transferrinisa proteinusedtotransportironinto
the cellsandis neededtoaidthe cancer cellsinDNA replication.Transferrinactsasa growthfactor for
the cancerouscellsandis dependentoniron.Cancercellshave muchhigherlevelsof transferrin
receptorsthannormal cellsandare verydependentonironfortheirproliferation.[93]
Ceriumhasshownresultsasan anti-canceragentdue to itssimilaritiesinstructure andbiochemistryto
iron.Ceriummaybindinthe place of ironon to the transferrinandthenbe broughtintothe cancercells
by transferrin-receptormediatedendocytosis.[93] The ceriumbindingtothe transferrininplace of the
ironinhibitsthe transferrinactivityinthe cell.Thiscreatesatoxicenvironmentforthe cancercellsand
causesa decrease incell growth.Thisisthe proposedmechanismforcerium'seffectoncancercells,
thoughthe real mechanismmaybe more complex inhow ceriuminhibits cancercell proliferation.
SpecificallyinHeLacancercellsstudiedinvitro,cell viabilitywasdecreasedafter48to 72 hoursof
ceriumtreatments.Cellstreatedwithjustceriumhaddecreasesincell viability,butcellstreatedwith
bothceriumand transferrinhadmore significantinhibitionforcellularactivity.[93] Anotherspecific
elementthathasbeentestedandusedasan anti-canceragentislanthanum, more specifically
lanthanumchloride (LaCl3).The lanthanumionisusedtoaffectthe levels of let-7aandmicroRNAsmiR-
34a in a cell throughoutthe cell cycle.Whenthe lanthanumionwasintroducedtothe cell invivoorin
vitro,itinhibitedthe rapidgrowthandinducedapoptosisof the cancercells(specificallycervical cancer
cells).Thiseffectwascausedbythe regulationof the let-7aandmicroRNAsbythe lanthanumions.[94]
The mechanismforthiseffectisstill unclearbutitispossible thatthe lanthanumisactingina similar
wayas the ceriumandbindingtoa ligandnecessaryforcancercell proliferation.
Biological effects
Due to theirsparse distributioninthe earth'scrustandlow aqueoussolubility,the lanthanideshave a
lowavailabilityinthe biosphere,andfora longtime were notknownto naturallyformpartof any
biological molecules.In2007 a novel methanol dehydrogenase thatstrictlyuseslanthanidesas
enzymaticcofactorswasdiscoveredinabacteriumfromthe phylumVerrucomicrobia,
Methylacidiphilumfumariolicum.Thisbacteriumwasfoundtosurvive onlyif there are lanthanides
presentinthe environment.[95] Comparedtomostothernondietaryelements,non-radioactive
lanthanidesare classifiedashavinglowtoxicity.[86] The same nutritional requirementhasalsobeen
observedMethylorubrumextorquensandMethylobacteriumradiotolerans.
See also
Group 3 element–Group of chemical elements
Lanthanide probes
References
The currentIUPAC recommendationisthatthe name lanthanoidbe usedratherthanlanthanide,asthe
suffix "-ide"ispreferredfornegativeions,whereasthe suffix "-oid"indicatessimilaritytoone of the
membersof the containingfamilyof elements.However,lanthanideisstill favoredinmost(~90%)
scientificarticles[citationneeded] andiscurrentlyadoptedonWikipedia.Inthe olderliterature, the
name "lanthanon"wasoftenused.
Gray, Theodore (2009). The Elements:A Visual Explorationof EveryKnownAtominthe Universe.New
York: BlackDog & Leventhal Publishers.p.240. ISBN 978-1-57912-814-2.
Lanthanide Archived11September2011 at the Wayback Machine,EncyclopædiaBritannicaon-line
Holden,NormanE.;Coplen,Tyler(January–February2004). "The PeriodicTable of the Elements".
ChemistryInternational.26(1): 8. doi:10.1515/ci.2004.26.1.8.
Jensen,WilliamB.(2015). "The positionsof lanthanum(actinium) andlutetium(lawrencium) inthe
periodictable:anupdate".Foundationsof Chemistry.17:23–31. doi:10.1007/s10698-015-9216-1. S2CID
98624395. Retrieved28 January2021.
Scerri,Eric (18 January2021). "Provisional ReportonDiscussionsonGroup3 of the PeriodicTable".
ChemistryInternational.43(1): 31–34. doi:10.1515/ci-2021-0115. S2CID 231694898.
F Block Elements,OxidationStates,LanthanidesandActinides.Chemistry.tutorvista.com.Retrievedon
14 December2017.
Greenwood, NormanN.;Earnshaw,Alan(1997). Chemistryof the Elements(2nded.).Butterworth-
Heinemann.pp.1230–1242. ISBN 978-0-08-037941-8.
SkrifterNorske Vidensk-Akad.(Mat.-nat.Kl.) V:6
Hakala, ReinoW.(1952). "Letters".Journal of Chemical Education.29(11): 581.
Bibcode:1952JChEd..29..581H. doi:10.1021/ed029p581.2.
"lanthanide".OED21.14 on CD-Rom.OUP,1994.
"lanthanum".OED2 v.1.14 onCD-Rom.OUP, 1994.
"The Elements",Theodore Gray,Black−Dog& Leventhal,Chicago2007: "Lanthanum"and"Cerium"
entriesCh57 & 58, pp 134–7
Rocks & Minerals,A Guide To FieldIdentification,Sorrell,StMartin'sPress1972, 1995, pp 118 (Halides),
228 (Carbonates)
Minearlsof the World,Johnsen,2000
"The Elements",Theodore Gray,BlackDog& Leventhal,Chicago2007: "Neodymium"and
"Praseodymium"entriesCh59 & 60, pp 138–43
Aspinall,HelenC.(2001). Chemistryof the f-blockelements.CRCPress.p.8. ISBN 978-90-5699-333-7.
Krishnamurthy,NagaiyarandGupta,ChiranjibKumar(2004) Extractive Metallurgyof Rare Earths,CRC
Press,ISBN 0-415-33340-7
Cullity,B.D. andGraham, C. D. (2011) IntroductiontoMagneticMaterials,JohnWiley&Sons,ISBN
9781118211496
Cotton,Simon (2006). Lanthanide andActinide Chemistry.JohnWiley&SonsLtd.
Sroor, FaridM.A.; Edelmann,FrankT.(2012). "Lanthanides:TetravalentInorganic".Encyclopediaof
Inorganicand BioinorganicChemistry.doi:10.1002/9781119951438.eibc2033. ISBN 9781119951438.
Holleman,p.1937.
dtv-AtlaszurChemie 1981, Vol.1, p. 220.
Bochkarev,Mikhail N.;Fedushkin,IgorL.;Fagin,AnatolyA.;Petrovskaya,TatyanaV.;Ziller,JosephW.;
Broomhall-Dillard,RandyN.R.;Evans,WilliamJ.(1997). "SynthesisandStructure of the FirstMolecular
Thulium(II)Complex:[TmI2(MeOCH2CH2OMe)3]".Angewandte ChemieInternational EditioninEnglish.
36 (12): 133–135. doi:10.1002/anie.199701331.
Winter,Mark. "Lanthanumionisationenergies".WebElementsLtd,UK.Retrieved2September2010.
Fukai,Y. (2005). The Metal-HydrogenSystem,BasicBulkProperties,2dedition.Springer.ISBN 978-3-
540-00494-3.
Pettit,L.and Powell,K.SC-database.Acadsoft.co.uk.Retrievedon15 January2012.
Molander,Gary A.; Harris,ChristinaR.(1 January 1996). "SequencingReactionswithSamarium(II)
Iodide".Chemical Reviews.96(1): 307–338. doi:10.1021/cr950019y. PMID 11848755.
Nair,Vijay;Balagopal,Lakshmi;Rajan,Roshini;Mathew,Jessy(1January2004). "RecentAdvancesin
SyntheticTransformationsMediatedbyCerium(IV) AmmoniumNitrate".Accountsof Chemical
Research.37 (1):21–30. doi:10.1021/ar030002z. PMID 14730991.
Dehnicke,Kurt;Greiner,Andreas(2003)."Unusual Complex Chemistryof Rare-EarthElements:Large
IonicRadii—SmallCoordinationNumbers".AngewandteChemie International Edition.42(12): 1340–
1354. doi:10.1002/anie.200390346. PMID 12671966.
Aspinall,HelenC.(2001). Chemistryof the f-blockelements.Amsterdam[u.a.]:Gordon&Breach.ISBN
978-9056993337.
Kobayashi,Shū;Hamada,Tomoaki;Nagayama,Satoshi;Manabe,Kei (1January2001). "Lanthanide
Trifluoromethanesulfonate-CatalyzedAsymmetricAldolReactionsinAqueousMedia".OrganicLetters.3
(2): 165–167. doi:10.1021/ol006830z. PMID 11430025.
Aspinall,HelenC.;Dwyer,JenniferL.;Greeves,Nicholas;Steiner,Alexander(1April 1999).
"Li3[Ln(binol)3]·6THF:NewAnhydrousLithiumLanthanide BinaphtholatesandTheirUse in
Enantioselective Alkyl AdditiontoAldehydes".Organometallics.18 (8):1366–1368.
doi:10.1021/om981011s.
Parac-Vogt,TatjanaN.; Pachini,Sophia;Nockemann,Peter;VanmHecke,Kristof;VanMeervelt,Luc;
Binnemans,Koen(1November2004). "Lanthanide(III) NitrobenzenesulfonatesasNew Nitration
Catalysts:The Role of the Metal and of the Counterion inthe CatalyticEfficiency".EuropeanJournalof
OrganicChemistry(Submittedmanuscript).2004 (22): 4560–4566. doi:10.1002/ejoc.200400475.
Lipstman,Sophia;Muniappan,Sankar;George,Sumod;Goldberg,Israel(1January2007). "Framework
coordinationpolymersof tetra(4-carboxyphenyl)porphyrinandlanthanideionsincrystalline solids".
DaltonTransactions(30): 3273–81. doi:10.1039/B703698A. PMID 17893773.
Bretonnière,Yann;Mazzanti,Marinella;Pécaut,Jacques;Dunand,FrankA.;Merbach,André E. (1
December2001). "Solid-State andSolutionPropertiesof the Lanthanide Complexesof aNew
Heptadentate Tripodal Ligand:A Route toGadoliniumComplexeswithanImprovedRelaxation
Efficiency".InorganicChemistry.40(26): 6737–6745. doi:10.1021/ic010591+. PMID 11735486.
Trinadhachari,GanalaNaga; Kamat,AnandGopalkrishna;Prabahar,Koilpillai Joseph;Handa,Vijay
Kumar;Srinu,Kukunuri NagaVenkataSatya;Babu,KorupoluRaghu;Sanasi,Paul Douglas(15 March
2013). "Commercial Scale Processof Galanthamine Hydrobromide InvolvingLuche Reduction:
Galanthamine ProcessInvolvingRegioselective 1,2-Reductionof α,β-UnsaturatedKetone".Organic
ProcessResearch& Development.17 (3):406–412. doi:10.1021/op300337y.
Burgess,J.(1978). Metal ionsinsolution. New York:EllisHorwood.ISBN 978-0-85312-027-8.
Nief,F.(2010). "Non-classical divalentlanthanide complexes".DaltonTrans.39 (29): 6589–6598.
doi:10.1039/c001280g. PMID 20631944.
Evans, WilliamJ.(15 September2016). "Tutorial onthe Role of Cyclopentadienyl Ligandsinthe
Discoveryof MolecularComplexesof the Rare-EarthandActinide MetalsinNew OxidationStates".
Organometallics.35(18): 3088–3100. doi:10.1021/acs.organomet.6b00466.openaccess
Palumbo,C.T.;Zivkovic,I.;Scopelliti,R.;Mazzanti,M. (2019). "MolecularComplex of Tbinthe +4
OxidationState<"(PDF).Journal of the AmericanChemicalSociety.141 (25): 9827–9831.
doi:10.1021/jacs.9b05337. PMID 31194529. S2CID 189814301.
Rice,Natalie T.;Popov,IvanA.;Russo,DominicR.;Bacsa, John; Batista,Enrique R.;Yang, Ping;Telser,
Joshua;La Pierre,HenryS.(21 August2019). "Design,Isolation,andSpectroscopicAnalysisof a
TetravalentTerbiumComplex".Journal of the AmericanChemical Society.141(33): 13222–13233.
doi:10.1021/jacs.9b06622. ISSN 0002-7863. OSTI 1558225. PMID 31352780. S2CID 207197096.
Willauer,A.R.;Palumbo,C.T.;Scopelliti,R.;Zivkovic,I.;Douair,I.;Maron, L.; Mazzanti,M. (2020).
"Stabilizationof the OxidationState +IV in Siloxide-SupportedTerbiumCompounds".Angewandte
Chemie InternationalEdition.59 (9):3549–3553. doi:10.1002/anie.201914733. PMID 31840371. S2CID
209385870.
Willauer,A.R.;Palumbo,C.T.;Fadaei-Tirani,F.;Zivkovic,I.;Douair,I.;Maron,L.; Mazzanti,M. (2020).
"Accessingthe +IV OxidationState inMolecularComplexesof Praseodymium".Journal of the American
Chemical Society.142(12): 489–493. doi:10.1021/jacs.0c01204. PMID 32134644. S2CID 212564931.
Kohlmann,H.;Yvon,K. (2000). "The crystal structuresof EuH2 and EuLiH3 by neutronpowder
diffraction".Journal of AlloysandCompounds.299 (1–2): L16–L20. doi:10.1016/S0925-8388(99)00818-
X.
Matsuoka, T.; Fujihisa,H.;Hirao,N.;Ohishi,Y.;Mitsui,T.;Masuda, R.; Seto,M.; Yoda, Y.; Shimizu,K.;
Machida, A.;Aoki,K.(2011). "Structural andValence Changesof EuropiumHydride Inducedby
Applicationof High-Pressure H2".Physical Review Letters.107 (2):025501.
Bibcode:2011PhRvL.107b5501M. doi:10.1103/PhysRevLett.107.025501. PMID 21797616.
Tellefsen,M.;Kaldis,E.;Jilek,E.(1985). "The phase diagramof the Ce-H2systemandthe CeH2-CeH3
solidsolutions".Journal of the LessCommonMetals.110 (1–2): 107–117. doi:10.1016/0022-
5088(85)90311-X.
Kumar,Pushpendra;Philip,Rosen;Mor,G.K.; Malhotra,L. K.(2002). "Influence of PalladiumOverlayer
on SwitchingBehaviourof SamariumHydride ThinFilms".Japanese Journal of AppliedPhysics.41 (Part
1, No. 10): 6023–6027. Bibcode:2002JaJAP..41.6023K. doi:10.1143/JJAP.41.6023.
Holleman,p.1942
DavidA. Atwood,ed.(19 February2013). The Rare Earth Elements:FundamentalsandApplications
(eBook).JohnWiley&Sons.ISBN 9781118632635.
Wells, A.F.(1984). Structural InorganicChemistry(5thed.).OxfordScience Publication.ISBN 978-0-19-
855370-0.
Perry,Dale L. (2011). Handbookof InorganicCompounds,SecondEdition.BocaRaton,Florida:CRC
Press.p.125. ISBN 978-1-43981462-8. Retrieved17February2014.
Ryazanov,Mikhail;Kienle,Lorenz;Simon,Arndt;Mattausch,Hansjürgen(2006)."New SynthesisRoute
to and Physical Propertiesof LanthanumMonoiodide†".InorganicChemistry.45(5): 2068–2074.
doi:10.1021/ic051834r. PMID 16499368.
Vent-Schmidt,T.;Fang,Z.; Lee,Z.;Dixon,D.;Riedel,S.(2016). "Extendingthe Row of Lanthanide
Tetrafluorides:A CombinedMatrix-IsolationandQuantum-Chemical Study".Chemistry.22(7):2406–16.
doi:10.1002/chem.201504182. hdl:2027.42/137267. PMID 26786900.
Haschke,John.M. (1979). "Chapter32:Halides".InGschneiderJr.,K.A.(ed.).Handbookonthe Physics
and Chemistryof Rare Earths vol 4. NorthHollandPublishingCompany.pp.100–110. ISBN 978-0-444-
85216-8.
Kovács,Attila(2004). "Structure and Vibrationsof Lanthanide Trihalides:AnAssessmentof
ExperimentalandTheoretical Data".Journal of Physical andChemical ReferenceData.33 (1):377.
Bibcode:2004JPCRD..33..377K.doi:10.1063/1.1595651.
Adachi,G.; Imanaka,NobuhitoandKang,ZhenChuan(eds.) (2006) Binary Rare Earth Oxides.Springer.
ISBN 1-4020-2568-8
Nasirpouri,FarzadandNogaret,Alain(eds.) (2011) NanomagnetismandSpintronics:Fabrication,
Materials,CharacterizationandApplications.WorldScientific.ISBN 9789814273053
Flahaut, Jean(1979). "Chapter31:Sulfides,SelenidesandTellurides".InGschneiderJr.,K.A.(ed.).
Handbookon the PhysicsandChemistryof Rare Earths vol 4. North HollandPublishingCompany.pp.
100–110. ISBN 978-0-444-85216-8.
Berte,Jean-Noel(2009)."Ceriumpigments".InSmith,HughM. (ed.).HighPerformance Pigments.
Wiley-VCH.ISBN 978-3-527-30204-8.
Holleman,p.1944.
Liu, Guokui andJacquier,Bernard(eds) (2006) SpectroscopicPropertiesof Rare EarthsinOptical
Materials,Springer
Sisniga,Alejandro(2012)."Chapter15". InIniewski,Krzysztof (ed.).IntegratedMicrosystems:
Electronics,Photonics,andBiotechnology.CRCPress.ISBN 978-3-527-31405-8.
Temmerman,W.M. (2009). "Chapter241: The Dual,Localizedor Band‐Like,Characterof the 4f‐States".
In GschneiderJr.,K.A.(ed.).Handbookonthe PhysicsandChemistryof Rare Earthsvol 39. Elsevier.pp.
100–110. ISBN 978-0-444-53221-3.
Dronskowski,R.(2005) Computational Chemistryof SolidState Materials:A Guide forMaterials
Scientists,Chemists,PhysicistsandOthers,Wiley,ISBN 9783527314102
Hulliger,F.(1979). "Chapter33: Rare Earth Pnictides".InGschneiderJr.,K.A.(ed.).Handbookonthe
PhysicsandChemistryof Rare Earths vol 4. North HollandPublishingCompany.pp.100–110. ISBN 978-
0-444-85216-8.
Greenwood,NormanN.;Earnshaw,Alan(1997). Chemistryof the Elements(2nded.).Butterworth-
Heinemann.pp.297–299. ISBN 978-0-08-037941-8.
Spedding,F.H.;Gschneidner,K.;Daane,A.H. (1958). "The Crystal Structuresof Some of the Rare Earth
Carbides".Journal of the AmericanChemical Society.80(17): 4499–4503. doi:10.1021/ja01550a017.
Wang, X.; Loa,I.; Syassen,K.;Kremer,R.;Simon,A.;Hanfland,M.;Ahn,K. (2005). "Structural properties
of the sesquicarbide superconductorLa2C3at highpressure".Physical ReviewB.72 (6):064520.
arXiv:cond-mat/0503597. Bibcode:2005PhRvB..72f4520W. doi:10.1103/PhysRevB.72.064520. S2CID
119330966.
Poettgen,Rainer.;Jeitschko,Wolfgang.(1991)."Scandiumcarbide,Sc3C4,a carbide withC3 units
derivedfrompropadiene".InorganicChemistry.30(3):427–431. doi:10.1021/ic00003a013.
Czekalla,Ralf;Jeitschko,Wolfgang;Hoffmann,Rolf-Dieter;Rabeneck,Helmut(1996)."Preparation,
Crystal Structure,andPropertiesof the LanthanoidCarbidesLn4C7withLn: Ho, Er, Tm, andLu" (PDF).Z.
Naturforsch.B.51 (5): 646–654. doi:10.1515/znb-1996-0505. S2CID 197308523.
Czekalla,Ralf;Hüfken,Thomas;Jeitschko,Wolfgang;Hoffmann,Rolf-Dieter;Pöttgen,Rainer(1997).
"The Rare Earth CarbidesR4C5 withR=Y, Gd, Tb,Dy, and Ho". Journal of SolidState Chemistry.132(2):
294–299. Bibcode:1997JSSCh.132..294C. doi:10.1006/jssc.1997.7461.
Atoji,Masao (1981). "Neutron-diffractionstudyof Ho2Cat 4–296 K".The Journal of Chemical Physics.
74 (3): 1893. Bibcode:1981JChPh..74.1893A.doi:10.1063/1.441280.
Atoji,Masao (1981). "Neutron-diffractionstudiesof Tb2Cand Dy2C inthe temperature range 4–296 K".
The Journal of Chemical Physics.75(3):1434. Bibcode:1981JChPh..75.1434A. doi:10.1063/1.442150.
Mori, Takao (2008). "Chapter238:Higher Borides".InGschneiderJr.,K.A. (ed.).Handbookonthe
PhysicsandChemistryof Rare Earths vol 38. NorthHolland.pp.105–174. ISBN 978-0-444-521439.
Greenwood,NormanN.;Earnshaw,Alan(1997). Chemistryof the Elements(2nded.).Butterworth-
Heinemann.p.147. ISBN 978-0-08-037941-8.
RefractoryMaterials,Volume 6-IV:1976, ed.AllenAlper,Elsevier,ISBN 0-12-053204-2
Zuckerman,J.J. (2009) InorganicReactionsandMethods,The Formationof Bondsto Group-I,-II,and-
IIIbElements,Vol.13,JohnWiley&Sons,ISBN 089573-263-7
Reimer,Ludwig(1993).Image FormationinLow-voltage ScanningElectronMicroscopy.SPIEPress.ISBN
978-0-8194-1206-5.
Cotton,S. A.(1997). "Aspectsof the lanthanide-carbonσ-bond".Coord.Chem.Rev.160: 93–127.
doi:10.1016/S0010-8545(96)01340-9.
MacDonald, R. P.(1964). "Usesfor a HolmiumOxide FilterinSpectrophotometry"(PDF).Clinical
Chemistry.10 (12): 1117–20. doi:10.1093/clinchem/10.12.1117. PMID 14240747. Archivedfromthe
original (PDF) on5 December2011. Retrieved24February2010.
"HolmiumGlassFilterforSpectrophotometerCalibration".Archivedfromthe original on14 March
2010. Retrieved6June 2009.
Levine,AlbertK.;Palilla,FrankC.(1964). "A new,highly efficientred-emittingcathodoluminescent
phosphor(YVO4:Eu) forcolortelevision".AppliedPhysicsLetters.5(6): 118.
Bibcode:1964ApPhL...5..118L.doi:10.1063/1.1723611.
Werts,M. H. V. (2005). "Making Sense of Lanthanide Luminescence".Science Progress.88(2): 101–131.
doi:10.3184/003685005783238435. PMID 16749431. S2CID 2250959.
There existothernaturallyoccurredradioactive isotopesof lanthanideswithlonghalf-lives(144Nd,
150Nd, 148Sm, 151Eu, 152Gd) but theyare notusedas chronometers.
McGill,Ian (2005) "Rare Earth Elements"inUllmann'sEncyclopediaof Industrial Chemistry,Wiley-VCH,
Weinheim.doi:10.1002/14356007.a22_607.
Haxel G, HedrickJ, OrrisJ (2006). Rare earth elementscritical resourcesforhightechnology(PDF).
Reston(VA):UnitedStatesGeological Survey.USGSFact Sheet:087‐02. Retrieved19April 2008.
LivergoodR.(2010). "Rare Earth Elements:A Wrenchinthe SupplyChain"(PDF).CenterforStrategic
and International Studies.Retrieved22October2010.
Chu, Steven(December2011). "Critical MaterialsStrategy"(PDF).UnitedStatesDepartmentof Energy.
p. 17. Retrieved23December2011.
Sørenson,ThomasJust;Faulkner,Stephen(2021)."Chapter5. Lanthanide ComplexesUsedforOptical
Imaging".Metal IonsinBio-ImagingTechniques.Springer.pp.137–156. doi:10.1515/9783110685701-
011. S2CID 233653968.
Daumann,Lena J.;Op denCamp,Huub J.M.; "The Biochemistryof Rare Earth Elements"pp299-324 in
"Metals,Microbesand Minerals:The Biogeochemical Sideof Life"(2021) pp xiv+ 341. Walterde
Gruyter,Berlin.EditorsKroneck,PeterM.H.and Sosa Torres,Martha.
Gruyter.com/document/doi/10.1515/9783110589771-010 DOI 10.1515/9783110589771-010
Bunzil,Jean-Claude;Piguet,Claude (September2005)."Takingadvantage of luminescentlanthanide
ions"(PDF).Chemical SocietyReviews.34(12): 1048–77. doi:10.1039/b406082m. PMID 16284671.
Archivedfromthe original (PDF) on18 January2013. Retrieved22December2012.
Palizban,A.A.;Sadeghi-aliabadi,H.;Abdollahpour,F.(1January2010). "Effectof ceriumlanthanide on
Helaand MCF-7 cancer cell growthinthe presence of transferring".ResearchinPharmaceutical
Sciences.5(2): 119–125. PMC 3093623. PMID 21589800.
Yu, Lingfang;Xiong,Jieqi;Guo,Ling;Miao,Lifang;Liu, Sisun;Guo,Fei (2015). "The effectsof lanthanum
chloride onproliferationandapoptosisof cervical cancercells:involvementof let-7aandmiR-34a
microRNAs".BioMetals.28(5):879–890. doi:10.1007/s10534-015-9872-6. PMID 26209160. S2CID
15715889.
Pol,A.,et al (2014). "Rare Earth MetalsAre Essential forMethanotrophicLife inVolcanicMudpots".
EnvironMicrobiol.16 (1): 255–264. doi:10.1111/1462-2920.12249. PMID 24034209.
Citedsources
Holleman,ArnoldF.;Wiberg,Egon;Wiberg,Nils(2007).LehrbuchderAnorganischenChemie (in
German) (102 ed.).Walterde Gruyter.ISBN 978-3-11-017770-1.
External links
lanthanide SparkleModel,usedinthe computational chemistryof lanthanide complexes
USGS Rare Earths StatisticsandInformation
Ana de Bettencourt-Dias:Chemistryof the lanthanidesandlanthanide-containingmaterials
Eric Scerri,2007, The periodictable:Itsstoryand itssignificance,OxfordUniversityPress,New York,
ISBN 9780195305739
vte
Periodictable
1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18
1
H
He
2
Li
Be
B
C
N
O
F
Ne
3
Na
Mg
Al
Si
P
S
Cl
Ar
4
K
Ca
Sc
Ti
V
Cr
Mn
Fe
Co
Ni
Cu
Zn
Ga
Ge
As
Se
Br
Kr
5
Rb
Sr
Y
Zr
Nb
Mo
Tc
Ru
Rh
Pd
Ag
Cd
In
Sn
Sb
Te
I
Xe
6
Cs
Ba
La
Ce
Pr
Nd
Pm
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tm
Yb
Lu
Hf
Ta
W
Re
Os
Ir
Pt
Au
Hg
Tl
Pb
Bi
Po
At
Rn
7
Fr
Ra
Ac
Th
Pa
U
Np
Pu
Am
Cm
Bk
Cf
Es
Fm
Md
No
Lr
Rf
Db
Sg
Bh
Hs
Mt
Ds
Rg
Cn
Nh
Fl
Mc
Lv
Ts
Og
s-block f-block d-block p-block
vte
Periodictable
Authoritycontrol:National librariesEditthisatWikidata
France (data)GermanyIsraelUnited StatesJapan
Categories:PeriodictableLanthanides
Navigationmenu
Notloggedin
Talk
Contributions
Create account
Log in
ArticleTalk
ReadEditViewhistory
Search
SearchWikipedia
Main page
Contents
Currentevents
Randomarticle
AboutWikipedia
Contact us
Donate
Contribute
Help
Learn to edit
Communityportal
Recentchanges
Uploadfile
Tools
What linkshere
Relatedchanges
Special pages
Permanentlink
Page information
Cite thispage
Wikidataitem
Print/export
DownloadasPDF
Printable version
In otherprojects
WikimediaCommons
Languages
‫ية‬ ‫عرب‬ ‫ال‬
Español
हिन्दी
Bahasa Indonesia
Bahasa Melayu
Русский
Tagalog
Winaray
中文
88 more
Editlinks
Thispage waslasteditedon29 March 2022, at 14:00 (UTC).
Textisavailable underthe Creative Commons Attribution-ShareAlike License 3.0;additional termsmay
apply.Byusingthissite,youagree to the Termsof Use and PrivacyPolicy.Wikipedia® isaregistered
trademarkof the WikimediaFoundation,Inc.,anon-profitorganization.
PrivacypolicyAboutWikipediaDisclaimersContactWikipediaMobile viewDevelopersStatisticsCookie
statementWikimediaFoundationPoweredbyMediaWiki

More Related Content

More from AngelDelacruz900577

ups.pptx
ups.pptxups.pptx
Teacher Binder by Slidesgo.pptx
Teacher Binder by Slidesgo.pptxTeacher Binder by Slidesgo.pptx
Teacher Binder by Slidesgo.pptx
AngelDelacruz900577
 
Economics Lesson for Pre-K by Slidesgo.pptx
Economics Lesson for Pre-K by Slidesgo.pptxEconomics Lesson for Pre-K by Slidesgo.pptx
Economics Lesson for Pre-K by Slidesgo.pptx
AngelDelacruz900577
 
printable-cute-greetings-cards-collection-for-elementary.pptx
printable-cute-greetings-cards-collection-for-elementary.pptxprintable-cute-greetings-cards-collection-for-elementary.pptx
printable-cute-greetings-cards-collection-for-elementary.pptx
AngelDelacruz900577
 
wizard-magical-birthday.pptx
wizard-magical-birthday.pptxwizard-magical-birthday.pptx
wizard-magical-birthday.pptx
AngelDelacruz900577
 
Reading Workshop by Slidesgo.pptx
Reading Workshop by Slidesgo.pptxReading Workshop by Slidesgo.pptx
Reading Workshop by Slidesgo.pptx
AngelDelacruz900577
 
Netflix template[159].pptx
Netflix template[159].pptxNetflix template[159].pptx
Netflix template[159].pptx
AngelDelacruz900577
 
gradient-timeline-infographics.pptx
gradient-timeline-infographics.pptxgradient-timeline-infographics.pptx
gradient-timeline-infographics.pptx
AngelDelacruz900577
 
Adaptive immune system.docx
Adaptive immune system.docxAdaptive immune system.docx
Adaptive immune system.docx
AngelDelacruz900577
 
metalllic.docx
metalllic.docxmetalllic.docx
metalllic.docx
AngelDelacruz900577
 
Polythiazyl.docx
Polythiazyl.docxPolythiazyl.docx
Polythiazyl.docx
AngelDelacruz900577
 
nimale husbandry.docx
nimale husbandry.docxnimale husbandry.docx
nimale husbandry.docx
AngelDelacruz900577
 
Page protected with pending changes.docx
Page protected with pending changes.docxPage protected with pending changes.docx
Page protected with pending changes.docx
AngelDelacruz900577
 
Radioactive waste.docx
Radioactive waste.docxRadioactive waste.docx
Radioactive waste.docx
AngelDelacruz900577
 
Major histocompatibility complex.docx
Major histocompatibility complex.docxMajor histocompatibility complex.docx
Major histocompatibility complex.docx
AngelDelacruz900577
 
Electrical conductor.docx
Electrical conductor.docxElectrical conductor.docx
Electrical conductor.docx
AngelDelacruz900577
 
Antigen.docx
Antigen.docxAntigen.docx
Antigen.docx
AngelDelacruz900577
 
climate change.docx
climate change.docxclimate change.docx
climate change.docx
AngelDelacruz900577
 
c
cc

More from AngelDelacruz900577 (20)

ups.pptx
ups.pptxups.pptx
ups.pptx
 
Teacher Binder by Slidesgo.pptx
Teacher Binder by Slidesgo.pptxTeacher Binder by Slidesgo.pptx
Teacher Binder by Slidesgo.pptx
 
Economics Lesson for Pre-K by Slidesgo.pptx
Economics Lesson for Pre-K by Slidesgo.pptxEconomics Lesson for Pre-K by Slidesgo.pptx
Economics Lesson for Pre-K by Slidesgo.pptx
 
printable-cute-greetings-cards-collection-for-elementary.pptx
printable-cute-greetings-cards-collection-for-elementary.pptxprintable-cute-greetings-cards-collection-for-elementary.pptx
printable-cute-greetings-cards-collection-for-elementary.pptx
 
wizard-magical-birthday.pptx
wizard-magical-birthday.pptxwizard-magical-birthday.pptx
wizard-magical-birthday.pptx
 
Reading Workshop by Slidesgo.pptx
Reading Workshop by Slidesgo.pptxReading Workshop by Slidesgo.pptx
Reading Workshop by Slidesgo.pptx
 
Netflix template[159].pptx
Netflix template[159].pptxNetflix template[159].pptx
Netflix template[159].pptx
 
gradient-timeline-infographics.pptx
gradient-timeline-infographics.pptxgradient-timeline-infographics.pptx
gradient-timeline-infographics.pptx
 
Adaptive immune system.docx
Adaptive immune system.docxAdaptive immune system.docx
Adaptive immune system.docx
 
metalllic.docx
metalllic.docxmetalllic.docx
metalllic.docx
 
T.docx
T.docxT.docx
T.docx
 
Polythiazyl.docx
Polythiazyl.docxPolythiazyl.docx
Polythiazyl.docx
 
nimale husbandry.docx
nimale husbandry.docxnimale husbandry.docx
nimale husbandry.docx
 
Page protected with pending changes.docx
Page protected with pending changes.docxPage protected with pending changes.docx
Page protected with pending changes.docx
 
Radioactive waste.docx
Radioactive waste.docxRadioactive waste.docx
Radioactive waste.docx
 
Major histocompatibility complex.docx
Major histocompatibility complex.docxMajor histocompatibility complex.docx
Major histocompatibility complex.docx
 
Electrical conductor.docx
Electrical conductor.docxElectrical conductor.docx
Electrical conductor.docx
 
Antigen.docx
Antigen.docxAntigen.docx
Antigen.docx
 
climate change.docx
climate change.docxclimate change.docx
climate change.docx
 
c
cc
c
 

Recently uploaded

The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
Jisc
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
vaibhavrinwa19
 
Honest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptxHonest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptx
timhan337
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
Pavel ( NSTU)
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
BhavyaRajput3
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
Balvir Singh
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
Nguyen Thanh Tu Collection
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
SACHIN R KONDAGURI
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
joachimlavalley1
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
beazzy04
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
Peter Windle
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
DhatriParmar
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
TechSoup
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
Atul Kumar Singh
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
Tamralipta Mahavidyalaya
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
camakaiclarkmusic
 

Recently uploaded (20)

The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
 
Honest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptxHonest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptx
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
 

Lanthanide.docx

  • 1. Lanthanide From Wikipedia,the free encyclopedia Jumpto navigationJumptosearch Lanthanidesinthe periodictable Hydrogen Helium Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon Potassium Calcium Scandium Titanium Vanadium Chromium
  • 5. Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson Part of a seriesonthe Periodictable Periodictable forms Periodictable history Setsof elements By periodictable structure By metallicclassification Metals alkalialkaline earth transitionpost-transition lanthanideactinide (superactinide) Metalloids dividingmetalsandnonmetals Nonmetals unclassifiednonmetal halogennoblegas By othercharacteristics Elements List of chemical elements Propertiesof elements Data pagesfor elements CategoryChemistryPortal vte
  • 6. The lanthanide (/ˈlænθənaɪd/) orlanthanoid(/ˈlænθənɔɪd/) seriesof chemical elements[1] comprises the 15 metallicchemical elementswithatomicnumbers57–71, from lanthanumthrough lutetium.[2][3][4] These elements,alongwiththe chemicallysimilarelementsscandiumandyttrium,are oftencollectivelyknownasthe rare-earthelementsorrare-earthmetals. The informal chemical symbol Lnisused ingeneral discussionsof lanthanidechemistrytorefertoany lanthanide.Allbutone of the lanthanidesare f-blockelements,correspondingtothe fillingof the 4f electronshell.There issome disputeonwhetherlanthanumorlutetiumisad-blockelement,but lutetiumisusuallyconsideredsobythose whostudythe matter;[5][6] itisincludeddue toitschemical similaritieswiththe other14.[7] All lanthanide elementsformtrivalentcations,Ln3+,whose chemistry islargelydeterminedbythe ionicradius,whichdecreasessteadilyfromlanthanumtolutetium. These elementsare calledlanthanidesbecausethe elementsinthe seriesare chemicallysimilarto lanthanum.Since "lanthanide"means"likelanthanum",ithasbeenarguedthatlanthanumcannot logicallybe alanthanide,butthe International Unionof Pure andAppliedChemistry(IUPAC) acknowledgesitsinclusionbasedoncommonusage.[8] In presentationsof the periodictable,the f-blockelementsare customarilyshownastwoadditional rowsbelowthe mainbodyof the table,[2] Thisconventionisentirelyamatterof aestheticsand formattingpracticality;ararelyusedwide-formattedperiodictable insertsthe 4f and5f seriesintheir properplaces,asparts of the table'ssixthandseventhrows (periods). The 1985 IUPAC"RedBook"(p. 45) recommendsthat"lanthanoid"isusedratherthan"lanthanide",as the ending"-ide"normallyindicatesanegative ion.However,owingtowide currentuse,"lanthanide"is still allowed. vte Lanthanides Lan-thanum 57 La 138.91 Cerium 58
  • 9. 1 Etymology 2 Physical propertiesof the elements 3 Chemistryand compounds 3.1 Effectof 4f orbitals 3.2 Lanthanide oxidationstates 3.3 Separationof lanthanides 3.4 Coordinationchemistryandcatalysis 3.4.1 Ln(III) compounds 3.4.2 Ln(II) andLn(IV) compounds 3.4.3 Hydrides 3.4.4 Halides 3.4.5 Oxidesandhydroxides 3.4.6 Chalcogenides(S,Se,Te) 3.4.7 Pnictides(group15) 3.4.8 Carbides 3.4.9 Borides 3.4.10 Organometalliccompounds 4 Physical properties 4.1 Magneticand spectroscopic 5 Occurrence 6 Applications 6.1 Industrial 6.2 Life science 6.3 Possible medical uses 7 Biological effects 8 See also 9 References 10 Citedsources 11 External links
  • 10. Etymology The term "lanthanide"wasintroducedbyVictorGoldschmidtin1925.[9][10] Despite theirabundance, the technical term"lanthanides"isinterpretedtoreflectasense of elusivenessonthe partof these elements,asitcomesfromthe Greekλανθανειν (lanthanein),"tolie hidden".[11] Ratherthan referringtotheirnatural abundance,the wordreflectstheirpropertyof "hiding"behind each otherinminerals.The termderivesfromlanthanum, firstdiscoveredin1838, at that time a so- callednewrare-earthelement"lyinghidden"or"escapingnotice"inaceriummineral,[12] anditis an ironythat lanthanumwaslateridentifiedasthe firstinan entire seriesof chemicallysimilarelements and gave itsname to the whole series. Togetherwiththe twoelementsatthe topof group 3, scandiumand yttrium, the trivial name "rare earths"issometimesusedtodescribe all the lanthanides;adefinitionof rare earthsincludingthe group 3, lanthanide,andactinide elementsisalsooccasionallyseen,andrarelySc+ Y + lanthanides+ thorium.[citationneeded] The "earth"inthe name "rare earths"arisesfromthe mineralsfromwhich theywere isolated,whichwere uncommonoxide-typeminerals.However,these elementsare neither rare inabundance nor "earths"(anobsolete termforwater-insoluble stronglybasicoxidesof electropositive metalsincapableof beingsmeltedintometal usinglate 18thcenturytechnology).Group 2 isknownas the alkaline earthelementsformuchthe same reason. The "rare" in the "rare earths"name hasmuch more to do withthe difficultyof separatingouteachof the individual lanthanide elementsthanscarcityof any of them.By wayof the Greek"dysprositos"for "hard to getat," element66,dysprosiumwassimilarlynamed;lanthanumitselfisnamedafteraword for "hidden."The elements57(La) to 71 (Lu) are verysimilarchemicallytoone anotherandfrequently occur togetherinnature,oftenanywhere fromthree toall 15 of the lanthanides(alongwithyttriumasa 16th) occur inmineralssuchassamarskite,monazite andmanyotherswhichcanalsocontainthe other twogroup 3 elementsaswell asthoriumandoccasionallyotheractinidesaswell.[13] A majorityof the rare earthswere discoveredatthe same mine inYtterby,Swedenandfourof themare named(yttrium, ytterbium,erbium,terbium) afterthe cityanda fifth*(holmium) afterStockholm;scandiumisnamed afterScandinavia,thuliumafterthe oldname Thule,andthe immediately-followinggroup4element (number72) hafniumisnamedforthe Latinname of the city of Copenhagen.[13] Samarskite (amineral whichisthe source of the name of the elementsamarium) andothersimilar mineralsinparticularalsohave these elementsinassociationwiththe nearbymetalstantalum, niobium, hafnium,zirconium,vanadium,andtitanium, fromgroup4and group 5 ofteninsimilaroxidationstates. Monazite isa phosphate of numerousgroup3 + lanthanide +actinide metalsandminedespeciallyfor the thoriumcontentandspecificrare earthsespeciallylanthanum,yttriumandcerium.Ceriumand lanthanumaswell asothermembersof the rare earthseriesare oftenproducedasa metal called mischmetal containingavariable mixtureof these elementswithceriumandlanthanumpredominating;
  • 11. it hasdirectusessuch as lighterflintsandothersparksourceswhichdonotrequire extensive purificationof one of these metals.[13] There are alsorare earth-bearingmineralsbasedongroup2 elementssuchasyttrocalcite,yttrocerite, yttrofluorite whichvaryincontentof yttrium, cerium, andlanthanuminaparticularas well asvarying amountsof the others.[14] Otherlanthanide/rare earthmineralsincludebastnäsite,florencite, chernovite,perovskite,xenotime,cerite,gadolinite,lanthanite,fergusonite,polycrase,blomstrandine, håleniusite,miserite,loparite,lepersonnite,euxenite,all of whichhave arange of relative element concentrationandmayhave the symbol of a predominatingone suchasmonazite-ce;group3elements do notoccur as native elementmineralsinthe fashionof gold,silver,tantalumandmanyotherson earthbut may inlunarregolith.Veryrare cerium, lanthanum, andpresumablyotherlanthanide/group3 halides,feldsparsandgarnetsare alsoknowntoexist.[15] All of thisis the resultof the orderin whichthe electronshellsof these elementsare filled—the outermosthasthe same configurationforall of them, anda deepershellisprogressivelyfilledwith electronsasthe atomicnumberincreasesfrom57 towards71.[13] For manyyears,mixturesof more than one rare earthwere consideredtobe single elements,suchasneodymiumandpraseodymium beingthoughttobe the single elementdidymiumandsoon.[16] Verysmall differencesinsolubilityare usedinsolventandion-exchange purificationmethodsforthese elementswhichrequireagreatdeal of repeatingtogeta purifiedmetal.The refinedmetalsandtheircompoundshave subtle andstark differencesamongstthemselvesinelectronic,electrical,optical,andmagneticpropertieswhichaccount for theirmanyniche uses.[13] By wayof examplesof the termmeaningthe above considerationsratherthantheirscarcity,ceriumis the 26th mostabundantelementinthe Earth'scrust and more abundantthan copper,[13] neodymium ismore abundantthangold;thulium(the secondleastcommonnaturallyoccurringlanthanide)ismore abundantthan iodine,[17] whichisitself commonenoughforbiologytohave evolvedcritical usages thereof,andeventhe lone radioactive elementinthe series,promethium, ismore commonthanthe tworarest naturallyoccurringelements,franciumandastatine,combined. Physical propertiesof the elements Chemical element La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Atomicnumber57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Image Lanthanum-2.jpg Cerium2.jpg Praseodymium.jpg Neodymium2.jpg Samarium-2.jpgEuropium.jpg Gadolinium-4.jpg Terbium-2.jpg Dy chips.jpg
  • 12. Holmium2.jpg Erbium-crop.jpgThuliumsublimeddendriticand1cm3 cube.jpg Ytterbium-3.jpg Lutetiumsublimeddendriticand1cm3 cube.jpg Density(g/cm3)6.162 6.770 6.77 7.01 7.26 7.52 5.244 7.90 8.23 8.540 8.79 9.066 9.32 6.90 9.841 Meltingpoint(°C) 920 795 935 1024 1042 1072 826 1312 1356 1407 1461 1529 1545 824 1652 Boilingpoint(°C) 3464 3443 3520 3074 3000 1794 1529 3273 3230 2567 2720 2868 1950 1196 3402 Atomicelectronconfiguration (gasphase)* 5d1 4f15d1 4f3 4f4 4f5 4f6 4f7 4f75d1 4f9 4f10 4f11 4f12 4f13 4f14 4f145d1 Metal lattice (RT) dhcp fcc dhcp dhcp dhcp ** bcc hcp hcp hcp hcp hcp hcp fcc hcp Metallicradius(pm) 162 181.8 182.4 181.4 183.4 180.4 208.4 180.4 177.3 178.1 176.2 176.1 175.9 193.3 173.8 Resistivityat25 °C (μΩ·cm) 57–80 20 °C 73 68 64 88 90 134 114 57 87 87 79 29 79 Magneticsusceptibility χmol /10−6(cm3·mol−1)+95.9 +2500 (β) +5530(α) +5930 (α) +1278(α) +30900 +185000 (350 K) +170000 (α) +98000 +72900 +48000 +24700 +67 (β) +183 * BetweeninitialXe andfinal 6s2 electronicshells ** Sm has a close packedstructure like mostof the lanthanidesbuthasanunusual 9 layerrepeat GschneiderandDaane (1988) attribute the trendinmeltingpointwhichincreasesacrossthe series, (lanthanum(920 °C) – lutetium(1622 °C)) to the extentof hybridizationof the 6s,5d, and 4f orbitals. The hybridizationisbelievedtobe at itsgreatestforcerium, whichhasthe lowestmeltingpointof all, 795 °C.[18] The lanthanide metalsare soft;theirhardnessincreasesacrossthe series.[8] Europium standsout, as ithas the lowestdensityinthe seriesat5.24 g/cm3 and the largestmetallicradiusinthe seriesat208.4 pm.It can be comparedto barium, whichhasa metallicradiusof 222 pm.It is believed that the metal containsthe largerEu2+ ionand that there are onlytwoelectronsinthe conduction band.Ytterbiumalsohasa large metallicradius,andasimilarexplanationissuggested.[8] The resistivitiesof the lanthanidemetalsare relativelyhigh,rangingfrom29 to 134 μΩ·cm.These valuescan
  • 13. be comparedto a good conductorsuch as aluminium, whichhasa resistivityof 2.655 μΩ·cm. Withthe exceptionsof La,Yb,and Lu (whichhave nounpairedf electrons),the lanthanidesare strongly paramagnetic,andthisisreflectedintheirmagneticsusceptibilities.Gadoliniumbecomesferromagnetic at below16 °C (Curie point).The otherheavierlanthanides –terbium, dysprosium,holmium, erbium, thulium,andytterbium –become ferromagneticatmuchlowertemperatures.[19] Chemistryandcompounds Chemical element La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Atomicnumber57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Ln3+ electronconfiguration*[20] 4f0 4f1 4f2 4f3 4f4 4f5 4f6 4f7 4f8 4f9 4f10 4f11 4f12 4f13 4f14 Ln3+ radius(pm)[8] 103 102 99 98.3 97 95.8 94.7 93.8 92.3 91.2 90.1 89 88 86.8 86.1 Ln4+ ioncolor inaqueoussolution[21] — Orange-yellow Yellow Blue-violet — — — — Red-brown Orange-yellow — — — — — Ln3+ ioncolor inaqueoussolution[20] Colorless Colorless Green Violet Pink Pale yellow Colorless Colorless V.pale pink Pale yellow Yellow Rose Pale green Colorless Colorless Ln2+ ioncolor inaqueoussolution[8] — — — — — Bloodred Colorless — — — — — Violet-red Yellow-green — * Notincludinginitial [Xe] core f → f transitionsare symmetryforbidden(orLaporte-forbidden),whichisalsotrue of transitionmetals. However,transitionmetalsare able touse vibroniccouplingtobreakthisrule.The valence orbitalsin lanthanidesare almostentirelynon-bondingandassuch little effective vibroniccouplingtakes,hence the spectra fromf → f transitionsare muchweakerandnarrowerthan those fromd → d transitions.In general thismakesthe colorsof lanthanide complexesfarfainterthanthose of transitionmetal complexes. Approximate colorsof lanthanide ionsinaqueoussolution[8][22][23]
  • 14. Oxidationstate 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 +2 Sm2+ Eu2+ Tm2+ Yb2+ +3 La3+ Ce3+ Pr3+ Nd3+ Pm3+ Sm3+ Eu3+ Gd3+ Tb3+ Dy3+ Ho3+ Er3+ Tm3+ Yb3+ Lu3+ +4 Ce4+ Pr4+ Nd4+ Tb4+ Dy4+ Effectof 4f orbitals Goingacross the lanthanidesinthe periodictable,the 4f orbitalsare usuallybeingfilled.The effectof the 4f orbitalson the chemistryof the lanthanidesisprofoundandisthe factorthat distinguishesthem fromthe transition metals.There are seven4f orbitals,andthere are twodifferentwaysinwhichthey are depicted:asa "cubicset"or as a general set.The cubicsetis fz3,fxz2,fyz2, fxyz,fz(x2−y2), fx(x2−3y2) andfy(3x2−y2).The 4f orbitalspenetrate the [Xe] core andare isolated,andthustheydonot participate inbonding.Thisexplainswhycrystal fieldeffectsare small andwhytheydonot formπ bonds.[20] Asthere are seven4f orbitals,the numberof unpairedelectronscanbe ashighas 7, which givesrise tothe large magneticmomentsobservedforlanthanidecompounds. Measuringthe magneticmomentcanbe usedto investigate the 4f electronconfiguration,andthisisa useful tool inprovidinganinsightintothe chemical bonding.[24] The lanthanide contraction,i.e.the reductioninsize of the Ln3+ ionfromLa3+ (103 pm) to Lu3+ (86.1 pm),is oftenexplainedbythe poor shieldingof the 5s and 5p electronsbythe 4f electrons.[20] Lanthanide oxides:clockwise fromtopcenter:praseodymium, cerium, lanthanum,neodymium, samariumand gadolinium. The electronicstructure of the lanthanide elements,withminorexceptions,is[Xe]6s24fn.The chemistry of the lanthanidesisdominatedbythe +3 oxidationstate,andinLnIIIcompoundsthe 6selectronsand (usually) one 4f electronare lostandthe ionshave the configuration[Xe]4fm.[25] All the lanthanide elementsexhibitthe oxidationstate +3.In addition,Ce3+can lose itssingle f electrontoformCe4+ with the stable electronicconfigurationof xenon.Also,Eu3+can gain an electrontoformEu2+ withthe f7 configurationthathasthe extrastabilityof a half-filledshell.OtherthanCe(IV) andEu(II),none of the lanthanidesare stable inoxidationstatesotherthan+3 in aqueoussolution. In termsof reductionpotentials,the Ln0/3+ couplesare nearlythe same forall lanthanides,ranging from−1.99 (forEu) to −2.35 V (forPr).Thus these metalsare highlyreducing,withreducingpower similartoalkaline earthmetalssuchasMg (−2.36 V).[8]
  • 15. Lanthanide oxidationstates Ionizationenergiesandreductionpotentialsof the elements The ionizationenergiesforthe lanthanidescanbe comparedwithaluminium.Inaluminiumthe sumof the firstthree ionizationenergiesis5139 kJ·mol−1,whereasthe lanthanides fall inthe range 3455 – 4186 kJ·mol−1.Thiscorrelateswiththe highlyreactivenature of the lanthanides. The sum of the firsttwoionizationenergiesforeuropium,1632 kJ·mol−1can be comparedwiththatof barium1468.1 kJ·mol−1and europium'sthird ionizationenergyisthe highestof the lanthanides.The sumof the firsttwo ionizationenergiesforytterbiumare the secondlowestinthe seriesanditsthird ionizationenergyisthe secondhighest.The highthirdionizationenergyforEuand Yb correlate withthe half filling4f7andcomplete filling4f14 of the 4f subshell,andthe stabilityaffordedbysuch configurationsdue toexchange energy.[20] Europiumandytterbiumformsaltlike compoundswith Eu2+ and Yb2+, for example the saltlike dihydrides.[26] Botheuropiumandytterbiumdissolve inliquid ammoniaformingsolutionsof Ln2+(NH3)x againdemonstratingtheirsimilaritiestothe alkalineearth metals.[8] The relative ease withwhichthe 4thelectroncanbe removedinceriumand(toa lesser extent praseodymium)indicateswhyCe(IV)andPr(IV) compoundscanbe formed,forexample CeO2isformed rather thanCe2O3 whenceriumreactswithoxygen. Separationof lanthanides The similarityinionicradiusbetweenadjacentlanthanideelementsmakes itdifficulttoseparate them fromeach otherinnaturallyoccurringoresand othermixtures.Historically,the verylaboriousprocesses of cascadingand fractional crystallizationwere used.Because the lanthanideionshave slightlydifferent radii,the lattice energyof theirsaltsandhydrationenergiesof the ionswill be slightlydifferent,leading to a small difference insolubility.Saltsof the formulaLn(NO3)3·2NH4NO3·4H2Ocan be used. Industrially,the elementsare separatedfromeachotherbysolventextraction.Typicallyanaqueous solutionof nitratesisextractedintokerosenecontainingtri-n-butylphosphate.The strengthof the complexesformedincreasesasthe ionicradiusdecreases,sosolubilityinthe organicphase increases. Complete separationcanbe achievedcontinuouslybyuse of countercurrentexchangemethods.The elementscanalsobe separatedbyion-exchangechromatography,makinguse of the factthat the stabilityconstantforformationof EDTA complexesincreasesforlogK≈ 15.5 for[La(EDTA)]−to logK ≈ 19.8 for [Lu(EDTA)]−.[8][27] Coordinationchemistryandcatalysis
  • 16. Wheninthe formof coordinationcomplexes,lanthanidesexistoverwhelminglyintheir+3oxidation state,althoughparticularlystable 4f configurationscanalso give +4 (Ce,Tb) or +2 (Eu, Yb) ions.All of these formsare stronglyelectropositive andthuslanthanide ionsare hardLewisacids.The oxidation statesare alsoverystable;withthe exceptionsof SmI2[28] andcerium(IV) salts,[29] lanthanidesare not usedforredox chemistry.4f electronshave ahighprobabilityof beingfoundclose tothe nucleusand are thusstronglyaffectedasthe nuclearcharge increasesacrossthe series;thisresultsina correspondingdecreaseinionicradii referredtoasthe lanthanide contraction. The lowprobabilityof the 4f electronsexistingatthe outerregionof the atom or ionpermitslittle effectiveoverlapbetweenthe orbitalsof alanthanide ionandanybindingligand.Thuslanthanide complexestypicallyhave little ornocovalentcharacterand are not influencedbyorbital geometries. The lack of orbital interactionalsomeansthatvaryingthe metal typicallyhaslittleeffectonthe complex (otherthansize),especiallywhencomparedtotransitionmetals.Complexes are heldtogetherby weakerelectrostaticforceswhichare omni-directionalandthusthe ligandsalone dictate the symmetry and coordinationof complexes.Stericfactorstherefore dominate,withcoordinative saturationof the metal beingbalancedagainst inter-ligandrepulsion.Thisresultsinadiverse range of coordination geometries,manyof whichare irregular,[30] andalsomanifestsitself inthe highlyfluxional nature of the complexes.Asthere isnoenergeticreasontobe lockedintoasingle geometry,rapidintramolecular and intermolecularligandexchangewilltake place.Thistypicallyresultsincomplexesthatrapidly fluctuate betweenall possible configurations. Many of these featuresmake lanthanidecomplexeseffectivecatalysts.HardLewis acidsare able to polarise bondsuponcoordinationandthusalterthe electrophilicityof compounds,withaclassic example beingthe Luche reduction.The large size of the ionscoupledwiththeirlabile ionicbonding allowsevenbulkycoordinatingspecies tobindanddissociate rapidly,resultinginveryhighturnover rates;thus excellentyieldscanoftenbe achievedwithloadingsof onlyafew mol%.[31] The lackof orbital interactionscombinedwiththe lanthanide contractionmeansthatthe lanthanideschange insize across the seriesbutthat theirchemistryremainsmuchthe same.Thisallowsforeasytuningof the stericenvironmentsandexamplesexistwhere thishasbeenusedtoimprove the catalyticactivityof the complex[32][33][34] andchange the nuclearityof metal clusters.[35][36] Despite this,the use of lanthanidecoordinationcomplexesashomogeneouscatalystsislargely restrictedtothe laboratoryand there are currentlyfew examplesthembeingusedonanindustrial scale.[37] Lanthanidesexistinmanyformsotherthancoordinationcomplexesandmanyof these are industriallyuseful.Inparticularlanthanidemetal oxidesare usedasheterogeneouscatalystsinvarious industrial processes. Ln(III) compounds
  • 17. The trivalentlanthanidesmostlyformionicsalts.The trivalentionsare hardacceptorsand formmore stable complexeswithoxygen-donorligandsthanwithnitrogen-donorligands.The largerionsare 9- coordinate inaqueoussolution,[Ln(H2O)9]3+butthe smallerionsare 8-coordinate,[Ln(H2O)8]3+. There issome evidence thatthe laterlanthanideshave more watermoleculesinthe second coordinationsphere.[38] Complexationwithmonodentateligandsisgenerallyweakbecauseitis difficulttodisplace watermoleculesfromthe firstcoordinationsphere.Strongercomplexesare formed withchelatingligandsbecause of the chelate effect,suchasthe tetra-anionderivedfrom1,4,7,10- tetraazacyclododecane-1,4,7,10-tetraaceticacid(DOTA). Samplesof lanthanide nitratesintheirhexahydrateform.Fromlefttoright:La, Ce,Pr, Nd,Sm, Eu, Gd, Tb, Dy,Ho, Er, Tm,Yb, Lu. Ln(II) andLn(IV) compounds The most commondivalentderivativesof the lanthanidesare forEu(II),whichachievesafavorable f7 configuration.Divalenthalidederivativesare knownforall of the lanthanides.Theyare either conventional saltsorare Ln(III) "electride"-like salts.The simple saltsincludeYbI2,EuI2,and SmI2. The electride-like salts,describedasLn3+, 2I−, e−, include LaI2,CeI2 andGdI2. Many of the iodidesform soluble complexeswithethers,e.g.TmI2(dimethoxyethane)3.[39] Samarium(II) iodide isauseful reducingagent.Ln(II) complexescanbe synthesizedbytransmetalationreactions.The normal range of oxidationstatescanbe expandedviathe use of stericallybulkycyclopentadienyl ligands,inthisway manylanthanidescanbe isolatedasLn(II) compounds.[40] Ce(IV) incericammoniumnitrate isauseful oxidizingagent.The Ce(IV) isthe exceptionowingtothe tendencytoforman unfilledf shell.Otherwise tetravalentlanthanidesare rare.However,recently Tb(IV)[41][42][43] andPr(IV)[44] complexeshave beenshowntoexist. Hydrides Chemical element La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Lanthanide metalsreactexothermicallywithhydrogento formLnH2,dihydrides.[26] Withthe exception of Eu andYb, whichresemble the BaandCa hydrides(non-conducting,transparentsalt-like compounds),theyformblackpyrophoric,conductingcompounds[49] where the metalsub-lattice isface centredcubicand the H atomsoccupy tetrahedral sites.[26] Furtherhydrogenationproducesa trihydride whichisnon-stoichiometric,non-conducting,more saltlike.The formationof trihydride is associatedwithandincrease in8–10% volume andthisislinkedtogreaterlocalizationof charge onthe hydrogenatomswhichbecome more anionic(H−hydride anion) incharacter.[26]
  • 18. Halides Lanthanide halides[8][50][51][49] The onlytetrahalidesknownare the tetrafluoridesof cerium, praseodymium,terbium, neodymiumand dysprosium,the lasttwoknownonlyundermatrix isolationconditions.[8][54] All of the lanthanides formtrihalideswithfluorine,chlorine,bromineandiodine.Theyare all highmeltingandpredominantly ionicinnature.[8] The fluoridesare onlyslightlysoluble inwaterandare not sensitive toair,andthis contrastswiththe other halideswhichare airsensitive,readilysoluble inwaterandreactat high temperature toformoxohalides.[55] The trihalideswere importantaspure metal can be preparedfromthem.[8] Inthe gas phase the trihalidesare planarorapproximatelyplanar,the lighterlanthanideshave alower% of dimers,the heavierlanthanidesahigherproportion.The dimershave asimilarstructure toAl2Cl6.[56] Some of the dihalidesare conducting while the restare insulators.The conductingformscanbe consideredasLnIIIelectridecompoundswhere the electronisdelocalisedintoaconductionband,Ln3+ (X−)2(e−).All of the diodideshave relativelyshortmetal-metalseparations.[50] The CuTi2structure of the lanthanum,ceriumandpraseodymiumdiodidesalongwithHP-NdI2contain44 netsof metal and iodine atomswithshortmetal-metal bonds(393-386 La-Pr).[50] these compoundsshouldbe considered to be two-dimensional metals(two-dimensional in the same waythatgraphite is).The salt-like dihalides include those of Eu,Dy,Tm, and Yb. The formationof a relativelystable+2oxidationstate forEu andYb isusuallyexplainedbythe stability(exchange energy) of half filled(f7) andfullyfilled f14.GdI2 possessesthe layeredMoS2structure,isferromagneticandexhibitscolossal magnetoresistance[50] The sesquihalidesLn2X3andthe Ln7I12 compoundslistedinthe table containmetal clusters,discrete Ln6I12 clustersinLn7I12 and condensedclustersformingchainsinthe sesquihalides.Scandiumformsa similarclustercompoundwithchlorine,Sc7Cl12[8] Unlike manytransitionmetal clustersthese lanthanide clustersdonothave strongmetal-metal interactionsandthisisdue to the low numberof valence electronsinvolved,butinsteadare stabilisedbythe surroundinghalogenatoms.[50] LaI is the onlyknownmonohalide.Preparedfromthe reactionof LaI3and La metal,ithasa NiAstype structure and can be formulatedLa3+ (I−)(e−)2.[53] Oxidesandhydroxides All of the lanthanidesformsesquioxides,Ln2O3.The lighter/largerlanthanidesadoptahexagonal 7- coordinate structure while the heavier/smalleronesadoptacubic6-coordinate "C-M2O3" structure.[51] All of the sesquioxidesare basic,and absorbwaterand carbon dioxide fromairtoformcarbonates, hydroxidesandhydroxycarbonates.[57] Theydissolve inacidstoformsalts.[20]
  • 19. Ceriumformsa stoichiometricdioxide,CeO2,where ceriumhasanoxidationstate of +4. CeO2 isbasic and dissolveswithdifficultyinacidtoformCe4+ solutions,fromwhichCeIV saltscanbe isolated,for example the hydratednitrateCe(NO3)4.5H2O.CeO2isusedas an oxidationcatalystincatalytic converters.[20] Praseodymiumandterbiumformnon-stoichiometricoxidescontainingLnIV,[20] althoughmore extreme reactionconditionscanproduce stoichiometric(ornearstoichiometric) PrO2 and TbO2.[8] Europiumandytterbiumformsalt-like monoxides,EuOandYbO, whichhave a rock saltstructure.[20] EuO isferromagneticatlowtemperatures,[8] andisa semiconductorwithpossible applicationsin spintronics.[58] A mixedEuII/EuIIIoxide Eu3O4can be producedbyreducingEu2O3 in a streamof hydrogen.[57] Neodymiumandsamariumalsoformmonoxides,butthese are shiny conducting solids,[8] althoughthe existence of samariummonoxideisconsidereddubious.[57] All of the lanthanidesformhydroxides,Ln(OH)3.Withthe exceptionof lutetiumhydroxide,whichhasa cubic structure,theyhave the hexagonal UCl3structure.[57] The hydroxidescanbe precipitatedfrom solutionsof LnIII.[20] Theycanalsobe formedbythe reactionof the sesquioxide,Ln2O3,withwater, but althoughthisreactionisthermodynamicallyfavorable itiskineticallyslowforthe heaviermembers of the series.[57] Fajans'rulesindicate thatthe smallerLn3+ionswill be more polarizingandtheirsalts correspondinglylessionic.The hydroxidesof the heavierlanthanidesbecomelessbasic,forexample Yb(OH)3and Lu(OH)3 are still basichydroxidesbutwill dissolve inhotconcentratedNaOH.[8] Chalcogenides(S,Se,Te) All of the lanthanidesformLn2Q3 (Q=S, Se,Te).[20] The sesquisulfidescanbe producedbyreactionof the elementsor(withthe exceptionof Eu2S3) sulfidizingthe oxide(Ln2O3) withH2S.[20] The sesquisulfides,Ln2S3generallylosesulfurwhenheatedandcanforma range of compositionsbetween Ln2S3 and Ln3S4. The sesquisulfidesare insulatorsbutsome of the Ln3S4 are metallicconductors(e.g. Ce3S4) formulated(Ln3+)3(S2−)4(e−),while others(e.g.Eu3S4andSm3S4) are semiconductors.[20] Structurallythe sesquisulfidesadoptstructuresthatvaryaccordingto the size of the Ln metal.The lighterandlargerlanthanidesfavoring7-coordinatemetal atoms,the heaviestandsmallestlanthanides (Yb andLu) favoring6 coordinationandthe reststructureswitha mixture of 6 and 7 coordination.[20] Polymorphismiscommonamongstthe sesquisulfides.[59] The colorsof the sesquisulfidesvarymetal to metal anddependonthe polymorphicform. The colorsof the γ-sesquisulfidesare La2S3, white/yellow; Ce2S3, dark red;Pr2S3, green;Nd2S3, lightgreen;Gd2S3,sand; Tb2S3, lightyellow andDy2S3, orange.[60] The shade of γ-Ce2S3can be variedbydopingwithNaor Ca withhuesrangingfromdark redto yellow,[50][60] andCe2S3 basedpigmentsare usedcommerciallyandare seenaslow toxicity substitutesforcadmiumbasedpigments.[60]
  • 20. All of the lanthanidesformmonochalcogenides,LnQ,(Q=S,Se,Te).[20] The majorityof the monochalcogenidesare conducting,indicatingaformulationLnIIIQ2−(e-) wherethe electronisin conductionbands.The exceptionsare SmQ,EuQ andYbQ whichare semiconductorsorinsulatorsbut exhibitapressure inducedtransitiontoa conductingstate.[59] CompoundsLnQ2are knownbutthese do notcontainLnIV butare LnIIIcompoundscontainingpolychalcogenide anions.[61] OxysulfidesLn2O2Sare well known,theyall have the same structure with7-coordinate Lnatoms,and3 sulfurand4 oxygenatomsasnear neighbours.[62] Dopingthese withotherlanthanide elements producesphosphors.Asanexample,gadoliniumoxysulfide,Gd2O2SdopedwithTb3+ producesvisible photonswhenirradiatedwithhighenergyX-raysandisusedasa scintillatorinflatpanel detectors.[63] Whenmischmetal,analloyof lanthanidemetals,isaddedtomoltensteel toremove oxygenandsulfur, stable oxysulfidesare producedthatformanimmiscible solid.[20] Pnictides(group15) All of the lanthanidesformamononitride,LnN,withthe rocksaltstructure.The mononitrideshave attractedinterestbecause of theirunusual physical properties.SmN andEuN are reportedasbeing"half metals".[50] NdN,GdN,TbN andDyN are ferromagnetic,SmN isantiferromagnetic.[64] Applicationsin the fieldof spintronics are beinginvestigated.[58] CeN isunusual asitis a metallicconductor, contrastingwiththe othernitridesalsowiththe otherceriumpnictides.A simple descriptionisCe4+N3− (e–) butthe interatomicdistancesare a bettermatchfor the trivalentstate ratherthanfor the tetravalentstate.A numberof differentexplanationshave beenoffered.[65] The nitridescanbe preparedbythe reactionof lanthanummetalswithnitrogen.Somenitrideisproducedalongwiththe oxide,whenlanthanummetalsare ignitedinair.[20] Alternativemethodsof synthesisare ahigh temperature reactionof lanthanide metalswithammoniaorthe decompositionof lanthanide amides, Ln(NH2)3.Achievingpure stoichiometriccompounds,andcrystalswithlow defectdensityhasproved difficult.[58] The lanthanidenitridesare sensitive toairandhydrolyse producingammonia.[49] The other pnictidesphosphorus,arsenic,antimonyandbismuthalsoreactwiththe lanthanidemetalsto formmonopnictides,LnQ.Additionallyarange of other compoundscan be producedwithvarying stoichiometries,suchasLnP2, LnP5, LnP7, Ln3As,Ln5As3 and LnAs2.[66] Carbides Carbidesof varyingstoichiometriesare knownforthe lanthanides.Non-stoichiometryiscommon.All of the lanthanidesformLnC2and Ln2C3 whichbothcontainC2 units.The dicarbideswithexceptionof EuC2, are metallicconductorswiththe calciumcarbide structure andcanbe formulatedasLn3+C22−(e– ).The C-Cbond lengthislongerthanthatin CaC2, whichcontainsthe C22− anion,indicatingthatthe antibondingorbitalsof the C22− anionare involvedinthe conductionband.These dicarbideshydrolyse
  • 21. to formhydrogenanda mixture of hydrocarbons.[67] EuC2and to a lesserextentYbC2hydrolyse differentlyproducingahigherpercentage of acetylene(ethyne).[68] The sesquicarbides,Ln2C3can be formulatedasLn4(C2)3. These compoundsadoptthe Pu2C3 structure[50] whichhasbeendescribedashavingC22− anionsin bisphenoidholesformedbyeightnearLnneighbours.[69] The lengtheningof the C-Cbondisless markedinthe sesquicarbidesthaninthe dicarbides,withthe exceptionof Ce2C3.[67] Othercarbonrich stoichiometriesare knownforsome lanthanides.Ln3C4(Ho-Lu) containingC,C2 and C3 units;[70] Ln4C7 (Ho-Lu) containC atomsand C3 units[71] and Ln4C5 (Gd-Ho) containingCandC2 units.[72] Metal rich carbidescontaininterstitial Catomsandno C2 or C3 units.These are Ln4C3 (Tb andLu); Ln2C (Dy, Ho, Tm)[73][74] and Ln3C[50] (Sm-Lu). Borides All of the lanthanidesformanumber of borides.The "higher"borides(LnBx where x >12) are insulators/semiconductorswhereasthe lowerboridesare typicallyconducting.The lowerborideshave stoichiometriesof LnB2,LnB4, LnB6 and LnB12.[75] Applicationsinthe fieldof spintronicsare being investigated.[58] The range of boridesformedbythe lanthanidescanbe comparedto those formedby the transitionmetals.The boronrichboridesare typical of the lanthanides(andgroups1–3) whereasfor the transitionmetalstendtoformmetal rich,"lower"borides.[76] The lanthanideboridesare typically groupedtogetherwiththe group3 metalswithwhichtheyshare manysimilaritiesof reactivity, stoichiometryandstructure.Collectivelythese are thentermedthe rare earthborides.[75] Many methodsof producinglanthanide borideshave beenused,amongstthemare directreactionof the elements;the reductionof Ln2O3withboron; reductionof boronoxide,B2O3,andLn2O3 together withcarbon; reductionof metal oxide withboroncarbide,B4C.[75][76][77][78] Producinghighpurity sampleshasprovedtobe difficult.[78] Single crystalsof the higherborideshave beengrowninalow meltingmetal (e.g.Sn,Cu,Al).[75] Diborides,LnB2,have beenreportedforSm, Gd,Tb, Dy,Ho, Er, Tm, Yb andLu. All have the same,AlB2, structure containingagraphiticlayerof boron atoms.Low temperature ferromagnetictransitionsforTb, Dy, Ho and Er. TmB2 isferromagneticat7.2 K.[50] Tetraborides,LnB4have beenreportedforall of the lanthanidesexceptEuB4,all have the same UB4 structure.The structure has a boron sub-lattice consistsof chainsof octahedral B6 clusterslinkedby boronatoms.The unitcell decreasesinsize successivelyfromLaB4 to LuB4. The tetraboridesof the lighterlanthanidesmeltwithdecompositiontoLnB6.[78] Attemptstomake EuB4 have failed.[77] The LnB4 are good conductors[75] and typicallyantiferromagnetic.[50]
  • 22. Hexaborides,LnB6have beenreportedforall of the lanthanides.Theyall have the CaB6structure, containingB6 clusters.Theyare non-stoichiometricdue tocationdefects.The hexaboridesof the lighter lanthanides(La–Sm) meltwithoutdecomposition,EuB6decomposestoboronandmetal and the heavierlanthanidesdecomposetoLnB4 withexceptionof YbB6 whichdecomposesformingYbB12.The stabilityhasinpart beencorrelatedtodifferencesinvolatilitybetweenthe lanthanide metals.[78] In EuB6 andYbB6 the metalshave an oxidationstate of +2 whereasinthe restof the lanthanide hexaboridesitis+3. Thisrationalisesthe differencesinconductivity,the extraelectronsinthe LnIII hexaboridesenteringconductionbands.EuB6isa semiconductorandthe restare good conductors.[50][78] LaB6 and CeB6 are thermionicemitters,used,forexample,inscanningelectron microscopes.[79] Dodecaborides,LnB12,are formedbythe heaviersmallerlanthanides,butnotbythe lighterlarger metals,La – Eu. Withthe exceptionYbB12(where Ybtakesan intermediate valenceandisa Kondo insulator),the dodecaboridesare all metalliccompounds.Theyall have the UB12 structure containinga 3 dimensional frameworkof cubooctahedral B12clusters.[75] The higherboride LnB66 is knownforall lanthanide metals.The compositionisapproximate asthe compoundsare non-stoichiometric.[75] Theyall have similarcomplex structure withover1600 atomsin the unitcell.The boroncubic sublattice containssupericosahedramade upof a central B12 icosahedra surroundedby12 others,B12(B12)12.[75] Othercomplex higherboridesLnB50(Tb,Dy, Ho Er Tm Lu) and LnB25 are known(Gd,Tb,Dy, Ho, Er) and these containboronicosahedrainthe boron framework.[75] Organometalliccompounds Lanthanide-carbonσbondsare well known;howeverasthe 4f electronshave alow probabilityof existingatthe outerregionof the atom there islittle effectiveorbital overlap,resultinginbondswith significantioniccharacter.Assuch organo-lanthanide compoundsexhibitcarbanion-like behavior,unlike the behaviorintransitionmetal organometalliccompounds.Because of theirlarge size,lanthanides tendto formmore stable organometallicderivativeswithbulkyligandstogive compoundssuchas Ln[CH(SiMe3)3].[80] Analoguesof uranoceneare derivedfromdilithiocyclooctatetraene,Li2C8H8. Organiclanthanide(II) compoundsare alsoknown,suchasCp*2Eu.[39] Physical properties Magneticand spectroscopic All the trivalentlanthanide ions,exceptlanthanumandlutetium,have unpairedf electrons.However, the magneticmomentsdeviateconsiderablyfromthe spin-onlyvaluesbecauseof strongspin-orbit coupling.The maximumnumberof unpairedelectronsis7,inGd3+, witha magneticmomentof 7.94 B.M., but the largestmagneticmoments,at10.4–10.7 B.M., are exhibitedbyDy3+ and Ho3+. However,
  • 23. inGd3+ all the electronshave parallel spinandthispropertyisimportantforthe use of gadolinium complexesascontrastreagentinMRI scans. A solutionof 4%holmiumoxide in10%perchloricacid,permanentlyfusedintoaquartzcuvette as a wavelengthcalibrationstandard Crystal fieldsplittingisrathersmall forthe lanthanideionsandislessimportantthanspin-orbitcoupling inregard to energylevels.[8] Transitionsof electronsbetweenf orbitalsare forbiddenbythe Laporte rule.Furthermore,becauseof the "buried"nature of the f orbitals,couplingwithmolecularvibrationsis weak.Consequently,the spectraof lanthanideionsare ratherweakandthe absorptionbandsare similarlynarrow.Glasscontainingholmiumoxideandholmiumoxidesolutions(usuallyinperchloric acid) have sharp optical absorptionpeaksinthe spectral range 200–900 nm and can be usedas a wavelengthcalibrationstandardforoptical spectrophotometers,[81] andare available commercially.[82] As f-f transitionsare Laporte-forbidden,once anelectronhasbeenexcited,decaytothe groundstate will be slow.Thismakesthemsuitable foruse inlasersasitmakesthe populationinversioneasyto achieve.The Nd:YAGlaserisone that iswidelyused.Europium-dopedyttrium vanadatewasthe firstred phosphortoenable the developmentof colortelevisionscreens.[83] Lanthanide ionshave notable luminescentpropertiesdue totheirunique4f orbitals.Laporte forbiddenf-f transitionscanbe activated by excitationof abound "antenna"ligand.Thisleadstosharpemissionbandsthroughoutthe visible, NIR,and IR and relativelylongluminescence lifetimes.[84] Occurrence Main article:Rare-earthelement§Geological distribution The lanthanide contractionisresponsibleforthe greatgeochemical dividethatsplitsthe lanthanides intolightandheavy-lanthanideenrichedminerals,the latterbeingalmostinevitablyassociatedwithand dominatedbyyttrium.Thisdivideisreflectedinthe firsttwo"rare earths"thatwere discovered:yttria (1794) and ceria(1803). The geochemical divide hasputmore of the lightlanthanidesinthe Earth's crust, butmore of the heavymembersinthe Earth's mantle.The resultisthatalthoughlarge richore- bodiesare foundthatare enrichedinthe lightlanthanides,correspondinglylarge ore-bodiesforthe heavymembersare few.The principal oresare monazite andbastnäsite.Monazite sandsusuallycontain all the lanthanide elements,butthe heavierelementsare lackinginbastnäsite.The lanthanidesobey the Oddo-Harkinsrule –odd-numberedelementsare lessabundantthantheireven-numbered neighbors. Three of the lanthanide elementshave radioactiveisotopeswithlonghalf-lives(138La,147Sm and 176Lu) that can be usedto date mineralsandrocks fromEarth, the Moon and meteorites.[85]
  • 24. Promethiumiseffectivelyaman-made element,asall itsisotopesare radioactivewithhalf-livesshorter than 20 years. Applications Industrial Lanthanide elementsandtheircompoundshave manyusesbutthe quantitiesconsumedare relatively small incomparisontootherelements.About15000 ton/yearof the lanthanidesare consumedas catalystsand inthe productionof glasses.This15000 tonscorrespondstoabout 85% of the lanthanide production.Fromthe perspectiveof value,however,applicationsinphosphorsandmagnetsare more important.[86] The deviceslanthanideelementsare usedininclude superconductors,samarium-cobaltand neodymium-iron-boronhigh-fluxrare-earthmagnets,magnesiumalloys,electronicpolishers,refining catalystsand hybridcar components(primarilybatteriesandmagnets).[87] Lanthanide ionsare usedas the active ionsinluminescentmaterialsusedinoptoelectronicsapplications,mostnotablythe Nd:YAG laser.Erbium-dopedfiberamplifiersare significantdevicesinoptical-fibercommunicationsystems. Phosphorswithlanthanide dopantsare alsowidelyusedincathode raytube technologysuchas televisionsets.The earliestcolortelevisionCRTshada poor-qualityred;europiumas aphosphordopant made goodred phosphorspossible.Yttriumirongarnet(YIG) spherescanact as tunable microwave resonators. Lanthanide oxidesare mixedwithtungstentoimprove theirhightemperature propertiesforTIG welding,replacingthorium,whichwasmildlyhazardoustoworkwith.Manydefense-relatedproducts alsouse lanthanide elementssuchasnightvisiongogglesandrangefinders.The SPY-1radar usedin some Aegisequippedwarships,andthe hybridpropulsionsystemof ArleighBurke-classdestroyersall use rare earthmagnetsincritical capacities.[88] The price forlanthanumoxide usedinfluidcatalytic cracking hasrisenfrom$5 per kilograminearly2010 to $140 per kilograminJune 2011.[89] Most lanthanidesare widelyusedinlasers, andas(co-)dopantsindoped-fiberoptical amplifiers;for example,inEr-dopedfiberamplifiers,whichare usedasrepeatersinthe terrestrial andsubmarine fiber- optictransmissionlinksthatcarryinternettraffic.These elementsdeflectultravioletandinfrared radiationandare commonlyusedinthe productionof sunglasslenses.Otherapplicationsare summarizedinthe followingtable:[17] Application Percentage Catalyticconverters 45% Petroleumrefiningcatalysts 25%
  • 25. Permanentmagnets 12% Glasspolishingandceramics 7% Metallurgical 7% Phosphors 3% Other 1% The complex Gd(DOTA) isusedinmagneticresonance imaging. Life science Lanthanide complexescanbe usedforoptical imaging.Applicationsare limitedbythe labilityof the complexes.[90] Some applicationsdependonthe unique luminescence propertiesof lanthanide chelatesor cryptates).[91][92] These are well-suitedforthisapplicationdue totheirlarge Stokesshiftsand extremelylongemissionlifetimes(frommicrosecondstomilliseconds) comparedtomore traditional fluorophores(e.g.,fluorescein,allophycocyanin,phycoerythrin,andrhodamine). The biological fluidsorserumcommonlyusedinthese researchapplicationscontainmanycompounds and proteinswhichare naturallyfluorescent. Therefore,the use of conventional,steady-state fluorescencemeasurementpresentsseriouslimitationsinassaysensitivity.Long-livedfluorophores, such as lanthanides,combinedwithtime-resolveddetection(adelaybetweenexcitationandemission detection) minimizespromptfluorescence interference. Time-resolvedfluorometry(TRF) combinedwithfluorescence resonance energytransfer(FRET) offersa powerful tool fordrugdiscoveryresearchers:Time-ResolvedFluorescence Resonance EnergyTransferor TR-FRET. TR-FRET combinesthe lowbackgroundaspectof TRFwiththe homogeneousassayformatof FRET. The resultingassayprovidesanincrease inflexibility,reliabilityandsensitivityinadditiontohigher throughputandfewerfalse positive/falsenegative results. Thismethodinvolvestwofluorophores:adonorand an acceptor.Excitationof the donor fluorophore(in thiscase,the lanthanide ioncomplex) byanenergysource (e.g.flashlamporlaser) producesanenergy transferto the acceptorfluorophore if theyare withinagivenproximitytoeachother(knownasthe Förster'sradius).The acceptorfluorophore inturnemitslightatitscharacteristicwavelength.
  • 26. The two mostcommonlyusedlanthanidesinlifescience assaysare shownbelow alongwiththeir correspondingacceptordye aswell astheirexcitationandemissionwavelengthsandresultantStokes shift(separationof excitationandemissionwavelengths). Donor Excitation⇒Emissionλ(nm) Acceptor Excitation⇒Emissionλ(nm) Stoke'sShift (nm) Eu3+ 340⇒615 Allophycocyanin 615⇒660 320 Tb3+ 340⇒545 Phycoerythrin 545⇒575 235 Possible medical uses Currentlythere isresearchshowingthatlanthanide elementscanbe usedasanticanceragents.The mainrole of the lanthanidesinthesestudiesisto inhibitproliferationof the cancercells.Specifically ceriumand lanthanumhave beenstudiedfortheirrole asanti-canceragents. One of the specificelementsfromthe lanthanide groupthathasbeentestedandusediscerium(Ce). There have beenstudiesthatuse aprotein-ceriumcomplex toobserve the effectof ceriumonthe cancer cells.The hope wasto inhibitcell proliferationandpromote cytotoxicity.[93] Transferrin receptorsincancer cells,suchasthose in breastcancer cellsandepithelialcervical cells,promotethe cell proliferationandmalignancyof the cancer.[93] Transferrinisa proteinusedtotransportironinto the cellsandis neededtoaidthe cancer cellsinDNA replication.Transferrinactsasa growthfactor for the cancerouscellsandis dependentoniron.Cancercellshave muchhigherlevelsof transferrin receptorsthannormal cellsandare verydependentonironfortheirproliferation.[93] Ceriumhasshownresultsasan anti-canceragentdue to itssimilaritiesinstructure andbiochemistryto iron.Ceriummaybindinthe place of ironon to the transferrinandthenbe broughtintothe cancercells by transferrin-receptormediatedendocytosis.[93] The ceriumbindingtothe transferrininplace of the ironinhibitsthe transferrinactivityinthe cell.Thiscreatesatoxicenvironmentforthe cancercellsand causesa decrease incell growth.Thisisthe proposedmechanismforcerium'seffectoncancercells, thoughthe real mechanismmaybe more complex inhow ceriuminhibits cancercell proliferation. SpecificallyinHeLacancercellsstudiedinvitro,cell viabilitywasdecreasedafter48to 72 hoursof ceriumtreatments.Cellstreatedwithjustceriumhaddecreasesincell viability,butcellstreatedwith bothceriumand transferrinhadmore significantinhibitionforcellularactivity.[93] Anotherspecific elementthathasbeentestedandusedasan anti-canceragentislanthanum, more specifically lanthanumchloride (LaCl3).The lanthanumionisusedtoaffectthe levels of let-7aandmicroRNAsmiR- 34a in a cell throughoutthe cell cycle.Whenthe lanthanumionwasintroducedtothe cell invivoorin vitro,itinhibitedthe rapidgrowthandinducedapoptosisof the cancercells(specificallycervical cancer cells).Thiseffectwascausedbythe regulationof the let-7aandmicroRNAsbythe lanthanumions.[94] The mechanismforthiseffectisstill unclearbutitispossible thatthe lanthanumisactingina similar wayas the ceriumandbindingtoa ligandnecessaryforcancercell proliferation.
  • 27. Biological effects Due to theirsparse distributioninthe earth'scrustandlow aqueoussolubility,the lanthanideshave a lowavailabilityinthe biosphere,andfora longtime were notknownto naturallyformpartof any biological molecules.In2007 a novel methanol dehydrogenase thatstrictlyuseslanthanidesas enzymaticcofactorswasdiscoveredinabacteriumfromthe phylumVerrucomicrobia, Methylacidiphilumfumariolicum.Thisbacteriumwasfoundtosurvive onlyif there are lanthanides presentinthe environment.[95] Comparedtomostothernondietaryelements,non-radioactive lanthanidesare classifiedashavinglowtoxicity.[86] The same nutritional requirementhasalsobeen observedMethylorubrumextorquensandMethylobacteriumradiotolerans. See also Group 3 element–Group of chemical elements Lanthanide probes References The currentIUPAC recommendationisthatthe name lanthanoidbe usedratherthanlanthanide,asthe suffix "-ide"ispreferredfornegativeions,whereasthe suffix "-oid"indicatessimilaritytoone of the membersof the containingfamilyof elements.However,lanthanideisstill favoredinmost(~90%) scientificarticles[citationneeded] andiscurrentlyadoptedonWikipedia.Inthe olderliterature, the name "lanthanon"wasoftenused. Gray, Theodore (2009). The Elements:A Visual Explorationof EveryKnownAtominthe Universe.New York: BlackDog & Leventhal Publishers.p.240. ISBN 978-1-57912-814-2. Lanthanide Archived11September2011 at the Wayback Machine,EncyclopædiaBritannicaon-line Holden,NormanE.;Coplen,Tyler(January–February2004). "The PeriodicTable of the Elements". ChemistryInternational.26(1): 8. doi:10.1515/ci.2004.26.1.8. Jensen,WilliamB.(2015). "The positionsof lanthanum(actinium) andlutetium(lawrencium) inthe periodictable:anupdate".Foundationsof Chemistry.17:23–31. doi:10.1007/s10698-015-9216-1. S2CID 98624395. Retrieved28 January2021. Scerri,Eric (18 January2021). "Provisional ReportonDiscussionsonGroup3 of the PeriodicTable". ChemistryInternational.43(1): 31–34. doi:10.1515/ci-2021-0115. S2CID 231694898. F Block Elements,OxidationStates,LanthanidesandActinides.Chemistry.tutorvista.com.Retrievedon 14 December2017. Greenwood, NormanN.;Earnshaw,Alan(1997). Chemistryof the Elements(2nded.).Butterworth- Heinemann.pp.1230–1242. ISBN 978-0-08-037941-8. SkrifterNorske Vidensk-Akad.(Mat.-nat.Kl.) V:6
  • 28. Hakala, ReinoW.(1952). "Letters".Journal of Chemical Education.29(11): 581. Bibcode:1952JChEd..29..581H. doi:10.1021/ed029p581.2. "lanthanide".OED21.14 on CD-Rom.OUP,1994. "lanthanum".OED2 v.1.14 onCD-Rom.OUP, 1994. "The Elements",Theodore Gray,Black−Dog& Leventhal,Chicago2007: "Lanthanum"and"Cerium" entriesCh57 & 58, pp 134–7 Rocks & Minerals,A Guide To FieldIdentification,Sorrell,StMartin'sPress1972, 1995, pp 118 (Halides), 228 (Carbonates) Minearlsof the World,Johnsen,2000 "The Elements",Theodore Gray,BlackDog& Leventhal,Chicago2007: "Neodymium"and "Praseodymium"entriesCh59 & 60, pp 138–43 Aspinall,HelenC.(2001). Chemistryof the f-blockelements.CRCPress.p.8. ISBN 978-90-5699-333-7. Krishnamurthy,NagaiyarandGupta,ChiranjibKumar(2004) Extractive Metallurgyof Rare Earths,CRC Press,ISBN 0-415-33340-7 Cullity,B.D. andGraham, C. D. (2011) IntroductiontoMagneticMaterials,JohnWiley&Sons,ISBN 9781118211496 Cotton,Simon (2006). Lanthanide andActinide Chemistry.JohnWiley&SonsLtd. Sroor, FaridM.A.; Edelmann,FrankT.(2012). "Lanthanides:TetravalentInorganic".Encyclopediaof Inorganicand BioinorganicChemistry.doi:10.1002/9781119951438.eibc2033. ISBN 9781119951438. Holleman,p.1937. dtv-AtlaszurChemie 1981, Vol.1, p. 220. Bochkarev,Mikhail N.;Fedushkin,IgorL.;Fagin,AnatolyA.;Petrovskaya,TatyanaV.;Ziller,JosephW.; Broomhall-Dillard,RandyN.R.;Evans,WilliamJ.(1997). "SynthesisandStructure of the FirstMolecular Thulium(II)Complex:[TmI2(MeOCH2CH2OMe)3]".Angewandte ChemieInternational EditioninEnglish. 36 (12): 133–135. doi:10.1002/anie.199701331. Winter,Mark. "Lanthanumionisationenergies".WebElementsLtd,UK.Retrieved2September2010. Fukai,Y. (2005). The Metal-HydrogenSystem,BasicBulkProperties,2dedition.Springer.ISBN 978-3- 540-00494-3. Pettit,L.and Powell,K.SC-database.Acadsoft.co.uk.Retrievedon15 January2012. Molander,Gary A.; Harris,ChristinaR.(1 January 1996). "SequencingReactionswithSamarium(II) Iodide".Chemical Reviews.96(1): 307–338. doi:10.1021/cr950019y. PMID 11848755. Nair,Vijay;Balagopal,Lakshmi;Rajan,Roshini;Mathew,Jessy(1January2004). "RecentAdvancesin SyntheticTransformationsMediatedbyCerium(IV) AmmoniumNitrate".Accountsof Chemical Research.37 (1):21–30. doi:10.1021/ar030002z. PMID 14730991.
  • 29. Dehnicke,Kurt;Greiner,Andreas(2003)."Unusual Complex Chemistryof Rare-EarthElements:Large IonicRadii—SmallCoordinationNumbers".AngewandteChemie International Edition.42(12): 1340– 1354. doi:10.1002/anie.200390346. PMID 12671966. Aspinall,HelenC.(2001). Chemistryof the f-blockelements.Amsterdam[u.a.]:Gordon&Breach.ISBN 978-9056993337. Kobayashi,Shū;Hamada,Tomoaki;Nagayama,Satoshi;Manabe,Kei (1January2001). "Lanthanide Trifluoromethanesulfonate-CatalyzedAsymmetricAldolReactionsinAqueousMedia".OrganicLetters.3 (2): 165–167. doi:10.1021/ol006830z. PMID 11430025. Aspinall,HelenC.;Dwyer,JenniferL.;Greeves,Nicholas;Steiner,Alexander(1April 1999). "Li3[Ln(binol)3]·6THF:NewAnhydrousLithiumLanthanide BinaphtholatesandTheirUse in Enantioselective Alkyl AdditiontoAldehydes".Organometallics.18 (8):1366–1368. doi:10.1021/om981011s. Parac-Vogt,TatjanaN.; Pachini,Sophia;Nockemann,Peter;VanmHecke,Kristof;VanMeervelt,Luc; Binnemans,Koen(1November2004). "Lanthanide(III) NitrobenzenesulfonatesasNew Nitration Catalysts:The Role of the Metal and of the Counterion inthe CatalyticEfficiency".EuropeanJournalof OrganicChemistry(Submittedmanuscript).2004 (22): 4560–4566. doi:10.1002/ejoc.200400475. Lipstman,Sophia;Muniappan,Sankar;George,Sumod;Goldberg,Israel(1January2007). "Framework coordinationpolymersof tetra(4-carboxyphenyl)porphyrinandlanthanideionsincrystalline solids". DaltonTransactions(30): 3273–81. doi:10.1039/B703698A. PMID 17893773. Bretonnière,Yann;Mazzanti,Marinella;Pécaut,Jacques;Dunand,FrankA.;Merbach,André E. (1 December2001). "Solid-State andSolutionPropertiesof the Lanthanide Complexesof aNew Heptadentate Tripodal Ligand:A Route toGadoliniumComplexeswithanImprovedRelaxation Efficiency".InorganicChemistry.40(26): 6737–6745. doi:10.1021/ic010591+. PMID 11735486. Trinadhachari,GanalaNaga; Kamat,AnandGopalkrishna;Prabahar,Koilpillai Joseph;Handa,Vijay Kumar;Srinu,Kukunuri NagaVenkataSatya;Babu,KorupoluRaghu;Sanasi,Paul Douglas(15 March 2013). "Commercial Scale Processof Galanthamine Hydrobromide InvolvingLuche Reduction: Galanthamine ProcessInvolvingRegioselective 1,2-Reductionof α,β-UnsaturatedKetone".Organic ProcessResearch& Development.17 (3):406–412. doi:10.1021/op300337y. Burgess,J.(1978). Metal ionsinsolution. New York:EllisHorwood.ISBN 978-0-85312-027-8. Nief,F.(2010). "Non-classical divalentlanthanide complexes".DaltonTrans.39 (29): 6589–6598. doi:10.1039/c001280g. PMID 20631944. Evans, WilliamJ.(15 September2016). "Tutorial onthe Role of Cyclopentadienyl Ligandsinthe Discoveryof MolecularComplexesof the Rare-EarthandActinide MetalsinNew OxidationStates". Organometallics.35(18): 3088–3100. doi:10.1021/acs.organomet.6b00466.openaccess Palumbo,C.T.;Zivkovic,I.;Scopelliti,R.;Mazzanti,M. (2019). "MolecularComplex of Tbinthe +4 OxidationState<"(PDF).Journal of the AmericanChemicalSociety.141 (25): 9827–9831. doi:10.1021/jacs.9b05337. PMID 31194529. S2CID 189814301.
  • 30. Rice,Natalie T.;Popov,IvanA.;Russo,DominicR.;Bacsa, John; Batista,Enrique R.;Yang, Ping;Telser, Joshua;La Pierre,HenryS.(21 August2019). "Design,Isolation,andSpectroscopicAnalysisof a TetravalentTerbiumComplex".Journal of the AmericanChemical Society.141(33): 13222–13233. doi:10.1021/jacs.9b06622. ISSN 0002-7863. OSTI 1558225. PMID 31352780. S2CID 207197096. Willauer,A.R.;Palumbo,C.T.;Scopelliti,R.;Zivkovic,I.;Douair,I.;Maron, L.; Mazzanti,M. (2020). "Stabilizationof the OxidationState +IV in Siloxide-SupportedTerbiumCompounds".Angewandte Chemie InternationalEdition.59 (9):3549–3553. doi:10.1002/anie.201914733. PMID 31840371. S2CID 209385870. Willauer,A.R.;Palumbo,C.T.;Fadaei-Tirani,F.;Zivkovic,I.;Douair,I.;Maron,L.; Mazzanti,M. (2020). "Accessingthe +IV OxidationState inMolecularComplexesof Praseodymium".Journal of the American Chemical Society.142(12): 489–493. doi:10.1021/jacs.0c01204. PMID 32134644. S2CID 212564931. Kohlmann,H.;Yvon,K. (2000). "The crystal structuresof EuH2 and EuLiH3 by neutronpowder diffraction".Journal of AlloysandCompounds.299 (1–2): L16–L20. doi:10.1016/S0925-8388(99)00818- X. Matsuoka, T.; Fujihisa,H.;Hirao,N.;Ohishi,Y.;Mitsui,T.;Masuda, R.; Seto,M.; Yoda, Y.; Shimizu,K.; Machida, A.;Aoki,K.(2011). "Structural andValence Changesof EuropiumHydride Inducedby Applicationof High-Pressure H2".Physical Review Letters.107 (2):025501. Bibcode:2011PhRvL.107b5501M. doi:10.1103/PhysRevLett.107.025501. PMID 21797616. Tellefsen,M.;Kaldis,E.;Jilek,E.(1985). "The phase diagramof the Ce-H2systemandthe CeH2-CeH3 solidsolutions".Journal of the LessCommonMetals.110 (1–2): 107–117. doi:10.1016/0022- 5088(85)90311-X. Kumar,Pushpendra;Philip,Rosen;Mor,G.K.; Malhotra,L. K.(2002). "Influence of PalladiumOverlayer on SwitchingBehaviourof SamariumHydride ThinFilms".Japanese Journal of AppliedPhysics.41 (Part 1, No. 10): 6023–6027. Bibcode:2002JaJAP..41.6023K. doi:10.1143/JJAP.41.6023. Holleman,p.1942 DavidA. Atwood,ed.(19 February2013). The Rare Earth Elements:FundamentalsandApplications (eBook).JohnWiley&Sons.ISBN 9781118632635. Wells, A.F.(1984). Structural InorganicChemistry(5thed.).OxfordScience Publication.ISBN 978-0-19- 855370-0. Perry,Dale L. (2011). Handbookof InorganicCompounds,SecondEdition.BocaRaton,Florida:CRC Press.p.125. ISBN 978-1-43981462-8. Retrieved17February2014. Ryazanov,Mikhail;Kienle,Lorenz;Simon,Arndt;Mattausch,Hansjürgen(2006)."New SynthesisRoute to and Physical Propertiesof LanthanumMonoiodide†".InorganicChemistry.45(5): 2068–2074. doi:10.1021/ic051834r. PMID 16499368. Vent-Schmidt,T.;Fang,Z.; Lee,Z.;Dixon,D.;Riedel,S.(2016). "Extendingthe Row of Lanthanide Tetrafluorides:A CombinedMatrix-IsolationandQuantum-Chemical Study".Chemistry.22(7):2406–16. doi:10.1002/chem.201504182. hdl:2027.42/137267. PMID 26786900.
  • 31. Haschke,John.M. (1979). "Chapter32:Halides".InGschneiderJr.,K.A.(ed.).Handbookonthe Physics and Chemistryof Rare Earths vol 4. NorthHollandPublishingCompany.pp.100–110. ISBN 978-0-444- 85216-8. Kovács,Attila(2004). "Structure and Vibrationsof Lanthanide Trihalides:AnAssessmentof ExperimentalandTheoretical Data".Journal of Physical andChemical ReferenceData.33 (1):377. Bibcode:2004JPCRD..33..377K.doi:10.1063/1.1595651. Adachi,G.; Imanaka,NobuhitoandKang,ZhenChuan(eds.) (2006) Binary Rare Earth Oxides.Springer. ISBN 1-4020-2568-8 Nasirpouri,FarzadandNogaret,Alain(eds.) (2011) NanomagnetismandSpintronics:Fabrication, Materials,CharacterizationandApplications.WorldScientific.ISBN 9789814273053 Flahaut, Jean(1979). "Chapter31:Sulfides,SelenidesandTellurides".InGschneiderJr.,K.A.(ed.). Handbookon the PhysicsandChemistryof Rare Earths vol 4. North HollandPublishingCompany.pp. 100–110. ISBN 978-0-444-85216-8. Berte,Jean-Noel(2009)."Ceriumpigments".InSmith,HughM. (ed.).HighPerformance Pigments. Wiley-VCH.ISBN 978-3-527-30204-8. Holleman,p.1944. Liu, Guokui andJacquier,Bernard(eds) (2006) SpectroscopicPropertiesof Rare EarthsinOptical Materials,Springer Sisniga,Alejandro(2012)."Chapter15". InIniewski,Krzysztof (ed.).IntegratedMicrosystems: Electronics,Photonics,andBiotechnology.CRCPress.ISBN 978-3-527-31405-8. Temmerman,W.M. (2009). "Chapter241: The Dual,Localizedor Band‐Like,Characterof the 4f‐States". In GschneiderJr.,K.A.(ed.).Handbookonthe PhysicsandChemistryof Rare Earthsvol 39. Elsevier.pp. 100–110. ISBN 978-0-444-53221-3. Dronskowski,R.(2005) Computational Chemistryof SolidState Materials:A Guide forMaterials Scientists,Chemists,PhysicistsandOthers,Wiley,ISBN 9783527314102 Hulliger,F.(1979). "Chapter33: Rare Earth Pnictides".InGschneiderJr.,K.A.(ed.).Handbookonthe PhysicsandChemistryof Rare Earths vol 4. North HollandPublishingCompany.pp.100–110. ISBN 978- 0-444-85216-8. Greenwood,NormanN.;Earnshaw,Alan(1997). Chemistryof the Elements(2nded.).Butterworth- Heinemann.pp.297–299. ISBN 978-0-08-037941-8. Spedding,F.H.;Gschneidner,K.;Daane,A.H. (1958). "The Crystal Structuresof Some of the Rare Earth Carbides".Journal of the AmericanChemical Society.80(17): 4499–4503. doi:10.1021/ja01550a017. Wang, X.; Loa,I.; Syassen,K.;Kremer,R.;Simon,A.;Hanfland,M.;Ahn,K. (2005). "Structural properties of the sesquicarbide superconductorLa2C3at highpressure".Physical ReviewB.72 (6):064520. arXiv:cond-mat/0503597. Bibcode:2005PhRvB..72f4520W. doi:10.1103/PhysRevB.72.064520. S2CID 119330966.
  • 32. Poettgen,Rainer.;Jeitschko,Wolfgang.(1991)."Scandiumcarbide,Sc3C4,a carbide withC3 units derivedfrompropadiene".InorganicChemistry.30(3):427–431. doi:10.1021/ic00003a013. Czekalla,Ralf;Jeitschko,Wolfgang;Hoffmann,Rolf-Dieter;Rabeneck,Helmut(1996)."Preparation, Crystal Structure,andPropertiesof the LanthanoidCarbidesLn4C7withLn: Ho, Er, Tm, andLu" (PDF).Z. Naturforsch.B.51 (5): 646–654. doi:10.1515/znb-1996-0505. S2CID 197308523. Czekalla,Ralf;Hüfken,Thomas;Jeitschko,Wolfgang;Hoffmann,Rolf-Dieter;Pöttgen,Rainer(1997). "The Rare Earth CarbidesR4C5 withR=Y, Gd, Tb,Dy, and Ho". Journal of SolidState Chemistry.132(2): 294–299. Bibcode:1997JSSCh.132..294C. doi:10.1006/jssc.1997.7461. Atoji,Masao (1981). "Neutron-diffractionstudyof Ho2Cat 4–296 K".The Journal of Chemical Physics. 74 (3): 1893. Bibcode:1981JChPh..74.1893A.doi:10.1063/1.441280. Atoji,Masao (1981). "Neutron-diffractionstudiesof Tb2Cand Dy2C inthe temperature range 4–296 K". The Journal of Chemical Physics.75(3):1434. Bibcode:1981JChPh..75.1434A. doi:10.1063/1.442150. Mori, Takao (2008). "Chapter238:Higher Borides".InGschneiderJr.,K.A. (ed.).Handbookonthe PhysicsandChemistryof Rare Earths vol 38. NorthHolland.pp.105–174. ISBN 978-0-444-521439. Greenwood,NormanN.;Earnshaw,Alan(1997). Chemistryof the Elements(2nded.).Butterworth- Heinemann.p.147. ISBN 978-0-08-037941-8. RefractoryMaterials,Volume 6-IV:1976, ed.AllenAlper,Elsevier,ISBN 0-12-053204-2 Zuckerman,J.J. (2009) InorganicReactionsandMethods,The Formationof Bondsto Group-I,-II,and- IIIbElements,Vol.13,JohnWiley&Sons,ISBN 089573-263-7 Reimer,Ludwig(1993).Image FormationinLow-voltage ScanningElectronMicroscopy.SPIEPress.ISBN 978-0-8194-1206-5. Cotton,S. A.(1997). "Aspectsof the lanthanide-carbonσ-bond".Coord.Chem.Rev.160: 93–127. doi:10.1016/S0010-8545(96)01340-9. MacDonald, R. P.(1964). "Usesfor a HolmiumOxide FilterinSpectrophotometry"(PDF).Clinical Chemistry.10 (12): 1117–20. doi:10.1093/clinchem/10.12.1117. PMID 14240747. Archivedfromthe original (PDF) on5 December2011. Retrieved24February2010. "HolmiumGlassFilterforSpectrophotometerCalibration".Archivedfromthe original on14 March 2010. Retrieved6June 2009. Levine,AlbertK.;Palilla,FrankC.(1964). "A new,highly efficientred-emittingcathodoluminescent phosphor(YVO4:Eu) forcolortelevision".AppliedPhysicsLetters.5(6): 118. Bibcode:1964ApPhL...5..118L.doi:10.1063/1.1723611. Werts,M. H. V. (2005). "Making Sense of Lanthanide Luminescence".Science Progress.88(2): 101–131. doi:10.3184/003685005783238435. PMID 16749431. S2CID 2250959. There existothernaturallyoccurredradioactive isotopesof lanthanideswithlonghalf-lives(144Nd, 150Nd, 148Sm, 151Eu, 152Gd) but theyare notusedas chronometers.
  • 33. McGill,Ian (2005) "Rare Earth Elements"inUllmann'sEncyclopediaof Industrial Chemistry,Wiley-VCH, Weinheim.doi:10.1002/14356007.a22_607. Haxel G, HedrickJ, OrrisJ (2006). Rare earth elementscritical resourcesforhightechnology(PDF). Reston(VA):UnitedStatesGeological Survey.USGSFact Sheet:087‐02. Retrieved19April 2008. LivergoodR.(2010). "Rare Earth Elements:A Wrenchinthe SupplyChain"(PDF).CenterforStrategic and International Studies.Retrieved22October2010. Chu, Steven(December2011). "Critical MaterialsStrategy"(PDF).UnitedStatesDepartmentof Energy. p. 17. Retrieved23December2011. Sørenson,ThomasJust;Faulkner,Stephen(2021)."Chapter5. Lanthanide ComplexesUsedforOptical Imaging".Metal IonsinBio-ImagingTechniques.Springer.pp.137–156. doi:10.1515/9783110685701- 011. S2CID 233653968. Daumann,Lena J.;Op denCamp,Huub J.M.; "The Biochemistryof Rare Earth Elements"pp299-324 in "Metals,Microbesand Minerals:The Biogeochemical Sideof Life"(2021) pp xiv+ 341. Walterde Gruyter,Berlin.EditorsKroneck,PeterM.H.and Sosa Torres,Martha. Gruyter.com/document/doi/10.1515/9783110589771-010 DOI 10.1515/9783110589771-010 Bunzil,Jean-Claude;Piguet,Claude (September2005)."Takingadvantage of luminescentlanthanide ions"(PDF).Chemical SocietyReviews.34(12): 1048–77. doi:10.1039/b406082m. PMID 16284671. Archivedfromthe original (PDF) on18 January2013. Retrieved22December2012. Palizban,A.A.;Sadeghi-aliabadi,H.;Abdollahpour,F.(1January2010). "Effectof ceriumlanthanide on Helaand MCF-7 cancer cell growthinthe presence of transferring".ResearchinPharmaceutical Sciences.5(2): 119–125. PMC 3093623. PMID 21589800. Yu, Lingfang;Xiong,Jieqi;Guo,Ling;Miao,Lifang;Liu, Sisun;Guo,Fei (2015). "The effectsof lanthanum chloride onproliferationandapoptosisof cervical cancercells:involvementof let-7aandmiR-34a microRNAs".BioMetals.28(5):879–890. doi:10.1007/s10534-015-9872-6. PMID 26209160. S2CID 15715889. Pol,A.,et al (2014). "Rare Earth MetalsAre Essential forMethanotrophicLife inVolcanicMudpots". EnvironMicrobiol.16 (1): 255–264. doi:10.1111/1462-2920.12249. PMID 24034209. Citedsources Holleman,ArnoldF.;Wiberg,Egon;Wiberg,Nils(2007).LehrbuchderAnorganischenChemie (in German) (102 ed.).Walterde Gruyter.ISBN 978-3-11-017770-1. External links lanthanide SparkleModel,usedinthe computational chemistryof lanthanide complexes USGS Rare Earths StatisticsandInformation Ana de Bettencourt-Dias:Chemistryof the lanthanidesandlanthanide-containingmaterials
  • 34. Eric Scerri,2007, The periodictable:Itsstoryand itssignificance,OxfordUniversityPress,New York, ISBN 9780195305739 vte Periodictable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 H He 2 Li Be B C N O F Ne 3 Na Mg Al Si P S Cl Ar 4 K
  • 38. Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og s-block f-block d-block p-block vte Periodictable Authoritycontrol:National librariesEditthisatWikidata France (data)GermanyIsraelUnited StatesJapan Categories:PeriodictableLanthanides Navigationmenu Notloggedin Talk Contributions Create account Log in ArticleTalk ReadEditViewhistory
  • 39. Search SearchWikipedia Main page Contents Currentevents Randomarticle AboutWikipedia Contact us Donate Contribute Help Learn to edit Communityportal Recentchanges Uploadfile Tools What linkshere Relatedchanges Special pages Permanentlink Page information Cite thispage Wikidataitem Print/export DownloadasPDF Printable version In otherprojects WikimediaCommons
  • 40. Languages ‫ية‬ ‫عرب‬ ‫ال‬ Español हिन्दी Bahasa Indonesia Bahasa Melayu Русский Tagalog Winaray 中文 88 more Editlinks Thispage waslasteditedon29 March 2022, at 14:00 (UTC). Textisavailable underthe Creative Commons Attribution-ShareAlike License 3.0;additional termsmay apply.Byusingthissite,youagree to the Termsof Use and PrivacyPolicy.Wikipedia® isaregistered trademarkof the WikimediaFoundation,Inc.,anon-profitorganization. PrivacypolicyAboutWikipediaDisclaimersContactWikipediaMobile viewDevelopersStatisticsCookie statementWikimediaFoundationPoweredbyMediaWiki