SlideShare a Scribd company logo
1
3UREOHP 6ROYLQJ H FRRSHUDWLYH OHDUQLQJ QHOOD GLGDWWLFD GHOOH VFLHQ]H VSHULPHQWDOL
0DUFR )DODVFD $QWRQHOOD 0DUWLQL 1RWD $QJHOHUL /RUHGDQD
,7,6 ( 0DMRUDQD GL *UXJOLDVFR
/D FULVL QHJOL DGROHVFHQWL H L QXRYL FRPSLWL GHOOD VFXROD
La realtà giovanile con la quale ci dobbiamo confrontare è sempre più difficile e complicata. L'attuale
processo di velocissima trasformazione tecnologica, produce grandi potenzialità ma anche un forte
senso di instabilità nel nostro modo di vita. Tra gli aspetti di malessere più preoccupanti provocati dai
cambiamenti in corso sicuramente figurano i problemi di comunicazione nelle famiglie e tra i vari
gruppi d'età (ragazzi, adulti , anziani). Questo intreccio di relazioni educative, che dovrebbe promuo-
vere la crescita e lo sviluppo dei rapporti sociali, è in crisi e ne subiscono le conseguenze soprattutto i
preadolescenti, specialmente quelli che vivono nei contesti socioculturali più deboli.
Sempre più spesso gli studenti sono passivi, incerti, bloccati; la mancanza di aspettative e la scarsa fi-
ducia nelle proprie possibilità generano deresponsabilizzazione e impediscono ai ragazzi di diventare
protagonisti del loro apprendimento.
Le difficoltà che abbiamo colto durante le nostre attività d'insegnamento della chimica nel biennio I-
TIS e di educazione scientifica con gli studenti delle scuole medie ed elementari, ci hanno convinto
che viene richiesto ai docenti di affrontare, con passione e competenza, nuovi compiti educativi.
Una delle risposte praticabili nella scuola , a nostro avviso, è quella di adottare con gradualità nuove
metodologie didattiche che cerchino, da una parte di modificare l'insegnamento - apprendimento in
coerenza con le recenti ricerche nella didattica delle scienze, e dall'altra di attivare processi di respon-
sabilizzazione nei ragazzi attraverso la valorizzazione delle loro capacità.
Per questo motivo da 8 anni stiamo utilizzando il Problem Solving in laboratorio e stiamo sperimen-
tando lezioni e Problem Solving anche in contesti di Cooperative Learning.
Inoltre, cercando di costruire esperienze di continuità nell'educazione scientifica, da più di quattro
anni lavoriamo con diversi colleghi di scuola elementare e di scuola media del territorio di Gruglia-
sco , studiando e preparando insieme unità di lavoro sperimentali.
Per conoscere e comprendere la tecnica del Problem Solving in laboratorio di chimica, di fisica o di
biologia, suggeriamo la lettura degli scritti dei Proff. Valitutti e Tifi*
/H TXHVWLRQL GL PHWRGR SHU O
HGXFD]LRQH VFLHQWLILFD QHOOD VFXROD GHOO
REEOLJR
L’attività sperimentale, soprattutto se condotta in gruppi cooperativi, può avere un ruolo molto rile-
vante per gli studenti, già dalla scuola elementare, perché insegna a modificare in modo attivo oggetti
2
concreti, permette l’acquisizione di conoscenze e intanto educa ad essere protagonisti e non solo frui-
tori passivi della realtà.
Nel curricolo del secondo ciclo delle scuole elementari scuole e medie il tema “ materia e fenomeni
fisici e chimici ” prevede esperimenti su sostanze e miscugli, con separazioni dei componenti dei mi-
scugli , cenni sulla struttura della materia, esperienze sulla materialità dei gas e altre attività sperimen-
tali che aiutino a costruire i fondamentali concetti di interazione e trasformazione.
Mentre per i bambini delle elementari si devono affrontare solo aspetti macroscopici della realtà e
delle sue trasformazioni, per i ragazzi delle scuole medie è necessario incominciare ad introdurre il
modello particellare per interpretare i fenomeni osservati; i fatti sperimentali devono essere visti sia
al livello macroscopico che in termini di struttura microscopica. Sull'argomento così si esprimono i
Proff. G. Valitutti, M. Marinozzi e A. Tifi : “ I concetti atomico-molecolari sono spesso appresi non
contestualmente al mondo dei fenomeni e, infatti, non sono mai usati spontaneamente dagli allievi
nell’interpretazione dei fenomeni . I “misconcetti” relativi al mondo microscopico, che vengono fre-
quentemente rilevati, dimostrano quanto l’argomento e i suoi collegamenti con le altre conoscenze
siano sottovalutati nell’insegnamento tradizionale. Occorre invece costruire i concetti microscopici
partendo dalle evidenze fenomeniche...Il primo obiettivo su cui puntare è fornire all’allievo il modello
particellare. Aiutandosi con modelli concreti e tangibili, che vengono via via precisati e privati del ca-
rattere metaforico, l’insegnante ha mille opportunità per sintonizzare la classe sul linguaggio particel-
lare...”
Nel biennio delle superiori (nel nostro caso un ITIS), si deve riprendere, approfondire e precisare l'a-
spetto particellare e creare per gli studenti le condizioni , come indica Alex Johnstone, per mettere in
relazione i tre livelli di rappresentazione della materia: macroscopico, particellare, simbolico (simbo-
logie matematiche, formule, equazioni ecc.). Il problema di collegare i tre livelli è comune alla fisica,
alla chimica e alla biologia, discipline che devono cominciare a distinguersi l'una dall'altra proprio nel
biennio della scuola superiore. Le attività di laboratorio, se non sono calate sugli studenti ma con-
dotte con metodi efficaci, possono costituire una grande opportunità anche per affrontare questa com-
plessità.
Per gli stessi concetti si tratta di proporre attività che aiutino gli allievi a costruire nella mente mo-
delli a diversi livelli concettuali a seconda della fascia d'età. Si deve naturalmente trattare di MO-
DELLI SEMPLIFICATI , utili comunque a interpretare la realtà, che si possano arricchire, estende-
re ed approfondire con coerenza nel corso degli anni. Sappiamo bene, dagli studi dei pedagogisti,
che gli allievi possiedono già proprie concezioni spontanee, le cosiddette misconcezioni o conce-
zioni di senso comune, che sono spesso in contrasto con le teorie scientifiche; proprio sulle loro ri-
strutturazioni si deve basare il processo di insegnamento/apprendimento delle scienze. Una strategia
3
per aiutare i ragazzi di scuola media inferiore e superiore a superare le proprie concezioni è, come
già accennato, l'introduzione del modello particellare della materia. L'importanza del laboratorio
come luogo in cui sperimentare e intanto riflettere e collegare il livello microscopico con il macro-
scopico è proprio quella di non imporre ex cathedra il modello particellare, ma far sì che venga
costruito dagli allievi, quindi assimilato e non ripetuto a solo beneficio dell'insegnante.
Nell’attività sperimentale si possono anche sviluppare abilità di base importanti che sono troppo spes-
so date per scontate: misurare volumi di liquidi con un cilindro, misurare temperature, effettuare ope-
razioni di pesata, di filtrazione, di distillazione ecc. ecc. Esse rappresentano conoscenze concrete im-
portanti, soprattutto nell'ottica di integrare il fare con il pensare. Un metodo che permette di collegare
efficacemente i due aspetti è il Problem Solving in laboratorio, come abbiamo potuto sperimentare
con allievi di tutta la fascia dell'obbligo.
,O 3UREOHP 6ROYLQJ VSHULPHQWDOH
Presentiamo alcuni esempi di Problem Solving sullo stesso argomento, affrontato a livello concet-
tuale diverso.
SOLUBILITÀ
ƒ (OHPHQWDUL
P. S. Tra i seguenti materiali : sale, olio, aceto, alcool, zucchero, sabbia, farina, quali sono
solubili in acqua?
In questo caso viene trattato il concetto di solubilità/insolubilità solo in termini esplorativi, per
giungere successivamente a descrivere un sistema in termini di omogeneità/eterogeneità
0HGLH
a- P. S. Il fertilizzante nitrato di potassio è più solubile in acqua calda o in acqua fredda?
b- P. S. Il fertilizzante nitrato di potassio, in acqua è più solubile a 20°C o a 5°C ?
In questi casi vengono coinvolte diverse variabili connesse al concetto di solubilità/insolubilità:
temperatura, volume, massa.
%LHQQLR VXSHULRUL 
- P. S. Vi vengono consegnati due becher contenenti uno nitrato di potassio e l'altro cloruro
di sodio
Identificate i due solidi progettando un esperimento sulla base delle caratteristiche illustra-
te nel grafico.
4
0
5
10
15
20
25
0 10 20 30 40 50 60 70 80 90 100
 ¢¡¤£¦¥§¡¤¨¤© §¨¤©


!
#
$!

%
'


(
)0
#
(
Questo Problema sperimentale coinvolge variabili e abilità di pensiero elevate relative al
concetto di solubilità/insolubilità: temperatura, volume, lettura e comprensione di un grafico,
utilizzo di quantità proporzionali rispetto ai dati presenti sul grafico, dal momento che ven-
gono usati becher da 50 mL .
MISCELE OMOGENEE/ETEROGENEE
(OHPHQWDUL
P. S. Avete una miscela formata da zolfo e acqua salata. Separate lo zolfo e il sale, solidi,
dall'acqua.
0HGLH
P. S. Avete a disposizione tre materiali: sale, olio, aceto. Dovete provocare la formazione di
a) una miscela omogenea b) una miscela eterogenea.
%LHQQLR VXSHULRUL 
P. S. Avete a disposizione un miscuglio formato da marmo in polvere, solfato di rame, ace-
tone . Separate i tre componenti.
Cloruro di sodio
Nitrato di Potassio
5
N.B. Si può usare eventualmente CuSO4 anidro bianco, che con l'aggiunta di acqua diventa
azzurro.
TRASFORMAZIONI
(OHPHQWDUL
P. S. Unendo a coppie i seguenti materiali dovete documentare almeno 4 casi di interazione
a)aceto; b)soluzione BTB giallo ; c) soluzione BTB blu ; d) acqua distillata e) acqua mine-
rale frizzante, bicarbonato di sodio
NB: il PS propone solo il concetto di interazione, senza etichettature chimiche o fisiche.
Per BTB si intende una soluzione di blu e di bromotimolo
0HGLH
P. S. Avete a disposizione 4 materiali : acqua, aceto, bicarbonato di sodio, zolfo. Dovete
provocare la formazione di a) una miscela omogenea; b) una miscela eterogenea; c) una re-
azione chimica.
N.B. Riteniamo sia didatticamente utile non considerare i passaggi di stato come le uniche
trasformazioni fisiche possibili.
%LHQQLR VXSHULRUL 
a) P. S. In quali casi, mescolando le soluzioni A,B,C con le soluzioni 1, 2, 3, vi è indizio di
trasformazione chimica?
Il P.S. ha lo scopo di condurre gli allievi alla compilazione di uno schema riassuntivo, come ad e-
sempio la griglia che segue, in cui registrare il colore e le altre caratteristiche degli eventuali preci-
pitati che si formano mescolando a due a due le varie soluzioni.
  
$ bianco - rosso
% - bianco giallo
 - - giallo gelatinoso
Le soluzioni da noi utilizzate sono: 1: NaCl, 2: Na2SO4, 3: K2CrO4, A: AgNO3, B: Ba(NO3)2,
C: Zn(NO3)2
b) P. S. Vi viene consegnato un sistema in equilibrio:
6
Co(H2O)6
2+
+ 4Cl -
CoCl4
2-
+ 6H2O
rosa blu
Dovete individuare sperimentalmente a) la reazione esotermica b) la reazione endotermica
c) l’effetto della sottrazione di un reagente
N.B. Quest'ultimo P. S. si presta ad approfondire il concetto di reazione chimica anche in termini di
equilibrio
Un organizzatore grafico che permette di gestire le attività sperimentali utilizzando in maniera effi-
cace le conoscenze teoriche è il diagramma a V di Gowin** che, aiutando gli studenti a chiarire la
natura e lo scopo delle attività sperimentali, contribuisce a far crescere le strategie cognitive e me-
tacognitive Sulla base della nostra esperienza, possiamo affermare che già dalla 4° elementare è
possibile introdurlo.
3UREOHP 6ROYLQJ LQ DSSUHQGLPHQWR FRRSHUDWLYR SHU OD FRVWUX]LRQH VRFLDOH GHOOD FRQRVFHQ]D
L'applicazione del Problem Solving sperimentale migliora chiaramente la didattica delle scienze, ma
noi pensiamo che possa esprimere al meglio le sue potenzialità formative se viene praticato utilizzan-
do una modalità G
LQVHJQDPHQWR DSSUHQGLPHQWR duttile e potente come il Cooperative Learning. I
presupposti teorici del Cooperative Learning si rifanno al pensiero di Vygotskij, in particolare sulla
natura sociale dell’apprendimento. Il metodo dell’apprendimento cooperativo contribuisce a creare un
contesto in cui gli allievi acquisiscono abilità di comportamento specificamente insegnate, dialogano
in modo interattivo con i compagni, senza appesantimento della memoria a breve termine, e quindi
apprendono in modo significativo.
La difficoltà a trovare una motivazione allo studio fa sì che spesso ci troviamo con classi gravemente
problematiche nel comportamento, per cui durante le attività sperimentali si possono produrre situa-
zioni di pericolo. D’altra parte l'elevata eterogeneità di stili d'apprendimento e di capacità dei ragazzi,
può essere affrontata positivamente solo se l'insegnante dedica la sua attenzione a piccoli gruppi, cosa
impossibile quando il resto della classe non collabora. E'possibile affrontare il problema, a nostro av-
viso, attraverso la liberazione delle risorse che provengono dal coinvolgimento attivo dei ragazzi
stessi nella conduzione della classe.
Il Cooperative Learning, anche quando proposto a livelli non sofisticati (Cooperative Learning infor-
male) , permette di migliorare molto la pratica didattica, educando gli allievi ad atteggiamenti ed abili-
tà sociali che spesso si danno per scontate e richiamate spesso solo con esortazioni, ma che in realtà
vanno insegnate ed apprese nell'esperienza delle relazioni concrete. Ciò vuol dire costruire un clima di
7
classe in cui i rapporti siano di interdipendenza positiva e in cui i ragazzi debbano collaborare anche
con persone ritenute non all’altezza.
Il Cooperative Learning richiede l’applicazione di diversi principi: il raggruppamento eterogeneo; l’in-
terdipendenza positiva; l’acquisizione di competenze sociali (saper comunicare, saper distribuire la
leadership, saper affrontare conflitti, saper risolvere problemi, saper prendere decisioni) ; l’autonomia
del gruppo; l’interosservazione ; la valutazione individuale e/o di gruppo. E’un metodo che solo in
tempi lunghi può essere ben padroneggiato dai docenti. Noi lo stiamo sperimentando, crescendo len-
tamente di anno in anno, cercando di evitare fughe in avanti e procedendo con gradualità e prudenza.
Per documentarsi sulla metodologia cooperativa è opportuno riferirsi ai testi segnalati nella bibliogra-
fia**
L'attività di Problem Solving sperimentale in contesti cooperativi, collegando l’operatività con la ri-
flessione teorica in un clima di scambio e confronto, è in sintonia con il pensiero costruttivista sociale
, perchè consente di porre in evidenza, con un'intesa sul significato dei termini e dei concetti anche
attraverso l’uso della V di Gowin, i passaggi mentali che favoriscono la costruzione concettuale.
Ciò è in piena coerenza con il documento della Commissione dei Saggi Contenuti essenziali per la
formazione di base in cui, relativamente alle scienze sperimentali, si sostiene la necessità di una
FROODERUD]LRQH HIIHWWLYD WUD L GXH DVSHWWL FRPSOHPHQWDUL FKH FDUDWWHUL]]DQR OD FRVWUX]LRQH GHOOD FRQR
VFHQ]D VFLHQWLILFD LO PRPHQWR DSSOLFDWLYR H G
LQGDJLQH H TXHOOR FRJQLWLYR LQWHOOHWWXDOH Nel documen-
to si dice che nel laboratorio gli studenti GHYRQR DSSURSULDUVL GL PRGL GL JXDUGDUH GHVFULYHUH H LQ
WHUSUHWDUH L IHQRPHQL FKH VL DYYLFLQLQR SURJUHVVLYDPHQWH D TXHOOL VFLHQWLILFDPHQWH DFFUHGLWDWL. e che
si devono sperimentare DWWLYLWj GL PRGHOOL]]D]LRQH VFKHPDWL]]D]LRQH H IRUPDOL]]D]LRQH PHGLDQWH OH
TXDOL L IHQRPHQL YHQJRQR GHVFULWWL HG LQWHUSUHWDWL..
In conclusione, possiamo dire che il Problem Solving sperimentale e il Cooperative Learning si inte-
grano , creando un contesto costruttivista in cui :
- il Problem Solving , con l'uso della V di Gowin, rappresenta l'esperienza che consente la costru-
zione della conoscenza ;
- il confronto tra pari, con la discussione in gruppo cooperativo, avvia il processo di metacognizione
e di consapevolezza dell'apprendimento individuale ;
- l'evento che promuove l'esperienza di apprendimento avviene in un contesto sociale, con la valo-
rizzazione della zona di sviluppo prossimo ( Vygotskij)
8
BIBLIOGRAFIA
*
a) 4XDOH ODERUDWRULR SHU OH VFLHQ]H VSHULPHQWDOL dei Proff. Valitutti e Tifi, in DIDATTICA
DELLE SCIENZE, ottobre 1999
b) G. Valitutti, A. Tifi, M. Marinozzi, 7HFQLFKH GL SUREOHP 6ROYLQJ QHO ODERUDWRULR GL FKLPLFD H
GL ILVLFD IRRSAE Marche 1993
c) G. Valitutti, A. Tifi, 3HU XQ LQVHJQDPHQWR IRUPDWLYR GHOOH VFLHQ]H GHOOD QDWXUD, in “ Scuola e
Città”, agosto 1997, pp. 345-352
d) L. Angeleri, M. Falasca, A. Martini, ASSUHQGLPHQWR FRRSHUDWLYR H 3UREOHP 6ROYLQJ
VSHULPHQWDOH, Chimica nella scuola, n°4 1998
**
a) J. D. Novak, D. B.Gowin, ,PSDUDQGR DG LPSDUDUH, SEI 1989
b) J. D. Novak, /¶DSSUHQGLPHQWR VLJQLILFDWLYR, Erickson 2001
***
a) M. Comoglio, M. A. Cardoso, ,QVHJQDUH HG DSSUHQGHUH LQ JUXSSR Libreria Ateneo Salesiano,
Roma 1996
b) M. Comoglio, (GXFDUH LQVHJQDQGR $SSUHQGHUH DG DSSOLFDUH LO RRSHUDWLYH /HDUQLQJ. Ed. Las,
Roma, 1998.
c) M. Comoglio, RVWUXLUH FRPXQLWj QHOOH VFXROH. Ed. Las, Roma, 2000.

More Related Content

Similar to Problem solving e cooperative learning nella didattica delle scienze sperimentali

Il problem solving in fisica un esempio di tecnica narrativa
Il problem solving in fisica  un esempio di tecnica narrativaIl problem solving in fisica  un esempio di tecnica narrativa
Il problem solving in fisica un esempio di tecnica narrativa
acantarose
 
Bravi in Chimica
Bravi in ChimicaBravi in Chimica
Problem solving e didattica laboratoriale
Problem solving e didattica laboratorialeProblem solving e didattica laboratoriale
Problem solving e didattica laboratoriale
Laura Franchini
 
2 cd rodari villaricca relazione finale-all3-autobio
2 cd rodari villaricca relazione finale-all3-autobio2 cd rodari villaricca relazione finale-all3-autobio
2 cd rodari villaricca relazione finale-all3-autobio
Corrado Izzo
 
I passaggi di stato della materia
I passaggi di stato della materiaI passaggi di stato della materia
I passaggi di stato della materia
Maria Raschello
 
Discorso scuola normale_lettere 2021 07 22
Discorso scuola normale_lettere 2021 07 22Discorso scuola normale_lettere 2021 07 22
Discorso scuola normale_lettere 2021 07 22
Genitore Attivo
 
Lavoriamo in direzione di un curricolo integrato
Lavoriamo in direzione di un curricolo integratoLavoriamo in direzione di un curricolo integrato
Lavoriamo in direzione di un curricolo integrato
La Società in Classe
 
Meli-Flipped-Classroom.pdf
Meli-Flipped-Classroom.pdfMeli-Flipped-Classroom.pdf
Meli-Flipped-Classroom.pdf
Valentina Meli
 
Premio 3x3 201019
Premio 3x3 201019Premio 3x3 201019
Premio 3x3 201019
NunziaMartucci
 
Tre post sull'antropologia professionale
Tre post sull'antropologia professionaleTre post sull'antropologia professionale
Tre post sull'antropologia professionale
Davide Stocchero
 
guida_allo_studio_della_cultura_generale_159711 (2).pdf
guida_allo_studio_della_cultura_generale_159711 (2).pdfguida_allo_studio_della_cultura_generale_159711 (2).pdf
guida_allo_studio_della_cultura_generale_159711 (2).pdf
TeamStudiAmo
 
Capitolo1 - IL PROCESSO FORMATIVO: I MUTAMENTI DEI PARADIGMI STORICI
Capitolo1 - IL PROCESSO FORMATIVO: I MUTAMENTI DEI PARADIGMI STORICI        Capitolo1 - IL PROCESSO FORMATIVO: I MUTAMENTI DEI PARADIGMI STORICI
Capitolo1 - IL PROCESSO FORMATIVO: I MUTAMENTI DEI PARADIGMI STORICI
Corrado Izzo
 
Il percorso di attuazione psico-didattici e metodologici principi nell'insegn...
Il percorso di attuazione psico-didattici e metodologici principi nell'insegn...Il percorso di attuazione psico-didattici e metodologici principi nell'insegn...
Il percorso di attuazione psico-didattici e metodologici principi nell'insegn...
fva73
 
Laboratorio didattico
Laboratorio didatticoLaboratorio didattico
Laboratorio didattico
annamcampagna1
 
RELAZIONA: prof.ssa Adalgisa Colombo
RELAZIONA: prof.ssa Adalgisa ColomboRELAZIONA: prof.ssa Adalgisa Colombo
RELAZIONA: prof.ssa Adalgisa Colombo
MIUR
 
Dott.ssa Ferretti
Dott.ssa Ferretti Dott.ssa Ferretti
Dott.ssa Ferretti
manfredi5
 
Universal Design for Learning nel contesto italiano. Esiti di una ricerca sul...
Universal Design for Learning nel contesto italiano. Esiti di una ricerca sul...Universal Design for Learning nel contesto italiano. Esiti di una ricerca sul...
Universal Design for Learning nel contesto italiano. Esiti di una ricerca sul...
Università di Catania
 
Bullismo - Prima lezione a cura della Dott.ssa Carnevale
Bullismo - Prima lezione a cura della Dott.ssa CarnevaleBullismo - Prima lezione a cura della Dott.ssa Carnevale
Bullismo - Prima lezione a cura della Dott.ssa Carnevale
Francesco Columbro
 
la psicologia scolastica
 la psicologia scolastica la psicologia scolastica
la psicologia scolasticaimartini
 
Diapositive Autismo 3
Diapositive Autismo 3Diapositive Autismo 3
Diapositive Autismo 3mariavivo
 

Similar to Problem solving e cooperative learning nella didattica delle scienze sperimentali (20)

Il problem solving in fisica un esempio di tecnica narrativa
Il problem solving in fisica  un esempio di tecnica narrativaIl problem solving in fisica  un esempio di tecnica narrativa
Il problem solving in fisica un esempio di tecnica narrativa
 
Bravi in Chimica
Bravi in ChimicaBravi in Chimica
Bravi in Chimica
 
Problem solving e didattica laboratoriale
Problem solving e didattica laboratorialeProblem solving e didattica laboratoriale
Problem solving e didattica laboratoriale
 
2 cd rodari villaricca relazione finale-all3-autobio
2 cd rodari villaricca relazione finale-all3-autobio2 cd rodari villaricca relazione finale-all3-autobio
2 cd rodari villaricca relazione finale-all3-autobio
 
I passaggi di stato della materia
I passaggi di stato della materiaI passaggi di stato della materia
I passaggi di stato della materia
 
Discorso scuola normale_lettere 2021 07 22
Discorso scuola normale_lettere 2021 07 22Discorso scuola normale_lettere 2021 07 22
Discorso scuola normale_lettere 2021 07 22
 
Lavoriamo in direzione di un curricolo integrato
Lavoriamo in direzione di un curricolo integratoLavoriamo in direzione di un curricolo integrato
Lavoriamo in direzione di un curricolo integrato
 
Meli-Flipped-Classroom.pdf
Meli-Flipped-Classroom.pdfMeli-Flipped-Classroom.pdf
Meli-Flipped-Classroom.pdf
 
Premio 3x3 201019
Premio 3x3 201019Premio 3x3 201019
Premio 3x3 201019
 
Tre post sull'antropologia professionale
Tre post sull'antropologia professionaleTre post sull'antropologia professionale
Tre post sull'antropologia professionale
 
guida_allo_studio_della_cultura_generale_159711 (2).pdf
guida_allo_studio_della_cultura_generale_159711 (2).pdfguida_allo_studio_della_cultura_generale_159711 (2).pdf
guida_allo_studio_della_cultura_generale_159711 (2).pdf
 
Capitolo1 - IL PROCESSO FORMATIVO: I MUTAMENTI DEI PARADIGMI STORICI
Capitolo1 - IL PROCESSO FORMATIVO: I MUTAMENTI DEI PARADIGMI STORICI        Capitolo1 - IL PROCESSO FORMATIVO: I MUTAMENTI DEI PARADIGMI STORICI
Capitolo1 - IL PROCESSO FORMATIVO: I MUTAMENTI DEI PARADIGMI STORICI
 
Il percorso di attuazione psico-didattici e metodologici principi nell'insegn...
Il percorso di attuazione psico-didattici e metodologici principi nell'insegn...Il percorso di attuazione psico-didattici e metodologici principi nell'insegn...
Il percorso di attuazione psico-didattici e metodologici principi nell'insegn...
 
Laboratorio didattico
Laboratorio didatticoLaboratorio didattico
Laboratorio didattico
 
RELAZIONA: prof.ssa Adalgisa Colombo
RELAZIONA: prof.ssa Adalgisa ColomboRELAZIONA: prof.ssa Adalgisa Colombo
RELAZIONA: prof.ssa Adalgisa Colombo
 
Dott.ssa Ferretti
Dott.ssa Ferretti Dott.ssa Ferretti
Dott.ssa Ferretti
 
Universal Design for Learning nel contesto italiano. Esiti di una ricerca sul...
Universal Design for Learning nel contesto italiano. Esiti di una ricerca sul...Universal Design for Learning nel contesto italiano. Esiti di una ricerca sul...
Universal Design for Learning nel contesto italiano. Esiti di una ricerca sul...
 
Bullismo - Prima lezione a cura della Dott.ssa Carnevale
Bullismo - Prima lezione a cura della Dott.ssa CarnevaleBullismo - Prima lezione a cura della Dott.ssa Carnevale
Bullismo - Prima lezione a cura della Dott.ssa Carnevale
 
la psicologia scolastica
 la psicologia scolastica la psicologia scolastica
la psicologia scolastica
 
Diapositive Autismo 3
Diapositive Autismo 3Diapositive Autismo 3
Diapositive Autismo 3
 

More from imartini

2 parliamo e discutiamo del bullismo
2 parliamo e discutiamo del bullismo2 parliamo e discutiamo del bullismo
2 parliamo e discutiamo del bullismo
imartini
 
Scheda bambino
Scheda bambinoScheda bambino
Scheda bambino
imartini
 
Subitizing
SubitizingSubitizing
Subitizing
imartini
 
intelligenza emotiva
intelligenza emotivaintelligenza emotiva
intelligenza emotiva
imartini
 
Il quaderno delle_regole_di_matematica
Il quaderno delle_regole_di_matematicaIl quaderno delle_regole_di_matematica
Il quaderno delle_regole_di_matematica
imartini
 
comunicazione_non_verbale
 comunicazione_non_verbale comunicazione_non_verbale
comunicazione_non_verbale
imartini
 
Adhd u
Adhd uAdhd u
Adhd u
imartini
 
DSA
DSADSA
osservazione fattoei di rischio dsa
osservazione fattoei  di rischio dsaosservazione fattoei  di rischio dsa
osservazione fattoei di rischio dsa
imartini
 
Prerequisiti
Prerequisiti Prerequisiti
Prerequisiti
imartini
 
Per sito-prerequisiti-letto-scrittura
Per sito-prerequisiti-letto-scrittura Per sito-prerequisiti-letto-scrittura
Per sito-prerequisiti-letto-scrittura
imartini
 
scrittura
scritturascrittura
scrittura
imartini
 
Dispensa dsa
Dispensa  dsaDispensa  dsa
Dispensa dsa
imartini
 
Dentro ai dsa n
Dentro ai dsa nDentro ai dsa n
Dentro ai dsa n
imartini
 
dislessia
dislessiadislessia
dislessia
imartini
 
stili di apprendimento
stili di apprendimentostili di apprendimento
stili di apprendimento
imartini
 
DSA
DSADSA
Dsa fasce eta
Dsa  fasce etaDsa  fasce eta
Dsa fasce eta
imartini
 
Sviluppo percettivomotorio
Sviluppo percettivomotorio Sviluppo percettivomotorio
Sviluppo percettivomotorio
imartini
 
prerequisiti della scrittura
prerequisiti della scritturaprerequisiti della scrittura
prerequisiti della scrittura
imartini
 

More from imartini (20)

2 parliamo e discutiamo del bullismo
2 parliamo e discutiamo del bullismo2 parliamo e discutiamo del bullismo
2 parliamo e discutiamo del bullismo
 
Scheda bambino
Scheda bambinoScheda bambino
Scheda bambino
 
Subitizing
SubitizingSubitizing
Subitizing
 
intelligenza emotiva
intelligenza emotivaintelligenza emotiva
intelligenza emotiva
 
Il quaderno delle_regole_di_matematica
Il quaderno delle_regole_di_matematicaIl quaderno delle_regole_di_matematica
Il quaderno delle_regole_di_matematica
 
comunicazione_non_verbale
 comunicazione_non_verbale comunicazione_non_verbale
comunicazione_non_verbale
 
Adhd u
Adhd uAdhd u
Adhd u
 
DSA
DSADSA
DSA
 
osservazione fattoei di rischio dsa
osservazione fattoei  di rischio dsaosservazione fattoei  di rischio dsa
osservazione fattoei di rischio dsa
 
Prerequisiti
Prerequisiti Prerequisiti
Prerequisiti
 
Per sito-prerequisiti-letto-scrittura
Per sito-prerequisiti-letto-scrittura Per sito-prerequisiti-letto-scrittura
Per sito-prerequisiti-letto-scrittura
 
scrittura
scritturascrittura
scrittura
 
Dispensa dsa
Dispensa  dsaDispensa  dsa
Dispensa dsa
 
Dentro ai dsa n
Dentro ai dsa nDentro ai dsa n
Dentro ai dsa n
 
dislessia
dislessiadislessia
dislessia
 
stili di apprendimento
stili di apprendimentostili di apprendimento
stili di apprendimento
 
DSA
DSADSA
DSA
 
Dsa fasce eta
Dsa  fasce etaDsa  fasce eta
Dsa fasce eta
 
Sviluppo percettivomotorio
Sviluppo percettivomotorio Sviluppo percettivomotorio
Sviluppo percettivomotorio
 
prerequisiti della scrittura
prerequisiti della scritturaprerequisiti della scrittura
prerequisiti della scrittura
 

Problem solving e cooperative learning nella didattica delle scienze sperimentali

  • 1. 1 3UREOHP 6ROYLQJ H FRRSHUDWLYH OHDUQLQJ QHOOD GLGDWWLFD GHOOH VFLHQ]H VSHULPHQWDOL 0DUFR )DODVFD $QWRQHOOD 0DUWLQL 1RWD $QJHOHUL /RUHGDQD ,7,6 ( 0DMRUDQD GL *UXJOLDVFR /D FULVL QHJOL DGROHVFHQWL H L QXRYL FRPSLWL GHOOD VFXROD La realtà giovanile con la quale ci dobbiamo confrontare è sempre più difficile e complicata. L'attuale processo di velocissima trasformazione tecnologica, produce grandi potenzialità ma anche un forte senso di instabilità nel nostro modo di vita. Tra gli aspetti di malessere più preoccupanti provocati dai cambiamenti in corso sicuramente figurano i problemi di comunicazione nelle famiglie e tra i vari gruppi d'età (ragazzi, adulti , anziani). Questo intreccio di relazioni educative, che dovrebbe promuo- vere la crescita e lo sviluppo dei rapporti sociali, è in crisi e ne subiscono le conseguenze soprattutto i preadolescenti, specialmente quelli che vivono nei contesti socioculturali più deboli. Sempre più spesso gli studenti sono passivi, incerti, bloccati; la mancanza di aspettative e la scarsa fi- ducia nelle proprie possibilità generano deresponsabilizzazione e impediscono ai ragazzi di diventare protagonisti del loro apprendimento. Le difficoltà che abbiamo colto durante le nostre attività d'insegnamento della chimica nel biennio I- TIS e di educazione scientifica con gli studenti delle scuole medie ed elementari, ci hanno convinto che viene richiesto ai docenti di affrontare, con passione e competenza, nuovi compiti educativi. Una delle risposte praticabili nella scuola , a nostro avviso, è quella di adottare con gradualità nuove metodologie didattiche che cerchino, da una parte di modificare l'insegnamento - apprendimento in coerenza con le recenti ricerche nella didattica delle scienze, e dall'altra di attivare processi di respon- sabilizzazione nei ragazzi attraverso la valorizzazione delle loro capacità. Per questo motivo da 8 anni stiamo utilizzando il Problem Solving in laboratorio e stiamo sperimen- tando lezioni e Problem Solving anche in contesti di Cooperative Learning. Inoltre, cercando di costruire esperienze di continuità nell'educazione scientifica, da più di quattro anni lavoriamo con diversi colleghi di scuola elementare e di scuola media del territorio di Gruglia- sco , studiando e preparando insieme unità di lavoro sperimentali. Per conoscere e comprendere la tecnica del Problem Solving in laboratorio di chimica, di fisica o di biologia, suggeriamo la lettura degli scritti dei Proff. Valitutti e Tifi* /H TXHVWLRQL GL PHWRGR SHU O HGXFD]LRQH VFLHQWLILFD QHOOD VFXROD GHOO REEOLJR L’attività sperimentale, soprattutto se condotta in gruppi cooperativi, può avere un ruolo molto rile- vante per gli studenti, già dalla scuola elementare, perché insegna a modificare in modo attivo oggetti
  • 2. 2 concreti, permette l’acquisizione di conoscenze e intanto educa ad essere protagonisti e non solo frui- tori passivi della realtà. Nel curricolo del secondo ciclo delle scuole elementari scuole e medie il tema “ materia e fenomeni fisici e chimici ” prevede esperimenti su sostanze e miscugli, con separazioni dei componenti dei mi- scugli , cenni sulla struttura della materia, esperienze sulla materialità dei gas e altre attività sperimen- tali che aiutino a costruire i fondamentali concetti di interazione e trasformazione. Mentre per i bambini delle elementari si devono affrontare solo aspetti macroscopici della realtà e delle sue trasformazioni, per i ragazzi delle scuole medie è necessario incominciare ad introdurre il modello particellare per interpretare i fenomeni osservati; i fatti sperimentali devono essere visti sia al livello macroscopico che in termini di struttura microscopica. Sull'argomento così si esprimono i Proff. G. Valitutti, M. Marinozzi e A. Tifi : “ I concetti atomico-molecolari sono spesso appresi non contestualmente al mondo dei fenomeni e, infatti, non sono mai usati spontaneamente dagli allievi nell’interpretazione dei fenomeni . I “misconcetti” relativi al mondo microscopico, che vengono fre- quentemente rilevati, dimostrano quanto l’argomento e i suoi collegamenti con le altre conoscenze siano sottovalutati nell’insegnamento tradizionale. Occorre invece costruire i concetti microscopici partendo dalle evidenze fenomeniche...Il primo obiettivo su cui puntare è fornire all’allievo il modello particellare. Aiutandosi con modelli concreti e tangibili, che vengono via via precisati e privati del ca- rattere metaforico, l’insegnante ha mille opportunità per sintonizzare la classe sul linguaggio particel- lare...” Nel biennio delle superiori (nel nostro caso un ITIS), si deve riprendere, approfondire e precisare l'a- spetto particellare e creare per gli studenti le condizioni , come indica Alex Johnstone, per mettere in relazione i tre livelli di rappresentazione della materia: macroscopico, particellare, simbolico (simbo- logie matematiche, formule, equazioni ecc.). Il problema di collegare i tre livelli è comune alla fisica, alla chimica e alla biologia, discipline che devono cominciare a distinguersi l'una dall'altra proprio nel biennio della scuola superiore. Le attività di laboratorio, se non sono calate sugli studenti ma con- dotte con metodi efficaci, possono costituire una grande opportunità anche per affrontare questa com- plessità. Per gli stessi concetti si tratta di proporre attività che aiutino gli allievi a costruire nella mente mo- delli a diversi livelli concettuali a seconda della fascia d'età. Si deve naturalmente trattare di MO- DELLI SEMPLIFICATI , utili comunque a interpretare la realtà, che si possano arricchire, estende- re ed approfondire con coerenza nel corso degli anni. Sappiamo bene, dagli studi dei pedagogisti, che gli allievi possiedono già proprie concezioni spontanee, le cosiddette misconcezioni o conce- zioni di senso comune, che sono spesso in contrasto con le teorie scientifiche; proprio sulle loro ri- strutturazioni si deve basare il processo di insegnamento/apprendimento delle scienze. Una strategia
  • 3. 3 per aiutare i ragazzi di scuola media inferiore e superiore a superare le proprie concezioni è, come già accennato, l'introduzione del modello particellare della materia. L'importanza del laboratorio come luogo in cui sperimentare e intanto riflettere e collegare il livello microscopico con il macro- scopico è proprio quella di non imporre ex cathedra il modello particellare, ma far sì che venga costruito dagli allievi, quindi assimilato e non ripetuto a solo beneficio dell'insegnante. Nell’attività sperimentale si possono anche sviluppare abilità di base importanti che sono troppo spes- so date per scontate: misurare volumi di liquidi con un cilindro, misurare temperature, effettuare ope- razioni di pesata, di filtrazione, di distillazione ecc. ecc. Esse rappresentano conoscenze concrete im- portanti, soprattutto nell'ottica di integrare il fare con il pensare. Un metodo che permette di collegare efficacemente i due aspetti è il Problem Solving in laboratorio, come abbiamo potuto sperimentare con allievi di tutta la fascia dell'obbligo. ,O 3UREOHP 6ROYLQJ VSHULPHQWDOH Presentiamo alcuni esempi di Problem Solving sullo stesso argomento, affrontato a livello concet- tuale diverso. SOLUBILITÀ ƒ (OHPHQWDUL P. S. Tra i seguenti materiali : sale, olio, aceto, alcool, zucchero, sabbia, farina, quali sono solubili in acqua? In questo caso viene trattato il concetto di solubilità/insolubilità solo in termini esplorativi, per giungere successivamente a descrivere un sistema in termini di omogeneità/eterogeneità 0HGLH a- P. S. Il fertilizzante nitrato di potassio è più solubile in acqua calda o in acqua fredda? b- P. S. Il fertilizzante nitrato di potassio, in acqua è più solubile a 20°C o a 5°C ? In questi casi vengono coinvolte diverse variabili connesse al concetto di solubilità/insolubilità: temperatura, volume, massa. %LHQQLR VXSHULRUL - P. S. Vi vengono consegnati due becher contenenti uno nitrato di potassio e l'altro cloruro di sodio Identificate i due solidi progettando un esperimento sulla base delle caratteristiche illustra- te nel grafico.
  • 4. 4 0 5 10 15 20 25 0 10 20 30 40 50 60 70 80 90 100  ¢¡¤£¦¥§¡¤¨¤© §¨¤© ! # $! % ' ( )0 # ( Questo Problema sperimentale coinvolge variabili e abilità di pensiero elevate relative al concetto di solubilità/insolubilità: temperatura, volume, lettura e comprensione di un grafico, utilizzo di quantità proporzionali rispetto ai dati presenti sul grafico, dal momento che ven- gono usati becher da 50 mL . MISCELE OMOGENEE/ETEROGENEE (OHPHQWDUL P. S. Avete una miscela formata da zolfo e acqua salata. Separate lo zolfo e il sale, solidi, dall'acqua. 0HGLH P. S. Avete a disposizione tre materiali: sale, olio, aceto. Dovete provocare la formazione di a) una miscela omogenea b) una miscela eterogenea. %LHQQLR VXSHULRUL P. S. Avete a disposizione un miscuglio formato da marmo in polvere, solfato di rame, ace- tone . Separate i tre componenti. Cloruro di sodio Nitrato di Potassio
  • 5. 5 N.B. Si può usare eventualmente CuSO4 anidro bianco, che con l'aggiunta di acqua diventa azzurro. TRASFORMAZIONI (OHPHQWDUL P. S. Unendo a coppie i seguenti materiali dovete documentare almeno 4 casi di interazione a)aceto; b)soluzione BTB giallo ; c) soluzione BTB blu ; d) acqua distillata e) acqua mine- rale frizzante, bicarbonato di sodio NB: il PS propone solo il concetto di interazione, senza etichettature chimiche o fisiche. Per BTB si intende una soluzione di blu e di bromotimolo 0HGLH P. S. Avete a disposizione 4 materiali : acqua, aceto, bicarbonato di sodio, zolfo. Dovete provocare la formazione di a) una miscela omogenea; b) una miscela eterogenea; c) una re- azione chimica. N.B. Riteniamo sia didatticamente utile non considerare i passaggi di stato come le uniche trasformazioni fisiche possibili. %LHQQLR VXSHULRUL a) P. S. In quali casi, mescolando le soluzioni A,B,C con le soluzioni 1, 2, 3, vi è indizio di trasformazione chimica? Il P.S. ha lo scopo di condurre gli allievi alla compilazione di uno schema riassuntivo, come ad e- sempio la griglia che segue, in cui registrare il colore e le altre caratteristiche degli eventuali preci- pitati che si formano mescolando a due a due le varie soluzioni. $ bianco - rosso % - bianco giallo - - giallo gelatinoso Le soluzioni da noi utilizzate sono: 1: NaCl, 2: Na2SO4, 3: K2CrO4, A: AgNO3, B: Ba(NO3)2, C: Zn(NO3)2 b) P. S. Vi viene consegnato un sistema in equilibrio:
  • 6. 6 Co(H2O)6 2+ + 4Cl - CoCl4 2- + 6H2O rosa blu Dovete individuare sperimentalmente a) la reazione esotermica b) la reazione endotermica c) l’effetto della sottrazione di un reagente N.B. Quest'ultimo P. S. si presta ad approfondire il concetto di reazione chimica anche in termini di equilibrio Un organizzatore grafico che permette di gestire le attività sperimentali utilizzando in maniera effi- cace le conoscenze teoriche è il diagramma a V di Gowin** che, aiutando gli studenti a chiarire la natura e lo scopo delle attività sperimentali, contribuisce a far crescere le strategie cognitive e me- tacognitive Sulla base della nostra esperienza, possiamo affermare che già dalla 4° elementare è possibile introdurlo. 3UREOHP 6ROYLQJ LQ DSSUHQGLPHQWR FRRSHUDWLYR SHU OD FRVWUX]LRQH VRFLDOH GHOOD FRQRVFHQ]D L'applicazione del Problem Solving sperimentale migliora chiaramente la didattica delle scienze, ma noi pensiamo che possa esprimere al meglio le sue potenzialità formative se viene praticato utilizzan- do una modalità G LQVHJQDPHQWR DSSUHQGLPHQWR duttile e potente come il Cooperative Learning. I presupposti teorici del Cooperative Learning si rifanno al pensiero di Vygotskij, in particolare sulla natura sociale dell’apprendimento. Il metodo dell’apprendimento cooperativo contribuisce a creare un contesto in cui gli allievi acquisiscono abilità di comportamento specificamente insegnate, dialogano in modo interattivo con i compagni, senza appesantimento della memoria a breve termine, e quindi apprendono in modo significativo. La difficoltà a trovare una motivazione allo studio fa sì che spesso ci troviamo con classi gravemente problematiche nel comportamento, per cui durante le attività sperimentali si possono produrre situa- zioni di pericolo. D’altra parte l'elevata eterogeneità di stili d'apprendimento e di capacità dei ragazzi, può essere affrontata positivamente solo se l'insegnante dedica la sua attenzione a piccoli gruppi, cosa impossibile quando il resto della classe non collabora. E'possibile affrontare il problema, a nostro av- viso, attraverso la liberazione delle risorse che provengono dal coinvolgimento attivo dei ragazzi stessi nella conduzione della classe. Il Cooperative Learning, anche quando proposto a livelli non sofisticati (Cooperative Learning infor- male) , permette di migliorare molto la pratica didattica, educando gli allievi ad atteggiamenti ed abili- tà sociali che spesso si danno per scontate e richiamate spesso solo con esortazioni, ma che in realtà vanno insegnate ed apprese nell'esperienza delle relazioni concrete. Ciò vuol dire costruire un clima di
  • 7. 7 classe in cui i rapporti siano di interdipendenza positiva e in cui i ragazzi debbano collaborare anche con persone ritenute non all’altezza. Il Cooperative Learning richiede l’applicazione di diversi principi: il raggruppamento eterogeneo; l’in- terdipendenza positiva; l’acquisizione di competenze sociali (saper comunicare, saper distribuire la leadership, saper affrontare conflitti, saper risolvere problemi, saper prendere decisioni) ; l’autonomia del gruppo; l’interosservazione ; la valutazione individuale e/o di gruppo. E’un metodo che solo in tempi lunghi può essere ben padroneggiato dai docenti. Noi lo stiamo sperimentando, crescendo len- tamente di anno in anno, cercando di evitare fughe in avanti e procedendo con gradualità e prudenza. Per documentarsi sulla metodologia cooperativa è opportuno riferirsi ai testi segnalati nella bibliogra- fia** L'attività di Problem Solving sperimentale in contesti cooperativi, collegando l’operatività con la ri- flessione teorica in un clima di scambio e confronto, è in sintonia con il pensiero costruttivista sociale , perchè consente di porre in evidenza, con un'intesa sul significato dei termini e dei concetti anche attraverso l’uso della V di Gowin, i passaggi mentali che favoriscono la costruzione concettuale. Ciò è in piena coerenza con il documento della Commissione dei Saggi Contenuti essenziali per la formazione di base in cui, relativamente alle scienze sperimentali, si sostiene la necessità di una FROODERUD]LRQH HIIHWWLYD WUD L GXH DVSHWWL FRPSOHPHQWDUL FKH FDUDWWHUL]]DQR OD FRVWUX]LRQH GHOOD FRQR VFHQ]D VFLHQWLILFD LO PRPHQWR DSSOLFDWLYR H G LQGDJLQH H TXHOOR FRJQLWLYR LQWHOOHWWXDOH Nel documen- to si dice che nel laboratorio gli studenti GHYRQR DSSURSULDUVL GL PRGL GL JXDUGDUH GHVFULYHUH H LQ WHUSUHWDUH L IHQRPHQL FKH VL DYYLFLQLQR SURJUHVVLYDPHQWH D TXHOOL VFLHQWLILFDPHQWH DFFUHGLWDWL. e che si devono sperimentare DWWLYLWj GL PRGHOOL]]D]LRQH VFKHPDWL]]D]LRQH H IRUPDOL]]D]LRQH PHGLDQWH OH TXDOL L IHQRPHQL YHQJRQR GHVFULWWL HG LQWHUSUHWDWL.. In conclusione, possiamo dire che il Problem Solving sperimentale e il Cooperative Learning si inte- grano , creando un contesto costruttivista in cui : - il Problem Solving , con l'uso della V di Gowin, rappresenta l'esperienza che consente la costru- zione della conoscenza ; - il confronto tra pari, con la discussione in gruppo cooperativo, avvia il processo di metacognizione e di consapevolezza dell'apprendimento individuale ; - l'evento che promuove l'esperienza di apprendimento avviene in un contesto sociale, con la valo- rizzazione della zona di sviluppo prossimo ( Vygotskij)
  • 8. 8 BIBLIOGRAFIA * a) 4XDOH ODERUDWRULR SHU OH VFLHQ]H VSHULPHQWDOL dei Proff. Valitutti e Tifi, in DIDATTICA DELLE SCIENZE, ottobre 1999 b) G. Valitutti, A. Tifi, M. Marinozzi, 7HFQLFKH GL SUREOHP 6ROYLQJ QHO ODERUDWRULR GL FKLPLFD H GL ILVLFD IRRSAE Marche 1993 c) G. Valitutti, A. Tifi, 3HU XQ LQVHJQDPHQWR IRUPDWLYR GHOOH VFLHQ]H GHOOD QDWXUD, in “ Scuola e Città”, agosto 1997, pp. 345-352 d) L. Angeleri, M. Falasca, A. Martini, ASSUHQGLPHQWR FRRSHUDWLYR H 3UREOHP 6ROYLQJ VSHULPHQWDOH, Chimica nella scuola, n°4 1998 ** a) J. D. Novak, D. B.Gowin, ,PSDUDQGR DG LPSDUDUH, SEI 1989 b) J. D. Novak, /¶DSSUHQGLPHQWR VLJQLILFDWLYR, Erickson 2001 *** a) M. Comoglio, M. A. Cardoso, ,QVHJQDUH HG DSSUHQGHUH LQ JUXSSR Libreria Ateneo Salesiano, Roma 1996 b) M. Comoglio, (GXFDUH LQVHJQDQGR $SSUHQGHUH DG DSSOLFDUH LO RRSHUDWLYH /HDUQLQJ. Ed. Las, Roma, 1998. c) M. Comoglio, RVWUXLUH FRPXQLWj QHOOH VFXROH. Ed. Las, Roma, 2000.