SlideShare a Scribd company logo
Presented By : Miss. Bharti G. Jadhav.
(First Year M. Pharm.)
(Quality Assurance.)
Under Guidance of : Mr. Abhay R. Shirode.
(Assistant Professor.)
Bharati Vidyapeeth’s College of Pharmacy,
C.B.D., Belapur, Navi Mumbai- 400614.
PREPARATIVE HIGH PRESSURE LIQUID
CHROMATOGRAPHY.
1. Introduction to chromatography.
2. Classification of column chromatographic methods.
3. Preparative chromatography.
4. Preparative HPLC.
5. Objectives.
6. Instrumentation.
7. Method development and optimisation.
8. Applications.
9. Hyphenation with other analytical chromatographic
techniques.(Review of reported studies)
10. Commercially available instruments for preparative high
pressure liquid chromatography.
HIGHLIGHTS:
Chromatography is a powerful separation method. The term
chromatography( Greek word Chroma= “Color” and Graphein=
“To write”) meaning color writing.
INTRODUCTION TO CHROMATOGRAPHY:
What is mean By
Chromatography
General Classification Specific
Method
Stationary Phase Type Of Equilibrium
Liquid chromatography
( Mobile Phase: Liquid)
Liquid-Liquid Liquid adsorbs on solid Partition between immiscible
liquids
Liquid bonded
phase
Organic species bonded to a
solid surface
Partition between liquid and
bonded surface
Solid-Liquid Solid Adsorption
Ion exchange Ion exchange resin Ion exchange
Size exclusion Liquid in interstices of a
polymeric solid
Partition
Gas chromatography
(Mobile Phase: Gas)
Gas-Liquid Liquid adsorbs on solid Partition between gas and
liquid
Gas bonded
phase
Organic species bonded to
solid surface
Partition between liquid and
bonded surface
Gas-Solid Solid Adsorption
Supercritical Fluid
chromatography
(Mobile Phase:
Supercritical Fluid)
Organic species bonded to
solid surface
Partition between
supercritical fluid and solid
surface.
Table 1: Types of Column Chromatographic Methods.
• Powerful technique for the isolation and purification of variety
of chemicals, pharmaceutical compounds, natural products and
biological molecules.
• To increase throughput and separation power, the first
preparative HPLC system was developed in the 1970’s.
• Types of HPLC: Based on the scale of operation.
PREPARATIVE CHROMATOGRAPHY:
Analytical HPLC. Preparative HPLC.
1. Sample goes from detector into waste. 1. Sample goes from detector into
fraction collector.
2. Use quantification and/or identification
of compounds.
2. Use for isolation and/purification of
compounds.
3. Column has internal diameter-1-5mm 3. Column has internal diameter-1-10cm
4. Column particles are 5um or smaller. 4. Column particles are 7um or larger.
5. HPLC pump provide up to 10mL/min. 5. HPLC pump provide >>10mL/min.
6. Solubility of sample in mobile phase
usually not important.
6. Solubility of sample usually very
important.
7. Mobile phase is not recover. 7. Mobile phase recovery is possible.
Table 2: Difference Between Analytical And Preparative HPLC.
PRINCIPLE:
 Adsorption.
Similar to HPLC.
The only difference is sample goes from detector into fraction
collector.
PREPARATIVE HPLC:
OBJECTIVES OF PREPARATIVE HPLC
Purity
Yield
Throughput
1. Solvent reservoir
2. Pump
3. Preparative injector
4. Preparative columns
5. Detectors
6. Programmer
7. Recycle valve
8. Fraction collector.
Figure 2 : Instrumentation Of Preparative HPLC.
INSTRUMENTATION:
1. SOLVENT RESERVOIR:
Material of construction: Glass or stainless steel
For biologically sensitive, or labile substances: Coating of
biocompatible material.
2. PREPARATIVE PUMP:
Figure 3: Dual Preparative Pump. Figure 4: Industrial Preparative System.
• Requires high eluent flow rate 10 and 100 ml/min and
large internal diameter of columns.
• A larger piston head is required to work at flows of 10-
100ml/min.
• Should inject sample within
the range of 0.1 to 100 ml.
• Rheodyne injector is used.
3. PREPARATIVE INJECTOR:
Figure 6: Positions Of Rheodyne Injector.
Figure 5: Rheodyne Injector.
 Column is the heart
of the liquid chromatography.
 Sample distribution plate is
used to distribute the sample
across the column.
 It consists of a disc
with series of radial slots.
4. PREPARATIVE COLUMNS:
Figure 7: A typical Preparative Column
Scale
Column
I.D. (mm)
Quality of
Product
Typical Column
Length (mm)
Purpose
Analytical 4.6 1 - 40mg 250
Biological materials for
activity testing
Semi-Prep 10 - 30 100mg - 3g 250 Reference compounds
Preparative 50 - 70 5 - 10g 250 - 1000
Intermediates for lab
synthesis
Pilot 100 - 300 20g - 5kg 300 - 1000
Pharmaceutical
development
Process >300 kg - tons 500 - 1000 Large scale production
Fig: Largest column in preparative HPLC with 4000 mm x 1600 mm i.d.
 It depends on the particle size, scale of the separation and on
the nature of the material to be separated.
 There are two type of Column Packing’s.
 Particle size more than 20mm- Dry Packing.
 Particle size less than 20mm- Slurry Packing.
 Packing of Preparative Columns:
Packing of
preparative
columns
Once column diameter approaches 5 cm, additional difficulties
arises.
Formation of channels/bridges in the column bed.
Chances of friction between particles and wall of the column.
Figure 9: Difference between Analytical and Preparative Column.
 Difficulties Aries During Packing of Analytical Column
Techniques For
Preservation of
Column
Radial
compression
Packing
Technique.
Longitudinal
Compression
Packing
Technique.
For preservation of column bed, two techniques are used:
Figure 10: Radial Compression Packing
Technique.
Figure 11: Longitudinal Compression
Packing Technique.
 COMMERCIALLY AVAILABLE PREPARATIVE
COLUMNS:
 In preparative HPLC eluent should be
diluted with more mobile phase and
then passed through the detector.
 Detectors are same as that of HPLC.
5. PREPARATIVE DETECTOR:
 In preparative HPLC sample goes from detector to fraction
collector.
 The fraction collector diverts the flow either to waste or, to a
fraction container via the fraction collection needle which
can achieve by using diverter valve.
6. FRACTION COLLECTOR:
Figure 14: Fraction Collector System.
The preparative scale fraction collector is designed for flow rates up
to 100 mL/min.
Figure 15: Eluent Flow Rate.
 Designing of Fraction Collector:
• Based on a signal plot.
• Highest flexibility.
Manual
fraction collection
• Based upon detector response.
Peak-based
fraction collection
• Compound with the desired
mass is selectively collected
Mass-based
fraction collection
Time-based
fraction collection
 Fraction Collection Methods:
• Based on time of interval
Scale Up
Optimization of Throughput
( Column Overloading)
Optimization of Separation
(Mobile Phase, Stationary Phase, Temperature, Retention, Selectivity.)
Selection of Appropriate Mode of Separation
Definition of Separation Problem
METHOD DEVLOPMENT AND OPTIMIZATION OF
PREPARATIVE HIGH PRESSURE LIQUID
CHROMATOGRAPHIC METHOD:
The first step in preparative method development is to identify the
problem and challenges associated.
 Sample information.
 Analyte(s) of interest. (type, number, concentration, required
level of purity)
 Other separation strategies suitable for your sample.
 Detection.
 Amount of material to be isolated.
 Required degree of accuracy, precision etc.
 Method verification.
 DEFINITION OF SEPATION PROBLEM:
The following factors should be considered when selecting
the appropriate HPLC mode for your separation.
 Solubility.
 Molecular weight.
 Sample matrix.
 Detectability.
 Other separation alternatives.
SELECTION OF APPROPRIATE MODE OF
SEPARATION:
1. Mobile Phase:
Viscosity of mobile phase.
sample solubility in mobile phase.
pH
volatility of solvents/buffers.
solvent cost.
2. Stationary Phase:
The chemistry of the stationary phase controls,
Selectivity.
Production rate.
3. Temperature:
Increase in temperature,
 Improves resolution and solubility.
Decreases the viscosity of the mobile phase.
Increase in production rate.
 Optimisation of Separation:
4.Retention:
• Minimum retention factor(k) necessary for isolating the product
and providing the desired purity, cycle time is decreased and the
production rate increased.
• Concentration of the product in collected fractions decreases
when retention increases, Column efficiency increases, but the
cycle time and solvent consumption are increased as well.
• k= 1.2-2.0 for isocratic separation, k = 3-4 for gradient
separations.
5. Selectivity:
• Increasing the selectivity value up to 2 or 3 significantly
improves the throughput of separation.
• Selectivity can be optimised by changing the solvent
composition as well as pH and nature of buffer added to the
mobile phase.
Two ways of performing column overloading:
1. volume overloading. 2. concentration overloading.
Table 4: Difference between Volume and Column Overloading.
 OPTIMIZATION OF THE THROUGHPUT:
Volume Overloading. Concentration Overloading.
1. Determined by injection volume. 1. Determined by solubility of the
compound in mobile phase.
2. Appropriate when sample has poor
solubility.
2. Appropriate when sample has good
solubility
3. Throughput determined by column
diameter.
3. Throughput determined by selectivity.
4. Analytical area of adsorption
isotherm.
4. Preparative area of adsorption
isotherm.
5. Small particle size improves 5. Particle size has very little influence
1. Purification in medicinal or high-throughput chemistry.
2. Purification in natural product chemistry.
3. Purification of by-products for impurity analysis.
4. Recovery collection.
5. Automated fraction re-analysis.
APPLICATIONS OF PREPARATIVE HPLC:
1. Preparative High-Performance Liquid
Chromatography–Mass Spectrometry for the High-
Throughput Purification of Combinatorial Libraries.
• Marcus Bauser* Medicinal Chemistry VII, Business
Group Pharma, BAYER AG, 42096 Wuppertal,
Germany
Preparative HPLC when coupled/hyphenated with
other analytical techniques:
(review of reported studies)
2. Excellent combination of counter-current chromatography and
Preparative high-performance liquid chromatography to separate
galactolipids from pumpkin.
• A. Berthod, G.G. Leitao, I.A. Sutherland and W.D. Conway
3. Preparative high pressure liquid chromatography-flash
chromatography.(Puriflash)
Commercially available instruments for
preparative high pressure liquid
chromatography:
1. Japan analytical Industry:
Features:
 Reduces expenses of purchasing
columns.
 Achieves the same separation as
if using a longer column.
2. Waters:
Features:
 Flexible solvent delivery options
allowing binary or quaternary
based pumps providing low-
pressure multi-solvent blending or
high pressure gradient mixing of
flow rates up to 150 ml/min.
 Easy to use.
 highly sensitive UV/Visible or
Photodiode Array detectors are
use.
CONCLUSION:
 Preparative chromatography is powerful technique
for the isolation and purification of variety of
chemicals, including pharmaceutical compounds,
natural products and biological molecules.
 If we optimise all the parameter like column
loadability, selectivity, flow rate, particle size, we
can scale up the technique from analytical to
preparative scale.
REFERENCES:
1. Taylor T., White C.A. ,The CHROMacademy Essential
Guide - Basics of Preparative HPLC;105-115.
2. Kazakevich Y., LoBruto R., John Wiley & Sons. “HPLC for
Pharmaceutical Scientists” ISBN-13:2007; 937 – 980.
3. Truei Y., Tingyue Gu, Tsai G., Large-Scale Gradient Elution
Chromatography Advances in Biochemical
Engineering/Biotechnology.1992,( 47);1-44.
4. Breslav M., Leshchinskaya V., Preparative High performance
Liquid Chromatography Optimisation;1903-0909.
5. Ganetsos G., Barker P.E.,Preparative and Production scale
Chromatography, Chromatographic Science,1993(61);786.
6. Berthod A., Leitao G.G., Sutherland I.A., Excellent
combination of counter-current chromatography and
preparative high-performance liquid chromatography to
separate galactolipids from pumpkin,8 May 2009, 19 (1216);
4176–418.
prephplc1-140328060950-phpapp01 (1).pdf

More Related Content

Similar to prephplc1-140328060950-phpapp01 (1).pdf

CHROMATOGRAPHY and its types with procedure,diagrams,flow charts,advantages a...
CHROMATOGRAPHY and its types with procedure,diagrams,flow charts,advantages a...CHROMATOGRAPHY and its types with procedure,diagrams,flow charts,advantages a...
CHROMATOGRAPHY and its types with procedure,diagrams,flow charts,advantages a...
university
 
PREPARATION OF SAMPLES FOR ANALYSIS.ppt
PREPARATION OF SAMPLES FOR ANALYSIS.pptPREPARATION OF SAMPLES FOR ANALYSIS.ppt
PREPARATION OF SAMPLES FOR ANALYSIS.ppt
AbdiIsaq1
 
HPLC
HPLCHPLC
Anu
AnuAnu
Hplc high performance liquid chromatography
Hplc high performance liquid chromatographyHplc high performance liquid chromatography
Hplc high performance liquid chromatography
Hameer Khan khuhro
 
Uplc
UplcUplc
High performance liquid chromatography
High performance liquid chromatographyHigh performance liquid chromatography
High performance liquid chromatography
Vaishali Dudhabale
 
Hplc by Bachaspati jana
Hplc by  Bachaspati janaHplc by  Bachaspati jana
Hplc by Bachaspati jana
BachaspatiJana
 
Method development and validation in HPLC
Method development and validation in HPLCMethod development and validation in HPLC
Method development and validation in HPLC
coolprashant33
 
HPLC BY MANOJ KUMAR.M
HPLC BY MANOJ KUMAR.MHPLC BY MANOJ KUMAR.M
HPLC BY MANOJ KUMAR.M
himaja donthula
 
Development and Validation of a RP-HPLC method
Development and Validation of a RP-HPLC methodDevelopment and Validation of a RP-HPLC method
Development and Validation of a RP-HPLC method
UshaKhanal3
 
Hplc ppt
Hplc pptHplc ppt
Hplc ppt
Shweta Tyagi
 
Chromatography & PCR
Chromatography & PCRChromatography & PCR
Chromatography & PCR
Dr. Yash Panchal
 
HPLC ppt 1 BZU.pptx
HPLC ppt 1 BZU.pptxHPLC ppt 1 BZU.pptx
HPLC ppt 1 BZU.pptx
KhalidNadeemBlouch1
 
HPTLC
HPTLCHPTLC
Chromatography
ChromatographyChromatography
Chromatography
mathuammu1989
 
Hptlc.
Hptlc.Hptlc.
Hplc and gc analysis
Hplc and gc analysisHplc and gc analysis
Hplc and gc analysis
Himanshu Birla
 
TECHNIQUES & PROTOCOLS FOR INSTRUMENTATION ANALYSIS (HPLC & CENTRIFUGATION MA...
TECHNIQUES & PROTOCOLS FOR INSTRUMENTATION ANALYSIS (HPLC & CENTRIFUGATION MA...TECHNIQUES & PROTOCOLS FOR INSTRUMENTATION ANALYSIS (HPLC & CENTRIFUGATION MA...
TECHNIQUES & PROTOCOLS FOR INSTRUMENTATION ANALYSIS (HPLC & CENTRIFUGATION MA...
Faizan Akram
 
HPLC
HPLCHPLC

Similar to prephplc1-140328060950-phpapp01 (1).pdf (20)

CHROMATOGRAPHY and its types with procedure,diagrams,flow charts,advantages a...
CHROMATOGRAPHY and its types with procedure,diagrams,flow charts,advantages a...CHROMATOGRAPHY and its types with procedure,diagrams,flow charts,advantages a...
CHROMATOGRAPHY and its types with procedure,diagrams,flow charts,advantages a...
 
PREPARATION OF SAMPLES FOR ANALYSIS.ppt
PREPARATION OF SAMPLES FOR ANALYSIS.pptPREPARATION OF SAMPLES FOR ANALYSIS.ppt
PREPARATION OF SAMPLES FOR ANALYSIS.ppt
 
HPLC
HPLCHPLC
HPLC
 
Anu
AnuAnu
Anu
 
Hplc high performance liquid chromatography
Hplc high performance liquid chromatographyHplc high performance liquid chromatography
Hplc high performance liquid chromatography
 
Uplc
UplcUplc
Uplc
 
High performance liquid chromatography
High performance liquid chromatographyHigh performance liquid chromatography
High performance liquid chromatography
 
Hplc by Bachaspati jana
Hplc by  Bachaspati janaHplc by  Bachaspati jana
Hplc by Bachaspati jana
 
Method development and validation in HPLC
Method development and validation in HPLCMethod development and validation in HPLC
Method development and validation in HPLC
 
HPLC BY MANOJ KUMAR.M
HPLC BY MANOJ KUMAR.MHPLC BY MANOJ KUMAR.M
HPLC BY MANOJ KUMAR.M
 
Development and Validation of a RP-HPLC method
Development and Validation of a RP-HPLC methodDevelopment and Validation of a RP-HPLC method
Development and Validation of a RP-HPLC method
 
Hplc ppt
Hplc pptHplc ppt
Hplc ppt
 
Chromatography & PCR
Chromatography & PCRChromatography & PCR
Chromatography & PCR
 
HPLC ppt 1 BZU.pptx
HPLC ppt 1 BZU.pptxHPLC ppt 1 BZU.pptx
HPLC ppt 1 BZU.pptx
 
HPTLC
HPTLCHPTLC
HPTLC
 
Chromatography
ChromatographyChromatography
Chromatography
 
Hptlc.
Hptlc.Hptlc.
Hptlc.
 
Hplc and gc analysis
Hplc and gc analysisHplc and gc analysis
Hplc and gc analysis
 
TECHNIQUES & PROTOCOLS FOR INSTRUMENTATION ANALYSIS (HPLC & CENTRIFUGATION MA...
TECHNIQUES & PROTOCOLS FOR INSTRUMENTATION ANALYSIS (HPLC & CENTRIFUGATION MA...TECHNIQUES & PROTOCOLS FOR INSTRUMENTATION ANALYSIS (HPLC & CENTRIFUGATION MA...
TECHNIQUES & PROTOCOLS FOR INSTRUMENTATION ANALYSIS (HPLC & CENTRIFUGATION MA...
 
HPLC
HPLCHPLC
HPLC
 

Recently uploaded

The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
RitikBhardwaj56
 
The basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptxThe basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptx
heathfieldcps1
 
World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024
ak6969907
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
camakaiclarkmusic
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Dr. Vinod Kumar Kanvaria
 
Hindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdfHindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdf
Dr. Mulla Adam Ali
 
A Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptxA Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptx
thanhdowork
 
The History of Stoke Newington Street Names
The History of Stoke Newington Street NamesThe History of Stoke Newington Street Names
The History of Stoke Newington Street Names
History of Stoke Newington
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
Nguyen Thanh Tu Collection
 
RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3
RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3
RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3
IreneSebastianRueco1
 
Liberal Approach to the Study of Indian Politics.pdf
Liberal Approach to the Study of Indian Politics.pdfLiberal Approach to the Study of Indian Politics.pdf
Liberal Approach to the Study of Indian Politics.pdf
WaniBasim
 
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Excellence Foundation for South Sudan
 
PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.
Dr. Shivangi Singh Parihar
 
DRUGS AND ITS classification slide share
DRUGS AND ITS classification slide shareDRUGS AND ITS classification slide share
DRUGS AND ITS classification slide share
taiba qazi
 
Life upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for studentLife upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for student
NgcHiNguyn25
 
Top five deadliest dog breeds in America
Top five deadliest dog breeds in AmericaTop five deadliest dog breeds in America
Top five deadliest dog breeds in America
Bisnar Chase Personal Injury Attorneys
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
Israel Genealogy Research Association
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
Scholarhat
 
Smart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICTSmart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICT
simonomuemu
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
adhitya5119
 

Recently uploaded (20)

The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
 
The basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptxThe basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptx
 
World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
 
Hindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdfHindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdf
 
A Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptxA Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptx
 
The History of Stoke Newington Street Names
The History of Stoke Newington Street NamesThe History of Stoke Newington Street Names
The History of Stoke Newington Street Names
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
 
RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3
RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3
RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3
 
Liberal Approach to the Study of Indian Politics.pdf
Liberal Approach to the Study of Indian Politics.pdfLiberal Approach to the Study of Indian Politics.pdf
Liberal Approach to the Study of Indian Politics.pdf
 
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
 
PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.
 
DRUGS AND ITS classification slide share
DRUGS AND ITS classification slide shareDRUGS AND ITS classification slide share
DRUGS AND ITS classification slide share
 
Life upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for studentLife upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for student
 
Top five deadliest dog breeds in America
Top five deadliest dog breeds in AmericaTop five deadliest dog breeds in America
Top five deadliest dog breeds in America
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
 
Smart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICTSmart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICT
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
 

prephplc1-140328060950-phpapp01 (1).pdf

  • 1. Presented By : Miss. Bharti G. Jadhav. (First Year M. Pharm.) (Quality Assurance.) Under Guidance of : Mr. Abhay R. Shirode. (Assistant Professor.) Bharati Vidyapeeth’s College of Pharmacy, C.B.D., Belapur, Navi Mumbai- 400614. PREPARATIVE HIGH PRESSURE LIQUID CHROMATOGRAPHY.
  • 2. 1. Introduction to chromatography. 2. Classification of column chromatographic methods. 3. Preparative chromatography. 4. Preparative HPLC. 5. Objectives. 6. Instrumentation. 7. Method development and optimisation. 8. Applications. 9. Hyphenation with other analytical chromatographic techniques.(Review of reported studies) 10. Commercially available instruments for preparative high pressure liquid chromatography. HIGHLIGHTS:
  • 3. Chromatography is a powerful separation method. The term chromatography( Greek word Chroma= “Color” and Graphein= “To write”) meaning color writing. INTRODUCTION TO CHROMATOGRAPHY: What is mean By Chromatography
  • 4. General Classification Specific Method Stationary Phase Type Of Equilibrium Liquid chromatography ( Mobile Phase: Liquid) Liquid-Liquid Liquid adsorbs on solid Partition between immiscible liquids Liquid bonded phase Organic species bonded to a solid surface Partition between liquid and bonded surface Solid-Liquid Solid Adsorption Ion exchange Ion exchange resin Ion exchange Size exclusion Liquid in interstices of a polymeric solid Partition Gas chromatography (Mobile Phase: Gas) Gas-Liquid Liquid adsorbs on solid Partition between gas and liquid Gas bonded phase Organic species bonded to solid surface Partition between liquid and bonded surface Gas-Solid Solid Adsorption Supercritical Fluid chromatography (Mobile Phase: Supercritical Fluid) Organic species bonded to solid surface Partition between supercritical fluid and solid surface. Table 1: Types of Column Chromatographic Methods.
  • 5. • Powerful technique for the isolation and purification of variety of chemicals, pharmaceutical compounds, natural products and biological molecules. • To increase throughput and separation power, the first preparative HPLC system was developed in the 1970’s. • Types of HPLC: Based on the scale of operation. PREPARATIVE CHROMATOGRAPHY:
  • 6. Analytical HPLC. Preparative HPLC. 1. Sample goes from detector into waste. 1. Sample goes from detector into fraction collector. 2. Use quantification and/or identification of compounds. 2. Use for isolation and/purification of compounds. 3. Column has internal diameter-1-5mm 3. Column has internal diameter-1-10cm 4. Column particles are 5um or smaller. 4. Column particles are 7um or larger. 5. HPLC pump provide up to 10mL/min. 5. HPLC pump provide >>10mL/min. 6. Solubility of sample in mobile phase usually not important. 6. Solubility of sample usually very important. 7. Mobile phase is not recover. 7. Mobile phase recovery is possible. Table 2: Difference Between Analytical And Preparative HPLC.
  • 7. PRINCIPLE:  Adsorption. Similar to HPLC. The only difference is sample goes from detector into fraction collector. PREPARATIVE HPLC:
  • 8.
  • 9. OBJECTIVES OF PREPARATIVE HPLC Purity Yield Throughput
  • 10. 1. Solvent reservoir 2. Pump 3. Preparative injector 4. Preparative columns 5. Detectors 6. Programmer 7. Recycle valve 8. Fraction collector. Figure 2 : Instrumentation Of Preparative HPLC. INSTRUMENTATION:
  • 11.
  • 12.
  • 13. 1. SOLVENT RESERVOIR: Material of construction: Glass or stainless steel For biologically sensitive, or labile substances: Coating of biocompatible material.
  • 14. 2. PREPARATIVE PUMP: Figure 3: Dual Preparative Pump. Figure 4: Industrial Preparative System. • Requires high eluent flow rate 10 and 100 ml/min and large internal diameter of columns. • A larger piston head is required to work at flows of 10- 100ml/min.
  • 15. • Should inject sample within the range of 0.1 to 100 ml. • Rheodyne injector is used. 3. PREPARATIVE INJECTOR: Figure 6: Positions Of Rheodyne Injector. Figure 5: Rheodyne Injector.
  • 16.  Column is the heart of the liquid chromatography.  Sample distribution plate is used to distribute the sample across the column.  It consists of a disc with series of radial slots. 4. PREPARATIVE COLUMNS: Figure 7: A typical Preparative Column
  • 17. Scale Column I.D. (mm) Quality of Product Typical Column Length (mm) Purpose Analytical 4.6 1 - 40mg 250 Biological materials for activity testing Semi-Prep 10 - 30 100mg - 3g 250 Reference compounds Preparative 50 - 70 5 - 10g 250 - 1000 Intermediates for lab synthesis Pilot 100 - 300 20g - 5kg 300 - 1000 Pharmaceutical development Process >300 kg - tons 500 - 1000 Large scale production
  • 18. Fig: Largest column in preparative HPLC with 4000 mm x 1600 mm i.d.
  • 19.  It depends on the particle size, scale of the separation and on the nature of the material to be separated.  There are two type of Column Packing’s.  Particle size more than 20mm- Dry Packing.  Particle size less than 20mm- Slurry Packing.  Packing of Preparative Columns: Packing of preparative columns
  • 20. Once column diameter approaches 5 cm, additional difficulties arises. Formation of channels/bridges in the column bed. Chances of friction between particles and wall of the column. Figure 9: Difference between Analytical and Preparative Column.  Difficulties Aries During Packing of Analytical Column
  • 22. Figure 10: Radial Compression Packing Technique. Figure 11: Longitudinal Compression Packing Technique.
  • 23.  COMMERCIALLY AVAILABLE PREPARATIVE COLUMNS:
  • 24.  In preparative HPLC eluent should be diluted with more mobile phase and then passed through the detector.  Detectors are same as that of HPLC. 5. PREPARATIVE DETECTOR:
  • 25.  In preparative HPLC sample goes from detector to fraction collector.  The fraction collector diverts the flow either to waste or, to a fraction container via the fraction collection needle which can achieve by using diverter valve. 6. FRACTION COLLECTOR: Figure 14: Fraction Collector System.
  • 26. The preparative scale fraction collector is designed for flow rates up to 100 mL/min. Figure 15: Eluent Flow Rate.  Designing of Fraction Collector:
  • 27. • Based on a signal plot. • Highest flexibility. Manual fraction collection • Based upon detector response. Peak-based fraction collection • Compound with the desired mass is selectively collected Mass-based fraction collection Time-based fraction collection  Fraction Collection Methods: • Based on time of interval
  • 28. Scale Up Optimization of Throughput ( Column Overloading) Optimization of Separation (Mobile Phase, Stationary Phase, Temperature, Retention, Selectivity.) Selection of Appropriate Mode of Separation Definition of Separation Problem METHOD DEVLOPMENT AND OPTIMIZATION OF PREPARATIVE HIGH PRESSURE LIQUID CHROMATOGRAPHIC METHOD:
  • 29. The first step in preparative method development is to identify the problem and challenges associated.  Sample information.  Analyte(s) of interest. (type, number, concentration, required level of purity)  Other separation strategies suitable for your sample.  Detection.  Amount of material to be isolated.  Required degree of accuracy, precision etc.  Method verification.  DEFINITION OF SEPATION PROBLEM:
  • 30. The following factors should be considered when selecting the appropriate HPLC mode for your separation.  Solubility.  Molecular weight.  Sample matrix.  Detectability.  Other separation alternatives. SELECTION OF APPROPRIATE MODE OF SEPARATION:
  • 31. 1. Mobile Phase: Viscosity of mobile phase. sample solubility in mobile phase. pH volatility of solvents/buffers. solvent cost. 2. Stationary Phase: The chemistry of the stationary phase controls, Selectivity. Production rate. 3. Temperature: Increase in temperature,  Improves resolution and solubility. Decreases the viscosity of the mobile phase. Increase in production rate.  Optimisation of Separation:
  • 32. 4.Retention: • Minimum retention factor(k) necessary for isolating the product and providing the desired purity, cycle time is decreased and the production rate increased. • Concentration of the product in collected fractions decreases when retention increases, Column efficiency increases, but the cycle time and solvent consumption are increased as well. • k= 1.2-2.0 for isocratic separation, k = 3-4 for gradient separations. 5. Selectivity: • Increasing the selectivity value up to 2 or 3 significantly improves the throughput of separation. • Selectivity can be optimised by changing the solvent composition as well as pH and nature of buffer added to the mobile phase.
  • 33. Two ways of performing column overloading: 1. volume overloading. 2. concentration overloading. Table 4: Difference between Volume and Column Overloading.  OPTIMIZATION OF THE THROUGHPUT: Volume Overloading. Concentration Overloading. 1. Determined by injection volume. 1. Determined by solubility of the compound in mobile phase. 2. Appropriate when sample has poor solubility. 2. Appropriate when sample has good solubility 3. Throughput determined by column diameter. 3. Throughput determined by selectivity. 4. Analytical area of adsorption isotherm. 4. Preparative area of adsorption isotherm. 5. Small particle size improves 5. Particle size has very little influence
  • 34. 1. Purification in medicinal or high-throughput chemistry. 2. Purification in natural product chemistry. 3. Purification of by-products for impurity analysis. 4. Recovery collection. 5. Automated fraction re-analysis. APPLICATIONS OF PREPARATIVE HPLC:
  • 35. 1. Preparative High-Performance Liquid Chromatography–Mass Spectrometry for the High- Throughput Purification of Combinatorial Libraries. • Marcus Bauser* Medicinal Chemistry VII, Business Group Pharma, BAYER AG, 42096 Wuppertal, Germany Preparative HPLC when coupled/hyphenated with other analytical techniques: (review of reported studies)
  • 36. 2. Excellent combination of counter-current chromatography and Preparative high-performance liquid chromatography to separate galactolipids from pumpkin. • A. Berthod, G.G. Leitao, I.A. Sutherland and W.D. Conway 3. Preparative high pressure liquid chromatography-flash chromatography.(Puriflash)
  • 37. Commercially available instruments for preparative high pressure liquid chromatography: 1. Japan analytical Industry: Features:  Reduces expenses of purchasing columns.  Achieves the same separation as if using a longer column.
  • 38. 2. Waters: Features:  Flexible solvent delivery options allowing binary or quaternary based pumps providing low- pressure multi-solvent blending or high pressure gradient mixing of flow rates up to 150 ml/min.  Easy to use.  highly sensitive UV/Visible or Photodiode Array detectors are use.
  • 39. CONCLUSION:  Preparative chromatography is powerful technique for the isolation and purification of variety of chemicals, including pharmaceutical compounds, natural products and biological molecules.  If we optimise all the parameter like column loadability, selectivity, flow rate, particle size, we can scale up the technique from analytical to preparative scale.
  • 40. REFERENCES: 1. Taylor T., White C.A. ,The CHROMacademy Essential Guide - Basics of Preparative HPLC;105-115. 2. Kazakevich Y., LoBruto R., John Wiley & Sons. “HPLC for Pharmaceutical Scientists” ISBN-13:2007; 937 – 980. 3. Truei Y., Tingyue Gu, Tsai G., Large-Scale Gradient Elution Chromatography Advances in Biochemical Engineering/Biotechnology.1992,( 47);1-44. 4. Breslav M., Leshchinskaya V., Preparative High performance Liquid Chromatography Optimisation;1903-0909. 5. Ganetsos G., Barker P.E.,Preparative and Production scale Chromatography, Chromatographic Science,1993(61);786. 6. Berthod A., Leitao G.G., Sutherland I.A., Excellent combination of counter-current chromatography and preparative high-performance liquid chromatography to separate galactolipids from pumpkin,8 May 2009, 19 (1216); 4176–418.