Problem on Vector Linear
Algebra
Daniel Kartawiguna (2024)
Problem: Prove the following vector identity
Prove 𝐀 ∙ 𝐁 × 𝐂 𝐚 ∙ 𝐛 × 𝐜 =
𝐀 ∙ 𝐚 𝐀 ∙ 𝐛 𝐀 ∙ 𝐜
𝐁 ∙ 𝐚 𝐁 ∙ 𝐛 𝐁 ∙ 𝐜
𝐂 ∙ 𝐚 𝐂 ∙ 𝐛 𝐂 ∙ 𝐜
Solution:
• Let
• First, we have to compute 𝐁 × 𝐂
𝐀 = 𝐴𝑥𝒊 + 𝐴𝑦𝒋 + 𝐴𝑧𝒌
𝐁 = 𝐵𝑥𝒊 + 𝐵𝑦𝒋 + 𝐵𝑧𝒌
𝐂 = 𝐶𝑥𝒊 + 𝐶𝑦𝒋 + 𝐶𝑧𝒌
𝐚 = 𝑎𝑥𝒊 + 𝑎𝑦𝒋 + 𝑎𝑧𝒌
𝐛 = 𝑏𝑥𝒊 + 𝑏𝑦𝒋 + 𝑏𝑧𝒌
𝐜 = 𝑐𝑥𝒊 + 𝑐𝑦𝒋 + 𝑐𝑧𝒌
𝐁 × 𝐂 =
𝒊 𝒋 𝒌
𝐵𝑥 𝐵𝑦 𝐵𝑧
𝐶𝑥 𝐶𝑦 𝐶𝑧
=
𝐵𝑦 𝐵𝑧
𝐶𝑦 𝐶𝑧
𝒊 +
𝐵𝑥 𝐵𝑧
𝐶𝑥 𝐶𝑧
𝒋 +
𝐵𝑥 𝐵𝑦
𝐶𝑥 𝐶𝑦
𝒌
• Then, we can calculate 𝐀∙𝐁×𝐂
𝐀 ∙ 𝐁 × 𝐂 = 𝐴𝑥𝒊 + 𝐴𝑦𝒋 + 𝐴𝑧𝒌 ∙
𝐵𝑦 𝐵𝑧
𝐶𝑦 𝐶𝑧
𝒊 +
𝐵𝑥 𝐵𝑧
𝐶𝑥 𝐶𝑧
𝒋 +
𝐵𝑥 𝐵𝑦
𝐶𝑥 𝐶𝑦
𝒌
=
𝐵𝑦 𝐵𝑧
𝐶𝑦 𝐶𝑧
𝐴𝑥 +
𝐵𝑥 𝐵𝑧
𝐶𝑥 𝐶𝑧
𝐴𝑦 +
𝐵𝑥 𝐵𝑦
𝐶𝑥 𝐶𝑦
𝐴𝑧
=
𝐴𝑥 𝐴𝑦 𝐴𝑧
𝐵𝑥 𝐵𝑦 𝐵𝑧
𝐶𝑥 𝐶𝑦 𝐶𝑧
= det 𝑃
• Thus, the matrix P is
𝑃 =
𝐴𝑥 𝐴𝑦 𝐴𝑧
𝐵𝑥 𝐵𝑦 𝐵𝑧
𝐶𝑥 𝐶𝑦 𝐶𝑧
• Second, we calculated 𝐛 × 𝐜
𝐛 × 𝐜 =
𝒊 𝒋 𝒌
𝑏𝑥 𝑏𝑦 𝑏𝑧
𝑐𝑥 𝑐𝑦 𝑐𝑧
=
𝑏𝑦 𝑏𝑧
𝑐𝑦 𝑐𝑧
𝒊 +
𝑏𝑥 𝑏𝑧
𝑐𝑥 𝑐𝑧
𝒋 +
𝑏𝑥 𝑏𝑦
𝑐𝑥 𝑐𝑦
𝒌
• Next, we can calculate 𝐚 ∙ 𝐛 × 𝐜
𝐚 ∙ 𝐛 × 𝐜 = 𝑎𝑥𝒊 + 𝑎𝑦𝒋 + 𝑎𝑧𝒌 ∙
𝑏𝑦 𝑏𝑧
𝑐𝑦 𝑐𝑧
𝒊 +
𝑏𝑥 𝑏𝑧
𝑐𝑥 𝑐𝑧
𝒋 +
𝑏𝑥 𝑏𝑦
𝑐𝑥 𝑐𝑦
𝒌
=
𝑏𝑦 𝑏𝑧
𝑐𝑦 𝑐𝑧
𝑎𝑥 +
𝑏𝑥 𝑏𝑧
𝑐𝑥 𝑐𝑧
𝑎𝑦 +
𝑏𝑥 𝑏𝑦
𝑐𝑥 𝑐𝑦
𝑎𝑧
=
𝑎𝑥 𝑎𝑦 𝑎𝑧
𝑏𝑥 𝑏𝑦 𝑏𝑧
𝑐𝑥 𝑐𝑦 𝑐𝑧
• Thus, the matrix Q is
• If Q is any square matrix, then det(Q)=det(Qt).
• The transpose matrix of the Q matrix is
𝑄 =
𝑎𝑥 𝑎𝑦 𝑎𝑧
𝑏𝑥 𝑏𝑦 𝑏𝑧
𝑐𝑥 𝑐𝑦 𝑐𝑧
𝑄𝑡 =
𝑎𝑥 𝑏𝑥 𝑐𝑥
𝑎𝑦 𝑏𝑦 𝑐𝑦
𝑎𝑧 𝑏𝑧 𝑐𝑧
• So that
• Then
𝐚 ∙ 𝐛 × 𝐜 =
𝑎𝑥 𝑎𝑦 𝑎𝑧
𝑏𝑥 𝑏𝑦 𝑏𝑧
𝑐𝑥 𝑐𝑦 𝑐𝑧
= det 𝑄 = det 𝑄𝑡 =
𝑎𝑥 𝑏𝑥 𝑐𝑥
𝑎𝑦 𝑏𝑦 𝑐𝑦
𝑎𝑧 𝑏𝑧 𝑐𝑧
=
𝐴𝑥 𝐴𝑦 𝐴𝑧
𝐵𝑥 𝐵𝑦 𝐵𝑧
𝐶𝑥 𝐶𝑦 𝐶𝑧
𝑎𝑥 𝑏𝑥 𝑐𝑥
𝑎𝑦 𝑏𝑦 𝑐𝑦
𝑎𝑧 𝑏𝑧 𝑐𝑧
𝐀 ∙ 𝐁 × 𝐂 𝐚 ∙ 𝐛 × 𝐜 =
𝐴𝑥 𝐴𝑦 𝐴𝑧
𝐵𝑥 𝐵𝑦 𝐵𝑧
𝐶𝑥 𝐶𝑦 𝐶𝑧
𝑎𝑥 𝑎𝑦 𝑎𝑧
𝑏𝑥 𝑏𝑦 𝑏𝑧
𝑐𝑥 𝑐𝑦 𝑐𝑧
• If P and Q are squared matrices of equal size, then det(PQ) =
det(P)det(Q).
• Because det(Q)=det(Qt), then det(PQ)=det(PQt)=det(P)det(Qt) applies.
Based on this, we can write
𝑃 =
𝐴𝑥 𝐴𝑦 𝐴𝑧
𝐵𝑥 𝐵𝑦 𝐵𝑧
𝐶𝑥 𝐶𝑦 𝐶𝑧
𝑄 =
𝑎𝑥 𝑎𝑦 𝑎𝑧
𝑏𝑥 𝑏𝑦 𝑏𝑧
𝑐𝑥 𝑐𝑦 𝑐𝑧
𝑄𝑡 =
𝑎𝑥 𝑏𝑥 𝑐𝑥
𝑎𝑦 𝑏𝑦 𝑐𝑦
𝑎𝑧 𝑏𝑧 𝑐𝑧
• 𝑃𝑄𝑡 can be written as
=
𝐴𝑥𝑎𝑥 + 𝐴𝑦𝑎𝑦 + 𝐴𝑧𝑎𝑧 𝐴𝑥𝑏𝑥 + 𝐴𝑦𝑏𝑦 + 𝐴𝑧𝑏𝑧 𝐴𝑥𝑐𝑥 + 𝐴𝑦𝑐𝑦 + 𝐴𝑧𝑐𝑧
𝐵𝑥𝑎𝑥 + 𝐵𝑦𝑎𝑦 + 𝐵𝑧𝑎𝑧 𝐵𝑥𝑏𝑥 + 𝐵𝑦𝑏𝑦 + 𝐵𝑧𝑏𝑧 𝐵𝑥𝑐𝑥 + 𝐵𝑦𝑐𝑦 + 𝐵𝑧𝑐𝑧
𝐶𝑥𝑎𝑥 + 𝐶𝑦𝑎𝑦 + 𝐶𝑧𝑎𝑧 𝐶𝑥𝑏𝑥 + 𝐶𝑦𝑏𝑦 + 𝐶𝑧𝑏𝑧 𝐶𝑥𝑐𝑥 + 𝐶𝑦𝑐𝑦 + 𝐶𝑧𝑐𝑧
𝑃𝑄𝑡 =
𝐴𝑥 𝐴𝑦 𝐴𝑧
𝐵𝑥 𝐵𝑦 𝐵𝑧
𝐶𝑥 𝐶𝑦 𝐶𝑧
𝑎𝑥 𝑏𝑥 𝑐𝑥
𝑎𝑦 𝑏𝑦 𝑐𝑦
𝑎𝑧 𝑏𝑧 𝑐𝑧
• If 𝐀 ∙ 𝐚 = 𝐴𝑥𝑎𝑥 + 𝐴𝑦𝑎𝑦 + 𝐴𝑧𝑎𝑧
𝐀 ∙ 𝐛 = 𝐴𝑥𝑏𝑥 + 𝐴𝑦𝑏𝑦 + 𝐴𝑧𝑏𝑧
𝐀 ∙ 𝐜 = 𝐴𝑥𝑐𝑥 + 𝐴𝑦𝑐𝑦 + 𝐴𝑧𝑐𝑧
𝐁 ∙ 𝐚 = 𝐵𝑥𝑎𝑥 + 𝐵𝑦𝑎𝑦 + 𝐵𝑧𝑎𝑧
𝐁 ∙ 𝐛 = 𝐵𝑥𝑏𝑥 + 𝐵𝑦𝑏𝑦 + 𝐵𝑧𝑏𝑧
𝐁 ∙ 𝐜 = 𝐵𝑥𝑐𝑥 + 𝐵𝑦𝑐𝑦 + 𝐵𝑧𝑐𝑧
𝐂 ∙ 𝐚 = 𝐶𝑥𝑎𝑥 + 𝐶𝑦𝑎𝑦 + 𝐶𝑧𝑎𝑧
𝐂 ∙ 𝐛 = 𝐶𝑥𝑏𝑥 + 𝐶𝑦𝑏𝑦 + 𝐶𝑧𝑏𝑧
𝐂 ∙ 𝐜 = 𝐶𝑥𝑐𝑥 + 𝐶𝑦𝑐𝑦 + 𝐶𝑧𝑐𝑧
• hence
𝑃𝑄𝑡 =
𝐀 ∙ 𝐚 𝐀 ∙ 𝐛 𝐀 ∙ 𝐜
𝐁 ∙ 𝐚 𝐁 ∙ 𝐛 𝐁 ∙ 𝐜
𝐂 ∙ 𝐚 𝐂 ∙ 𝐛 𝐂 ∙ 𝐜
det 𝑃𝑄𝑡 =
𝐀 ∙ 𝐚 𝐀 ∙ 𝐛 𝐀 ∙ 𝐜
𝐁 ∙ 𝐚 𝐁 ∙ 𝐛 𝐁 ∙ 𝐜
𝐂 ∙ 𝐚 𝐂 ∙ 𝐛 𝐂 ∙ 𝐜
𝐀 ∙ 𝐁 × 𝐂 𝐚 ∙ 𝐛 × 𝐜 = det 𝑃 det 𝑄 = det 𝑃 det 𝑄𝑡
= det 𝑃𝑄𝑡
• Thus, it is proved that:
𝐀 ∙ 𝐁 × 𝐂 𝐚 ∙ 𝐛 × 𝐜 =
𝐀 ∙ 𝐚 𝐀 ∙ 𝐛 𝐀 ∙ 𝐜
𝐁 ∙ 𝐚 𝐁 ∙ 𝐛 𝐁 ∙ 𝐜
𝐂 ∙ 𝐚 𝐂 ∙ 𝐛 𝐂 ∙ 𝐜
(qed)
References
Daniel Kartawiguna (2024)
daniel.kartawiguna@gmail.com
Anton, H., & Kaul, A. (2020). Elementary Linear Algebra. Hoboken, NJ
07030: John Wiley & Sons, Inc.
Soemartojo, N. (2011). Kalkulus Lanjutan. Jakarta: Penerbit Universitas
Indonesia (UI-Press).

Problem on Vector Linear Algebra: Vector Algebra Identity

  • 1.
    Problem on VectorLinear Algebra Daniel Kartawiguna (2024)
  • 2.
    Problem: Prove thefollowing vector identity Prove 𝐀 ∙ 𝐁 × 𝐂 𝐚 ∙ 𝐛 × 𝐜 = 𝐀 ∙ 𝐚 𝐀 ∙ 𝐛 𝐀 ∙ 𝐜 𝐁 ∙ 𝐚 𝐁 ∙ 𝐛 𝐁 ∙ 𝐜 𝐂 ∙ 𝐚 𝐂 ∙ 𝐛 𝐂 ∙ 𝐜
  • 3.
    Solution: • Let • First,we have to compute 𝐁 × 𝐂 𝐀 = 𝐴𝑥𝒊 + 𝐴𝑦𝒋 + 𝐴𝑧𝒌 𝐁 = 𝐵𝑥𝒊 + 𝐵𝑦𝒋 + 𝐵𝑧𝒌 𝐂 = 𝐶𝑥𝒊 + 𝐶𝑦𝒋 + 𝐶𝑧𝒌 𝐚 = 𝑎𝑥𝒊 + 𝑎𝑦𝒋 + 𝑎𝑧𝒌 𝐛 = 𝑏𝑥𝒊 + 𝑏𝑦𝒋 + 𝑏𝑧𝒌 𝐜 = 𝑐𝑥𝒊 + 𝑐𝑦𝒋 + 𝑐𝑧𝒌 𝐁 × 𝐂 = 𝒊 𝒋 𝒌 𝐵𝑥 𝐵𝑦 𝐵𝑧 𝐶𝑥 𝐶𝑦 𝐶𝑧 = 𝐵𝑦 𝐵𝑧 𝐶𝑦 𝐶𝑧 𝒊 + 𝐵𝑥 𝐵𝑧 𝐶𝑥 𝐶𝑧 𝒋 + 𝐵𝑥 𝐵𝑦 𝐶𝑥 𝐶𝑦 𝒌
  • 4.
    • Then, wecan calculate 𝐀∙𝐁×𝐂 𝐀 ∙ 𝐁 × 𝐂 = 𝐴𝑥𝒊 + 𝐴𝑦𝒋 + 𝐴𝑧𝒌 ∙ 𝐵𝑦 𝐵𝑧 𝐶𝑦 𝐶𝑧 𝒊 + 𝐵𝑥 𝐵𝑧 𝐶𝑥 𝐶𝑧 𝒋 + 𝐵𝑥 𝐵𝑦 𝐶𝑥 𝐶𝑦 𝒌 = 𝐵𝑦 𝐵𝑧 𝐶𝑦 𝐶𝑧 𝐴𝑥 + 𝐵𝑥 𝐵𝑧 𝐶𝑥 𝐶𝑧 𝐴𝑦 + 𝐵𝑥 𝐵𝑦 𝐶𝑥 𝐶𝑦 𝐴𝑧 = 𝐴𝑥 𝐴𝑦 𝐴𝑧 𝐵𝑥 𝐵𝑦 𝐵𝑧 𝐶𝑥 𝐶𝑦 𝐶𝑧 = det 𝑃
  • 5.
    • Thus, thematrix P is 𝑃 = 𝐴𝑥 𝐴𝑦 𝐴𝑧 𝐵𝑥 𝐵𝑦 𝐵𝑧 𝐶𝑥 𝐶𝑦 𝐶𝑧
  • 6.
    • Second, wecalculated 𝐛 × 𝐜 𝐛 × 𝐜 = 𝒊 𝒋 𝒌 𝑏𝑥 𝑏𝑦 𝑏𝑧 𝑐𝑥 𝑐𝑦 𝑐𝑧 = 𝑏𝑦 𝑏𝑧 𝑐𝑦 𝑐𝑧 𝒊 + 𝑏𝑥 𝑏𝑧 𝑐𝑥 𝑐𝑧 𝒋 + 𝑏𝑥 𝑏𝑦 𝑐𝑥 𝑐𝑦 𝒌
  • 7.
    • Next, wecan calculate 𝐚 ∙ 𝐛 × 𝐜 𝐚 ∙ 𝐛 × 𝐜 = 𝑎𝑥𝒊 + 𝑎𝑦𝒋 + 𝑎𝑧𝒌 ∙ 𝑏𝑦 𝑏𝑧 𝑐𝑦 𝑐𝑧 𝒊 + 𝑏𝑥 𝑏𝑧 𝑐𝑥 𝑐𝑧 𝒋 + 𝑏𝑥 𝑏𝑦 𝑐𝑥 𝑐𝑦 𝒌 = 𝑏𝑦 𝑏𝑧 𝑐𝑦 𝑐𝑧 𝑎𝑥 + 𝑏𝑥 𝑏𝑧 𝑐𝑥 𝑐𝑧 𝑎𝑦 + 𝑏𝑥 𝑏𝑦 𝑐𝑥 𝑐𝑦 𝑎𝑧 = 𝑎𝑥 𝑎𝑦 𝑎𝑧 𝑏𝑥 𝑏𝑦 𝑏𝑧 𝑐𝑥 𝑐𝑦 𝑐𝑧
  • 8.
    • Thus, thematrix Q is • If Q is any square matrix, then det(Q)=det(Qt). • The transpose matrix of the Q matrix is 𝑄 = 𝑎𝑥 𝑎𝑦 𝑎𝑧 𝑏𝑥 𝑏𝑦 𝑏𝑧 𝑐𝑥 𝑐𝑦 𝑐𝑧 𝑄𝑡 = 𝑎𝑥 𝑏𝑥 𝑐𝑥 𝑎𝑦 𝑏𝑦 𝑐𝑦 𝑎𝑧 𝑏𝑧 𝑐𝑧
  • 9.
    • So that •Then 𝐚 ∙ 𝐛 × 𝐜 = 𝑎𝑥 𝑎𝑦 𝑎𝑧 𝑏𝑥 𝑏𝑦 𝑏𝑧 𝑐𝑥 𝑐𝑦 𝑐𝑧 = det 𝑄 = det 𝑄𝑡 = 𝑎𝑥 𝑏𝑥 𝑐𝑥 𝑎𝑦 𝑏𝑦 𝑐𝑦 𝑎𝑧 𝑏𝑧 𝑐𝑧 = 𝐴𝑥 𝐴𝑦 𝐴𝑧 𝐵𝑥 𝐵𝑦 𝐵𝑧 𝐶𝑥 𝐶𝑦 𝐶𝑧 𝑎𝑥 𝑏𝑥 𝑐𝑥 𝑎𝑦 𝑏𝑦 𝑐𝑦 𝑎𝑧 𝑏𝑧 𝑐𝑧 𝐀 ∙ 𝐁 × 𝐂 𝐚 ∙ 𝐛 × 𝐜 = 𝐴𝑥 𝐴𝑦 𝐴𝑧 𝐵𝑥 𝐵𝑦 𝐵𝑧 𝐶𝑥 𝐶𝑦 𝐶𝑧 𝑎𝑥 𝑎𝑦 𝑎𝑧 𝑏𝑥 𝑏𝑦 𝑏𝑧 𝑐𝑥 𝑐𝑦 𝑐𝑧
  • 10.
    • If Pand Q are squared matrices of equal size, then det(PQ) = det(P)det(Q). • Because det(Q)=det(Qt), then det(PQ)=det(PQt)=det(P)det(Qt) applies. Based on this, we can write 𝑃 = 𝐴𝑥 𝐴𝑦 𝐴𝑧 𝐵𝑥 𝐵𝑦 𝐵𝑧 𝐶𝑥 𝐶𝑦 𝐶𝑧 𝑄 = 𝑎𝑥 𝑎𝑦 𝑎𝑧 𝑏𝑥 𝑏𝑦 𝑏𝑧 𝑐𝑥 𝑐𝑦 𝑐𝑧 𝑄𝑡 = 𝑎𝑥 𝑏𝑥 𝑐𝑥 𝑎𝑦 𝑏𝑦 𝑐𝑦 𝑎𝑧 𝑏𝑧 𝑐𝑧
  • 11.
    • 𝑃𝑄𝑡 canbe written as = 𝐴𝑥𝑎𝑥 + 𝐴𝑦𝑎𝑦 + 𝐴𝑧𝑎𝑧 𝐴𝑥𝑏𝑥 + 𝐴𝑦𝑏𝑦 + 𝐴𝑧𝑏𝑧 𝐴𝑥𝑐𝑥 + 𝐴𝑦𝑐𝑦 + 𝐴𝑧𝑐𝑧 𝐵𝑥𝑎𝑥 + 𝐵𝑦𝑎𝑦 + 𝐵𝑧𝑎𝑧 𝐵𝑥𝑏𝑥 + 𝐵𝑦𝑏𝑦 + 𝐵𝑧𝑏𝑧 𝐵𝑥𝑐𝑥 + 𝐵𝑦𝑐𝑦 + 𝐵𝑧𝑐𝑧 𝐶𝑥𝑎𝑥 + 𝐶𝑦𝑎𝑦 + 𝐶𝑧𝑎𝑧 𝐶𝑥𝑏𝑥 + 𝐶𝑦𝑏𝑦 + 𝐶𝑧𝑏𝑧 𝐶𝑥𝑐𝑥 + 𝐶𝑦𝑐𝑦 + 𝐶𝑧𝑐𝑧 𝑃𝑄𝑡 = 𝐴𝑥 𝐴𝑦 𝐴𝑧 𝐵𝑥 𝐵𝑦 𝐵𝑧 𝐶𝑥 𝐶𝑦 𝐶𝑧 𝑎𝑥 𝑏𝑥 𝑐𝑥 𝑎𝑦 𝑏𝑦 𝑐𝑦 𝑎𝑧 𝑏𝑧 𝑐𝑧
  • 12.
    • If 𝐀∙ 𝐚 = 𝐴𝑥𝑎𝑥 + 𝐴𝑦𝑎𝑦 + 𝐴𝑧𝑎𝑧 𝐀 ∙ 𝐛 = 𝐴𝑥𝑏𝑥 + 𝐴𝑦𝑏𝑦 + 𝐴𝑧𝑏𝑧 𝐀 ∙ 𝐜 = 𝐴𝑥𝑐𝑥 + 𝐴𝑦𝑐𝑦 + 𝐴𝑧𝑐𝑧 𝐁 ∙ 𝐚 = 𝐵𝑥𝑎𝑥 + 𝐵𝑦𝑎𝑦 + 𝐵𝑧𝑎𝑧 𝐁 ∙ 𝐛 = 𝐵𝑥𝑏𝑥 + 𝐵𝑦𝑏𝑦 + 𝐵𝑧𝑏𝑧 𝐁 ∙ 𝐜 = 𝐵𝑥𝑐𝑥 + 𝐵𝑦𝑐𝑦 + 𝐵𝑧𝑐𝑧 𝐂 ∙ 𝐚 = 𝐶𝑥𝑎𝑥 + 𝐶𝑦𝑎𝑦 + 𝐶𝑧𝑎𝑧 𝐂 ∙ 𝐛 = 𝐶𝑥𝑏𝑥 + 𝐶𝑦𝑏𝑦 + 𝐶𝑧𝑏𝑧 𝐂 ∙ 𝐜 = 𝐶𝑥𝑐𝑥 + 𝐶𝑦𝑐𝑦 + 𝐶𝑧𝑐𝑧
  • 13.
    • hence 𝑃𝑄𝑡 = 𝐀∙ 𝐚 𝐀 ∙ 𝐛 𝐀 ∙ 𝐜 𝐁 ∙ 𝐚 𝐁 ∙ 𝐛 𝐁 ∙ 𝐜 𝐂 ∙ 𝐚 𝐂 ∙ 𝐛 𝐂 ∙ 𝐜 det 𝑃𝑄𝑡 = 𝐀 ∙ 𝐚 𝐀 ∙ 𝐛 𝐀 ∙ 𝐜 𝐁 ∙ 𝐚 𝐁 ∙ 𝐛 𝐁 ∙ 𝐜 𝐂 ∙ 𝐚 𝐂 ∙ 𝐛 𝐂 ∙ 𝐜 𝐀 ∙ 𝐁 × 𝐂 𝐚 ∙ 𝐛 × 𝐜 = det 𝑃 det 𝑄 = det 𝑃 det 𝑄𝑡 = det 𝑃𝑄𝑡
  • 14.
    • Thus, itis proved that: 𝐀 ∙ 𝐁 × 𝐂 𝐚 ∙ 𝐛 × 𝐜 = 𝐀 ∙ 𝐚 𝐀 ∙ 𝐛 𝐀 ∙ 𝐜 𝐁 ∙ 𝐚 𝐁 ∙ 𝐛 𝐁 ∙ 𝐜 𝐂 ∙ 𝐚 𝐂 ∙ 𝐛 𝐂 ∙ 𝐜 (qed)
  • 15.
    References Daniel Kartawiguna (2024) daniel.kartawiguna@gmail.com Anton,H., & Kaul, A. (2020). Elementary Linear Algebra. Hoboken, NJ 07030: John Wiley & Sons, Inc. Soemartojo, N. (2011). Kalkulus Lanjutan. Jakarta: Penerbit Universitas Indonesia (UI-Press).