SlideShare a Scribd company logo
1 of 20
POWER SYSTEMAUTOMATION
OVERVIEW
Powerprovidersconstantlydeal withdemandstoincrease productivityandreduce costs.This
translatesintothe needforadministrators,engineers,operators,planners,fieldcrews,andothersto
collectandact ondecision-makinginformation.Powersystemvendorsare followingatrendtomake
devicessmartersotheycan create and communicate thisinformation.The term“powersystem”
describesthe collectionof devicesthatmake upthe physical systemsthatgenerate,transmit,and
distribute power.The term“instrumentationandcontrol (I&C) system”referstothe collectionof
devicesthatmonitor,control,andprotectthe powersystem.Powersystemautomationrefersto
usingI&C devicestoperformautomaticdecisionmakingandcontrol of the powersystem.
PowersystemautomationreferstousingI&Cdevicestoperformautomaticdecisionmakingand
control of the powersystem.
Data Acquisition
Data acquisitionreferstoacquiring,orcollecting,data.Thisdatais collectedinthe formof
measuredanalogcurrentor voltage valuesorthe openorclosedstatusof contact points.Acquired
data can be usedlocallywithinthe devicecollectingit,senttoanotherdevice inasubstation,orsent
fromthe substationtoone or several databasesforuse byoperators, engineers,planners,and
administration.
Power SystemSupervision
Computerprocessesandpersonnel supervise,ormonitor,the conditionsandstatusof the power
systemusingthisacquireddata.Operatorsandengineersmonitorthe informationremotelyon
computerdisplaysandgraphical wall displaysorlocally,atthe device,onfront-panel displaysand
laptopcomputers.
Power SystemControl
Control referstosendingcommandmessagestoadevice tooperate the I&C andpowersystem
devices.Traditional supervisorycontrol anddataacquisition(SCADA) systemsrelyonoperatorsto
supervise the systemandinitiate commandsfromanoperatorconsole onthe mastercomputer.
Fieldpersonnel canalsocontrol devicesusingfront-panel pushbuttonsora laptopcomputer.
Power SystemAutomation
Systemautomationisthe act of automaticallycontrollingthe powersystemviaautomated
processeswithincomputersandintelligentI&Cdevices.The processesrelyondataacquisition,
powersystemsupervision,andpowersystemcontrol all workingtogetherinacoordinatedauto- 2
matic fashion.The commandsare generatedautomaticallyandthentransmittedinthe same fashion
as operatorinitiatedcommands.
I&C SystemIEDs
I&C devicesbuiltusingmicroprocessorsare commonly referredtoasintelligentelectronicdevices
(IEDs).Microprocessorsare single chipcomputersthatallow the devicesintowhichtheyare builtto
processdata, acceptcommands,and communicate informationlike acomputer.Automatic
processescanbe run in the IEDs, andcommunicationsare handledthroughaserial portlike the
communicationsportsona computer.IEDsare foundinthe substationandon the pole-top.
Instrument Transformers
Instrumenttransformersare usedtosense powersystemcurrentand voltage values.Theyare
physicallyconnectedtopowersystemapparatusandconvertthe actual powersystemsignals,which
include highvoltage andcurrentmagnitudes,downtolowersignal levels.
Figure 1: Instrument Transformers
Transducer
Transducersconvertthe analogoutputof an instrumenttransformerfromone magnitude to
anotheror fromone value type to another,suchas froman ac currentto dc voltage.
Remote Terminal Unit, RTU
As the name implies,aremote terminal device,RTU,isan IED that can be installedinaremote
location,andacts as a terminationpointforfieldcontacts.A dedicatedpairof copperconductors
are usedto sense everycontactandtransducervalue.These conductorsoriginate atthe power
systemdevice,are installedintrenchesoroverheadcable trays,andare thenterminatedonpanels
withinthe RTU. The RTU can transfercollecteddatatootherdevicesandreceive dataandcontrol
commandsfromotherdevicesthroughaserial port.User programmable RTUsare referredtoas
“smart RTUs.
Figure 3: RTU
Communications Port Switch
A communicationsswitchisadevice thatswitchesbetweenseveral serial portswhenitistoldtodo
so.The remote userinitiatescommunicationswiththe portswitchviaaconnectiontothe
substation,typicallyaleasedlineordial-uptelephone connection.Once connected,the usercan
route theircommunicationsthroughthe portswitchtoone of the connectedsubstationIEDs.The
port switchmerely“passesthrough”the IEDcommunications.
Figure 4: CommunicationSwitch
Meter
A meterisan IED that isused to create accurate measurementsof powersystemcurrent,voltage,
and powervalues.Meteringvaluessuchasdemandandpeakare savedwithinthe metertocreate
historical informationaboutthe activityof the powersystem.
Figure 5: Meter.
Digital Fault Recorder
A digital faultrecorder(DFR),isanIED that recordsinformationaboutpowersystemdisturbances.It
iscapable of storingdatain a digital formatwhentriggeredbyconditionsdetectedonthe power
system.Harmonics,frequency,andvoltage are examplesof datacapturedby DFRs.
Figure 6: Digital FaultRecorder
Load Tap Changer (LTC)
Load tap changersare devicesusedtochange the tap positionontransformers.These deviceswork
automaticallyorcan be controlledviaanotherlocal IEDor from a remote operatororprocess.
Recloser Controller
Reclosercontrollersremotelycontrol the operationof automatedreclosersandswitches.These
devicesmonitorandstore powersystemconditionsanddeterminewhentoperformcontrol actions.
Theyalsoaccept commandsfroma remote operatororprocess.
Figure 7: SEL-351R RecloserControl
Time Synchronization Source
A time synchronizationsource isanIED that createsa time-of-dayvalue whichisthenbroadcastto
the IEDs in orderto setall theirclocksto the same time.
Figure 8: Time SynchronizationSource
Protocol Gateway
IEDs communicate overserial connectionsbyspeakingaparticularlanguage orprotocol.A protocol
gatewayconvertscommunicationsfromone protocol toanother.Thistaskis oftenperformedby
software ona personal computer.
Human Machine Interface (HMI).
The front panel displayandpushbuttonsora personal computeract as interfacestosystemdata
and controlsforpersonnel inthe substation.
Figure 9: Protocol Gatewayor HMI
Programmable Logic Controller (PLC)
As the name implies,aprogrammable logiccontroller(PLC),isanIEDthat can be programmedto
performlogical control.Aswiththe RTU, a dedicatedpairof copperconductorsfor eachcontact and
transducervalue are terminatedonpanelswithinthe PLC.Personnel familiarwiththe PLC
developmentenvironmentcanprogramPLCs to create informationfromsensordataandperform
automation.The PLCcan transfercollecteddatatootherdevicesandreceive dataandcontrol
commandsfromotherdevicesthroughaserial port.
Figure 10: Programmable LogicControllerRightCabinet,PCandAccessoriesLeftCabinet
Protective Relay
A protective relayisanIED designedtosense powersystemdisturbancesandautomaticallyperform
control actionson the I&C systemandthe powersystemtoprotect personnel andequipment.The
relayhas local terminationsothatthe copperconductorsfor eachcontact do not have to be routed
to a central terminationpanel associatedwithRTUsandPLCs.Transducersare not necessarysince
the relayacceptssignalsdirectlyfromthe instrumenttransformers.Protective relayscreate
meteringinformation,collectsystemstatusinformation,andstore historical recordsof power
systemoperation
Figure 11: SEL-351 Relay
Communications Processor
A communicationsprocessorisasubstationcontrollerthatincorporatesthe functionsof manyother
I&C devicesintoone IED.Ithas many communicationsportstosupportmultiple simultaneous
communicationslinks.The communicationsprocessorperformsdataacquisitionandcontrol of the
othersubstationIEDsand alsoconcentratesthe datait acquiresfortransmission toone ormany
mastersinside andoutside the substation.The communicationsprocessorincorporatesfeaturesof
manyof the otherIEDs includinganRTU, a communicationsportswitch,aprotocol gateway,atime
synchronizationsource,andalimitedPLCfunctionality.The communicationsprocessorhaslocally
terminatedI/Oandcan performdial-outtoalertpersonnel orprocesseswhenastatuschanges.
Figure 12: SEL-2030 CommunicationsProcessor
POWER SYSTEM COMMUNICATIONS
Communications Protocols
The IEEE definescommunicationsprotocol as:aformal setof conventionsgoverningthe formatand
relative timingof message exchange betweentwocommunicationsterminals.A strictprocedure
requiredtoinitiate andmaintaincommunication.Thisregulatesthe orderandarrangementof
information,transferspeedorbaudrate and errorchecking.Ingeneral,powersystem
communicationnetworkssupportfourbasicoperations:establishcommunications,terminate
communications,writedata,andreaddata. The write data functioncanbe usedtotell an IED to
performa control action,change settings,orsenddata to the requestingdevice.Errorcheckingis
done byeach device todetermine if the message datawascorruptedduringtransmission.The type
of protocol,message format,andtransferspeedare parametersthatare configuredduring
installation.Communicationsschemesare polled,scheduledorunsolicited.Ina polledsituation,one
IED acts as the hostand initiatesalmostall dataexchange.The otherIEDacts as a slave anddoes9
onlywhatit istold.The slave rarelyinitiatesdataexchange,itsimplyreactstorequestsfordatafrom
the host.The exceptionisanunsolicitedmessage fromaslave whichsendsdatatothe host without
the host requestingit.Often,thisisaresultof an unexpectedchange.
Popular Protocols
ASCII - Protocol thatis easilyconvertedtohuman-readable charactersandnumbers.Thisprotocol is
simple butgenerallyslow.
Modbus® - A popularprotocol withindustrial usersthathasalsobecome somewhatpopularin
substations.DesignedtoemulatePLCstransferringregisterdatato one another.
Modbus® Plus - A mediumspeednetworkbuiltwithproprietarynetworkinterfacesusingan
extensionof Modbusprotocol.
DNP 3.0 - An everincreasinglypopularSCADA protocol,governedbyastandardscommittee and
usersgroup,that was designedtooptimize efficiencythroughreportbyexception,remotemodem
connections,andmultidropcapabilities.PredominantlypopularinNorthAmerica.
UCA/MMS - UtilityCommunicationsArchitecture,currentlybeingdesignedbyNorthAmerican
utilities,vendors,andconsultantstosatisfymostrequirementsinsubstationfeederequipmentand
eventuallyall powersystemequipment.
Proprietary - Protocolscreatedbythe product vendorstocommunicate withtheirdevices.These
are generallyunique foreachvendorandare not inter-operable.Some vendorsdesigntheirown
protocol because existingprotocolslacknecessaryrobustnessandefficiency.
Interleaved - Interleaveddatastreamsisasimple waythatmultiple communicationsmessagescan
occur on a single communicationsconnection.Dataacquisition,control,configuration,andtime-
synchronizationcommunications canoccur at the same time.
Communications Media
Many differenttypesof communicationsmediacanbe usedto conduct the data betweenIEDsina
powersystem.Theyinclude coppercommunicationscables,powerline carrier(PLC),landline
telephone,fiber, andwireless.WirelessincludesFMandmicrowave radioas well ascellular
telephoneandsatellite communications.
Direct copper- A coppercommunicationcable dedicatedtopowersystemcommunications
betweentwodevices.
Land line telephone- Conventional dial-uporleasedlinesdedicatedtopowersystem
communications.Powerline carrier(PLC) - A methodof passingdataon the powerline conductorat
highfrequency.
Fiber- Fiberapplicationscommunicate datainthe formof lightconductedoverasingle direct
connectionormultiple directconnectionsbundledtogether.
Figure 13: Fiber-OpticTransceivers
Wireless - Where available,cellulartelephone canbe usedasa dial-upconnection.Radios
supportingFMandmicrowave are installedasadedicatedconnectionforpowersystem
communications.
Communications Connections
Directconnectand multidropare the twotypesof communicationsconnectionsavailabletocreate
networks.Ina directconnection,there are onlytwodevicesconnectedtoeachother.The network
media,orconductor,usedfor passingdatacan be metallic,wirelessorfiber.Eachinterface consists
of a separate transmitandreceive connectionateachdevice.Since there are onlytwodevices,each
of themcan constantlycontrol the connectiononwhichtheyare transmittingandbothcan know
implicitlytowhichotherdevice theyare connected. Havingseveralindividual directconnectionsto
manyIEDs wouldalloweachof themto communicate simultaneously.A systemof manydirect
connectionsoriginatingfromone deviceiscalledastar networktopology.Figure 14illustratesthe
star topology.Manystar networkscan be connectedtogether.Anyprotocol,includingthose
designedformultidropapplications,canbe usedfordirectconnectionsina star topology.Virtually
all microprocessor-basedrelays,LTCs,andmetershave asimple EIA-232serial port connectionto
supportdirectconnections.Fiber,wireless,andPLCcan be usedina directconnectionaswell.Star
networkdesignssupportawide range of IED capabilities.Simple,slow communicatingdevicescan
coexistwithmore complex,fastcommunicatingrelays.Devicesfromdifferentmanufacturerswith
differentprotocolscancoexistinthe same starnetworkbecause eachhasa dedicateddirect
connection.Mostethernetsystemstodayare developedasstarnetworkswiththe centerof the star
beinga hub,switch,orrouter.
Figure 14: Star Topology
In a multidropnetworktopology,several devicescanbe physicallyconnectedinabusor ring
network.Figure 15 illustratesdevicesconnectedinabustopology,andFigure 16 illustratesrelays
connectedina ringtopology.A multidropconnectionrequiresthatonlyone device communicate at
a time.Devicesona multidropnetworkmustspeakthe same protocol,withthe same baudrate,and
the same physical networkconnection.A broadcastmultidropisacommonnetworkthatdiffers
slightlyinfunctionandpurpose.Onesidedconversationsare sentfromthe hostto multiplereceiving
devicesthatdonot respond.Inter-range instrumentationgroup(IRIG) time-synchronization
messagesare oftensenttoIEDs inthisfashion.IEDsoftenneedcommunicationsconnectionsforthis
broadcast,separate froma data acquisitionandcontrol connection.
Figure 15: BusTopology
Figure 16: RingTopology
It isimportantto keepinmindthatif the control overwhichIED has permissiontocommunicate
shouldfail,none of the multidroppeddevicescancommunicate.Thiscanbe causedbyIED
communicationshardware failure,IEDcommunicationssoftware failure,orcorruptionof the
network.Therefore,acommunicationsproblemmayappeartobe inone IED thatis actuallyin
anotherIED
AUTOMATED METER READING (AMR)
Automatedmeterreadingisacommunicationsservice thatpermitsthe transferof datafromutility
meterstoa utilitycompany’smeteringcollectionsystem.Assuch,AMRautomatesthe previously
manual processof readingmeters.Also,itallowsthe collectionof muchmore anddifferenttypesof
informationtobenefitthe utilityandcustomeralike.
AMR Benefits to Utility
Utilitiesthatuse AMRbenefitinseveral ways.First,AMRreducesthe laborcostsof individually
readingeach meter.Italso improvesthe safetyof personnelwhopreviouslyhadtoenterhighriskor
difficulttoaccessareason a regularbasis.Otherbenefitsincludereducedfieldvisits,fasterbill
processing,andeliminationof special readsandestimatedbills.Customerservice isalsoimproved
by: • The abilitytoanswerbillingquestionsquicklyandaccuratelybycheckingcurrentandhistorical
usage while the customerisonthe phone;• Specializedbillingandinformationservices,suchas
summarybillingtoconsolidatebillingformulti-siteoperationsandbestrate analysistohelp
customerschoose the optimal rate planfortheirneeds;•Improvedbill accuracydue to a decrease
inestimatedbills;and• The abilitytoletcustomersselectbillingdates,and/ortoreceive summary
bills.The more detailed,customer-specificusage dataavailable throughAMRmakesiteasierfor
utilitiestodevelopnewproductsandservices.Thisdataisalsokeytodevelopingtargetedmarketing
strategiesforattractingandkeepingcustomers.The loweroperatingcostsandincreasedspecific
data made possible byAMRmay helpsmoothautility’stransitionfromregulatedtoderegulated
markets.Loweredcostscan increase the resourcesavailableforproductdevelopmentandother
needs.More,andfurtherdetailed,dataprovidesbetterinsightintoanincreasinglycomplexpower
market,as well asan opportunitytodifferentiate service viaoptionssuchason-line dailyusage
information,outage status,andcustomeroutage notification.
AMR Benefits to Customer
• Flexiblerate programsdesignedtoreduce energycosts.
• Energyusage informationtohelpmanage energycostsandbetterallocate usage.
• Reducedoutage time andfeweroutages.
• Consolidatedbillingservicesandflexible billingdates.
AMR Technology
The basic systemconsistsof a "thermostat-like"panelwhichallowsconsumerstouse electricity
more efficientlybyprogrammingappliances,suchasthe Heating,VentilationandAirConditioning
(HVAC) system,andhotwaterheater.Deviceswithinthe home will communicate withone another
overexistingelectrical wiringusingpowerline carrier(PLC) technology.Whenconnectedtoa
wirelessnetwork,AMRsystemsbecomealow-cost,two-waycommunicationsinterfacebetween
customersandtheirutilitycompanies.Some systemsallowcustomerstocontrol andmaintain
desiredtemperature levelsintheirhomesatthe lowestcost;monitorelectricityusage;receive daily
updatesoncommunityinformation;paybillselectronically;andultimatelyintegrate andcontrol
lightingandhome securitysystems.
AMR Communications Technologies
AMR technologydecisionsare dominatedbythe choice of a communicationsscheme.Costispartof
the communicationsscheme choice.The followingare the choices:Powerlinecarrier(PLC)
technologyusesthe powerlinesasmediaforsendingandreceivinglow-bandwidthdataatverylow
speed.Thisoptiontendstobe costeffective formetersservedbyasingle substation.Inthe US,this
technologyhasbeenwidelyadoptedbyrural cooperatives.Telephone-basedtechnologyuses
telephonelines(eitherdedicatedorsharedwithvoice communications)tosendandreceive meter
data. Withdial outboundsystems,the utilitymustknow the customer’sphone numbertogetthe
data, whichcan cause administrativeproblems.Thisfactor,alongwiththe relativelyhighprices
chargedby phone companiesforthistype of service,hasmade thisoptionlessattractive.Withdial-
inboundsystems,bycontrast,metersare equippedwithanautomateddialerthatcancall the utility
at pre-assignedtimes,whenanalarmconditionisdetected,orwhensignaledbythe utility.
Telephone-basedsystemstendtobe costeffective forselectedmetersthatare sparselyspread
throughouta service territory,andare typicallyusedforlarge commercial andindustrial customers.
Wirelessradio-frequency(RF) AMRtechnologiesrelyonthe use of a transmitteronthe meterto
communicate withareceiverthatcan be handheld,locatedinavehicle,orinstalledatafixed
location.Wirelessapproachestendtobe more costeffective formeterswithinaclustered
geographicarea.Mobile radiosystemsthatuse handheldorvan-basedreceiverscannotprovide
two-wayreal-time communications,andare bestsuitedas replacementsformanual meterreading,
especiallywhere the costof manual readingishigh.Fixed-networkwirelesssystems,bycontrast,can
supporta wide varietyof applications,includingmetering,real-time pricing,energymanagement,
and outage or theftdetection.Of course,there will be anadditional costforthese extended
features.
Impact of AMR on Field Personnel Within the Utility
The affectof AMR on fieldpersonnelinthe course of normal activitieswouldbe minimal.The field
personnel mayhave tobe trainedtoinstall,maintain,andbe aware of how the equipment
functions.ThisAMRequipmentwill varydependingonwhattype of systemthe utilityprocures.The
equipmentinvolvedwillrange fromthe metersthemselvestothe masterdevicesrequiredinthe
fixed-networkwirelesssystems.Dependingonthe type of system, theymaygetinvolvedin
installationof spreadspectrumradiosandother communicationsequipment.Fieldpersonnel will
have to recognize if AMRequipmentwasinstalledata customerfacilitysince incorrectdisconnects
while doingservice workcanresultinissueswiththe customersphone service.Utilitieswillbe
responsible forprovidingthe requiredtrainingandworkprocedure guidelinesapplicable tothe
productsand installation
POWER SYSTEM AUTOMATION
Power SystemIntegration
Powersystemintegrationisthe actof communicatingdatato,from, or among IEDs inthe I&C
systemandremote users.Substationintegrationreferstocombiningdatafromthe IED’s local to a
substationsothat there isa single pointof contactinthe substationforall of the I&C data. 14
Poletopdevicesoftencommunicate tothe substationvia wirelessorfiberconnections.Remote and
local substationandfeedercontrol ispassedthroughthe substationcontrolleractingasa single
pointof contact. Some systemsbypassthe substationcontrollerbyusingdirectconnectionstothe
poletopdevices,suchasRTUs, protective relays,andcontrollers.
Power System Automation
Powersystemautomationisthe actof automaticallycontrollingthe powersystemviaI&Cdevices.
SubstationautomationreferstousingIEDdata, control and automationcapabilitieswithinthe
substation,andcontrol commandsfromremote userstocontrol powersystemdevices.Since true
substationautomationreliesonsubstationintegration,the termsare oftenusedinterchangeably.
Powersystemautomationincludesprocessesassociatedwithgenerationanddeliveryof power.A
subsetof these processesdeal withdeliveryof powerattransmissionanddistributionlevels,which
ispowerdeliveryautomation.Together,monitoringandcontrol of powerdeliverysystemsinthe
substationand onthe poletopreduce the occurrence of outagesandshortenthe durationof
outagesthat dooccur. The IEDs,communicationsprotocols,andcommunicationsmethods
describedinprevioussections,worktogetherasa systemto performpowersystemautomation.
Figure 17: PowerSystemAutomationandSupervision
Power Delivery Automation
Thougheach utilityisunique,mostconsiderpowerdeliveryautomationof transmissionand
distributionsubstationsandfeederstoinclude:
• SupervisoryControl andDataAcquisition(SCADA) - operatorsupervisionandcontrol
• DistributionAutomation - faultlocation,auto-isolation,auto-sectionalizing,andautorestoration
• SubstationAutomation - breakerfailure,reclosing,batterymonitoring,deadsubstationtransfer,
and substationloadtransfer
• EnergyManagementSystem,(EMS) - loadflow,VARandvoltage monitoringandcontrol,
generationcontrol,transformerandfeederloadbalancing
• Faultanalysisanddevice maintenance
Systemswithoutautomatedcontrol still have the advantagesof remote monitoringandoperator
control of powersystemdevicesincluding:
• Remote monitoringandcontrol of circuitbreakersandautomatedswitches•Remote monitoring
of non-automatedswitchesandfuses
• Remote monitoringandcontrol of capacitor banks
• Remote monitoringandvoltage control
• Remote powerqualitymonitoringandcontrol
System Automation Features
IEDs describedinthe overvieware usedtoperformpowersystemintegrationand automation.Most
designsrequire thatone IEDact as the substationcontrollerandperformdataacquisitionand
control of the otherIEDs. The substationcontrollerisoftencalledupontosupportsystem
automationtasksas well.The communicationsindustryusesthe termclient/serverfora device that
acts as a master,or client,retrievingdatafromsome devicesandthenactsas a slave,orserver,
sendingthisdatato otherdevices.The client/servercollectsandforwardsdatadynamically.A data
concentratorcreatesa substationdatabase bycollectingandconcentratingdynamicdatafrom
several devices.Inthisfashion,essentialsubsetsof datafromeach IED are forwardedtoa master
throughone data transfer.The data concentratordatabase isusedto pass data betweenIEDsthat
are notdirectlyconnected.
A substationarchive client/servercollectsandarchivesdatafromseveral devices.The archive data
isretrievedwhenitisconvenientforthe usertodo so.
The age of the IEDs nowinsubstationsvarieswidely.Manyof these IEDsare still useful butlackthe
mostrecentprotocols.A communicationsprocessorthatcancommunicate witheachIED viaa
unique baudrate and protocol extendsthe time thateachIEDis useful.Usingacommunications
processorforsubstationintegrationalsoeasilyaccommodatesfuture IEDs.Itisrare for all existing
IEDs to be discardedduringa substationintegrationupgrade project.
Power System Automation Benefits to Utility
The benefitsof monitoring,remote control,andautomationof powerdeliveryinclude improved
employeeandpublicsafety,anddefermentof the costof purchasingnew equipment.Also,reduced
O&M costsare realizedthroughimproveduse of existingfacilitiesandoptimizedperformance of the
powersystemthroughreducedlossesassociatedwithoutagesandimprovedvolt- 16age profile.
Collectionof informationcanresultinbetterplanningandsystemdesign,andincreasedcustomer
satisfactionwillresultfromimprovedresponsiveness,service reliability,andpowerquality
AUTOMATION SYSTEM AND EQUIPMENT OPERATION EXAMPLES
Distribution Automation System Example
Distributionautomationsystemseasilydemonstrate the valueinautomatingcontrol of the power
system.Figure 18 showsa twoline radial distributionnetworkwiththree manuallyoperated
switchesforline segregationandloadtransfer.GivenapermanentfaultonLine 1,the relayingfor
Switch1 (SW1) tripsand all loadon Lines1 and 2 isinterrupted.Torestore loadtoLine 2, operators
mustmanuallyopenSW2 andthenclose SW5. In thisexample,we assumeittakesanoperatorone-
half hourto reach and operate eachmanual switchsequentially.Thus,Line 2loadisrestoredone
hour afterthe permanentfaultisclearedbySW1
Figure 18: SystemSingle-Line –Manual IsolationSwitches
Let usnextlookat replacingthe manual switcheswithautomaticallycontrolledfaultinterrupting
devices(i.e.,electronicreclosers,breakers,etc.).Further,letusassume thatthe protectionsupplied
for all of the breakersandautomaticswitchesislinkedtogetherviaacommunicationslink.Figure 19
showsthe same distributionnetworkasabove,withautomaticallycontrolledswitchesandthe
associatedovercurrentprotectionandcontrol scheme. The communicationslinkdramatically
advancesthe automationandcontrol possibilities.Forthe purpose of thisexample,we assume that
each protective relayshowninFigure19 communicateswiththe adjacentrelaysthathave control
functions.Thiscapabilityallowsfastautomaticrestorationandavoidsdispatchinganoperatorto
restore load.Most importantly,itsavesapproximatelyone hourinrestoringservice tothe Line 2
load..
Figure 19: SystemSingle-Line –AutomaticIsolationSwitches
Equipment Interface Example
Most of the IEDs inthe I&Csystemhave at leastone simple EIA-232serial portto support
communicationstoanotherIEDor PC. Some IEDs supportdata acquisitionandcontrol
communications,aswell asconfigurationcommunications,throughasingle connection.ManyIEDs
require separate linksforeachcommunicationprocess;therefore,twocommunicationslinksare
necessary.Some productssupportmanytypesof communicationsmessagesthroughone
interleavedcommunicationsconnection.
Figure 20: IED Communications
Many IEDs require avendor-suppliedproprietaryPCsoftware applicationforconfiguration,while
otherssimplyneedaterminal emulationdevice and communicate viahuman-readable ASCIIstrings.
The followingexample demonstratesthe proceduresnecessarytoconnectanSEL-351 relayto a PC
to performa simple ASCIIdialogue..
Connecting an SEL-351 to a PC
1) Make sure you have the properequipment.
DesktopPCor Laptopcomputer
SEL-351 Directional OvercurrentRelay,ReclosingRelay,FaultLocator
Cables:SEL-C234A or SEL-2800M & SEL-2800F Transceivers&Fiber-Opticcables
2) Turn onyour computerandrelay.
3) Start a HyperTerminal session.
Clickon START, go to PROGRAMS → ACCESSORIES→ HYPERTERMINAL
Double clickonthe Hypertrm.exe
Type in a name of the sessionyouwanttocreate (e.g.,sel351),thenpressenter.
4) Selecta communications(COM) portonthe PC.
In selectingaCOMportyou needtoknow a little aboutthe computeryouare goingtouse.
• Howmany COMports doesithave available?
• Whichonesare youable to use?
Connectyourcable to one of the available COMports.
From yourworksessionselectthe COMport youconnectedtoin the back of your PC (e.g.,Connect
using:Directto COM1). SelectO.K.andthen,fromthe communicationpropertiessettingsscreen,
selectO.K..
There is an experimentyoucandoif you are usingfiber-opticcable with2800 modems,tosee if
you’ve selectedthe correctCOMport thatyou connectedyourcable to.
• Unplugthe cable from the receive (R) fromthe 2800M modem.
• Fromthe keyboard,pressenterafewtimeswhile watchingthe receiveline.
• There shouldbe aninfraredlightthatyousee whenenterispressed.Thislightisinthe visible
spectrumandis not dangerous.
Troubleshooting:
If there is noinfraredlight,thenyoumighthave selectedthe wrongCOMport or your cable is not
properlysecure.Make sure yourcable issecurelyfastened,thengotoFILE → PROPERTIESand make
sure you have selectedthe rightCOMport.19
***Note: If you do change yourwork sessionpropertiesyoumustdisconnect,thenreconnect.This
isdone by simplyclickingonthe iconof the telephonewiththe receiveroff,thenclickingonthe
telephoneiconwiththe receiverbackon.
5) SetUp CommunicationsProperties.
Once you’ve selectedthe rightcommunicationsport,youcan thensetup the communications
propertiesforthatport.Go to FILE → PROPERTIES→ CONFIGURE.
Connectthe cable to one of the EIA-232 ports, whichare clearlymarkedonback of the relay.
The COM port propertiesneedtomatchthose of the relaycommunicationsportsettings.You can
use the front panel controlsonthe relayto view the portcommunicationssettingsonthe LCDHMI.
Pressthe Setbutton,thenthe downarrow (toput the cursor on port),thenpressthe selectbutton.
Thisbringsyou to selectSetorShow,selectShow andpressthe selectbuttonsince all youwantto
do issee the settings.
AfterselectingShow,therewillbe amessage thatscrollsacrossthe screen.Justletitscroll across;
youwill thensee the PROTOsetting.Make sure thisissetto SEL.
Use the downarrow on the frontpanel toscroll downto the SPEED setting.Thissettingisthe speed
or bitsper secondat whichthe relayandthe PC communicate.The SPEEDsettingonthe relayand
the BITS PER SECONDsettingonyour hypertermworksession needtobe the same to establish
communication.If theyare different,justclickonthe BITSPER SECONDbox in hypertermandselect
the value of the SPEED settinginthe relay.
Nextuse the downarrowto scroll downagain onthe relay.Thisbringsyouto the BITS setting;inthe
same fashionasabove make sure thismatchesthe DATA BITS settingonyourhypertermwork
session.
Next,use the downarrowagain to scroll downto the PARITYsetting.Make sure thismatchesthe
PARITYsettinginyourhyperterm worksession.
Scroll downto the STOP settingonthe relay;make sure thismatchesthe STOP BITS settinginyour
hypertermworksession.
Set the FLOW CONTROLsettinginthe hypertermworksessiontoNone.
ClickOK.
You shouldnowbe able to pressthe enterkeyandhave equal (=) signsappearon the screen.Table
1 describesthe ASCIIcommandsavailable.

More Related Content

What's hot

Power system protection seminar report
Power system protection seminar reportPower system protection seminar report
Power system protection seminar report
Rahul Aman
 
Power system protection
Power system protectionPower system protection
Power system protection
Anu Priya
 
Single area load frequency control by using pi,fuzzy logic control1
Single area load frequency control by using pi,fuzzy logic control1Single area load frequency control by using pi,fuzzy logic control1
Single area load frequency control by using pi,fuzzy logic control1
SAI SREE
 

What's hot (20)

Load dispatch center
Load dispatch centerLoad dispatch center
Load dispatch center
 
PLC and Sensors Based Protection and Fault Detection of Induction Motors
PLC and Sensors Based Protection and Fault Detection of Induction MotorsPLC and Sensors Based Protection and Fault Detection of Induction Motors
PLC and Sensors Based Protection and Fault Detection of Induction Motors
 
Static var compensator
Static var compensatorStatic var compensator
Static var compensator
 
Seminar presentation on Smart Energy Meter
Seminar presentation on Smart Energy MeterSeminar presentation on Smart Energy Meter
Seminar presentation on Smart Energy Meter
 
Introduction
IntroductionIntroduction
Introduction
 
substation internship report
substation internship report substation internship report
substation internship report
 
Psoc
PsocPsoc
Psoc
 
Firing angle control
Firing angle controlFiring angle control
Firing angle control
 
FACT devices
FACT devicesFACT devices
FACT devices
 
Swing equation
Swing equationSwing equation
Swing equation
 
PPT ON POWER SYSTEM STABILITY
PPT ON POWER SYSTEM STABILITYPPT ON POWER SYSTEM STABILITY
PPT ON POWER SYSTEM STABILITY
 
classic control and PLC training report
classic control and PLC training reportclassic control and PLC training report
classic control and PLC training report
 
Web based power quality monitoring system
Web based power quality monitoring systemWeb based power quality monitoring system
Web based power quality monitoring system
 
Power system protection seminar report
Power system protection seminar reportPower system protection seminar report
Power system protection seminar report
 
Power system protection
Power system protectionPower system protection
Power system protection
 
Single area load frequency control by using pi,fuzzy logic control1
Single area load frequency control by using pi,fuzzy logic control1Single area load frequency control by using pi,fuzzy logic control1
Single area load frequency control by using pi,fuzzy logic control1
 
Lecture-1 : Introduction to Power Electronics
Lecture-1 : Introduction to Power ElectronicsLecture-1 : Introduction to Power Electronics
Lecture-1 : Introduction to Power Electronics
 
FACTS DEVICES
FACTS DEVICESFACTS DEVICES
FACTS DEVICES
 
concept of resilience and self healing in smart grid
concept of resilience and self healing in smart gridconcept of resilience and self healing in smart grid
concept of resilience and self healing in smart grid
 
Voltage source Converters as a building block of HVDC and FACTS
Voltage source Converters as a building block of HVDC and FACTSVoltage source Converters as a building block of HVDC and FACTS
Voltage source Converters as a building block of HVDC and FACTS
 

Similar to Power system automation pdf

Airtificial Intelligence in Power System
Airtificial Intelligence in Power SystemAirtificial Intelligence in Power System
Airtificial Intelligence in Power System
Pratik Doshi
 
IT in power,Smart Grid,OMS & DMS
IT in power,Smart Grid,OMS & DMSIT in power,Smart Grid,OMS & DMS
IT in power,Smart Grid,OMS & DMS
Chanmeet Singh
 
SCADA only for the advance version of the module
SCADA only for the advance version of the moduleSCADA only for the advance version of the module
SCADA only for the advance version of the module
AJITTHAKUR68
 
unit 4 smartsensors and application.pptx
unit 4 smartsensors and application.pptxunit 4 smartsensors and application.pptx
unit 4 smartsensors and application.pptx
AanshuSingh3
 
Introduction To SCADA
Introduction To SCADAIntroduction To SCADA
Introduction To SCADA
Kunal gupta
 

Similar to Power system automation pdf (20)

Airtificial Intelligence in Power System
Airtificial Intelligence in Power SystemAirtificial Intelligence in Power System
Airtificial Intelligence in Power System
 
Samiullah final ppt sacda
Samiullah final ppt sacdaSamiullah final ppt sacda
Samiullah final ppt sacda
 
IT in power,Smart Grid,OMS & DMS
IT in power,Smart Grid,OMS & DMSIT in power,Smart Grid,OMS & DMS
IT in power,Smart Grid,OMS & DMS
 
SCADA only for the advance version of the module
SCADA only for the advance version of the moduleSCADA only for the advance version of the module
SCADA only for the advance version of the module
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
Scada System
Scada  SystemScada  System
Scada System
 
IRJET- PLC Based Intelligent Control of Substation
IRJET- PLC Based Intelligent Control of SubstationIRJET- PLC Based Intelligent Control of Substation
IRJET- PLC Based Intelligent Control of Substation
 
Scada Based Online Circuit Breaker Monitoring System
Scada Based Online Circuit Breaker Monitoring SystemScada Based Online Circuit Breaker Monitoring System
Scada Based Online Circuit Breaker Monitoring System
 
Power system automation
Power system automationPower system automation
Power system automation
 
unit 4 smartsensors and application.pptx
unit 4 smartsensors and application.pptxunit 4 smartsensors and application.pptx
unit 4 smartsensors and application.pptx
 
Introduction To SCADA
Introduction To SCADAIntroduction To SCADA
Introduction To SCADA
 
Dhiraj seminar # power system automation
Dhiraj seminar # power system automationDhiraj seminar # power system automation
Dhiraj seminar # power system automation
 
Scada primer
Scada primerScada primer
Scada primer
 
Scada primer
Scada primerScada primer
Scada primer
 
Scada systems automating electrical distribution
Scada systems automating electrical distributionScada systems automating electrical distribution
Scada systems automating electrical distribution
 
Fps scada
Fps scadaFps scada
Fps scada
 
Dhiraj seminar # power system automation
Dhiraj seminar # power system automationDhiraj seminar # power system automation
Dhiraj seminar # power system automation
 
Dhiraj seminar # power system automation
Dhiraj seminar # power system automationDhiraj seminar # power system automation
Dhiraj seminar # power system automation
 
Computer Applications in Power Systems 2023 SECOND.pdf
Computer Applications in Power Systems 2023 SECOND.pdfComputer Applications in Power Systems 2023 SECOND.pdf
Computer Applications in Power Systems 2023 SECOND.pdf
 
03 scada.synopsis
03 scada.synopsis03 scada.synopsis
03 scada.synopsis
 

Recently uploaded

Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
MayuraD1
 

Recently uploaded (20)

Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
Electromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxElectromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptx
 
UNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxUNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptx
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
💚Trustworthy Call Girls Pune Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top...
💚Trustworthy Call Girls Pune Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top...💚Trustworthy Call Girls Pune Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top...
💚Trustworthy Call Girls Pune Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top...
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
Ghuma $ Russian Call Girls Ahmedabad ₹7.5k Pick Up & Drop With Cash Payment 8...
Ghuma $ Russian Call Girls Ahmedabad ₹7.5k Pick Up & Drop With Cash Payment 8...Ghuma $ Russian Call Girls Ahmedabad ₹7.5k Pick Up & Drop With Cash Payment 8...
Ghuma $ Russian Call Girls Ahmedabad ₹7.5k Pick Up & Drop With Cash Payment 8...
 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
 
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
 

Power system automation pdf

  • 1. POWER SYSTEMAUTOMATION OVERVIEW Powerprovidersconstantlydeal withdemandstoincrease productivityandreduce costs.This translatesintothe needforadministrators,engineers,operators,planners,fieldcrews,andothersto collectandact ondecision-makinginformation.Powersystemvendorsare followingatrendtomake devicessmartersotheycan create and communicate thisinformation.The term“powersystem” describesthe collectionof devicesthatmake upthe physical systemsthatgenerate,transmit,and distribute power.The term“instrumentationandcontrol (I&C) system”referstothe collectionof devicesthatmonitor,control,andprotectthe powersystem.Powersystemautomationrefersto usingI&C devicestoperformautomaticdecisionmakingandcontrol of the powersystem. PowersystemautomationreferstousingI&Cdevicestoperformautomaticdecisionmakingand control of the powersystem. Data Acquisition Data acquisitionreferstoacquiring,orcollecting,data.Thisdatais collectedinthe formof measuredanalogcurrentor voltage valuesorthe openorclosedstatusof contact points.Acquired data can be usedlocallywithinthe devicecollectingit,senttoanotherdevice inasubstation,orsent fromthe substationtoone or several databasesforuse byoperators, engineers,planners,and administration. Power SystemSupervision Computerprocessesandpersonnel supervise,ormonitor,the conditionsandstatusof the power systemusingthisacquireddata.Operatorsandengineersmonitorthe informationremotelyon computerdisplaysandgraphical wall displaysorlocally,atthe device,onfront-panel displaysand laptopcomputers. Power SystemControl Control referstosendingcommandmessagestoadevice tooperate the I&C andpowersystem devices.Traditional supervisorycontrol anddataacquisition(SCADA) systemsrelyonoperatorsto supervise the systemandinitiate commandsfromanoperatorconsole onthe mastercomputer. Fieldpersonnel canalsocontrol devicesusingfront-panel pushbuttonsora laptopcomputer. Power SystemAutomation Systemautomationisthe act of automaticallycontrollingthe powersystemviaautomated processeswithincomputersandintelligentI&Cdevices.The processesrelyondataacquisition, powersystemsupervision,andpowersystemcontrol all workingtogetherinacoordinatedauto- 2 matic fashion.The commandsare generatedautomaticallyandthentransmittedinthe same fashion as operatorinitiatedcommands.
  • 2. I&C SystemIEDs I&C devicesbuiltusingmicroprocessorsare commonly referredtoasintelligentelectronicdevices (IEDs).Microprocessorsare single chipcomputersthatallow the devicesintowhichtheyare builtto processdata, acceptcommands,and communicate informationlike acomputer.Automatic processescanbe run in the IEDs, andcommunicationsare handledthroughaserial portlike the communicationsportsona computer.IEDsare foundinthe substationandon the pole-top. Instrument Transformers Instrumenttransformersare usedtosense powersystemcurrentand voltage values.Theyare physicallyconnectedtopowersystemapparatusandconvertthe actual powersystemsignals,which include highvoltage andcurrentmagnitudes,downtolowersignal levels. Figure 1: Instrument Transformers Transducer Transducersconvertthe analogoutputof an instrumenttransformerfromone magnitude to anotheror fromone value type to another,suchas froman ac currentto dc voltage.
  • 3. Remote Terminal Unit, RTU As the name implies,aremote terminal device,RTU,isan IED that can be installedinaremote location,andacts as a terminationpointforfieldcontacts.A dedicatedpairof copperconductors are usedto sense everycontactandtransducervalue.These conductorsoriginate atthe power systemdevice,are installedintrenchesoroverheadcable trays,andare thenterminatedonpanels withinthe RTU. The RTU can transfercollecteddatatootherdevicesandreceive dataandcontrol commandsfromotherdevicesthroughaserial port.User programmable RTUsare referredtoas “smart RTUs. Figure 3: RTU Communications Port Switch A communicationsswitchisadevice thatswitchesbetweenseveral serial portswhenitistoldtodo so.The remote userinitiatescommunicationswiththe portswitchviaaconnectiontothe substation,typicallyaleasedlineordial-uptelephone connection.Once connected,the usercan route theircommunicationsthroughthe portswitchtoone of the connectedsubstationIEDs.The port switchmerely“passesthrough”the IEDcommunications. Figure 4: CommunicationSwitch
  • 4. Meter A meterisan IED that isused to create accurate measurementsof powersystemcurrent,voltage, and powervalues.Meteringvaluessuchasdemandandpeakare savedwithinthe metertocreate historical informationaboutthe activityof the powersystem. Figure 5: Meter. Digital Fault Recorder A digital faultrecorder(DFR),isanIED that recordsinformationaboutpowersystemdisturbances.It iscapable of storingdatain a digital formatwhentriggeredbyconditionsdetectedonthe power system.Harmonics,frequency,andvoltage are examplesof datacapturedby DFRs. Figure 6: Digital FaultRecorder
  • 5. Load Tap Changer (LTC) Load tap changersare devicesusedtochange the tap positionontransformers.These deviceswork automaticallyorcan be controlledviaanotherlocal IEDor from a remote operatororprocess. Recloser Controller Reclosercontrollersremotelycontrol the operationof automatedreclosersandswitches.These devicesmonitorandstore powersystemconditionsanddeterminewhentoperformcontrol actions. Theyalsoaccept commandsfroma remote operatororprocess. Figure 7: SEL-351R RecloserControl Time Synchronization Source A time synchronizationsource isanIED that createsa time-of-dayvalue whichisthenbroadcastto the IEDs in orderto setall theirclocksto the same time. Figure 8: Time SynchronizationSource
  • 6. Protocol Gateway IEDs communicate overserial connectionsbyspeakingaparticularlanguage orprotocol.A protocol gatewayconvertscommunicationsfromone protocol toanother.Thistaskis oftenperformedby software ona personal computer. Human Machine Interface (HMI). The front panel displayandpushbuttonsora personal computeract as interfacestosystemdata and controlsforpersonnel inthe substation. Figure 9: Protocol Gatewayor HMI Programmable Logic Controller (PLC) As the name implies,aprogrammable logiccontroller(PLC),isanIEDthat can be programmedto performlogical control.Aswiththe RTU, a dedicatedpairof copperconductorsfor eachcontact and transducervalue are terminatedonpanelswithinthe PLC.Personnel familiarwiththe PLC developmentenvironmentcanprogramPLCs to create informationfromsensordataandperform automation.The PLCcan transfercollecteddatatootherdevicesandreceive dataandcontrol commandsfromotherdevicesthroughaserial port.
  • 7. Figure 10: Programmable LogicControllerRightCabinet,PCandAccessoriesLeftCabinet Protective Relay A protective relayisanIED designedtosense powersystemdisturbancesandautomaticallyperform control actionson the I&C systemandthe powersystemtoprotect personnel andequipment.The relayhas local terminationsothatthe copperconductorsfor eachcontact do not have to be routed to a central terminationpanel associatedwithRTUsandPLCs.Transducersare not necessarysince the relayacceptssignalsdirectlyfromthe instrumenttransformers.Protective relayscreate meteringinformation,collectsystemstatusinformation,andstore historical recordsof power systemoperation Figure 11: SEL-351 Relay Communications Processor A communicationsprocessorisasubstationcontrollerthatincorporatesthe functionsof manyother I&C devicesintoone IED.Ithas many communicationsportstosupportmultiple simultaneous communicationslinks.The communicationsprocessorperformsdataacquisitionandcontrol of the othersubstationIEDsand alsoconcentratesthe datait acquiresfortransmission toone ormany mastersinside andoutside the substation.The communicationsprocessorincorporatesfeaturesof manyof the otherIEDs includinganRTU, a communicationsportswitch,aprotocol gateway,atime
  • 8. synchronizationsource,andalimitedPLCfunctionality.The communicationsprocessorhaslocally terminatedI/Oandcan performdial-outtoalertpersonnel orprocesseswhenastatuschanges. Figure 12: SEL-2030 CommunicationsProcessor POWER SYSTEM COMMUNICATIONS Communications Protocols The IEEE definescommunicationsprotocol as:aformal setof conventionsgoverningthe formatand relative timingof message exchange betweentwocommunicationsterminals.A strictprocedure requiredtoinitiate andmaintaincommunication.Thisregulatesthe orderandarrangementof information,transferspeedorbaudrate and errorchecking.Ingeneral,powersystem communicationnetworkssupportfourbasicoperations:establishcommunications,terminate communications,writedata,andreaddata. The write data functioncanbe usedtotell an IED to performa control action,change settings,orsenddata to the requestingdevice.Errorcheckingis done byeach device todetermine if the message datawascorruptedduringtransmission.The type of protocol,message format,andtransferspeedare parametersthatare configuredduring installation.Communicationsschemesare polled,scheduledorunsolicited.Ina polledsituation,one IED acts as the hostand initiatesalmostall dataexchange.The otherIEDacts as a slave anddoes9 onlywhatit istold.The slave rarelyinitiatesdataexchange,itsimplyreactstorequestsfordatafrom the host.The exceptionisanunsolicitedmessage fromaslave whichsendsdatatothe host without the host requestingit.Often,thisisaresultof an unexpectedchange. Popular Protocols ASCII - Protocol thatis easilyconvertedtohuman-readable charactersandnumbers.Thisprotocol is simple butgenerallyslow. Modbus® - A popularprotocol withindustrial usersthathasalsobecome somewhatpopularin substations.DesignedtoemulatePLCstransferringregisterdatato one another. Modbus® Plus - A mediumspeednetworkbuiltwithproprietarynetworkinterfacesusingan extensionof Modbusprotocol.
  • 9. DNP 3.0 - An everincreasinglypopularSCADA protocol,governedbyastandardscommittee and usersgroup,that was designedtooptimize efficiencythroughreportbyexception,remotemodem connections,andmultidropcapabilities.PredominantlypopularinNorthAmerica. UCA/MMS - UtilityCommunicationsArchitecture,currentlybeingdesignedbyNorthAmerican utilities,vendors,andconsultantstosatisfymostrequirementsinsubstationfeederequipmentand eventuallyall powersystemequipment. Proprietary - Protocolscreatedbythe product vendorstocommunicate withtheirdevices.These are generallyunique foreachvendorandare not inter-operable.Some vendorsdesigntheirown protocol because existingprotocolslacknecessaryrobustnessandefficiency. Interleaved - Interleaveddatastreamsisasimple waythatmultiple communicationsmessagescan occur on a single communicationsconnection.Dataacquisition,control,configuration,andtime- synchronizationcommunications canoccur at the same time. Communications Media Many differenttypesof communicationsmediacanbe usedto conduct the data betweenIEDsina powersystem.Theyinclude coppercommunicationscables,powerline carrier(PLC),landline telephone,fiber, andwireless.WirelessincludesFMandmicrowave radioas well ascellular telephoneandsatellite communications. Direct copper- A coppercommunicationcable dedicatedtopowersystemcommunications betweentwodevices. Land line telephone- Conventional dial-uporleasedlinesdedicatedtopowersystem communications.Powerline carrier(PLC) - A methodof passingdataon the powerline conductorat highfrequency. Fiber- Fiberapplicationscommunicate datainthe formof lightconductedoverasingle direct connectionormultiple directconnectionsbundledtogether.
  • 10. Figure 13: Fiber-OpticTransceivers Wireless - Where available,cellulartelephone canbe usedasa dial-upconnection.Radios supportingFMandmicrowave are installedasadedicatedconnectionforpowersystem communications. Communications Connections Directconnectand multidropare the twotypesof communicationsconnectionsavailabletocreate networks.Ina directconnection,there are onlytwodevicesconnectedtoeachother.The network media,orconductor,usedfor passingdatacan be metallic,wirelessorfiber.Eachinterface consists of a separate transmitandreceive connectionateachdevice.Since there are onlytwodevices,each of themcan constantlycontrol the connectiononwhichtheyare transmittingandbothcan know implicitlytowhichotherdevice theyare connected. Havingseveralindividual directconnectionsto manyIEDs wouldalloweachof themto communicate simultaneously.A systemof manydirect connectionsoriginatingfromone deviceiscalledastar networktopology.Figure 14illustratesthe star topology.Manystar networkscan be connectedtogether.Anyprotocol,includingthose designedformultidropapplications,canbe usedfordirectconnectionsina star topology.Virtually all microprocessor-basedrelays,LTCs,andmetershave asimple EIA-232serial port connectionto supportdirectconnections.Fiber,wireless,andPLCcan be usedina directconnectionaswell.Star networkdesignssupportawide range of IED capabilities.Simple,slow communicatingdevicescan coexistwithmore complex,fastcommunicatingrelays.Devicesfromdifferentmanufacturerswith differentprotocolscancoexistinthe same starnetworkbecause eachhasa dedicateddirect connection.Mostethernetsystemstodayare developedasstarnetworkswiththe centerof the star beinga hub,switch,orrouter.
  • 11. Figure 14: Star Topology In a multidropnetworktopology,several devicescanbe physicallyconnectedinabusor ring network.Figure 15 illustratesdevicesconnectedinabustopology,andFigure 16 illustratesrelays connectedina ringtopology.A multidropconnectionrequiresthatonlyone device communicate at a time.Devicesona multidropnetworkmustspeakthe same protocol,withthe same baudrate,and the same physical networkconnection.A broadcastmultidropisacommonnetworkthatdiffers slightlyinfunctionandpurpose.Onesidedconversationsare sentfromthe hostto multiplereceiving devicesthatdonot respond.Inter-range instrumentationgroup(IRIG) time-synchronization messagesare oftensenttoIEDs inthisfashion.IEDsoftenneedcommunicationsconnectionsforthis broadcast,separate froma data acquisitionandcontrol connection. Figure 15: BusTopology
  • 12. Figure 16: RingTopology It isimportantto keepinmindthatif the control overwhichIED has permissiontocommunicate shouldfail,none of the multidroppeddevicescancommunicate.Thiscanbe causedbyIED communicationshardware failure,IEDcommunicationssoftware failure,orcorruptionof the network.Therefore,acommunicationsproblemmayappeartobe inone IED thatis actuallyin anotherIED AUTOMATED METER READING (AMR) Automatedmeterreadingisacommunicationsservice thatpermitsthe transferof datafromutility meterstoa utilitycompany’smeteringcollectionsystem.Assuch,AMRautomatesthe previously manual processof readingmeters.Also,itallowsthe collectionof muchmore anddifferenttypesof informationtobenefitthe utilityandcustomeralike. AMR Benefits to Utility Utilitiesthatuse AMRbenefitinseveral ways.First,AMRreducesthe laborcostsof individually readingeach meter.Italso improvesthe safetyof personnelwhopreviouslyhadtoenterhighriskor difficulttoaccessareason a regularbasis.Otherbenefitsincludereducedfieldvisits,fasterbill processing,andeliminationof special readsandestimatedbills.Customerservice isalsoimproved by: • The abilitytoanswerbillingquestionsquicklyandaccuratelybycheckingcurrentandhistorical
  • 13. usage while the customerisonthe phone;• Specializedbillingandinformationservices,suchas summarybillingtoconsolidatebillingformulti-siteoperationsandbestrate analysistohelp customerschoose the optimal rate planfortheirneeds;•Improvedbill accuracydue to a decrease inestimatedbills;and• The abilitytoletcustomersselectbillingdates,and/ortoreceive summary bills.The more detailed,customer-specificusage dataavailable throughAMRmakesiteasierfor utilitiestodevelopnewproductsandservices.Thisdataisalsokeytodevelopingtargetedmarketing strategiesforattractingandkeepingcustomers.The loweroperatingcostsandincreasedspecific data made possible byAMRmay helpsmoothautility’stransitionfromregulatedtoderegulated markets.Loweredcostscan increase the resourcesavailableforproductdevelopmentandother needs.More,andfurtherdetailed,dataprovidesbetterinsightintoanincreasinglycomplexpower market,as well asan opportunitytodifferentiate service viaoptionssuchason-line dailyusage information,outage status,andcustomeroutage notification. AMR Benefits to Customer • Flexiblerate programsdesignedtoreduce energycosts. • Energyusage informationtohelpmanage energycostsandbetterallocate usage. • Reducedoutage time andfeweroutages. • Consolidatedbillingservicesandflexible billingdates. AMR Technology The basic systemconsistsof a "thermostat-like"panelwhichallowsconsumerstouse electricity more efficientlybyprogrammingappliances,suchasthe Heating,VentilationandAirConditioning (HVAC) system,andhotwaterheater.Deviceswithinthe home will communicate withone another overexistingelectrical wiringusingpowerline carrier(PLC) technology.Whenconnectedtoa wirelessnetwork,AMRsystemsbecomealow-cost,two-waycommunicationsinterfacebetween customersandtheirutilitycompanies.Some systemsallowcustomerstocontrol andmaintain desiredtemperature levelsintheirhomesatthe lowestcost;monitorelectricityusage;receive daily updatesoncommunityinformation;paybillselectronically;andultimatelyintegrate andcontrol lightingandhome securitysystems. AMR Communications Technologies AMR technologydecisionsare dominatedbythe choice of a communicationsscheme.Costispartof the communicationsscheme choice.The followingare the choices:Powerlinecarrier(PLC) technologyusesthe powerlinesasmediaforsendingandreceivinglow-bandwidthdataatverylow speed.Thisoptiontendstobe costeffective formetersservedbyasingle substation.Inthe US,this technologyhasbeenwidelyadoptedbyrural cooperatives.Telephone-basedtechnologyuses telephonelines(eitherdedicatedorsharedwithvoice communications)tosendandreceive meter data. Withdial outboundsystems,the utilitymustknow the customer’sphone numbertogetthe data, whichcan cause administrativeproblems.Thisfactor,alongwiththe relativelyhighprices chargedby phone companiesforthistype of service,hasmade thisoptionlessattractive.Withdial- inboundsystems,bycontrast,metersare equippedwithanautomateddialerthatcancall the utility at pre-assignedtimes,whenanalarmconditionisdetected,orwhensignaledbythe utility. Telephone-basedsystemstendtobe costeffective forselectedmetersthatare sparselyspread throughouta service territory,andare typicallyusedforlarge commercial andindustrial customers.
  • 14. Wirelessradio-frequency(RF) AMRtechnologiesrelyonthe use of a transmitteronthe meterto communicate withareceiverthatcan be handheld,locatedinavehicle,orinstalledatafixed location.Wirelessapproachestendtobe more costeffective formeterswithinaclustered geographicarea.Mobile radiosystemsthatuse handheldorvan-basedreceiverscannotprovide two-wayreal-time communications,andare bestsuitedas replacementsformanual meterreading, especiallywhere the costof manual readingishigh.Fixed-networkwirelesssystems,bycontrast,can supporta wide varietyof applications,includingmetering,real-time pricing,energymanagement, and outage or theftdetection.Of course,there will be anadditional costforthese extended features. Impact of AMR on Field Personnel Within the Utility The affectof AMR on fieldpersonnelinthe course of normal activitieswouldbe minimal.The field personnel mayhave tobe trainedtoinstall,maintain,andbe aware of how the equipment functions.ThisAMRequipmentwill varydependingonwhattype of systemthe utilityprocures.The equipmentinvolvedwillrange fromthe metersthemselvestothe masterdevicesrequiredinthe fixed-networkwirelesssystems.Dependingonthe type of system, theymaygetinvolvedin installationof spreadspectrumradiosandother communicationsequipment.Fieldpersonnel will have to recognize if AMRequipmentwasinstalledata customerfacilitysince incorrectdisconnects while doingservice workcanresultinissueswiththe customersphone service.Utilitieswillbe responsible forprovidingthe requiredtrainingandworkprocedure guidelinesapplicable tothe productsand installation POWER SYSTEM AUTOMATION Power SystemIntegration Powersystemintegrationisthe actof communicatingdatato,from, or among IEDs inthe I&C systemandremote users.Substationintegrationreferstocombiningdatafromthe IED’s local to a substationsothat there isa single pointof contactinthe substationforall of the I&C data. 14 Poletopdevicesoftencommunicate tothe substationvia wirelessorfiberconnections.Remote and local substationandfeedercontrol ispassedthroughthe substationcontrolleractingasa single pointof contact. Some systemsbypassthe substationcontrollerbyusingdirectconnectionstothe poletopdevices,suchasRTUs, protective relays,andcontrollers. Power System Automation Powersystemautomationisthe actof automaticallycontrollingthe powersystemviaI&Cdevices. SubstationautomationreferstousingIEDdata, control and automationcapabilitieswithinthe substation,andcontrol commandsfromremote userstocontrol powersystemdevices.Since true substationautomationreliesonsubstationintegration,the termsare oftenusedinterchangeably. Powersystemautomationincludesprocessesassociatedwithgenerationanddeliveryof power.A subsetof these processesdeal withdeliveryof powerattransmissionanddistributionlevels,which ispowerdeliveryautomation.Together,monitoringandcontrol of powerdeliverysystemsinthe substationand onthe poletopreduce the occurrence of outagesandshortenthe durationof outagesthat dooccur. The IEDs,communicationsprotocols,andcommunicationsmethods describedinprevioussections,worktogetherasa systemto performpowersystemautomation.
  • 15. Figure 17: PowerSystemAutomationandSupervision Power Delivery Automation Thougheach utilityisunique,mostconsiderpowerdeliveryautomationof transmissionand distributionsubstationsandfeederstoinclude: • SupervisoryControl andDataAcquisition(SCADA) - operatorsupervisionandcontrol • DistributionAutomation - faultlocation,auto-isolation,auto-sectionalizing,andautorestoration • SubstationAutomation - breakerfailure,reclosing,batterymonitoring,deadsubstationtransfer, and substationloadtransfer • EnergyManagementSystem,(EMS) - loadflow,VARandvoltage monitoringandcontrol, generationcontrol,transformerandfeederloadbalancing • Faultanalysisanddevice maintenance Systemswithoutautomatedcontrol still have the advantagesof remote monitoringandoperator control of powersystemdevicesincluding: • Remote monitoringandcontrol of circuitbreakersandautomatedswitches•Remote monitoring of non-automatedswitchesandfuses • Remote monitoringandcontrol of capacitor banks • Remote monitoringandvoltage control • Remote powerqualitymonitoringandcontrol
  • 16. System Automation Features IEDs describedinthe overvieware usedtoperformpowersystemintegrationand automation.Most designsrequire thatone IEDact as the substationcontrollerandperformdataacquisitionand control of the otherIEDs. The substationcontrollerisoftencalledupontosupportsystem automationtasksas well.The communicationsindustryusesthe termclient/serverfora device that acts as a master,or client,retrievingdatafromsome devicesandthenactsas a slave,orserver, sendingthisdatato otherdevices.The client/servercollectsandforwardsdatadynamically.A data concentratorcreatesa substationdatabase bycollectingandconcentratingdynamicdatafrom several devices.Inthisfashion,essentialsubsetsof datafromeach IED are forwardedtoa master throughone data transfer.The data concentratordatabase isusedto pass data betweenIEDsthat are notdirectlyconnected. A substationarchive client/servercollectsandarchivesdatafromseveral devices.The archive data isretrievedwhenitisconvenientforthe usertodo so. The age of the IEDs nowinsubstationsvarieswidely.Manyof these IEDsare still useful butlackthe mostrecentprotocols.A communicationsprocessorthatcancommunicate witheachIED viaa unique baudrate and protocol extendsthe time thateachIEDis useful.Usingacommunications processorforsubstationintegrationalsoeasilyaccommodatesfuture IEDs.Itisrare for all existing IEDs to be discardedduringa substationintegrationupgrade project. Power System Automation Benefits to Utility The benefitsof monitoring,remote control,andautomationof powerdeliveryinclude improved employeeandpublicsafety,anddefermentof the costof purchasingnew equipment.Also,reduced O&M costsare realizedthroughimproveduse of existingfacilitiesandoptimizedperformance of the powersystemthroughreducedlossesassociatedwithoutagesandimprovedvolt- 16age profile. Collectionof informationcanresultinbetterplanningandsystemdesign,andincreasedcustomer satisfactionwillresultfromimprovedresponsiveness,service reliability,andpowerquality AUTOMATION SYSTEM AND EQUIPMENT OPERATION EXAMPLES Distribution Automation System Example Distributionautomationsystemseasilydemonstrate the valueinautomatingcontrol of the power system.Figure 18 showsa twoline radial distributionnetworkwiththree manuallyoperated switchesforline segregationandloadtransfer.GivenapermanentfaultonLine 1,the relayingfor Switch1 (SW1) tripsand all loadon Lines1 and 2 isinterrupted.Torestore loadtoLine 2, operators mustmanuallyopenSW2 andthenclose SW5. In thisexample,we assumeittakesanoperatorone- half hourto reach and operate eachmanual switchsequentially.Thus,Line 2loadisrestoredone hour afterthe permanentfaultisclearedbySW1
  • 17. Figure 18: SystemSingle-Line –Manual IsolationSwitches Let usnextlookat replacingthe manual switcheswithautomaticallycontrolledfaultinterrupting devices(i.e.,electronicreclosers,breakers,etc.).Further,letusassume thatthe protectionsupplied for all of the breakersandautomaticswitchesislinkedtogetherviaacommunicationslink.Figure 19 showsthe same distributionnetworkasabove,withautomaticallycontrolledswitchesandthe associatedovercurrentprotectionandcontrol scheme. The communicationslinkdramatically advancesthe automationandcontrol possibilities.Forthe purpose of thisexample,we assume that each protective relayshowninFigure19 communicateswiththe adjacentrelaysthathave control functions.Thiscapabilityallowsfastautomaticrestorationandavoidsdispatchinganoperatorto restore load.Most importantly,itsavesapproximatelyone hourinrestoringservice tothe Line 2 load.. Figure 19: SystemSingle-Line –AutomaticIsolationSwitches
  • 18. Equipment Interface Example Most of the IEDs inthe I&Csystemhave at leastone simple EIA-232serial portto support communicationstoanotherIEDor PC. Some IEDs supportdata acquisitionandcontrol communications,aswell asconfigurationcommunications,throughasingle connection.ManyIEDs require separate linksforeachcommunicationprocess;therefore,twocommunicationslinksare necessary.Some productssupportmanytypesof communicationsmessagesthroughone interleavedcommunicationsconnection. Figure 20: IED Communications Many IEDs require avendor-suppliedproprietaryPCsoftware applicationforconfiguration,while otherssimplyneedaterminal emulationdevice and communicate viahuman-readable ASCIIstrings. The followingexample demonstratesthe proceduresnecessarytoconnectanSEL-351 relayto a PC to performa simple ASCIIdialogue.. Connecting an SEL-351 to a PC 1) Make sure you have the properequipment. DesktopPCor Laptopcomputer SEL-351 Directional OvercurrentRelay,ReclosingRelay,FaultLocator Cables:SEL-C234A or SEL-2800M & SEL-2800F Transceivers&Fiber-Opticcables 2) Turn onyour computerandrelay. 3) Start a HyperTerminal session. Clickon START, go to PROGRAMS → ACCESSORIES→ HYPERTERMINAL Double clickonthe Hypertrm.exe Type in a name of the sessionyouwanttocreate (e.g.,sel351),thenpressenter. 4) Selecta communications(COM) portonthe PC.
  • 19. In selectingaCOMportyou needtoknow a little aboutthe computeryouare goingtouse. • Howmany COMports doesithave available? • Whichonesare youable to use? Connectyourcable to one of the available COMports. From yourworksessionselectthe COMport youconnectedtoin the back of your PC (e.g.,Connect using:Directto COM1). SelectO.K.andthen,fromthe communicationpropertiessettingsscreen, selectO.K.. There is an experimentyoucandoif you are usingfiber-opticcable with2800 modems,tosee if you’ve selectedthe correctCOMport thatyou connectedyourcable to. • Unplugthe cable from the receive (R) fromthe 2800M modem. • Fromthe keyboard,pressenterafewtimeswhile watchingthe receiveline. • There shouldbe aninfraredlightthatyousee whenenterispressed.Thislightisinthe visible spectrumandis not dangerous. Troubleshooting: If there is noinfraredlight,thenyoumighthave selectedthe wrongCOMport or your cable is not properlysecure.Make sure yourcable issecurelyfastened,thengotoFILE → PROPERTIESand make sure you have selectedthe rightCOMport.19 ***Note: If you do change yourwork sessionpropertiesyoumustdisconnect,thenreconnect.This isdone by simplyclickingonthe iconof the telephonewiththe receiveroff,thenclickingonthe telephoneiconwiththe receiverbackon. 5) SetUp CommunicationsProperties. Once you’ve selectedthe rightcommunicationsport,youcan thensetup the communications propertiesforthatport.Go to FILE → PROPERTIES→ CONFIGURE. Connectthe cable to one of the EIA-232 ports, whichare clearlymarkedonback of the relay. The COM port propertiesneedtomatchthose of the relaycommunicationsportsettings.You can use the front panel controlsonthe relayto view the portcommunicationssettingsonthe LCDHMI. Pressthe Setbutton,thenthe downarrow (toput the cursor on port),thenpressthe selectbutton. Thisbringsyou to selectSetorShow,selectShow andpressthe selectbuttonsince all youwantto do issee the settings. AfterselectingShow,therewillbe amessage thatscrollsacrossthe screen.Justletitscroll across; youwill thensee the PROTOsetting.Make sure thisissetto SEL. Use the downarrow on the frontpanel toscroll downto the SPEED setting.Thissettingisthe speed or bitsper secondat whichthe relayandthe PC communicate.The SPEEDsettingonthe relayand the BITS PER SECONDsettingonyour hypertermworksession needtobe the same to establish communication.If theyare different,justclickonthe BITSPER SECONDbox in hypertermandselect the value of the SPEED settinginthe relay.
  • 20. Nextuse the downarrowto scroll downagain onthe relay.Thisbringsyouto the BITS setting;inthe same fashionasabove make sure thismatchesthe DATA BITS settingonyourhypertermwork session. Next,use the downarrowagain to scroll downto the PARITYsetting.Make sure thismatchesthe PARITYsettinginyourhyperterm worksession. Scroll downto the STOP settingonthe relay;make sure thismatchesthe STOP BITS settinginyour hypertermworksession. Set the FLOW CONTROLsettinginthe hypertermworksessiontoNone. ClickOK. You shouldnowbe able to pressthe enterkeyandhave equal (=) signsappearon the screen.Table 1 describesthe ASCIIcommandsavailable.