SlideShare a Scribd company logo
den 17 januari 2007

A versatile solution? Growing Miscanthus
for bioenergy
by Jonathan Harvey
The need for a rapid reduction in greenhouse gases is well known, and bioenergy is one
of the possible solutions. The new perennial grass crop Miscanthus is particularly
promising for bioenergy, as it is hardy, fast growing and efficient in its use of water.
Jonathan Harvey reviews the technical and commercial progress, and future prospects,
for the crop.

Miscanthus is the name of a group of perennial grasses native to Asia and Africa, and
first introduced into the UK as an ornamental plant in the 19th century. The type most
commonly grown for biomass is a sterile hybrid (called Miscanthus x giganteus), which,
once established, grows 3-metre woody canes each summer.
The canes themselves sprout from underground rhizomes, which are perennial and tough
- able to survive in all but the coldest areas of Europe. The cane senesces in the autumn
and winter, with most of the nutrients and salts being returned from the canes to the
rhizomes below ground for next year’s growth. The standing cane’s dry matter content
will increase over winter, reaching 60%-90% by the time it is ready to be harvested in
February to April.
Yields of Miscanthus cane from mature crops are typically 12-20 tonnes dry matter per
hectare per year in temperate Europe. Yields in the USA (Illinois) have been recorded at
over 40 tonnes.
The energy content of the cane is typically 17 MJ per kg of dry matter, similar to wood
but with higher silicon content.
Miscanthus compared with other crops
Miscanthus and maize are the only agricultural crops grown in northern Europe that
possess the C4 photosynthetic pathway, all others being C3 pathway (C3 and C4 are the
two main types of photosynthesis). The C4 system requires more energy (light and heat)
to drive it than C3, but in favourable conditions it can operate with greater
photosynthetic efficiency, and with more efficient use of water and nitrogen. Most C4
plants grow in warm temperate or tropical climates, and few have evolved to be frost
hardy. Miscanthus is an exception, with some varieties able to survive in countries with
much colder winters than the UK, such as Japan. In total, C4 plants comprise only 5% of
global biomass, but they include some of the highest-yielding crops in the world (C4
crops include sugar cane, sorghum and maize). When harvested, Miscanthus has a higher
dry matter content than trees or SRC willow. Despite high efficiency in water use, the
crop is still rainfall dependent to achieve highest yields.
Environmental benefits of Miscanthus
When the potential for specific energy crops was examined, one of the key issues was
that the energy expended in growing them should be less than for conventional arable
crops. This is helped if the energy crops have low requirements for fertilizers, pesticides
and other agrochemicals, as these consume large amounts of fossil energy in their
manufacture. Low machinery costs are also desirable, and perennial crops have an
advantage as annual soil cultivations are not needed. The energy and carbon savings of
growing perennial energy crops in countries such as the UK can be considerable.
The old and the new? Miscanthus bales
                       outside a coal-fired power station in the UK
                                         SUPERGEN


By contrast, there is no certainty of similar savings from co-firing of imported biomass
unless the sustainability of each product and source is carefully assessed, including
transportation from source to power station.
Miscanthus energy balance
The key benefit of Miscanthus is that the energy expended in growing it (planting,
chemicals, harvesting, drying etc) is much less than that released when it is used for
fuel. This energy ratio has been calculated (by ADAS Consultancy Ltd working for
ETSU/UK Department of Trade and Industry) for Miscanthus and other crops (see Table
1). This table show that planting Miscanthus in place of typical arable crops can greatly
reduce energy inputs whilst increasing energy output in the form of mainly cellulosic
material, well suited to use as fuel. Similar calculations have been published by DTI (in
URN 01/797) and put the energy ratio for Miscanthus at 36:1.




Carbon balance and emissions ‘saved’
The high energy balance with Miscanthus is associated with a high carbon balance for the
crop. Calculations published by DTI (publication URN 01/797) put the Miscanthus carbon
ratio at 53:1. This means that, of the carbon contained in the fuel, for every one part of
man-made carbon inputs needed to grow and harvest it, 53 parts are absorbed by the
crop from the environment. Miscanthus biomass contains 47% carbon; therefore a crop
of 15 tonnes dry matter per hectare would fix, in a single year, 7 tonnes of carbon -
equivalent to 25.7 tonnes of CO2. Harvested for co-firing in late winter, the crop is
potentially carbon neutral, because only the carbon fixed by photosynthesis in the
previous growing season is released when the crop is co-fired with coal, saving an
equivalent amount of fossil fuel carbon from coal. Thus a significant quantity of emissions
can be prevented by co-firing. Dr Mortimer, in the DTI publication Climate Change and
the European Countryside, has calculated that co-firing Miscanthus pellets could save
16.4 tonnes of CO2 equivalent in greenhouse gases per hectare per year of a high
yielding Miscanthus crop.
Miscanthus is a hardy crop and can survive
                        winter in all but the coldest of European
                                    climates SUPERGEN

Soil carbon sequestration
In addition to its positive energy balance (particularly when compared with other energy
crops such as rapeseed), Miscanthus can sequester large amounts of carbon underground
for a long period (over 100 years). Miscanthus cane is harvested annually but no soil
cultivation is carried out after the first year, so that in the first four years Miscanthus
may sequester 7-9 tonnes of carbon per hectare in the soil. The long-term benefit of this
will depend on yield, soil type and climate, but in some circumstances will be significant.
By contrast, long-term annual cropping reduces soil carbon, and arable soils typically
contain less than 2% carbon. Non-cultivation of arable land typically increases soil
carbon. Land typically contains 130 to 650 tonnes of carbon per hectare, so the potential
for carbon sequestration with Miscanthus can be considerable. R.B. Mathews and P.
Grogan, in a paper published by the Association of Applied Biologists (AAB 65:303-312),
have compared long-term potential carbon sequestration rates for SRC willow, woodland
and Miscanthus. High rates of carbon sequestration are predicted for all three crops, with
the highest rate for Miscanthus at 0.93 tonnes of carbon/ha/year.
A perennial crop, Miscanthus can produce
                        canes up to 3 metres high each summer
                                           BICAL


Impact on biodiversity
The expansion of perennial biomass crops in the UK is potentially more environmentally
friendly than the use of other crops. The leaf litter from the previous harvest remains;
this prevents weed growth, preserves soil moisture, reduces soil erosion and represents a
good environment for insects and other fauna. Miscanthus can support a greater diversity
of species than annual crops, and creates a number of ecological niches in which
populations of organisms are increased. Pheasants have been observed, and deer are
commonly seen in UK plantations. A review for MAFF (the then UK Dept of Agriculture)
(Brent K.J 1998) reports greater species diversity with Miscanthus than for rye. It also
reports that in Germany a Miscanthus plantation gave winter harbour to deer, hares,
quail and partridge. Later, nesting reed warblers and linnets were observed.
A more recent study funded by the DTI (Semere, T. & Slater, F. 2004) stated: ‘In
conclusion, because perennial rhizomatous grasses require a single initial planting, and
because the crops were harvested in March and not disturbed by cultivation every year,
the fields were used as over-wintering sites for birds, small mammals and invertebrates,
suggesting immediate benefits to biodiversity. Further trials are currently being funded
by DEFRA and BICAL Ltd.’
Miscanthus for atmospheric carbon reduction
By efficient growth and conversion of biomass to power, including sequestration of power
station stack emissions of CO2 by burial, or conversion by algae to biomass, it is in theory
possible to generate electricity, and simultaneously reduce GHG levels in the
atmosphere. Clearly the technology is not ready, but the potential is there already.
Miscanthus as fuel
Development of UK co-firing market
Currently, the main use of Miscanthus in the UK is in co-firing with coal in existing power
stations, in line with the Renewable Obligation. There are 15 large co-firing locations
registered in the UK, creating an annual requirement for over 3 million tonnes of biomass
fuel. Several are interested in Miscanthus supply contracts.
Of the Miscanthus supply companies, Biomass Industrial Crops Ltd (trading as BICAL)
appears to be dominant, having the major EU supply of rhizome for planting, and having
invested heavily in planting and cane handling technology. Current estimates suggest it
has a 7% share of this market for contracts. The Miscanthus fuel is supplied to the power
stations as field-compacted bales, or compacted products (pellets or cubes).
BICAL has secured large-scale fuel contracts with substantial power companies, including
Drax, and is currently aiming to secure contracts for 32,500 ha of Miscanthus crops (so
far around 7000 ha of Miscanthus have been established).
To help supply these substantial end users, BICAL Ltd has set up four wholly owned
subsidiary fuel producer groups. The core product of these groups will be Miscanthus for
co-firing, but products such as pellets for the heat market and animal bedding products
will be developed.




                       Planting machines in the UK. Over the next
                          few years, Miscanthus growing could
                       expand from a relatively small business into
                               a huge global industry BICAL

UK dedicated crop- fuelled power stations
Around the UK, there are a number of small power stations built or under construction
which will use Miscanthus as feedstock.
The EPR crop-fuelled power station at Ely has been operating successfully for several
years burning mainly cereal straw bales on a grated bed system. Some modifications
have been made, and now enable Miscanthus bales to be handled. Commercial trials with
Miscanthus were successful, and it is now considered a valid alternative fuel. However
the present owners do not currently burn Miscanthus, and have no plans to do so. The
power station is rated at 38 MWe and conversion efficiency is well over 30%.
At Eccleshall in Staffordshire, a small Miscanthus-fuelled power station is currently under
construction, supplied by a growers’ group organized by BiEcc Ltd, a subsidiary of BICAL
Ltd. It has a Talbott boiler system and power output is rated at 2.5 MWe.
In another project, John Amos & Co Ltd is supplying Miscanthus fuel for the first on-farm
combined heat and power station in UK. The plant is powered by a Talbott BG 100
generator producing 100 kW and 200 kWth of heat. There are further plans to install five
new power stations with a combined capacity of up to 10 MWe.
UK domestic and commercial heat market
Domestic heaters and boilers fuelled by pellets or cubes are beginning to emerge as a
substantial long-term market, albeit one that Miscanthus is not currently exploiting.
However the market is strong, with pellets selling at £130 ($250) per tonne being
competitive with fossil fuels. Both BICAL and John Amos & Co are planning to produce
Miscanthus pellets to tap into this lucrative sector.
Biomass heating has been identified by the UK DTI as the most efficient way to utilize
local biomass. A recent report suggests agricultural biomass could contribute up to 3% of
UK energy supply in this way.
Pembrokeshire Bio-energy is a Miscanthus growers’ group which now has 100 ha of crop
planted, sufficient to fuel the entire Bluestone Holiday Village Project. To run the
operation they have set up an energy services supply company, which supplies the heat
requirements of the village, charged to users per kWh. In addition they plan to produce
biomass pellets for domestic and commercial use.
Future markets for Miscanthus
Whilst combustion in UK power stations, mainly in co-firing with coal, is the main current
use of Miscanthus, other developments show great promise in the longer term, including
paper pulp and liquid biofuels.
Cellulosic bioethanol and biodiesel
Bioethanol and biodiesel are currently produced mainly from seed crops by processes
that give net energy (output/input) balances of 1.5:1 or less. In some of the older
processes the balance is less than one, so that there is a net energy loss in the process.
However companies in USA, Canada and Spain are just starting to build the first
commercial plants to make bioethanol from cellulosic crops and crop residues. These will
give much higher energy balances, producing about twice the amount of ethanol per
hectare of crop than is possible by fermentation of maize grain. Initially, corn stover and
other cereal straws will be used for the cellulosic conversions, but one company in
Louisiana has selected sugar cane bagasse as raw material, which is similar to
Miscanthus cane. The United States Department of Energy (DOE) has estimated that
cellulosic processes could potentially yield one million litres of ethanol for every 150-300
hectares of crop.
There is considerable interest in the use of switchgrass and Miscanthus for ethanol
production, particularly in the United States. Both crops are C4 pathway perennial
grasses, and although switchgrass is native to the North American prairies, Miscanthus
appears to be higher yielding, at least in some of the northern states including Illinois,
according to work done at the University of Illinois.
According to Michael Wang of Argonne National Laboratories USA, these types of
cellulosic ethanol are estimated to reduce greenhouse gas emissions (compared to
gasoline) by 80% (compared with 20%-30% for grain ethanol), and so could produce
major environmental benefits.
It is also technically possible to make synthetic diesel from Miscanthus by fast pyrolysis
or the Fischer-Tropsch process. Despite this there have so far been no announcements
on the commercial use of Miscanthus for biofuels.
Potential for Miscanthus across Europe
Clifton-Brown et al., (in Global Change Biology April 2004) estimate that if Miscanthus
was grown on 10% of suitable land in the EU-15 countries it could produce electricity
equal to 9% of the gross electricity output in 2000. Total carbon mitigation could be
about 9% of the EU carbon emissions (at 1990 levels), which could allow the union to
meet its Kyoto obligations from Miscanthus alone. (Note that the figure of 9% of total
carbon emissions includes the displacement of coal and the potential carbon sequestered
to the soil by the Miscanthus crop).
To date the UK appears to have the main stocks of biomass-quality Miscanthus rhizomes
in Europe. To capitalize, BICAL has set up subsidiary companies in France and Ireland
with trading partners, operating under the BICAL identity. The company is also active in
Germany, Austria, Italy, Spain and Poland. Other companies, including ADAS Consulting
Ltd are also active in some countries in a consultancy or supply role.
In France, INRA, the government research organization, has set up a development
programme for cellulosic biomass ethanol crops, and Miscanthus plays a major role in
this. Meanwhile BICAL France is actively recruiting growers for a range of end uses,
including co-firing, over most of the country.
Early work in Germany, particularly in Bavaria, gave very high yields, but progress was
set back by winter hardiness problems with small tissue-cultured plants not surviving the
first winter. Now however a number of farmers and businesses are actively developing
the crop. Germany has always had considerable expertise in the development of liquid
fuel alternatives to gasoline, and seems likely to continue to lead in this area.




                      Figure 1. Map showing the predicted yields of
                        Miscanthus across Europe. Source: Kassel
                                       University

In Ireland the government has recently announced its intention to set up an energy crop
establishment support scheme, with EU funding for willow SRC and Miscanthus planting.
Possible uses would be the conversion of the current peat burning fluidized bed power
stations to biomass, at least in part, and there are also possibilities to co-fire Miscanthus
with coal in large modern plants. Both uses would improve carbon mitigation. Ireland’s
pastureland produces heavy emissions of methane from the ruminant livestock. There
are possibilities for profitable conversion of this land to Miscanthus for energy cropping
with concurrent reductions in GHG emissions, and good soil carbon sequestration
potential.
In the Ukraine, Miscanthus is being planted on a 5000 ha energy park, but little other
information is currently available.
Back in the UK, the DTI and the Carbon Trust have forecast that energy crops could
supply 5%-6% of electricity demand by 2020, through a combination of combustion and
gasification technologies. This assumes the planting of 350,000 ha (35% of the DEFRA
estimated available space) of energy crops, and could save emissions up to 8 million
tonnes of CO2/year. The DTI estimates suggest that Miscanthus (22-27 g/kWh net CO2)
gives lower emission rates than SRC willow or straw.
European Union Biomass Plan
Considering the EU-25 as a whole, the European Biomass Plan (published in December
2005) shows very high requirements for energy crops from agriculture and biomass in
total across the EU-25 from 2010 to 2030 (Table 2). This suggests colossal rates of
increase in biomass cropping for electricity, transport fuels and heating. In total, the
biomass plan would reduce emissions by 209 million tonnes CO2 equivalent per year, and
would provide employment for 250,000-300,000 people, mainly in rural areas. As much
as one quarter of the cropping could be provided by Miscanthus, if sufficient rhizome
stock were available.
Potential for Miscanthus in the USA
Trial yields of Miscanthus in the USA have been very high, reaching over 40 tonnes dry
matter/hectare in Illinois. Indeed, Illinois used to be called ‘The Prairie State’ with over
60% of the state covered in grassland, until it was ploughed up for arable farming.
Illinois University (Steve Long and Emily Heaton) has led this work on Miscanthus, and
commercial uses are being developed. These could include co-firing in local coal power
stations, and use as pellets for pellet stoves. Pellet stoves that handle grain, corn stover
and switchgrass are available and being further developed for Miscanthus. It is known
that there is significant potential, particularly for cellulosic bioethanol and biodiesel
production, in the USA, from a range of technologies, including gasification and pyrolysis
conversions as well as novel enzymatic systems. Illinois farm management budgets
suggest much higher net margins from Miscanthus than from corn and soya bean
rotations.
CERES, a California-based biotechnology company, is involved in breeding new varieties
or multiplication (increasing plant stocks) of switchgrass and Miscanthus, while BICAL is
working with Illinois University, and has farming partners establishing commercial
Miscanthus production. BICAL has also formed a partnership with Environmentally
Correct Concepts Inc in Illinois, to utilize their patented technology for carbon
sequestration quantification.
USDOE energy crop national forecasts
The US Department of Energy, along with its Oak Ridge National Laboratory (ORNL),
forecasts the requirement for energy crops by 2008 at 188 million tonnes (at less than
$50 per tonne dry matter). Other ORNL data suggests that if perennial energy crop yields
are high (as they have been so far for Miscanthus) the requirement for all uses could be
377 million tonnes dry matter, and with moderate yields 150 million tonnes of dry
matter.
USDOE forecasts total potential biomass production (all sources) of 1 billion tonnes dry
matter per year by 2030. These quantities are of similar orders of magnitude to those
forecast by the EU over the same period.
Achievement of these requirements, with Miscanthus, will be difficult, due to the shortage
of Miscanthus rhizome for planting currently available in the USA. However with sufficient
government determination towards liquid fuel self- sufficiency, and increasing awareness
of the need for carbon mitigation, these targets could be reached.
Jonathan Harvey is an agronomist with experience in the introduction of novel crops to
UK agriculture. He operates a consultancy organization, Crops for Industry, specializing
in agricultural energy crops and, recently, algaeculture.
e-mail: JONHATKENN@aol.com

The author wishes to thank Dr Paul Carver, technical director of BICAL Ltd, for
information provided for this article.

More Related Content

What's hot

11.the influence of potassium fertilizer on the production of potato (solanum...
11.the influence of potassium fertilizer on the production of potato (solanum...11.the influence of potassium fertilizer on the production of potato (solanum...
11.the influence of potassium fertilizer on the production of potato (solanum...
Alexander Decker
 
Fuelwood
FuelwoodFuelwood
Fuelwood
Donasian Mbonea
 
To Improve the Calorific Value of Cotton Waste by Anaerobic Digestion
To Improve the Calorific Value of Cotton Waste by Anaerobic DigestionTo Improve the Calorific Value of Cotton Waste by Anaerobic Digestion
To Improve the Calorific Value of Cotton Waste by Anaerobic Digestion
ijsrd.com
 
Tropical Rainforest PERIOD 5
Tropical Rainforest PERIOD 5Tropical Rainforest PERIOD 5
Tropical Rainforest PERIOD 5
Michael McGraw
 
Biodiversity Lecture By Mr.Allah Dad Khan Visiting Professor The University ...
Biodiversity  Lecture By Mr.Allah Dad Khan Visiting Professor The University ...Biodiversity  Lecture By Mr.Allah Dad Khan Visiting Professor The University ...
Biodiversity Lecture By Mr.Allah Dad Khan Visiting Professor The University ...
Mr.Allah Dad Khan
 
Overview of seven of earth's biomes
Overview of seven of earth's biomesOverview of seven of earth's biomes
Overview of seven of earth's biomes
Kella Randolph
 
Integrated application of compost and inorganic fertilizers for production of...
Integrated application of compost and inorganic fertilizers for production of...Integrated application of compost and inorganic fertilizers for production of...
Integrated application of compost and inorganic fertilizers for production of...
Alexander Decker
 
Deforestation dimitar d, simona, veselin
Deforestation  dimitar d, simona, veselinDeforestation  dimitar d, simona, veselin
Deforestation dimitar d, simona, veselin
MrJewett
 
Tropical desert PERIOD 5
Tropical desert PERIOD 5Tropical desert PERIOD 5
Tropical desert PERIOD 5
Michael McGraw
 
Analysis Of Biomass And Biofuels
Analysis Of  Biomass And  BiofuelsAnalysis Of  Biomass And  Biofuels
Analysis Of Biomass And Biofuels
Nandeesh Laxetty
 
What is the role of forests in the mitigation of climate change?
What is the role of forests in the mitigation of climate change?What is the role of forests in the mitigation of climate change?
What is the role of forests in the mitigation of climate change?
Glen Peters
 
Be Guided by the Landscape (Analog Forestry Principle #7)
Be Guided by the Landscape (Analog Forestry Principle #7)Be Guided by the Landscape (Analog Forestry Principle #7)
Be Guided by the Landscape (Analog Forestry Principle #7)
belipola
 
IB ESS Topic 3 Food resources new & Water Budget
IB ESS Topic 3 Food resources new & Water BudgetIB ESS Topic 3 Food resources new & Water Budget
IB ESS Topic 3 Food resources new & Water Budget
GURU CHARAN KUMAR
 
Rangeland Management and Improvement in Zimbabwe
Rangeland Management and Improvement in ZimbabweRangeland Management and Improvement in Zimbabwe
Rangeland Management and Improvement in Zimbabwe
Eddington Gororo
 
Forest ecosystem
Forest ecosystemForest ecosystem
Forest ecosystem
amruthapp24
 
Grassland Management : production and conservation
Grassland Management : production and conservation Grassland Management : production and conservation
Grassland Management : production and conservation
Vivekananda Global University, Jaipur, Rajasthan -303012
 
Healthy soils
Healthy soilsHealthy soils
Healthy soils
BerksCounty
 
Jamaica bay task force -Ecological Restoration around the bay
Jamaica bay task force -Ecological Restoration around the bayJamaica bay task force -Ecological Restoration around the bay
Jamaica bay task force -Ecological Restoration around the bay
ecowatchers
 
Sec 1 geog unit 3 lesson 2
Sec 1 geog unit 3 lesson 2Sec 1 geog unit 3 lesson 2
Sec 1 geog unit 3 lesson 2
critter33
 

What's hot (19)

11.the influence of potassium fertilizer on the production of potato (solanum...
11.the influence of potassium fertilizer on the production of potato (solanum...11.the influence of potassium fertilizer on the production of potato (solanum...
11.the influence of potassium fertilizer on the production of potato (solanum...
 
Fuelwood
FuelwoodFuelwood
Fuelwood
 
To Improve the Calorific Value of Cotton Waste by Anaerobic Digestion
To Improve the Calorific Value of Cotton Waste by Anaerobic DigestionTo Improve the Calorific Value of Cotton Waste by Anaerobic Digestion
To Improve the Calorific Value of Cotton Waste by Anaerobic Digestion
 
Tropical Rainforest PERIOD 5
Tropical Rainforest PERIOD 5Tropical Rainforest PERIOD 5
Tropical Rainforest PERIOD 5
 
Biodiversity Lecture By Mr.Allah Dad Khan Visiting Professor The University ...
Biodiversity  Lecture By Mr.Allah Dad Khan Visiting Professor The University ...Biodiversity  Lecture By Mr.Allah Dad Khan Visiting Professor The University ...
Biodiversity Lecture By Mr.Allah Dad Khan Visiting Professor The University ...
 
Overview of seven of earth's biomes
Overview of seven of earth's biomesOverview of seven of earth's biomes
Overview of seven of earth's biomes
 
Integrated application of compost and inorganic fertilizers for production of...
Integrated application of compost and inorganic fertilizers for production of...Integrated application of compost and inorganic fertilizers for production of...
Integrated application of compost and inorganic fertilizers for production of...
 
Deforestation dimitar d, simona, veselin
Deforestation  dimitar d, simona, veselinDeforestation  dimitar d, simona, veselin
Deforestation dimitar d, simona, veselin
 
Tropical desert PERIOD 5
Tropical desert PERIOD 5Tropical desert PERIOD 5
Tropical desert PERIOD 5
 
Analysis Of Biomass And Biofuels
Analysis Of  Biomass And  BiofuelsAnalysis Of  Biomass And  Biofuels
Analysis Of Biomass And Biofuels
 
What is the role of forests in the mitigation of climate change?
What is the role of forests in the mitigation of climate change?What is the role of forests in the mitigation of climate change?
What is the role of forests in the mitigation of climate change?
 
Be Guided by the Landscape (Analog Forestry Principle #7)
Be Guided by the Landscape (Analog Forestry Principle #7)Be Guided by the Landscape (Analog Forestry Principle #7)
Be Guided by the Landscape (Analog Forestry Principle #7)
 
IB ESS Topic 3 Food resources new & Water Budget
IB ESS Topic 3 Food resources new & Water BudgetIB ESS Topic 3 Food resources new & Water Budget
IB ESS Topic 3 Food resources new & Water Budget
 
Rangeland Management and Improvement in Zimbabwe
Rangeland Management and Improvement in ZimbabweRangeland Management and Improvement in Zimbabwe
Rangeland Management and Improvement in Zimbabwe
 
Forest ecosystem
Forest ecosystemForest ecosystem
Forest ecosystem
 
Grassland Management : production and conservation
Grassland Management : production and conservation Grassland Management : production and conservation
Grassland Management : production and conservation
 
Healthy soils
Healthy soilsHealthy soils
Healthy soils
 
Jamaica bay task force -Ecological Restoration around the bay
Jamaica bay task force -Ecological Restoration around the bayJamaica bay task force -Ecological Restoration around the bay
Jamaica bay task force -Ecological Restoration around the bay
 
Sec 1 geog unit 3 lesson 2
Sec 1 geog unit 3 lesson 2Sec 1 geog unit 3 lesson 2
Sec 1 geog unit 3 lesson 2
 

Similar to Power Source Miscanthus

Biofuels and other approaches for decreasing fossil fuel emissions
Biofuels and other approaches for decreasing fossil fuel emissionsBiofuels and other approaches for decreasing fossil fuel emissions
Biofuels and other approaches for decreasing fossil fuel emissions
Ivan Vera Montenegro
 
Perennial Energy Crops For Semiarid Lands in the Mediterranean
Perennial Energy Crops For Semiarid Lands in the MediterraneanPerennial Energy Crops For Semiarid Lands in the Mediterranean
Perennial Energy Crops For Semiarid Lands in the Mediterranean
Emiliano Maletta
 
Perennial energy crops for semiarid lands in the Mediterranean: Elytrigia elo...
Perennial energy crops for semiarid lands in the Mediterranean: Elytrigia elo...Perennial energy crops for semiarid lands in the Mediterranean: Elytrigia elo...
Perennial energy crops for semiarid lands in the Mediterranean: Elytrigia elo...
Bioenergy Crops
 
2506-2.doc
2506-2.doc2506-2.doc
2506-2.doc
Noaman Akbar
 
Fighting climate change with better soil management
Fighting climate change with better soil managementFighting climate change with better soil management
Fighting climate change with better soil management
McGill Compost
 
Презентація Ірини Гнап – директора «Salix Energy»: Miscanthus Ukraine
Презентація Ірини Гнап – директора «Salix Energy»: Miscanthus Ukraine Презентація Ірини Гнап – директора «Salix Energy»: Miscanthus Ukraine
EVS7.docx
EVS7.docxEVS7.docx
EVS7.docx
LakshayRao7
 
1. abhijit mitra marine science calcutta university
1. abhijit mitra  marine science calcutta university1. abhijit mitra  marine science calcutta university
1. abhijit mitra marine science calcutta university
Abhijit Mitra
 
technical update
technical updatetechnical update
technical update
Robert Donald
 
Biomass sources
Biomass sourcesBiomass sources
Biomass sources
H Janardan Prabhu
 
Statewide Conservation & Preservation Plan
Statewide Conservation & Preservation PlanStatewide Conservation & Preservation Plan
Statewide Conservation & Preservation Plan
Becky LaPlant
 
Planet Aid Post for the Environment and for People
Planet Aid Post for the Environment and for PeoplePlanet Aid Post for the Environment and for People
Planet Aid Post for the Environment and for People
Planet Aid
 
Fea_Littlejohn
Fea_LittlejohnFea_Littlejohn
Fea_Littlejohn
chris littlejohn
 
Rasadnita new alchemycompost
Rasadnita new alchemycompostRasadnita new alchemycompost
Rasadnita new alchemycompost
Gherghescu Gabriel
 
Compost
Compost Compost
Briquetting machine report for phase-1
Briquetting machine report for phase-1Briquetting machine report for phase-1
Briquetting machine report for phase-1
manugowdapes
 
Energy Crops Pellets: a Revolution for Miscanthus
Energy Crops Pellets: a Revolution for MiscanthusEnergy Crops Pellets: a Revolution for Miscanthus
Energy Crops Pellets: a Revolution for Miscanthus
Jossie Xiong
 
Adapting Grazing Systems To A Changing Climate
Adapting Grazing Systems To A Changing ClimateAdapting Grazing Systems To A Changing Climate
Adapting Grazing Systems To A Changing Climate
Carbon Coalition
 
Agroforestry & Carbon Sequestration:International Commitments & Policy I...
Agroforestry & Carbon Sequestration:International Commitments & Policy  I...Agroforestry & Carbon Sequestration:International Commitments & Policy  I...
Agroforestry & Carbon Sequestration:International Commitments & Policy I...
DeepaRawat52
 
Below the plow layer -- deep soil carbon storage
Below the plow layer -- deep soil carbon storageBelow the plow layer -- deep soil carbon storage
Below the plow layer -- deep soil carbon storage
McGill Compost
 

Similar to Power Source Miscanthus (20)

Biofuels and other approaches for decreasing fossil fuel emissions
Biofuels and other approaches for decreasing fossil fuel emissionsBiofuels and other approaches for decreasing fossil fuel emissions
Biofuels and other approaches for decreasing fossil fuel emissions
 
Perennial Energy Crops For Semiarid Lands in the Mediterranean
Perennial Energy Crops For Semiarid Lands in the MediterraneanPerennial Energy Crops For Semiarid Lands in the Mediterranean
Perennial Energy Crops For Semiarid Lands in the Mediterranean
 
Perennial energy crops for semiarid lands in the Mediterranean: Elytrigia elo...
Perennial energy crops for semiarid lands in the Mediterranean: Elytrigia elo...Perennial energy crops for semiarid lands in the Mediterranean: Elytrigia elo...
Perennial energy crops for semiarid lands in the Mediterranean: Elytrigia elo...
 
2506-2.doc
2506-2.doc2506-2.doc
2506-2.doc
 
Fighting climate change with better soil management
Fighting climate change with better soil managementFighting climate change with better soil management
Fighting climate change with better soil management
 
Презентація Ірини Гнап – директора «Salix Energy»: Miscanthus Ukraine
Презентація Ірини Гнап – директора «Salix Energy»: Miscanthus Ukraine Презентація Ірини Гнап – директора «Salix Energy»: Miscanthus Ukraine
Презентація Ірини Гнап – директора «Salix Energy»: Miscanthus Ukraine
 
EVS7.docx
EVS7.docxEVS7.docx
EVS7.docx
 
1. abhijit mitra marine science calcutta university
1. abhijit mitra  marine science calcutta university1. abhijit mitra  marine science calcutta university
1. abhijit mitra marine science calcutta university
 
technical update
technical updatetechnical update
technical update
 
Biomass sources
Biomass sourcesBiomass sources
Biomass sources
 
Statewide Conservation & Preservation Plan
Statewide Conservation & Preservation PlanStatewide Conservation & Preservation Plan
Statewide Conservation & Preservation Plan
 
Planet Aid Post for the Environment and for People
Planet Aid Post for the Environment and for PeoplePlanet Aid Post for the Environment and for People
Planet Aid Post for the Environment and for People
 
Fea_Littlejohn
Fea_LittlejohnFea_Littlejohn
Fea_Littlejohn
 
Rasadnita new alchemycompost
Rasadnita new alchemycompostRasadnita new alchemycompost
Rasadnita new alchemycompost
 
Compost
Compost Compost
Compost
 
Briquetting machine report for phase-1
Briquetting machine report for phase-1Briquetting machine report for phase-1
Briquetting machine report for phase-1
 
Energy Crops Pellets: a Revolution for Miscanthus
Energy Crops Pellets: a Revolution for MiscanthusEnergy Crops Pellets: a Revolution for Miscanthus
Energy Crops Pellets: a Revolution for Miscanthus
 
Adapting Grazing Systems To A Changing Climate
Adapting Grazing Systems To A Changing ClimateAdapting Grazing Systems To A Changing Climate
Adapting Grazing Systems To A Changing Climate
 
Agroforestry & Carbon Sequestration:International Commitments & Policy I...
Agroforestry & Carbon Sequestration:International Commitments & Policy  I...Agroforestry & Carbon Sequestration:International Commitments & Policy  I...
Agroforestry & Carbon Sequestration:International Commitments & Policy I...
 
Below the plow layer -- deep soil carbon storage
Below the plow layer -- deep soil carbon storageBelow the plow layer -- deep soil carbon storage
Below the plow layer -- deep soil carbon storage
 

More from Freedom Giant Miscanthus

Field day presentation
Field day presentationField day presentation
Field day presentation
Freedom Giant Miscanthus
 
SE Biomass Conference Presentation
SE Biomass Conference PresentationSE Biomass Conference Presentation
SE Biomass Conference Presentation
Freedom Giant Miscanthus
 
Brief version of Freedom Giant Miscanthus
Brief version of Freedom Giant MiscanthusBrief version of Freedom Giant Miscanthus
Brief version of Freedom Giant Miscanthus
Freedom Giant Miscanthus
 
Steele repreve 1 13-11
Steele repreve 1 13-11Steele repreve 1 13-11
Steele repreve 1 13-11
Freedom Giant Miscanthus
 
MSU Biofuel conference
MSU Biofuel conferenceMSU Biofuel conference
MSU Biofuel conference
Freedom Giant Miscanthus
 
Freedomphotos
FreedomphotosFreedomphotos
Sun Belt Prannounceme#403 Fb2
Sun Belt Prannounceme#403 Fb2Sun Belt Prannounceme#403 Fb2
Sun Belt Prannounceme#403 Fb2
Freedom Giant Miscanthus
 
Msurelease
MsureleaseMsurelease
Freedom Giant Miscanthus Fact Sheet
Freedom Giant Miscanthus Fact SheetFreedom Giant Miscanthus Fact Sheet
Freedom Giant Miscanthus Fact Sheet
Freedom Giant Miscanthus
 

More from Freedom Giant Miscanthus (9)

Field day presentation
Field day presentationField day presentation
Field day presentation
 
SE Biomass Conference Presentation
SE Biomass Conference PresentationSE Biomass Conference Presentation
SE Biomass Conference Presentation
 
Brief version of Freedom Giant Miscanthus
Brief version of Freedom Giant MiscanthusBrief version of Freedom Giant Miscanthus
Brief version of Freedom Giant Miscanthus
 
Steele repreve 1 13-11
Steele repreve 1 13-11Steele repreve 1 13-11
Steele repreve 1 13-11
 
MSU Biofuel conference
MSU Biofuel conferenceMSU Biofuel conference
MSU Biofuel conference
 
Freedomphotos
FreedomphotosFreedomphotos
Freedomphotos
 
Sun Belt Prannounceme#403 Fb2
Sun Belt Prannounceme#403 Fb2Sun Belt Prannounceme#403 Fb2
Sun Belt Prannounceme#403 Fb2
 
Msurelease
MsureleaseMsurelease
Msurelease
 
Freedom Giant Miscanthus Fact Sheet
Freedom Giant Miscanthus Fact SheetFreedom Giant Miscanthus Fact Sheet
Freedom Giant Miscanthus Fact Sheet
 

Recently uploaded

BT & Neo4j: Knowledge Graphs for Critical Enterprise Systems.pptx.pdf
BT & Neo4j: Knowledge Graphs for Critical Enterprise Systems.pptx.pdfBT & Neo4j: Knowledge Graphs for Critical Enterprise Systems.pptx.pdf
BT & Neo4j: Knowledge Graphs for Critical Enterprise Systems.pptx.pdf
Neo4j
 
“Deploying Large Language Models on a Raspberry Pi,” a Presentation from Usef...
“Deploying Large Language Models on a Raspberry Pi,” a Presentation from Usef...“Deploying Large Language Models on a Raspberry Pi,” a Presentation from Usef...
“Deploying Large Language Models on a Raspberry Pi,” a Presentation from Usef...
Edge AI and Vision Alliance
 
How RPA Help in the Transportation and Logistics Industry.pptx
How RPA Help in the Transportation and Logistics Industry.pptxHow RPA Help in the Transportation and Logistics Industry.pptx
How RPA Help in the Transportation and Logistics Industry.pptx
SynapseIndia
 
Applying Retrieval-Augmented Generation (RAG) to Combat Hallucinations in GenAI
Applying Retrieval-Augmented Generation (RAG) to Combat Hallucinations in GenAIApplying Retrieval-Augmented Generation (RAG) to Combat Hallucinations in GenAI
Applying Retrieval-Augmented Generation (RAG) to Combat Hallucinations in GenAI
ssuserd4e0d2
 
Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...
Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...
Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...
maigasapphire
 
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
bhumivarma35300
 
RPA In Healthcare Benefits, Use Case, Trend And Challenges 2024.pptx
RPA In Healthcare Benefits, Use Case, Trend And Challenges 2024.pptxRPA In Healthcare Benefits, Use Case, Trend And Challenges 2024.pptx
RPA In Healthcare Benefits, Use Case, Trend And Challenges 2024.pptx
SynapseIndia
 
How to build a generative AI solution A step-by-step guide (2).pdf
How to build a generative AI solution A step-by-step guide (2).pdfHow to build a generative AI solution A step-by-step guide (2).pdf
How to build a generative AI solution A step-by-step guide (2).pdf
ChristopherTHyatt
 
The Role of Technology in Payroll Statutory Compliance (1).pdf
The Role of Technology in Payroll Statutory Compliance (1).pdfThe Role of Technology in Payroll Statutory Compliance (1).pdf
The Role of Technology in Payroll Statutory Compliance (1).pdf
paysquare consultancy
 
Choose our Linux Web Hosting for a seamless and successful online presence
Choose our Linux Web Hosting for a seamless and successful online presenceChoose our Linux Web Hosting for a seamless and successful online presence
Choose our Linux Web Hosting for a seamless and successful online presence
rajancomputerfbd
 
Using LLM Agents with Llama 3, LangGraph and Milvus
Using LLM Agents with Llama 3, LangGraph and MilvusUsing LLM Agents with Llama 3, LangGraph and Milvus
Using LLM Agents with Llama 3, LangGraph and Milvus
Zilliz
 
Scaling Connections in PostgreSQL Postgres Bangalore(PGBLR) Meetup-2 - Mydbops
Scaling Connections in PostgreSQL Postgres Bangalore(PGBLR) Meetup-2 - MydbopsScaling Connections in PostgreSQL Postgres Bangalore(PGBLR) Meetup-2 - Mydbops
Scaling Connections in PostgreSQL Postgres Bangalore(PGBLR) Meetup-2 - Mydbops
Mydbops
 
Implementations of Fused Deposition Modeling in real world
Implementations of Fused Deposition Modeling  in real worldImplementations of Fused Deposition Modeling  in real world
Implementations of Fused Deposition Modeling in real world
Emerging Tech
 
Litestack talk at Brighton 2024 (Unleashing the power of SQLite for Ruby apps)
Litestack talk at Brighton 2024 (Unleashing the power of SQLite for Ruby apps)Litestack talk at Brighton 2024 (Unleashing the power of SQLite for Ruby apps)
Litestack talk at Brighton 2024 (Unleashing the power of SQLite for Ruby apps)
Muhammad Ali
 
The Evolution of Remote Server Management
The Evolution of Remote Server ManagementThe Evolution of Remote Server Management
The Evolution of Remote Server Management
Bert Blevins
 
Understanding Insider Security Threats: Types, Examples, Effects, and Mitigat...
Understanding Insider Security Threats: Types, Examples, Effects, and Mitigat...Understanding Insider Security Threats: Types, Examples, Effects, and Mitigat...
Understanding Insider Security Threats: Types, Examples, Effects, and Mitigat...
Bert Blevins
 
(CISOPlatform Summit & SACON 2024) Digital Personal Data Protection Act.pdf
(CISOPlatform Summit & SACON 2024) Digital Personal Data Protection Act.pdf(CISOPlatform Summit & SACON 2024) Digital Personal Data Protection Act.pdf
(CISOPlatform Summit & SACON 2024) Digital Personal Data Protection Act.pdf
Priyanka Aash
 
The Role of IoT in Australian Mobile App Development - PDF Guide
The Role of IoT in Australian Mobile App Development - PDF GuideThe Role of IoT in Australian Mobile App Development - PDF Guide
The Role of IoT in Australian Mobile App Development - PDF Guide
Shiv Technolabs
 
Calgary MuleSoft Meetup APM and IDP .pptx
Calgary MuleSoft Meetup APM and IDP .pptxCalgary MuleSoft Meetup APM and IDP .pptx
Calgary MuleSoft Meetup APM and IDP .pptx
ishalveerrandhawa1
 
How Social Media Hackers Help You to See Your Wife's Message.pdf
How Social Media Hackers Help You to See Your Wife's Message.pdfHow Social Media Hackers Help You to See Your Wife's Message.pdf
How Social Media Hackers Help You to See Your Wife's Message.pdf
HackersList
 

Recently uploaded (20)

BT & Neo4j: Knowledge Graphs for Critical Enterprise Systems.pptx.pdf
BT & Neo4j: Knowledge Graphs for Critical Enterprise Systems.pptx.pdfBT & Neo4j: Knowledge Graphs for Critical Enterprise Systems.pptx.pdf
BT & Neo4j: Knowledge Graphs for Critical Enterprise Systems.pptx.pdf
 
“Deploying Large Language Models on a Raspberry Pi,” a Presentation from Usef...
“Deploying Large Language Models on a Raspberry Pi,” a Presentation from Usef...“Deploying Large Language Models on a Raspberry Pi,” a Presentation from Usef...
“Deploying Large Language Models on a Raspberry Pi,” a Presentation from Usef...
 
How RPA Help in the Transportation and Logistics Industry.pptx
How RPA Help in the Transportation and Logistics Industry.pptxHow RPA Help in the Transportation and Logistics Industry.pptx
How RPA Help in the Transportation and Logistics Industry.pptx
 
Applying Retrieval-Augmented Generation (RAG) to Combat Hallucinations in GenAI
Applying Retrieval-Augmented Generation (RAG) to Combat Hallucinations in GenAIApplying Retrieval-Augmented Generation (RAG) to Combat Hallucinations in GenAI
Applying Retrieval-Augmented Generation (RAG) to Combat Hallucinations in GenAI
 
Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...
Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...
Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...
 
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
 
RPA In Healthcare Benefits, Use Case, Trend And Challenges 2024.pptx
RPA In Healthcare Benefits, Use Case, Trend And Challenges 2024.pptxRPA In Healthcare Benefits, Use Case, Trend And Challenges 2024.pptx
RPA In Healthcare Benefits, Use Case, Trend And Challenges 2024.pptx
 
How to build a generative AI solution A step-by-step guide (2).pdf
How to build a generative AI solution A step-by-step guide (2).pdfHow to build a generative AI solution A step-by-step guide (2).pdf
How to build a generative AI solution A step-by-step guide (2).pdf
 
The Role of Technology in Payroll Statutory Compliance (1).pdf
The Role of Technology in Payroll Statutory Compliance (1).pdfThe Role of Technology in Payroll Statutory Compliance (1).pdf
The Role of Technology in Payroll Statutory Compliance (1).pdf
 
Choose our Linux Web Hosting for a seamless and successful online presence
Choose our Linux Web Hosting for a seamless and successful online presenceChoose our Linux Web Hosting for a seamless and successful online presence
Choose our Linux Web Hosting for a seamless and successful online presence
 
Using LLM Agents with Llama 3, LangGraph and Milvus
Using LLM Agents with Llama 3, LangGraph and MilvusUsing LLM Agents with Llama 3, LangGraph and Milvus
Using LLM Agents with Llama 3, LangGraph and Milvus
 
Scaling Connections in PostgreSQL Postgres Bangalore(PGBLR) Meetup-2 - Mydbops
Scaling Connections in PostgreSQL Postgres Bangalore(PGBLR) Meetup-2 - MydbopsScaling Connections in PostgreSQL Postgres Bangalore(PGBLR) Meetup-2 - Mydbops
Scaling Connections in PostgreSQL Postgres Bangalore(PGBLR) Meetup-2 - Mydbops
 
Implementations of Fused Deposition Modeling in real world
Implementations of Fused Deposition Modeling  in real worldImplementations of Fused Deposition Modeling  in real world
Implementations of Fused Deposition Modeling in real world
 
Litestack talk at Brighton 2024 (Unleashing the power of SQLite for Ruby apps)
Litestack talk at Brighton 2024 (Unleashing the power of SQLite for Ruby apps)Litestack talk at Brighton 2024 (Unleashing the power of SQLite for Ruby apps)
Litestack talk at Brighton 2024 (Unleashing the power of SQLite for Ruby apps)
 
The Evolution of Remote Server Management
The Evolution of Remote Server ManagementThe Evolution of Remote Server Management
The Evolution of Remote Server Management
 
Understanding Insider Security Threats: Types, Examples, Effects, and Mitigat...
Understanding Insider Security Threats: Types, Examples, Effects, and Mitigat...Understanding Insider Security Threats: Types, Examples, Effects, and Mitigat...
Understanding Insider Security Threats: Types, Examples, Effects, and Mitigat...
 
(CISOPlatform Summit & SACON 2024) Digital Personal Data Protection Act.pdf
(CISOPlatform Summit & SACON 2024) Digital Personal Data Protection Act.pdf(CISOPlatform Summit & SACON 2024) Digital Personal Data Protection Act.pdf
(CISOPlatform Summit & SACON 2024) Digital Personal Data Protection Act.pdf
 
The Role of IoT in Australian Mobile App Development - PDF Guide
The Role of IoT in Australian Mobile App Development - PDF GuideThe Role of IoT in Australian Mobile App Development - PDF Guide
The Role of IoT in Australian Mobile App Development - PDF Guide
 
Calgary MuleSoft Meetup APM and IDP .pptx
Calgary MuleSoft Meetup APM and IDP .pptxCalgary MuleSoft Meetup APM and IDP .pptx
Calgary MuleSoft Meetup APM and IDP .pptx
 
How Social Media Hackers Help You to See Your Wife's Message.pdf
How Social Media Hackers Help You to See Your Wife's Message.pdfHow Social Media Hackers Help You to See Your Wife's Message.pdf
How Social Media Hackers Help You to See Your Wife's Message.pdf
 

Power Source Miscanthus

  • 1. den 17 januari 2007 A versatile solution? Growing Miscanthus for bioenergy by Jonathan Harvey The need for a rapid reduction in greenhouse gases is well known, and bioenergy is one of the possible solutions. The new perennial grass crop Miscanthus is particularly promising for bioenergy, as it is hardy, fast growing and efficient in its use of water. Jonathan Harvey reviews the technical and commercial progress, and future prospects, for the crop. Miscanthus is the name of a group of perennial grasses native to Asia and Africa, and first introduced into the UK as an ornamental plant in the 19th century. The type most commonly grown for biomass is a sterile hybrid (called Miscanthus x giganteus), which, once established, grows 3-metre woody canes each summer. The canes themselves sprout from underground rhizomes, which are perennial and tough - able to survive in all but the coldest areas of Europe. The cane senesces in the autumn and winter, with most of the nutrients and salts being returned from the canes to the rhizomes below ground for next year’s growth. The standing cane’s dry matter content will increase over winter, reaching 60%-90% by the time it is ready to be harvested in February to April. Yields of Miscanthus cane from mature crops are typically 12-20 tonnes dry matter per hectare per year in temperate Europe. Yields in the USA (Illinois) have been recorded at over 40 tonnes. The energy content of the cane is typically 17 MJ per kg of dry matter, similar to wood but with higher silicon content. Miscanthus compared with other crops Miscanthus and maize are the only agricultural crops grown in northern Europe that possess the C4 photosynthetic pathway, all others being C3 pathway (C3 and C4 are the two main types of photosynthesis). The C4 system requires more energy (light and heat) to drive it than C3, but in favourable conditions it can operate with greater photosynthetic efficiency, and with more efficient use of water and nitrogen. Most C4 plants grow in warm temperate or tropical climates, and few have evolved to be frost hardy. Miscanthus is an exception, with some varieties able to survive in countries with much colder winters than the UK, such as Japan. In total, C4 plants comprise only 5% of global biomass, but they include some of the highest-yielding crops in the world (C4 crops include sugar cane, sorghum and maize). When harvested, Miscanthus has a higher dry matter content than trees or SRC willow. Despite high efficiency in water use, the crop is still rainfall dependent to achieve highest yields. Environmental benefits of Miscanthus When the potential for specific energy crops was examined, one of the key issues was that the energy expended in growing them should be less than for conventional arable crops. This is helped if the energy crops have low requirements for fertilizers, pesticides and other agrochemicals, as these consume large amounts of fossil energy in their manufacture. Low machinery costs are also desirable, and perennial crops have an advantage as annual soil cultivations are not needed. The energy and carbon savings of growing perennial energy crops in countries such as the UK can be considerable.
  • 2. The old and the new? Miscanthus bales outside a coal-fired power station in the UK SUPERGEN By contrast, there is no certainty of similar savings from co-firing of imported biomass unless the sustainability of each product and source is carefully assessed, including transportation from source to power station. Miscanthus energy balance The key benefit of Miscanthus is that the energy expended in growing it (planting, chemicals, harvesting, drying etc) is much less than that released when it is used for fuel. This energy ratio has been calculated (by ADAS Consultancy Ltd working for ETSU/UK Department of Trade and Industry) for Miscanthus and other crops (see Table 1). This table show that planting Miscanthus in place of typical arable crops can greatly reduce energy inputs whilst increasing energy output in the form of mainly cellulosic material, well suited to use as fuel. Similar calculations have been published by DTI (in URN 01/797) and put the energy ratio for Miscanthus at 36:1. Carbon balance and emissions ‘saved’ The high energy balance with Miscanthus is associated with a high carbon balance for the crop. Calculations published by DTI (publication URN 01/797) put the Miscanthus carbon ratio at 53:1. This means that, of the carbon contained in the fuel, for every one part of man-made carbon inputs needed to grow and harvest it, 53 parts are absorbed by the crop from the environment. Miscanthus biomass contains 47% carbon; therefore a crop of 15 tonnes dry matter per hectare would fix, in a single year, 7 tonnes of carbon - equivalent to 25.7 tonnes of CO2. Harvested for co-firing in late winter, the crop is potentially carbon neutral, because only the carbon fixed by photosynthesis in the previous growing season is released when the crop is co-fired with coal, saving an equivalent amount of fossil fuel carbon from coal. Thus a significant quantity of emissions can be prevented by co-firing. Dr Mortimer, in the DTI publication Climate Change and the European Countryside, has calculated that co-firing Miscanthus pellets could save 16.4 tonnes of CO2 equivalent in greenhouse gases per hectare per year of a high yielding Miscanthus crop.
  • 3. Miscanthus is a hardy crop and can survive winter in all but the coldest of European climates SUPERGEN Soil carbon sequestration In addition to its positive energy balance (particularly when compared with other energy crops such as rapeseed), Miscanthus can sequester large amounts of carbon underground for a long period (over 100 years). Miscanthus cane is harvested annually but no soil cultivation is carried out after the first year, so that in the first four years Miscanthus may sequester 7-9 tonnes of carbon per hectare in the soil. The long-term benefit of this will depend on yield, soil type and climate, but in some circumstances will be significant. By contrast, long-term annual cropping reduces soil carbon, and arable soils typically contain less than 2% carbon. Non-cultivation of arable land typically increases soil carbon. Land typically contains 130 to 650 tonnes of carbon per hectare, so the potential for carbon sequestration with Miscanthus can be considerable. R.B. Mathews and P. Grogan, in a paper published by the Association of Applied Biologists (AAB 65:303-312), have compared long-term potential carbon sequestration rates for SRC willow, woodland and Miscanthus. High rates of carbon sequestration are predicted for all three crops, with the highest rate for Miscanthus at 0.93 tonnes of carbon/ha/year.
  • 4. A perennial crop, Miscanthus can produce canes up to 3 metres high each summer BICAL Impact on biodiversity The expansion of perennial biomass crops in the UK is potentially more environmentally friendly than the use of other crops. The leaf litter from the previous harvest remains; this prevents weed growth, preserves soil moisture, reduces soil erosion and represents a good environment for insects and other fauna. Miscanthus can support a greater diversity of species than annual crops, and creates a number of ecological niches in which populations of organisms are increased. Pheasants have been observed, and deer are commonly seen in UK plantations. A review for MAFF (the then UK Dept of Agriculture) (Brent K.J 1998) reports greater species diversity with Miscanthus than for rye. It also reports that in Germany a Miscanthus plantation gave winter harbour to deer, hares, quail and partridge. Later, nesting reed warblers and linnets were observed. A more recent study funded by the DTI (Semere, T. & Slater, F. 2004) stated: ‘In conclusion, because perennial rhizomatous grasses require a single initial planting, and because the crops were harvested in March and not disturbed by cultivation every year, the fields were used as over-wintering sites for birds, small mammals and invertebrates, suggesting immediate benefits to biodiversity. Further trials are currently being funded by DEFRA and BICAL Ltd.’ Miscanthus for atmospheric carbon reduction By efficient growth and conversion of biomass to power, including sequestration of power station stack emissions of CO2 by burial, or conversion by algae to biomass, it is in theory possible to generate electricity, and simultaneously reduce GHG levels in the atmosphere. Clearly the technology is not ready, but the potential is there already. Miscanthus as fuel
  • 5. Development of UK co-firing market Currently, the main use of Miscanthus in the UK is in co-firing with coal in existing power stations, in line with the Renewable Obligation. There are 15 large co-firing locations registered in the UK, creating an annual requirement for over 3 million tonnes of biomass fuel. Several are interested in Miscanthus supply contracts. Of the Miscanthus supply companies, Biomass Industrial Crops Ltd (trading as BICAL) appears to be dominant, having the major EU supply of rhizome for planting, and having invested heavily in planting and cane handling technology. Current estimates suggest it has a 7% share of this market for contracts. The Miscanthus fuel is supplied to the power stations as field-compacted bales, or compacted products (pellets or cubes). BICAL has secured large-scale fuel contracts with substantial power companies, including Drax, and is currently aiming to secure contracts for 32,500 ha of Miscanthus crops (so far around 7000 ha of Miscanthus have been established). To help supply these substantial end users, BICAL Ltd has set up four wholly owned subsidiary fuel producer groups. The core product of these groups will be Miscanthus for co-firing, but products such as pellets for the heat market and animal bedding products will be developed. Planting machines in the UK. Over the next few years, Miscanthus growing could expand from a relatively small business into a huge global industry BICAL UK dedicated crop- fuelled power stations Around the UK, there are a number of small power stations built or under construction which will use Miscanthus as feedstock. The EPR crop-fuelled power station at Ely has been operating successfully for several years burning mainly cereal straw bales on a grated bed system. Some modifications have been made, and now enable Miscanthus bales to be handled. Commercial trials with Miscanthus were successful, and it is now considered a valid alternative fuel. However the present owners do not currently burn Miscanthus, and have no plans to do so. The power station is rated at 38 MWe and conversion efficiency is well over 30%. At Eccleshall in Staffordshire, a small Miscanthus-fuelled power station is currently under construction, supplied by a growers’ group organized by BiEcc Ltd, a subsidiary of BICAL Ltd. It has a Talbott boiler system and power output is rated at 2.5 MWe. In another project, John Amos & Co Ltd is supplying Miscanthus fuel for the first on-farm combined heat and power station in UK. The plant is powered by a Talbott BG 100 generator producing 100 kW and 200 kWth of heat. There are further plans to install five new power stations with a combined capacity of up to 10 MWe. UK domestic and commercial heat market Domestic heaters and boilers fuelled by pellets or cubes are beginning to emerge as a substantial long-term market, albeit one that Miscanthus is not currently exploiting. However the market is strong, with pellets selling at £130 ($250) per tonne being competitive with fossil fuels. Both BICAL and John Amos & Co are planning to produce Miscanthus pellets to tap into this lucrative sector.
  • 6. Biomass heating has been identified by the UK DTI as the most efficient way to utilize local biomass. A recent report suggests agricultural biomass could contribute up to 3% of UK energy supply in this way. Pembrokeshire Bio-energy is a Miscanthus growers’ group which now has 100 ha of crop planted, sufficient to fuel the entire Bluestone Holiday Village Project. To run the operation they have set up an energy services supply company, which supplies the heat requirements of the village, charged to users per kWh. In addition they plan to produce biomass pellets for domestic and commercial use. Future markets for Miscanthus Whilst combustion in UK power stations, mainly in co-firing with coal, is the main current use of Miscanthus, other developments show great promise in the longer term, including paper pulp and liquid biofuels. Cellulosic bioethanol and biodiesel Bioethanol and biodiesel are currently produced mainly from seed crops by processes that give net energy (output/input) balances of 1.5:1 or less. In some of the older processes the balance is less than one, so that there is a net energy loss in the process. However companies in USA, Canada and Spain are just starting to build the first commercial plants to make bioethanol from cellulosic crops and crop residues. These will give much higher energy balances, producing about twice the amount of ethanol per hectare of crop than is possible by fermentation of maize grain. Initially, corn stover and other cereal straws will be used for the cellulosic conversions, but one company in Louisiana has selected sugar cane bagasse as raw material, which is similar to Miscanthus cane. The United States Department of Energy (DOE) has estimated that cellulosic processes could potentially yield one million litres of ethanol for every 150-300 hectares of crop. There is considerable interest in the use of switchgrass and Miscanthus for ethanol production, particularly in the United States. Both crops are C4 pathway perennial grasses, and although switchgrass is native to the North American prairies, Miscanthus appears to be higher yielding, at least in some of the northern states including Illinois, according to work done at the University of Illinois. According to Michael Wang of Argonne National Laboratories USA, these types of cellulosic ethanol are estimated to reduce greenhouse gas emissions (compared to gasoline) by 80% (compared with 20%-30% for grain ethanol), and so could produce major environmental benefits. It is also technically possible to make synthetic diesel from Miscanthus by fast pyrolysis or the Fischer-Tropsch process. Despite this there have so far been no announcements on the commercial use of Miscanthus for biofuels. Potential for Miscanthus across Europe Clifton-Brown et al., (in Global Change Biology April 2004) estimate that if Miscanthus was grown on 10% of suitable land in the EU-15 countries it could produce electricity equal to 9% of the gross electricity output in 2000. Total carbon mitigation could be about 9% of the EU carbon emissions (at 1990 levels), which could allow the union to meet its Kyoto obligations from Miscanthus alone. (Note that the figure of 9% of total carbon emissions includes the displacement of coal and the potential carbon sequestered to the soil by the Miscanthus crop). To date the UK appears to have the main stocks of biomass-quality Miscanthus rhizomes in Europe. To capitalize, BICAL has set up subsidiary companies in France and Ireland with trading partners, operating under the BICAL identity. The company is also active in Germany, Austria, Italy, Spain and Poland. Other companies, including ADAS Consulting Ltd are also active in some countries in a consultancy or supply role. In France, INRA, the government research organization, has set up a development programme for cellulosic biomass ethanol crops, and Miscanthus plays a major role in this. Meanwhile BICAL France is actively recruiting growers for a range of end uses, including co-firing, over most of the country. Early work in Germany, particularly in Bavaria, gave very high yields, but progress was set back by winter hardiness problems with small tissue-cultured plants not surviving the first winter. Now however a number of farmers and businesses are actively developing
  • 7. the crop. Germany has always had considerable expertise in the development of liquid fuel alternatives to gasoline, and seems likely to continue to lead in this area. Figure 1. Map showing the predicted yields of Miscanthus across Europe. Source: Kassel University In Ireland the government has recently announced its intention to set up an energy crop establishment support scheme, with EU funding for willow SRC and Miscanthus planting. Possible uses would be the conversion of the current peat burning fluidized bed power stations to biomass, at least in part, and there are also possibilities to co-fire Miscanthus with coal in large modern plants. Both uses would improve carbon mitigation. Ireland’s pastureland produces heavy emissions of methane from the ruminant livestock. There are possibilities for profitable conversion of this land to Miscanthus for energy cropping with concurrent reductions in GHG emissions, and good soil carbon sequestration potential. In the Ukraine, Miscanthus is being planted on a 5000 ha energy park, but little other information is currently available. Back in the UK, the DTI and the Carbon Trust have forecast that energy crops could supply 5%-6% of electricity demand by 2020, through a combination of combustion and gasification technologies. This assumes the planting of 350,000 ha (35% of the DEFRA estimated available space) of energy crops, and could save emissions up to 8 million tonnes of CO2/year. The DTI estimates suggest that Miscanthus (22-27 g/kWh net CO2) gives lower emission rates than SRC willow or straw. European Union Biomass Plan Considering the EU-25 as a whole, the European Biomass Plan (published in December 2005) shows very high requirements for energy crops from agriculture and biomass in total across the EU-25 from 2010 to 2030 (Table 2). This suggests colossal rates of increase in biomass cropping for electricity, transport fuels and heating. In total, the biomass plan would reduce emissions by 209 million tonnes CO2 equivalent per year, and would provide employment for 250,000-300,000 people, mainly in rural areas. As much as one quarter of the cropping could be provided by Miscanthus, if sufficient rhizome stock were available.
  • 8. Potential for Miscanthus in the USA Trial yields of Miscanthus in the USA have been very high, reaching over 40 tonnes dry matter/hectare in Illinois. Indeed, Illinois used to be called ‘The Prairie State’ with over 60% of the state covered in grassland, until it was ploughed up for arable farming. Illinois University (Steve Long and Emily Heaton) has led this work on Miscanthus, and commercial uses are being developed. These could include co-firing in local coal power stations, and use as pellets for pellet stoves. Pellet stoves that handle grain, corn stover and switchgrass are available and being further developed for Miscanthus. It is known that there is significant potential, particularly for cellulosic bioethanol and biodiesel production, in the USA, from a range of technologies, including gasification and pyrolysis conversions as well as novel enzymatic systems. Illinois farm management budgets suggest much higher net margins from Miscanthus than from corn and soya bean rotations. CERES, a California-based biotechnology company, is involved in breeding new varieties or multiplication (increasing plant stocks) of switchgrass and Miscanthus, while BICAL is working with Illinois University, and has farming partners establishing commercial Miscanthus production. BICAL has also formed a partnership with Environmentally Correct Concepts Inc in Illinois, to utilize their patented technology for carbon sequestration quantification. USDOE energy crop national forecasts The US Department of Energy, along with its Oak Ridge National Laboratory (ORNL), forecasts the requirement for energy crops by 2008 at 188 million tonnes (at less than $50 per tonne dry matter). Other ORNL data suggests that if perennial energy crop yields are high (as they have been so far for Miscanthus) the requirement for all uses could be 377 million tonnes dry matter, and with moderate yields 150 million tonnes of dry matter. USDOE forecasts total potential biomass production (all sources) of 1 billion tonnes dry matter per year by 2030. These quantities are of similar orders of magnitude to those forecast by the EU over the same period. Achievement of these requirements, with Miscanthus, will be difficult, due to the shortage of Miscanthus rhizome for planting currently available in the USA. However with sufficient government determination towards liquid fuel self- sufficiency, and increasing awareness of the need for carbon mitigation, these targets could be reached. Jonathan Harvey is an agronomist with experience in the introduction of novel crops to UK agriculture. He operates a consultancy organization, Crops for Industry, specializing in agricultural energy crops and, recently, algaeculture. e-mail: JONHATKENN@aol.com The author wishes to thank Dr Paul Carver, technical director of BICAL Ltd, for information provided for this article.