SlideShare a Scribd company logo
1 of 26
Download to read offline
Linear	Integrated	Circuits	&	Applications		
Question Bank 
Department of Electronics Engineering 
             Dr. Nilesh Bhaskarrao Bahadure 
 
 
Page 1
	
Short	Questions	
1. For	 the	 inverting	 amplifier	 given	 that	 R1=1KΩ	 and	 Rf=10KΩ.	 Assuming	 an	 ideal	
amplifier,	calculate	the	output	voltage	for	the	input	of	1V.	
2. For	the	non‐inverting	amplifier	given	that	input	voltage	is	3V	and	R1=1KΩ	and	
Rf=10KΩ.	Calculate	the	output	voltage.	
3. For	the	non‐inverting	amplifier	given	that	input	voltage	is	5V	and	R1=1KΩ	and	
Rf=5KΩ.	Calculate	the	output	voltage	
4. For	the	non‐inverting	amplifier	given	that	input	voltage	is	6V	and	R1=2KΩ	and	
Rf=10KΩ.	Calculate	the	output	voltage.	
5. For	the	inverting	amplifier	if	the	input	voltages	are	1V,	2V	and	3V	and	corresponding	
resistances	are	1K,	2K	and	3K	respectively	and	feed	back	resistor	is	1.5K.	Calculate	
the	output	voltage.	
6. For	the	inverting	amplifier	if	the	input	voltages	are	2V,	4V	and	6V	and	corresponding	
resistances	are	2K,	4K	and	6K	respectively	and	feed	back	resistor	is	3K.	Calculate	the	
output	voltage.		
7. For	the	non‐inverting	amplifier	given	that	input	voltage	is	4V	and	R1=1KΩ	and	
Rf=5KΩ.	Calculate	the	output	voltage.	
8. For	the	inverting	amplifier	given	that	R1=10KΩ	and	Rf=100KΩ.	Assuming	an	ideal	
	amplifier,	calculate	the	output	voltage	for	the	input	of	10V.	
9. For	the	inverting	amplifier	given	that	R1=KΩ	and	Rf=10KΩ.	Assuming	an	ideal	
	amplifier,	calculate	the	output	voltage	for	the	input	of	1V.	
10. For	the	inverting	amplifier	given	that	R1=5KΩ	and	Rf=50KΩ.	Assuming	an	ideal	
	amplifier,	calculate	the	output	voltage	for	the	input	of	1V.	
	
	
	
	
	
Total Questions  201 
Linear	Integrated	Circuits	&	Applications		
Question Bank 
Department of Electronics Engineering 
             Dr. Nilesh Bhaskarrao Bahadure 
 
 
Page 2
Long	Questions	
	
11. Define	differential	amplifier.	
12. State	the	configurations	of	differential	amplifiers.	
13. What	is	an	operational	amplifier?	
14. Draw	and	explain	block	diagram	of	operational	amplifier.	
15. Explain	the	features	of	741C	operational	amplifiers.	
16. Design	the	parameters	for	the	dual	input,	balanced	output	differential	amplifier.	
17. Show	 that	 voltage	 gain	 Ad	 =	 RC/2re	 for	 the	 single	 input,	 unbalanced	 output	
differential	amplifier.	
18. Draw	and	explain	block	diagram	of	the	operational	amplifier.	
19. Explain	the	concept	of	virtual	ground	
20. List	the	ideal	characteristic	of	the	operational	amplifier.	
21. List	the	practical	characteristic	of	the	operational	amplifier.	
22. Write	short	note	on	maximum	ratings	of	the	operational	amplifier.	
23. Draw	the	circuit	and	explain	how	to	measure	the	differential	input	resistance	Ri	of	
an	Op	–	AMP.	
24. Why	we	use	feedback.	Derive	for	voltage	gain,	input	resistance	and	output	resistance	
for	voltage	shunt	feedback	amplifier.	
25. Explain	the	two	golden	rule	of	negative	feedback.	
26. Show	that	if	closed	loop	voltage	gain	of	the	inverting	amplifier	is	1	then	Bandwidth	
with	feedback	fF	=		UNITY	GAIN	BANDWIDTH	/2		
27. Design	 an	 amplifier	 with	 a	 gain	 of	 ‐25.	 The	 input	 resistance	 Rin	 should	 equal	 or	
exceed	10	KΩ.	
28. Derive	 the	 expression	 for	 operating	 point,	 voltage	 gain,	 internal	 resistance	 and	
output	resistance	for	the	differential	amplifier	shown	below:
Linear	Integrated	Circuits	&	Applications		
Question Bank 
Department of Electronics Engineering 
             Dr. Nilesh Bhaskarrao Bahadure 
 
 
Page 3
Figure	(1) 	
29. The	 following	 specifications	 are	 given	 for	 the	 dual	 input,	 balanced	 output	
differential	amplifier	of	fig	(2)	+VCC	=	+10V,	‐VEE	=	‐10V	and	the	transistor	is	the	CA	
3086	with	βdc	=	βac	=	100	and	VBE	=	0.715	typical.
Linear	Integrated	Circuits	&	Applications		
Question Bank 
Department of Electronics Engineering 
             Dr. Nilesh Bhaskarrao Bahadure 
 
 
Page 4
	
Figure	(2)	
(a) Determine	the	operating	point	values	(ICQ	and	VCEQ)	
(b) Determine	the	voltage	gain	
(c) Determine	the	input	and	output	resistance.	
(d) Determine	the	base	current	IB1	and	IB2.	
30. Repeat	problem	(19)	for	the	dual	input,	unbalanced	output	differential	amplifier.	
31. Repeat	problem	(19)	for	the	single	input,	balanced	output	differential	amplifier.	
32. The	 following	 specifications	 are	 given	 for	 the	 single	 input,	 unbalanced	 output	
differential	amplifier	of	fig	(3)	+VCC	=	+5	V,	‐VEE	=	‐5	V	and	the	transistor	is	the	CA	
3086	with	βdc	=	βac	=	200	and	VBE	=	0.7	typical.	
(a) Determine	the	operating	point	values	(ICQ	and	VCEQ)	
(b) Determine	the	voltage	gain	
(c) Determine	the	input	and	output	resistance.	
(d) Determine	the	base	current	IB1	and	IB2.
Linear	Integrated	Circuits	&	Applications		
Question Bank 
Department of Electronics Engineering 
             Dr. Nilesh Bhaskarrao Bahadure 
 
 
Page 5
	
Figure	(3)	
33. Explain	the	characteristics	of	ideal	operational	amplifiers.	
34. Explain	the	characteristics	of	practical	operational	amplifiers.	
35. Explain	the	configurations	of	open	loop	operational	amplifiers.	
36. Draw	and	explain	block	diagram	representation	of	feedback	configuration.	
37. List	the	four	negative	feedback	configurations.	Which	two	configurations	are	most	
commonly	used?	
38. List	two	special	cases	of	inverting	amplifier	and	explain	them	in	details.	
39. Explain	in	details	the	non	–	inverting	amplifier	configuration.	
40. Explain	in	details	the	inverting	amplifier	configuration.	
41. Explain	in	details	the	differential	amplifier	configuration.	
42. Explain	voltage	follower.	Or	explain	the	special	case	of	non	inverting	amplifier.	
43. Explain	the	current	to	voltage	converter.	
44. Explain	inverter.	Or	explain	the	special	case	of	inverting	amplifier	
45. Define	input	offset	voltage	and	explain	why	it	exists	in	all	operational	amplifiers.
Linear	Integrated	Circuits	&	Applications		
Question Bank 
Department of Electronics Engineering 
             Dr. Nilesh Bhaskarrao Bahadure 
 
 
Page 6
46. Define	the	common	mode	rejection	ratio	(CMRR)	and	explain	the	significance	of	a	
relatively	large	value	of	CMRR.	
47. Define	the	following	terms:	
(a) Input	bias	current	
(b) Input	offset	current	
(c) Input	offset	voltage	
(d) Total	output	offset	voltage	
(e) Slew	rate	
(f) Common	mode	rejection	ratio	
48. Design	an	amplifier	with	gain	of	–	10	and	input	resistance	equal	to	10	KΩ.	
49. In	the	Fig	(4),	a	load	of	25	KΩ	is	connected	to	the	output	terminal.	Calculate		
	
Figure	(4)	
i. I1	
ii. Vo	
iii. IL	and	total	current	Io			
50. Design	an	amplifier	with	a	gain	of	+5	using	one	Op	–	Amp.	
51. Design	an	inverting	amplifier	with	a	gain	of	‐5	and	an	input	resistance	of	10	KΩ.	
52. Design	an	amplifier	with	a	gain	of	+10.		
53. For	an	Op	–	Amp	open	loop	gain	is	3	×	106	and	the	cut	off	frequency	is	10	Hz.	The	Op	–	
Amp	is	used	in	an	inverting	amplifier	with	a	gain	of	10.	Determine	the	bandwidth	of	
the	closed	loop	amplifier.	
54. The	741C	operational	amplifier	having	the	following	parameters	is	connected	as	a	
non	–	inverting	amplifier	as	shown	in	fig.	(5)
Linear	Integrated	Circuits	&	Applications		
Question Bank 
Department of Electronics Engineering 
             Dr. Nilesh Bhaskarrao Bahadure 
 
 
Page 7
	
Figure	(5)	
Calculate	the	values	of	closed	loop	voltage	gain	(AF),	Input	Resistance	(Rif),	Output	
Resistance	(Rof),	Ff	and	VooT.	
55. Repeat	problem	(44)	for	the	voltage	follower.	
56. The	741C	operational	amplifier	having	the	following	parameters	is	connected	as	a	
non	–	inverting	amplifier	as	shown	in	fig.	(6)	
	
Figure	(6)	
(a) Calculate	the	exact	closed	loop	gain.	
(b) Calculate	the	ideal	closed	loop	gain.	
(c) Explain	the	result	obtained	in	parts	(a)	and	(b).	
57. Repeat	problem	(46)	with	R1	=	470	Ω	and	RF	=	4.7	KΩ.	
58. The	741C	operational	amplifier	having	the	following	parameters	is	connected	as	a	
non	–	inverting	amplifier	as	shown	in	fig.	(7)
Linear	Integrated	Circuits	&	Applications		
Question Bank 
Department of Electronics Engineering 
             Dr. Nilesh Bhaskarrao Bahadure 
 
 
Page 8
	
Figure	(7)	
Compute	the	closed	loop	parameters:	AF,	Rif,	Rof,	Ff	and	VooT.	
59. For	 the	 inverting	 amplifier	 shown	 in	 fig	 (8).	 Calculate	 the	 values	 of	 closed	 loop	
voltage	gain	(AF),	Input	Resistance	(Rif),	Output	Resistance	(Rof),	Ff	and	VooT.	
	
Figure	(8)	
	
60. (a)	 Find	the	voltage	gain	for	the	non	inverting	amplifier	of	fig	(9).	If	Ei	is	a	100	Hz		
Triangle	wave	with	a	2	V	peak.	
(b)	 Calculate	value	of	output	voltage	Vo.
Linear	Integrated	Circuits	&	Applications		
Question Bank 
Department of Electronics Engineering 
             Dr. Nilesh Bhaskarrao Bahadure 
 
 
Page 9
Figure	(9)	
61. For	Fig.	(10)	Determine	(a)	Output	Voltage	Vo,	(b)	Load	current	IL	,	(c)	Current	Io	
	
Figure	(10)	
62. Calculate	 output	 voltage	 Vo	 and	 the	 op	 –	 amps	 output	 current	 in	 fig.	 (11)	 if	 Vin	
equals	(a)	+5V,	(b)	–	2V		 	
	
Figure	(11)	
63. Calculate	value	of	Vin	for	the	figure	shown	in	problem	(52),	if	Vo	equals	(a)	+5V,	(b)	–	
2V
Linear	Integrated	Circuits	&	Applications		
Question Bank 
Department of Electronics Engineering 
             Dr. Nilesh Bhaskarrao Bahadure 
 
 
Page 10
64. Design	summing	amplifier,	inverting	scaling	and	averaging	amplifier	using	inverting	
amplifier.	
65. Explain	in	details	the	non	–	inverting	summing	amplifier.	
66. Design	 and	 explain	 non	 inverting	 averaging	 amplifier.	 Also	 state	 the	 differences	
between	averaging	amplifiers	designed	using	inverting	and	non	inverting	amplifier.	
67. Design	and	explain	subtrcator	using	differential	amplifier.	
68. Design	and	explain	adder	–	subtractor	using	differential	amplifier.	
69. What	 is	 the	 application	 or	 use	 of	 instrumentation	 amplifier?	 Explain	
instrumentation	amplifier	using	three	operational	amplifiers.	
70. Derive	the	expression	for	the	output	voltage	for	the	instrumentation	amplifier	using	
Transducer	Bridge.	
71. Draw	 the	 circuit	 of	 a	 differential	 instrumentation	 amplifier	 using	 a	 transducer	
bridge	and	explain	its	features.	Also	derive	the	expression	for	its	output	voltage.	
72. Draw	an	adder	circuits	using	operational	amplifier	to	get	the	output	expression	as	
V0	=	‐10.1V1	+V2	+	5	V3.	
73. Design	an	adder	circuit	using	an	operational	amplifier	to	get	the	output	expression	
as:	
Vo	=		 	–	(0.1V1	+	V2	+	10V3)	
	 	 Where	V1,	V2	and	V3	are	the	inputs.	
74. Design	an	adder	circuit	using	an	operational	amplifier	to	get	the	output	expression	
as:	
Vo	=		 	(0.1V1	+	V2	+	10V3)	
	 	 Where	V1,	V2	and	V3	are	the	inputs.	
75. In	the	circuit	shown	below
Linear	Integrated	Circuits	&	Applications		
Question Bank 
Department of Electronics Engineering 
             Dr. Nilesh Bhaskarrao Bahadure 
 
 
Page 11
	
	
RA	 =	 RB	 =	 RC	 =	 100	 KΩ,	 Vdc	 =+	 5V	 and	 Op	 –	 amp	 supply	 voltages	 =	 ±	 15V.	 The	
transducer	 is	 thermister	 with	 the	 following	 specifications:	 RT	 =	 100	 KΩ	 at	 a	
reference	temperature	of	25oC;	temperature	coefficient	of	resistance	=	‐	1	KΩo/C.	
Determines	the	output	voltage	at	0o/C	and	at	100o/C	
76. In	the	circuit	of	problem	(12),	R1	=	1.8	KΩ,	RF	=	4.7	KΩ,	RA	=	RB=	RC	=	500	K	Ω,		Vdc	
=10	V	and	Op	–	amp	supply	voltages	=	±	15V.	The	transducer	is	thermister	with	the	
following	 specifications:	 RT	 =	 100	 KΩ	 at	 a	 reference	 temperature	 of	 25oC;	
temperature	coefficient	of	resistance	=	‐	1	KΩo/C.	If	the	temperature	changes	from	0o	
to	70oC,	find	the	variations	in		
(a) the	input	signal	Vab	and		
(b) the	output	signal	Vo	
77. show	 that	 the	 output	 voltage	 Vo	 of	 the	 instrumentation	 amplifier	 with	 dual	
Operational	amplifier	is.	
Vo	=	[	1	+		 	]	(Vin2	–	Vin1)
Linear	Integrated	Circuits	&	Applications		
Question Bank 
Department of Electronics Engineering 
             Dr. Nilesh Bhaskarrao Bahadure 
 
 
Page 12
	
78. Calculate	the	gain	of	the	configuration	shown	below	
	
79. For	 the	 instrumentation	 amplifier	 of	 problem	 (15)	 above,	 calculate	 the	 output	
voltage	if	
V1	=	2mV	&	V2	=	1mV.	
80. Find	Vo	for	the	adder	–	subtractor	shown	in	figure	(1)
Linear	Integrated	Circuits	&	Applications		
Question Bank 
Department of Electronics Engineering 
             Dr. Nilesh Bhaskarrao Bahadure 
 
 
Page 13
	
81. For	the	differential	input	–	differential	output	amplifier	shown	in	the	figure	(2)	show	
that	the	output	voltage	Vo	is	
	
	
82. Explain	voltage	to	current	converter	with	floating	load.	
83. Explain	voltage	to	current	converter	with	grounded	load.	
84. Explain	voltage	to	current	converter	also	states	what	are	the	applications	of	voltage	
to	current	converter.	
85. Explain	current	to	voltage	converter.	
86. Define	and	explain	Trans	conductance	amplifier.	
87. Define	and	explain	Trans	resistance	amplifier.
Linear	Integrated	Circuits	&	Applications		
Question Bank 
Department of Electronics Engineering 
             Dr. Nilesh Bhaskarrao Bahadure 
 
 
Page 14
88. Explain	differentiator	and	derive	the	expression	for	the	output	voltage.	
89. Explain	the	practical	differentiator	and	derive	the	expression	for	the	output	voltage.	
90. Explain	the	applications	of	the	differentiator.	
91. Explain	the	applications	of	the	integrator.	
92. Explain	the	integrator	and	derive	the	expression	for	the	output	voltage.	
93. Explain	the	practical	integrator	and	derive	the	expression	for	the	output	voltage.	
94. Explain	in	details	lossy	integrator	and	derive	the	expression	for	the	output	voltage.	
95. 	
(a) Design	a	differentiator	to	differentiate	an	input	signal	that	varies	in	frequency	
from	10	Hz	to	1	KHz.	
(b) If	a	sine	wave	of	1	V	peak	at	100	Hz	applied	to	the	differentiator	of	part	(a)	draw	
its	output	waveform.		
96. 	
(a) Design	 an	 Op	 –	 amp	 differentiator	 that	 will	 differentiate	 an	 input	 signal	 with	
fmax	=	100	Hz.	
(b) Draw	the	output	waveform	for	a	sine	wave	of	1	V	peak	at	100	Hz	applied	to	the	
differentiator.	
(c) Repeat	part	(b)	for	a	square	wave	output.	
97. In	the	circuit	of	figure	(3),	R1CF	=	1	second,	and	the	input	is	a	step	(dc)	voltage,	as	
shown	in	figure	(4).	Determine	the	output	voltage	and	sketch	it.	Assume	that	Op	–	
amp	is	initially	nulled.	
	
Figure	(3)
Linear	Integrated	Circuits	&	Applications		
Question Bank 
Department of Electronics Engineering 
             Dr. Nilesh Bhaskarrao Bahadure 
 
 
Page 15
	
	
Figure	(4)	
98. An	input	dc	voltage	shown	in	figure	is	fed	to	an	op‐amp	integrator	with	R1CF	=	1	sec.	
Find	the	output	and	sketch.	Op‐amp	is	nulled	initially.
	
	
99. Find	R1	and	RF	in	the	practical	integrator	so	that	the	peak	gain	is	20	dB	and	the	gain	
is	3	dB	down	from	its	peak	when	ω	=	10,000	rad/sec.	Use	a	capacitance	of	0.01	µF.	
100. Show	that	for	a	non	inverting	amplifier	shown	in	figure	(5)	output	voltage	Vo		
is	
Vo	=	1	/	RC
Linear	Integrated	Circuits	&	Applications		
Question Bank 
Department of Electronics Engineering 
             Dr. Nilesh Bhaskarrao Bahadure 
 
 
Page 16
Figure	(5)	
	
101. What	is	comparator?	List	the	application	of	comparator.	
102. Explain	in	details	the	basic	comparator.	
103. Explain	Non	–	inverting	and	inverting	comparator.	
104. Explain	zero	crossing	detector.	
105. Draw	and	Explain	in	details	the	regenerative	comparator	or	Schmitt	trigger.	
106. What	is	the	difference	between	a	basic	comparator	and	the	Schmitt	trigger?	
107. Design	a	Schmitt	trigger	using	IC	741,	such	that	the	hysteresis	will	be	6V.	Use		
supply	voltage	of	±	10V.	
108. In	the	Op	–	amp	comparator	shown	below,	supply	voltages	are	±	12V	and	Vsat		
=	0.9	Vcc.	If	a	sine	wave	of	10V	is	applied,	calculate	the	threshold	levels	and	
plot	the	input	and	output	waveforms.		
	
	
109. In	the	Op	–	amp	comparator	shown	below,	supply	voltage	=	±	15V	and	Vin	=	1V		
peak	 to	 peak	 sine	 wave.	 Determine	 the	 threshold	 voltages	 VUT	 and	 VLT	 and	
draw	the	input	and	output	waveforms.	
	
110. In	the	circuit	of	Schmitt	trigger	R1=50K	and	R2=100Ω	and	Vi=1Vpp	(peak	to
Linear	Integrated	Circuits	&	Applications		
Question Bank 
Department of Electronics Engineering 
             Dr. Nilesh Bhaskarrao Bahadure 
 
 
Page 17
peak)	 sine	 wave	 and	 saturation	 voltage	 =	 ±14V.	 Determine	 the	 threshold	
voltages	VUT	and	VLT.	
111. In	the	circuit	of	Schmitt	trigger	R1=55K	and	R2=110Ω	and	Vi=1Vpp	(peak	to		
peak)	 sine	 wave	 and	 saturation	 voltage	 =	 ±13V.	 Determine	 the	 threshold	
voltages	VUT	and	VLT.	
112. In	the	Op	–	amp	comparator	shown	below,	supply	voltage	=	±	15V	and	Vin	=		
500mV	peak	to	peak	sine	wave	and	the	saturation	voltages	=	±	14V.		
(a) Determine	the	threshold	voltages	VUT	and	VLT		
(b) What	is	the	value	of	hysteresis	voltage	VHY?	
(c) Replace	the	value	as	R1	=	100	Ω	and	R2	=	3.9	KΩ	then	solve	part	(a)	and	(b)	
	
	
113. Explain	voltage	limiter	in	details.	Also	explain	why	voltage	limiter	needed?	
Or	
Draw	and	explain	voltage	limiter	in	details.	
Or		
Draw	and	explain	positive	and	negative	voltage	limiters.	
114. Draw	and	explain	window	detector.	Also	states	what	are	the	applications	of		
window	detector.	
115. Draw	and	explain	precision	half	–	wave	rectifier	with	its	input	and	output		
waveforms.	
116. Draw	and	explain	precision	Full	–	wave	rectifier	with	its	input	and	output		
waveforms.	
117. Draw	and	explain	absolute	value	circuit	with	sample	input	and	output		
waveforms.	
118. Draw	and	explain	logarithmic	amplifier.
Linear	Integrated	Circuits	&	Applications		
Question Bank 
Department of Electronics Engineering 
             Dr. Nilesh Bhaskarrao Bahadure 
 
 
Page 18
Or	
Draw	and	explain	logarithmic	amplifier	using	NPN	transistor.	
Or	
Draw	and	explain	logarithmic	amplifier	using	diode.	
119. Show	that	output	voltage	of	logarithmic	amplifier	using	one	Op	–	amp	with		
NPN	transistor	is	
Vo	=		 		 		 	 	 〖 / 〗	
120. Draw	and	Explain	peak	detector	with	suitable	waveforms.	State	any	two		
applications	where	you	found	peak	detector.	
121. What	is	the	name	of	the	circuit	that	is	used	to	detect	the	peak	value	of	non		
sinusoidal	input	waveforms?	Briefly	explain	its	operation.	
122. Explain	the	operation	of	positive	peak	detector	with	relevant	waveforms.	
123. What	do	you	mean	by	sample	and	hold	circuit?	Why	is	it	needed?	
124. Draw	and	explain	sample	and	hold	circuit	using	operational	amplifier.	Also		
explain	by	drawing	suitable	waveforms.		
125. Write	a	short	notes	on	the	following:	
(a) Sense	amplifier.	
(b) Analog	switches.	
(c) Norton	amplifier.	
(d) Bootstrap	amplifier.	
(e) Current	to	voltage	converter.	
	
126. Define positive and negative clippers. 
127. Define positive and negative clampers. 
128. What is the difference between triangular wave and saw tooth wave 
129. Draw and explain positive clipper in details. 
130. Draw and explain positive and negative clippers in details. 
131. Explain positive and negative clampers and their advantages. 
132. Draw and explain square wave generator, also derive the expression for the frequency  
Linear	Integrated	Circuits	&	Applications		
Question Bank 
Department of Electronics Engineering 
             Dr. Nilesh Bhaskarrao Bahadure 
 
 
Page 19
of oscillation. 
133. What is the difference between clippers and clampers? Give one application of each. 
134. Draw and explain positive and negative clippers using suitable waveforms. 
135. Draw and explain triangular wave generator. 
136. Draw and explain saw tooth wave generator. 
137. What is the clipper, explain negative clipper circuits and their applications. 
138. Explain positive clampers in details using suitable input waveforms. 
139. Design the square wave generator of figure (1) so that fo = 1 KHz with dc supply  
voltage = ± 15V. The operational amplifier is 741. 
 
Figure (1) 
140. Write short motes on the following: 
(a) Voltage sweep generator 
(b) Current sweep generator 
(c) High Pass RC circuit as a differentiator 
(d) Low Pass RC circuits as a integrator. 
(e) Positive clipper 
(f) Negative Clamper 
(g) Square wave generator 
 
 
 
 
Linear	Integrated	Circuits	&	Applications		
Question Bank 
Department of Electronics Engineering 
             Dr. Nilesh Bhaskarrao Bahadure 
 
 
Page 20
141. What is monostable multivibrator 
142. What is astable multivibrator 
143. What is bistable multivibrator 
144. Define conversion time. 
145. Differentiate between collector coupled multivibrator and emitter coupled  
multivibrator. 
146. Explain how transistor works as a switch. Explain with suitable example. 
147. Explain astable multivibrator and derive the expression for the oscillation frequency. 
148. Draw and explain monostable multivibrator in details. 
149. Draw and explain collector coupled monostable multivibrator. 
150. Draw and explain emitter coupled monostable multivibrator. 
151. Draw and explain bistable multivibrator. 
152. Draw and explain fixed bias and self bias bistable multivibrator. 
153. Calculates stable states currents and voltages of the bistable multivibrator shown in  
fig (1) consisting two cross coupled inverter circuits. Assume minimum value of hfe of 
the transistor is 20. Use Rc = 2.2 KΩ, R1 = 15 KΩ and R2 = 100 KΩ. 
 
Figure (1) 
154. Calculates stable states currents and voltages of the bistable multivibrator shown in  
fig (2) consisting two cross coupled inverter circuits. Assume minimum value of hfe of 
the transistor is 20.  Also assume that transistor Q1 and Q2 are silicon type 2N 914 
Linear	Integrated	Circuits	&	Applications		
Question Bank 
Department of Electronics Engineering 
             Dr. Nilesh Bhaskarrao Bahadure 
 
 
Page 21
 
Figure (2) 
155. Calculates stable states currents and voltages of the bistable multivibrator shown in  
fig (3) consisting two cross coupled inverter circuits. Assume minimum value of hfe of 
the transistor is 20. Also assume that transistors are germanium type. 
 
Figure (3) 
156. The fixed bias bistable multivibrator shown in figure (4) uses NPN 2N 706A silicon  
transistors with hfe = 20. The circuit parameters are Vcc = 12 V, VBB = 3V, Rc = 1 K, R1 
= 5 K and R2 = 10 K. verify that one transistor is cut off and the other is in saturation 
and find the stable state currents and voltages. Assume VCE (Sat) = 0 V and VBE (sat) = 0 
V 
Linear	Integrated	Circuits	&	Applications		
Question Bank 
Department of Electronics Engineering 
             Dr. Nilesh Bhaskarrao Bahadure 
 
 
Page 22
 
Figure (4) 
157. Repeat problem (15) with assuming VCE (Sat) = 0.4 V and VBE (sat) = 0.8 V 
158. Calculate the stable state currents and voltages for the self biased bistable  
multivibrator circuit shown in figure (5), which uses PNP germanium transistor. 
Find the minimum value of hfe, which will keep the ON transistor in saturation. 
Use RC = 4 KΩ, R1 = 30 KΩ, R2 = 10 KΩ and Re = 500 Ω 
 
 
159. Write a short notes on the following 
Linear	Integrated	Circuits	&	Applications		
Question Bank 
Department of Electronics Engineering 
             Dr. Nilesh Bhaskarrao Bahadure 
 
 
Page 23
(i) Use of Commutating Capacitors in bistable multivibrator 
(ii) Methods of improving resolution. 
(iii) Schmitt trigger circuit. 
 
 
 
 
160. Explain the features of the timer 555. 
161. In a monostable multivibrator using 555 timer R=100 KΩ and time delay is 100ms. Find  
the value of capacitor C. 
162. In a monostable multivibrator using 555 timer RA =10 KΩ and time delay is 10ms. Find  
the value of capacitor C. 
163. What are the applications of 555 timer 
164. Draw the functional diagram of astable multivibrator. 
165. Explain an astable multivibrator using IC‐555wit neat diagram. 
166. With a neat diagram of astable multivibrator deduce the formula for frequency. 
167. What is duty cycle? Obtain an equation of duty cycle for astable operation. 
168. Explain with a neat circuit diagram astable multivibrator as square wave generator. 
169. Draw the neat diagram of monostable multivibrator using external connection and  
explain it in detail. 
170. Explain the use of IC‐555 timer as a frequency divider and as a pulse stretcher 
171. It is possible to produce a square wave using a 555 timer that has exactly 50 % duty  
cycle? Explain. 
172. Draw and explain the astable operation using 555 to achieve 50% duty cycle and  
derive the expression for the frequency of Oscillation 
173. Determine the frequency of oscillation for the astable multivibrator using IC‐555.  
Given that RA=RB=1KΩ and C=1000PF. 
174. Determine the frequency of oscillation for the astable multivibrator using IC‐555.  
Given that RA=RB=2KΩ and C=1000PF. 
Linear	Integrated	Circuits	&	Applications		
Question Bank 
Department of Electronics Engineering 
             Dr. Nilesh Bhaskarrao Bahadure 
 
 
Page 24
175. Calculate the duty cycle for the astable multivibrator using IC‐555. Given that  
RA=RB=2KΩ and C=1000PF. 
176. Calculate the duty cycle for the astable multivibrator using IC‐555. Given that  
RA=RB=1KΩ and C=1000 PF. 
177. Draw the internal block diagram of the NE 555 timer IC and explain how it can be used  
as a monostable multivibrator. Derive an expression for its pulse width. 
178. Draw the block diagram of an Astable multivibrator using 555timer and derive an  
expression for its frequency of oscillation. 
179. Explain the pin configuration of IC‐555. 
180. Give the pin connections of IC‐555. Explain the use of each pin. 
181. Explain the use of IC‐555 as a ramp generator by using astable mode. 
182. With neat diagram explain the working of step down switching regulator 
183. A 555 timer configured in astable mode with RA = 2 KΩ, RB = 4 KΩ and C = 0.1 μF.  
Determine the frequency of the output and duty cycle. 
184. In a astable multivibrator values are RA = 8.2K, RB=3.9 K and C = 0.1 µF. Determine  
(i) The positive pulse width Tc 
(ii) The negative pulse width Td 
(iii) Free running frequency f 
(iv) Duty Cycle 
185. In a astable multivibrator of figure (1) RA = 2.2K, RB=3.9 K and C = 0.1 µF.  
Determine  
 
Linear	Integrated	Circuits	&	Applications		
Question Bank 
Department of Electronics Engineering 
             Dr. Nilesh Bhaskarrao Bahadure 
 
 
Page 25
Figure (1) 
(i) The positive pulse width Tc 
(ii) The negative pulse width Td 
(iii) Free running frequency f 
(iv) Duty Cycle 
186. For the astable multivibrator of figure (1), RA = 4.7 KΩ, RB = 1 KΩ, and C = 1 µF.  
determine the positive pulse width, the negative pulse width, and the free running 
frequency. What is the duty cycle of the output waveform?. 
187. Design a 555 timer astable multivibrator for an output frequency of 1 KHz and duty  
cycle of 60% 
188. State the functions of each pin of IC 555. 
189. Design a adjustable voltage regulator using IC 723 to obtain positive low voltage and  
high voltage. 
190. Give the circuit schematic of a 555 timer connected as an astable multivibrator.  
Describe its operation. Derive an expression for its period 
191. Explain how a 555 timer chip can be used as a free running ramp generator. Derive an  
expression for its frequency 
192. What must the relationship be between the pulse width TP and the period T of the  
input trigger signal if the 555 is to be used as a divide by 4 network? 
193. Briefly explain the differences between the two operating modes of the 555 timer. 
194. What is a voltage regulator? List four different types of voltage regulators. 
195. What are the advantages of the adjustable voltage regulators over the fixed voltage  
regulators? 
196. What is a switching regulator? List four major components of the switching regulator. 
197. What are the advantages of switching regulators? 
198. Using IC 7805C voltage regulator, design a current source that will deliver a 0.25 A  
current to the 48 Ω, 10 Watt load. 
Linear	Integrated	Circuits	&	Applications		
Question Bank 
Department of Electronics Engineering 
             Dr. Nilesh Bhaskarrao Bahadure 
 
 
Page 26
 
199. Using IC 7805C voltage regulator, design a current source that will deliver a 150 mA  
current to the 8 Ω, 10 Watt load. 
200. Design an adjustable voltage regulator to satisfy the following specifications:  
Output voltage Vo = 5 to 12 V  
Output Current Io = 1.0 A  
Voltage regulator is LM317. 
201. (a)  Using LM317, design an adjustable voltage regulator to satisfy the following  
Specifications:  Output voltage Vo = 5 to 12 V and Output Current Io = 1.0 A  
(b)   Draw the complete schematic diagram of the regulator designed in part (a) 

More Related Content

What's hot

Analog to digital converter
Analog to digital converterAnalog to digital converter
Analog to digital convertershrutishreya14
 
Operational Amplifier Part 1
Operational Amplifier Part 1Operational Amplifier Part 1
Operational Amplifier Part 1Mukesh Tekwani
 
Two Port Network Parameters
Two Port Network ParametersTwo Port Network Parameters
Two Port Network Parametersmmlodro
 
Passive filters
Passive filtersPassive filters
Passive filtersRania H
 
High-Efficiency RF Power Amplifiers.pptx
High-Efficiency RF Power Amplifiers.pptxHigh-Efficiency RF Power Amplifiers.pptx
High-Efficiency RF Power Amplifiers.pptxssuserccb0ae
 
Band pass filter
Band pass filterBand pass filter
Band pass filterMadeha Arif
 
Bjt oscillators
Bjt oscillatorsBjt oscillators
Bjt oscillatorsCvSudhakar
 
Introduction To Filters.ppt
Introduction To Filters.pptIntroduction To Filters.ppt
Introduction To Filters.pptprempanigrahi
 
Design Basics on Power Amplifiers
Design Basics on Power Amplifiers Design Basics on Power Amplifiers
Design Basics on Power Amplifiers ls234
 
Operational amplifier
Operational amplifierOperational amplifier
Operational amplifierUnsa Shakir
 
Unit-I Characteristics of opamp
Unit-I Characteristics of opampUnit-I Characteristics of opamp
Unit-I Characteristics of opampDr.Raja R
 
NOISE IN Analog Communication Part-1.ppt
NOISE IN Analog Communication  Part-1.pptNOISE IN Analog Communication  Part-1.ppt
NOISE IN Analog Communication Part-1.pptAshishChandrakar12
 
Power amplifiers
Power amplifiersPower amplifiers
Power amplifiersHarsha Nair
 
Operational Amplifiers with MATLAB
Operational  Amplifiers with MATLABOperational  Amplifiers with MATLAB
Operational Amplifiers with MATLABHarikesh Kumar
 
Application of operational amplifier
Application of operational amplifierApplication of operational amplifier
Application of operational amplifierAhmad Raza
 

What's hot (20)

Analog to digital converter
Analog to digital converterAnalog to digital converter
Analog to digital converter
 
Active filters
Active filtersActive filters
Active filters
 
Operational Amplifier Part 1
Operational Amplifier Part 1Operational Amplifier Part 1
Operational Amplifier Part 1
 
Two Port Network Parameters
Two Port Network ParametersTwo Port Network Parameters
Two Port Network Parameters
 
Power amplifiers
Power amplifiersPower amplifiers
Power amplifiers
 
Tuned amplifire
Tuned amplifireTuned amplifire
Tuned amplifire
 
Passive filters
Passive filtersPassive filters
Passive filters
 
High-Efficiency RF Power Amplifiers.pptx
High-Efficiency RF Power Amplifiers.pptxHigh-Efficiency RF Power Amplifiers.pptx
High-Efficiency RF Power Amplifiers.pptx
 
Band pass filter
Band pass filterBand pass filter
Band pass filter
 
ADC and DAC Best Ever Pers
ADC and DAC Best Ever PersADC and DAC Best Ever Pers
ADC and DAC Best Ever Pers
 
Bjt oscillators
Bjt oscillatorsBjt oscillators
Bjt oscillators
 
Introduction To Filters.ppt
Introduction To Filters.pptIntroduction To Filters.ppt
Introduction To Filters.ppt
 
Design Basics on Power Amplifiers
Design Basics on Power Amplifiers Design Basics on Power Amplifiers
Design Basics on Power Amplifiers
 
Operational amplifier
Operational amplifierOperational amplifier
Operational amplifier
 
Unit-I Characteristics of opamp
Unit-I Characteristics of opampUnit-I Characteristics of opamp
Unit-I Characteristics of opamp
 
Op amp
Op ampOp amp
Op amp
 
NOISE IN Analog Communication Part-1.ppt
NOISE IN Analog Communication  Part-1.pptNOISE IN Analog Communication  Part-1.ppt
NOISE IN Analog Communication Part-1.ppt
 
Power amplifiers
Power amplifiersPower amplifiers
Power amplifiers
 
Operational Amplifiers with MATLAB
Operational  Amplifiers with MATLABOperational  Amplifiers with MATLAB
Operational Amplifiers with MATLAB
 
Application of operational amplifier
Application of operational amplifierApplication of operational amplifier
Application of operational amplifier
 

Similar to Question Bank linear integrated circuits and applications

LIC Senthilkumar (Sine wave Generator) (1).pptx
LIC Senthilkumar (Sine wave Generator) (1).pptxLIC Senthilkumar (Sine wave Generator) (1).pptx
LIC Senthilkumar (Sine wave Generator) (1).pptxsenthilkumar936746
 
integrator and differentiator op-amp
integrator and differentiator op-ampintegrator and differentiator op-amp
integrator and differentiator op-ampdanish iqbal
 
Electronic circuit design lab manual
Electronic circuit design lab manualElectronic circuit design lab manual
Electronic circuit design lab manualawais ahmad
 
Lic lab manual
Lic lab manualLic lab manual
Lic lab manualAJAL A J
 
Ec6412 linear-integrated-circuit-laboratory
Ec6412 linear-integrated-circuit-laboratoryEc6412 linear-integrated-circuit-laboratory
Ec6412 linear-integrated-circuit-laboratoryPRADEEPJ30
 
Positive feedback: Oscillators
Positive feedback: OscillatorsPositive feedback: Oscillators
Positive feedback: OscillatorsYeshudas Muttu
 
Switching Voltage Regulator
Switching Voltage RegulatorSwitching Voltage Regulator
Switching Voltage Regulatoribercovich
 
Lecture 12.pptx
Lecture 12.pptxLecture 12.pptx
Lecture 12.pptxABIDANJAM
 
Chapter 7: Operational Amplifier (Op-Amp)
Chapter 7: Operational Amplifier (Op-Amp)Chapter 7: Operational Amplifier (Op-Amp)
Chapter 7: Operational Amplifier (Op-Amp)JeremyLauKarHei
 

Similar to Question Bank linear integrated circuits and applications (20)

BE UNIT 3 PPT.ppt
BE UNIT 3 PPT.pptBE UNIT 3 PPT.ppt
BE UNIT 3 PPT.ppt
 
LIC Senthilkumar (Sine wave Generator) (1).pptx
LIC Senthilkumar (Sine wave Generator) (1).pptxLIC Senthilkumar (Sine wave Generator) (1).pptx
LIC Senthilkumar (Sine wave Generator) (1).pptx
 
integrator and differentiator op-amp
integrator and differentiator op-ampintegrator and differentiator op-amp
integrator and differentiator op-amp
 
Transistor applications (2)
Transistor applications (2)Transistor applications (2)
Transistor applications (2)
 
Transistor applications
Transistor applicationsTransistor applications
Transistor applications
 
Op-amp.pptx
Op-amp.pptxOp-amp.pptx
Op-amp.pptx
 
Transisitor amplifier
Transisitor amplifierTransisitor amplifier
Transisitor amplifier
 
Oscillator
OscillatorOscillator
Oscillator
 
Electronic circuit design lab manual
Electronic circuit design lab manualElectronic circuit design lab manual
Electronic circuit design lab manual
 
Lic lab manual
Lic lab manualLic lab manual
Lic lab manual
 
Ec6412 linear-integrated-circuit-laboratory
Ec6412 linear-integrated-circuit-laboratoryEc6412 linear-integrated-circuit-laboratory
Ec6412 linear-integrated-circuit-laboratory
 
UNIT-3 OPAMP.pptx
UNIT-3 OPAMP.pptxUNIT-3 OPAMP.pptx
UNIT-3 OPAMP.pptx
 
Positive feedback: Oscillators
Positive feedback: OscillatorsPositive feedback: Oscillators
Positive feedback: Oscillators
 
Unit 5.pptx
Unit 5.pptxUnit 5.pptx
Unit 5.pptx
 
Switching Voltage Regulator
Switching Voltage RegulatorSwitching Voltage Regulator
Switching Voltage Regulator
 
chapter 3_bem.pptx
chapter 3_bem.pptxchapter 3_bem.pptx
chapter 3_bem.pptx
 
Lecture 12.pptx
Lecture 12.pptxLecture 12.pptx
Lecture 12.pptx
 
Chapter 7: Operational Amplifier (Op-Amp)
Chapter 7: Operational Amplifier (Op-Amp)Chapter 7: Operational Amplifier (Op-Amp)
Chapter 7: Operational Amplifier (Op-Amp)
 
Operational Amplifire.pptx
Operational Amplifire.pptxOperational Amplifire.pptx
Operational Amplifire.pptx
 
Ass2
Ass2Ass2
Ass2
 

More from Nilesh Bhaskarrao Bahadure

Microcontroller 8051 instruction set and assemble directives
Microcontroller 8051 instruction set and assemble directivesMicrocontroller 8051 instruction set and assemble directives
Microcontroller 8051 instruction set and assemble directivesNilesh Bhaskarrao Bahadure
 

More from Nilesh Bhaskarrao Bahadure (20)

Biomedical Signal Origin and Dynamics
Biomedical Signal Origin and DynamicsBiomedical Signal Origin and Dynamics
Biomedical Signal Origin and Dynamics
 
Introduction to Medical Image Processing
Introduction to Medical Image ProcessingIntroduction to Medical Image Processing
Introduction to Medical Image Processing
 
Timing diagram of microprocessor 8085
Timing diagram of microprocessor 8085Timing diagram of microprocessor 8085
Timing diagram of microprocessor 8085
 
Timers and counters of microcontroller 8051
Timers and counters of microcontroller 8051Timers and counters of microcontroller 8051
Timers and counters of microcontroller 8051
 
Serial communication of microcontroller 8051
Serial communication of microcontroller 8051Serial communication of microcontroller 8051
Serial communication of microcontroller 8051
 
Peripherals of Microprocessor 8085
Peripherals of Microprocessor 8085Peripherals of Microprocessor 8085
Peripherals of Microprocessor 8085
 
Microprocessor 8085 Basics
Microprocessor 8085 BasicsMicroprocessor 8085 Basics
Microprocessor 8085 Basics
 
Microcontroller 8051 instruction set and assemble directives
Microcontroller 8051 instruction set and assemble directivesMicrocontroller 8051 instruction set and assemble directives
Microcontroller 8051 instruction set and assemble directives
 
Microcontroller 8051 basics (part I)
Microcontroller 8051 basics (part I)Microcontroller 8051 basics (part I)
Microcontroller 8051 basics (part I)
 
Memory interfacing of microprocessor 8085
Memory interfacing of microprocessor 8085Memory interfacing of microprocessor 8085
Memory interfacing of microprocessor 8085
 
Memory interfacing of microcontroller 8051
Memory interfacing of microcontroller 8051Memory interfacing of microcontroller 8051
Memory interfacing of microcontroller 8051
 
Interrupts of microprocessor 8085
Interrupts of microprocessor 8085Interrupts of microprocessor 8085
Interrupts of microprocessor 8085
 
Interrupts of microcontroller 8051
Interrupts of microcontroller 8051Interrupts of microcontroller 8051
Interrupts of microcontroller 8051
 
Instruction sets of microprocessor 8085
Instruction sets of microprocessor 8085Instruction sets of microprocessor 8085
Instruction sets of microprocessor 8085
 
Embedded Systems
Embedded Systems Embedded Systems
Embedded Systems
 
Basic Electronics Semiconductor Diodes
Basic Electronics Semiconductor DiodesBasic Electronics Semiconductor Diodes
Basic Electronics Semiconductor Diodes
 
Basic Electronics Electrical Transducers
Basic Electronics Electrical TransducersBasic Electronics Electrical Transducers
Basic Electronics Electrical Transducers
 
Basic Electronics BJT
Basic Electronics BJTBasic Electronics BJT
Basic Electronics BJT
 
Applications of Microcontroller 8051
Applications of Microcontroller 8051Applications of Microcontroller 8051
Applications of Microcontroller 8051
 
Question Bank Programmable Logic Controller
Question Bank Programmable Logic ControllerQuestion Bank Programmable Logic Controller
Question Bank Programmable Logic Controller
 

Recently uploaded

Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Christo Ananth
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfKamal Acharya
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxfenichawla
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesPrabhanshu Chaturvedi
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . pptDineshKumar4165
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdfKamal Acharya
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
Vivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design SpainVivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design Spaintimesproduction05
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLPVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLManishPatel169454
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...ranjana rawat
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 

Recently uploaded (20)

Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and Properties
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
Vivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design SpainVivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design Spain
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLPVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 

Question Bank linear integrated circuits and applications