SlideShare a Scribd company logo
1 of 219
Download to read offline
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 2.
Eq. 19.15: 2
m m n m m nv x a xω ω= =
Given data 2
0.2 m/s 4 m/sm mv a= =
: 0.2 m/sm m n m mv x xω ω= = (1)
2 2 2
: 4 m/sm m n m ma x xω ω= = (2)
Divide Equ. (2) by Equ. (1):
2
4 m/s
20 rad/s
0.2 m/s
nω = =
Eq. (1): ( )0.2 m/s 20 rad/smx=
0.01 mmx = 10 mmmx = !
Frequency
20 rad/s
2 2
n
nf
ω
π π
= = 3.18 Hznf = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 3.
cycle 2 rad
sin , 6
s cycle
m n nx x t
π
ω ω= = ×
sin 12mx x tπ=
12 cos12mx x tπ π=&
2
144 sin12mx x tπ π= −&&
12 4 ft/smxπ =
4
0.1061 ft
12
mx
π
= =
1.273 in.mx = !
( )2 2
Max Acc. 144 0.1061 150.8 ft/sπ= = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 4.
Simple Harmonic Motion
20 lb
0.2222 in.
90 lb/in.
s
W
k
δ = = =
( )( )90 12
41.699 rad/s 2
20
32.2
n
k
f
m
ω π= = = =
 
 
 
(a) Amplitude 0.222 in.s mxδ= = =
0.222 in.mx = !
41.699 rad/s
6.6366
2
f
π
= =
6.64 Hzf = !
(b) ( )( )41.699 rad/s 0.2222 in. 9.2655 in./sm n mv xω= = =
9.27 in./smv = !
( ) ( )22 2
41.699 rad/s 0.2222 in. 386.36 in./sm n ma xω= = =
2
32.197 ft/s=
2
32.2 ft/sma = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 5.
Simple Harmonic Motion
(a) ( )sinm nx x tω φ= +
( )( )2
9000 lb/ft
70 lb 32.2 lb/s
n
k
m
ω = =
64.343 rad/s=
2
0.90765 sn
n
π
τ
ω
= =
0.0977 snτ = !
1
10.240 Hzn
n
f
τ
= =
10.24 Hznf = !
(b) At 0 0 00: 0, 10 ft/st x x v= = = =&
( )( )0 0 sin 0 0m nx x ω φ φ= = + ⇒ =
( )( )0 0 cos 0m n n m nx v x xω ω φ ω= = + =&
Substituting 10 ft/s 64.343 rad/smx=
or 0.1554 ft 1.865 in.mx = =
1.865 in.mx = !
( )( )22
0.15542 ft 64.343 rad/sm m na x ω= =
2
643.4 ft/s=
2
643 ft/sma = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 6.
In Simple Harmonic Motion
(a) 2
m m na x ω=
Substituting ( )2 2
50 m/s 0.058 m nω=
or ( )22
862.07 rad/snω =
29.361 rad/snω =
Now
29.361 rad/s
4.6729 Hz
2 2
n
nf
ω
π π
= = =
Then
( )( )
1 cycle 1
in Hz Hz
1 min 60 s/min 60
f = =
So
( ) 11
6060
Hz 4.6729 Hz
280.37 r/min
Hz
f
= =
and 280 rpm
(b) ( )( )0.058 m 29.361 rad/s 1.7029 m/sm m nv x ω= = =
1.703 m/smv =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 7.
Simple Harmonic Motion
(a) ( )sinm ntθ θ ω φ= +
( )
2 2
1.35 s
n
n
π π
ω
τ
= =
4.833 rad/s=
( )cosm n ntθ θ ω ω φ= +&
m m nθ θ ω=&
m m m nv l lθ θ ω= =&
Thus, m
m
n
v
l
θ
ω
= (1)
For a simple pendulum
n
g
l
ω =
Thus,
( )
2
2 2
9.81 m/s
4.833 rad/sn
g
l
ω
= =
0.420 m=
From (1)
( )( )
0.4 m/s
0.42 m 4.833 rad/s
m
m
n
v
l
θ
ω
= =
0.197 rad=
or 11.287°
11.29mθ = °!
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
(b) Now
ta lθ= &&
Hence, the maximum tangential acceleration occurs when θ&& is
maximum.
( )2
sinm n ntθ θ ω ω φ= − +&&
2
m m nθ θ ω=&&
( ) 2
t m nm
a lθ ω=
or ( ) ( )( )( )2
0.42 m 0.197 rad 4.833 rad/st m
a =
2
1.9326 m/s=
( ) 2
1.933 m/st m
a = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 8.
Simple Harmonic Motion:
2
60 lb/ft
6.2161 rad/s
50 lb
32.2 ft/s
n
k
m
ω = = =
6.2161
Hz
2 2
n
nf
ω
π π
= =
(a) 2.4 in. 0.2 ftmx = = 0.2 ftmx = !
0.989 Hznf = !
( )( )22
0.2 ft 6.2161 rad/sm m na x ω= =
2
7.728 ft/s=
(b) f m sF ma mgµ= =
or
2
2
7.728 ft/s
0.240
32.2 ft/s
m
s
a
g
µ = = = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 9.
6 lb/in. 72 lb/ft, 55 in./s, 4 lb.mk v W= = = =
: 0
k
F ma kx mx x x
m
= − = + =&& &&
Thus: 2 72
579.6 24.025 rad/s
4
32.2
k
m
ω ω= = = =
 
 
 
Eq. (19.15): m mv x ω=
( )55 in./s 24.025 rad/smx=
2.2845 in.mx = 2.28 in.mx = !
( )( )2 2 2
2.2845 in. 579.6 rad /sm ma x ω= =
2
1324.1 in./sma = 2
110.3 ft/sma = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 10.
( )60cos 10 45sin 10
3
x t t
π
π π
 
= + − 
 
( )60cos 10 45 sin10 cos cos10 sin
3 3
t t t
π π
π π π
 
= + − 
 
22.5sin10 21.02886cos10t tπ π= + (1)
Now
sin(10 ) sin10 cos cos10 sinm m mx t x t x tπ φ π φ π φ+ = + (2)
Comparing (1) and (2) gives
22.5 cos , 21.02866 sinm mx xφ φ= =
(a)
2 2
0.2 s
10
n
n
π π
τ
ω π
= = = !
(b) 2 2 2
(22.5) (21.02866)mx = +
30.8 mmmx = !
(c)
21.02866
tan
22.5
φ = 0.7516 rad 43.1φ = = °!
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 11.
At both 600 rpm and 1200 rpm, the maximum acceleration is just equal to g.
(a) 600 rpm 62.832 rad/sω = =
Eq. (19.15):
( )
2
2
62.832
m m m
g
a x xω= =
SI:
( )
3
2
9.81
2.4849 10 m
62.832
mx −
= = × 2.48 mmmx =
US:
( )2
32.2
0.008156 ft
62.832
mx = = 0.0979 in.mx =
(b) 1200 rpm 125.664 rad/sω = =
Eq. (19.15):
( )
2
2
125.664
m m m
g
a x xω= =
SI:
( )
6
2
9.81
621.2 10 m
125.664
mx −
= = × 0.621 mmmx =
US:
( )2
32.2
0.002039 ft
125.664
mx = = 0.0245 in.mx =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 12.
Simple Harmonic Motion, thus
( )sinm nx x tω φ= +
400 N/m
16.903 rad/s
1.4 kg
n
k
m
ω = = =
Now (0) 0 sin(0 ) 0mx x φ φ= = + ⇒ =
Then
(0) cos(0 0)m nx x ω= +&
or 2.5 m/s ( )m(16.903 rad/s) 0.14790 mm mx x= ⇒ =
Then ( ) ( )0.14790 m sin 16.903 rad/sx t =  
(a)
At ( )0.06 m: 0.06 m (0.14790 m)sin 16.903 rad/sx t = =  
or
1 0.06 m
sin
0.14790 m
0.02471 s
16.903 rad/s
−  
 
 = =t
0.0247 st = !
(b) Now
( )cosm n nx x tω ω=&
( )2
sinm n nx x tω ω= −&&
Then, for 0.024713 st =
( )( ) ( )( )0.1479 m 16.903 rad/s cos 16.903 rad/s 0.024713 sx  =  &
2.285 m/s= 2.29 m/sx =& !
And
( )( ) ( )( )2
0.1479 m 16.903 rad/s sin 16.903 rad/s 0.024713 sx  = −  &&
2
17.143 m/s= − 2
17.14 m/sx =&& !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 13.
Referring to the figure of Problem 19.12
( )sinm nx x tω φ= +
( )cosm n nx x tω ω φ= +&
( )2
sinm n nx x tω ω φ= − +&&
Using the data from Problem 19.13: 0, 0.1479 m, 16.903 rad/sm nxφ ω= = =
, , arex x x& &&
And ( ) ( )0.14790 m sin 16.903 rad/sx t =  
So, at 0.9 s,t =
( ) ( )( )0.1479 m sin 16.903 rad/s 0.9 sx  =  
0.0703 m= 70.3 mmx = !
( )( ) ( )( )0.1479 m 16.903 rad/s cos 16.903 rad/s 0.9 sx  =  &
2.19957 m/s= − 2.20 m/sx =& !
( )( ) ( )( )2
0.1479 m 16.903 rad/s sin 16.903 rad/s 0.9 sx  =  &&
2
20.083 m/s= − 2
20.1 m/sx =&& !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 14.
(a)
sin( )m nx x tω φ= +
( )
( )2
9000 lb/ft
70 lb
32.2 lb/s
ω = =n
k
m
64.343 rad/s=
2
0.9765 sn
n
π
τ
ω
= =
With the initial conditions: (0) 15 in. 1.25 ft, (0) 0x x= = =&
( )1.25 ft sin 0mx φ= +
(0) 0 cos(0 )
2
m nx x
π
ω φ φ= = + ⇒ =&
1.25 ftmx =
Then
( ) (1.25 ft)sin 64.343
2
x t t
π 
= + 
 
(1.5) (1.25 ft)sin 64.343(1.5 s) 0.80137 ft
2
x
π 
= + = − 
 
( )(1.5) (1.25 ft)(64.343)cos 64.343 1.5 s 61.726 ft/s
2
x
π 
= + = − 
 
&
In 1.5 s, the block completes
1.5 s
15.361 cycles
0.09765 s/cycle
=
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
So, in one cycle, the block travels
4(1.25 ft) 5 ft=
Fifteen cycles take
15(0.09765 s/cycle) 1.46477 s=
Thus, the total distance traveled is
15(5 ft) 1.25 ft (1.25 0.80137)ft 77.1 ft+ + − =
Total 77.1 ft= !
(b)
2
(1.5) (1.25 ft)(64.343 rad/s) sin (64.343 rad/s)(1.5 s)
2
x
π 
= − + 
 
&&
2
3317.68 ft/s= 2
3320 ft/sx =&& !
COSMOS: Complete Online Solutions Manual Organization System
Chapter 19, Solution 15.
2
2
10 lb
0.31056 lb s /ft
32.2 ft/s
m = = ⋅
With the given properties:
2
50 lb/ft
12.6886 rad/s
0.31056 lb s /ft
n
k
m
ω = = =
⋅
From free fall of the collar
( )0 2 2 1.5 ft 3 9.82853 ft/sv gh g g= = = =
The free-fall time is thus:
( )
1
2 1.5 ft2 3
0.30523 s
y
t
g g g
= = = =
Now to simplify the analysis we measure the displacement from the
position of static displacement of the spring, under the weight of the
collar:
Note that the static deflection is:
10 lb
0.2 ft
50 lb/ft
st
W
k
δ = = =
Then 0,mx kx+ = where x is measured positively up from the
position of static deflection. The solution is:
( )sin ,m nx x tω φ= + with velocity
( )cosm n nx x tω ω φ= +
Now to determine and ,mx φ impose the conditions at impact and
count the time from there.
Thus:
At impact:
0, 0.2 ft and 9.82853 ft/sstt x vδ= = = = − (down)
or 0.2 ft sinmx φ=
( )9.82853 ft/s 12.6886 rad/s cosmx φ− =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Solving for andmx φ
0.800 ftmx = −
0.25268 radφ = −
So, from time of impact, the ‘time of flight’ is the time necessary for the
collar to come to rest on its downward motion. Thus, is the time such2t
that
( )2 20 12.6886
2
x t t
π
φ= ⇒ + =
or 212.6886 0.25268
2
t
π
− =
Hence, 2 0.14371 st =
(a) Thus, the period of the motion is
( ) ( )1 22 2 0.30523 s 0.14371 st tτ = + = +
0.89788 s= 0.898 sτ =
(b) After 0.4 seconds, the velocity is
( ) ( )10.4 cos 0.4m n nx x tω ω φ⎡ ⎤= − +⎣ ⎦
( )( ) ( )( )12.6886 rad/s 0.8 ft cos 12.6886 rad/s 0.4 0.30523 s⎡= − −⎣
]0.25268 rad−
5.91ft/s= − ( )0.4 5.91 ft/sv =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 16.
sin , cos ,m n m n n n
g
t t
l
θ θ ω θ θ ω ω ω= = =&
9.81
2.8592 rad/s,
1.2
nω = =
0.18
0:
1.2
m nt θ θ ω= = =&
0.052462 radiansmθ∴ =
At 1.5 s,t = ( )( )0.052462 sin 2.8592 1.5θ =
(a) 0.047826θ = − radians 2.74= − ° !
(b) ( )( ) ( )( )1.2 0.052462 2.8592 cos 2.8592 1.5v =
74.0 mm/sv = !
( )( ) ( )( )2
1.2 0.052462 2.8592 sin 2.8592 1.5a =
2
469 mm/sa = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 17.
(a)
( )sinm nx x tω φ= +
( )0 sin 0 0.75 ftmx x φ= + =
( )0 0 cos 0 ,
2
m nx x
π
ω φ φ= = + ⇒ =&
0.75 ftmx∴ =
When the collar just leaves the spring, its acceleration is
g (downward) and 0.v =
Now
( )0.75 ft cos
2
n nx t
π
ω ω
 
= + 
 
&
( ) ( )0 0 0.75 ft cos ,
2 2 2
n n nx v t t
π π π
ω ω ω
 
= = = + ⇒ + = 
 
&
And
( ) 2
0.75 ft sin
2
n na g t
π
ω ω
 
= − = − + 
 
or ( ) 2
0.75ft ng ω− = −
2
32.2 ft/s
6.5524 rad/s
0.75 ft
nω = =
Then
( )22
2
10 lb
, 6.5524 rad/s
32.2 ft/s
n n
k
k m
m
ω ω= ⇒ = =
13.333 lb/ft=
13.33 lb/ftk = !
(b) 6.5524 rad/snω =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
At 1.6 s:t =
( ) ( )( )0.75 ft sin 6.5524 rad/s 1.6 s 0.36727 ft
2
x
π 
= + = − 
 
0.367 ftx = − above equilibrium !
( )( ) ( )( )0.75ft 6.5524 rad/s cos 6.5524 rad/s 1.6 s 4.2848ft/s
2
v x
π 
= = + = 
 
&
4.28 ft/sv = !
( )( ) ( )( )2 2
0.75 ft 6.5524 rad/s sin 6.5524 rad/s 1.6 s 15.768 ft/s
2
a x
π 
= = − + = 
 
&&
2
15.77 ft/sa = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 18.
Determine the constant k of a single spring equivalent to the three springs shown.
Springs 1 and 2:
1 1 1
1 2
1 2
, and
P P P
k k k
δ δ δ= + = +
′
Hence
1 2
1 2
k k
k
k k
′ =
+
Where k′is the spring constant of a single spring equivalent of springs 1 and 2.
Springs k′and 3 Deflection in each spring is the same
So 1 2 1 2 3, and , ,P P P P k P k P kδ δ δ′= + = = =
Now 3k k kδ δ δ′= +
1 2
3 3
1 2
k k
k k k k
k k
′= + = +
+
or
( )( )
( ) ( )
33.5 kN/m 2.1 kN/m
2.8 kN/m 4.11 kN/m 4.11 10 N/m
3.5 kN/m 2.1 kN/m
k = + = = ×
+
(a)
3
2 2
0.361 s
4.11 10 N/m
13.6 kg
n
k
m
π π
τ = = =
×
1 1
2.77 Hz
0.3614 s
n
n
f
τ
= = =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
(b) ( )sinm nx x tω φ= +
And 44 mm 0.044 mmx = =
( )( )2 2 2.77 Hz 17.384 rad/sn nfω π π= = =
And
( ) ( )0.044 m sin 17.4 rad/sx t φ = + 
( )( ) ( )0.044 m 17.4 rad/s cos 17.4 rad/sx t φ = + &
Then ( )( )max 0.044 m 17.4 rad/s 0.766 m/sv = =
( )( ) ( )2
0.044 m 17.4 rad/s sin 17.4 rad/sx t φ = − + &&
Then ( )( )2 2
max 0.044 m 17.4 rad/s 13.3 m/sa = =
max 0.765 m/sv =
2
max 13.31 m/sa =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 19.
(a) First, calculate the spring constant
( ) ( ) ( ) ( )24 kN/m 12 kN/m 12 kN/m 48 kN/mP δ δ δ δ= + + =
48 kN/mk∴ =
Then
3
40 10 N/m
30.984 rad/s
50 kg
n
k
m
ω
×
= = =
2
0.20279 sn
n
π
τ
ω
= =
1
4.9312 Hzn
n
f
τ
= =
0.203 snτ = !
4.93 Hznf = !
(b) Now
( )sinm nx x tω φ= +
And, since 0 0.060 mx =
( ) ( )0.060 m sin 30.984 rad/sx t φ = + 
( )( ) ( )0.060 m 30.984 rad/s cos 30.984 rad/sx t φ = + &
( )( ) ( )2
0.060 m 30.984 rad/s sin 30.984 rad/sx t φ = − + &&
Hence max 1.859 m/sv = !
2
max 57.6 m/sa = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 20.
Equivalent spring constant
2 2 4k k k k′ = + =
(Deflection of each spring is the same.)
( )1
2
2
6.8 s
10 lb
32.2 ft/s
π
τ = =n
k
2
2
10 6.8
32.2
k π 
⇒ =  
 
0.2651 lb/ftk =
( )2
2
2
4
6 lb
32.2 ft/s
π
τ =n
k
( )( )2
2
4 0.2651 lb/ft 32.2 ft/s
6 lb
π
=
2.633 s=
2.63 snτ =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 21.
Equivalent Springs
Series: 1 2
1 2
s
k k
k
k k
=
+
Parallel: 1 2pk k k= +
2 2 2 2
;s p
s ps pk k
m m
π π π π
τ τ
ω ω
= = = =
( )
( )
( )
2 22
1 21 2
1 2 1 2
1 2
5
2
τ
τ
  ++ 
= = = =       
+
ps
p s
k k kk k
k kk k k
k k
( )( ) 2 2
1 2 1 1 2 26.25 2k k k k k k= + +
( ) ( )2 2 2
2 2 2
1
4.25 4.25 4
2
k k k
k
−
=
m
1
2
2.125 3.516
k
k
= m
1
2
1
4 or
4
k
k
=
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 22.
For a static load P the total elongation of the spring is:
1 2 3
P P P
k k k
δ = + +
1 1 1
8 kN/m 12 kN/m 16 kN/m
P
 
= + + 
 
6 4 3 13
48 48
δ
+ + 
= = 
 
P P
48
3.6923 kN/m
13
P
k
δ
= = =
3
3.6923 10 N/m
( ) 12.153 rad/s
25 kg
k
a
m
ω
×
= = =
2 2
0.517 s
12.153
π π
τ
ω
= = = 0.517 sτ = !
12.153
1.9342 Hz
2 2
f
ω
π π
= = = 1.934 Hzf = !
(b) For 30 mm = 0.03 mmx =
( )( )0.03 m 12.153 rad/sm mv x ω= = 0.365 m/smv = !
( )( )22
0.03 m 12.153 rad/sm ma x ω= = 2
4.43 m/sma = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 23.
For equilibrium
Equal stretch
12 N 16 N
,A C B
k k
δ δ δ= = =
12 N ,A CT T kx= = + 16 NBT kx= +
( ) ( ) ( )4.08 9.81 2 12 16mx kx kx= × − + − +&&
3 0mx kx+ =&&
( )
3
0.0125 cos
k
x t
m
=
(a) Then ( )( )16 0.0125 1 0BT k= + − =
1.280 kN/mk = !
(b)
( )
( )
2 2 23 12803
941.76 rad /s
40 9.81
n
k
m
ω = = =
30.688 rad/s 4.88 Hzn fω = ⇒ = !
(c) ( )
3
12 1280 0.0125 cosA
k
T t
m
= +
3
Minimum when cos 1
k
t
m
= = −
( ) ( )min
12 1280 0.0125 4AT = − = −
Max Comp: 4 N !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 24.
Springs in parallel, eq 1 22k k k= +
12 16,000 2 2
10
0.2
n
k
m
π π
ω π
τ
+
= = = =
After removal
12 2
8
0.25
n
k
m
π
ω π= = =
Elimination: 2 12 16,000
100
k
m
π
+
=
2 12
64
k
m
π =
(a) 2 2 16,000
100 64 ,
m
π π∴ = × 45.0 kgm = !
(b) 2 1
1
2
64 , 14,222 N m
45.0316
k
kπ = =
1 14.22 kN/mk = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 25.
The equivalent spring constant for springs in series is:
1 2
1 2
e
k k
k
k k
=
+
1 2For andk k
( )
1 2
1 2
2 2π π
τ = =
+
e
A A
k k k
m m k k
1For alonek
1
2π
τ′ =
A
k
m
(a)
2
2 1 2k k k
τ
τ
 
= + ′ 
0.2 s
0.16667
0.12 s
τ
τ
= =
′
And with 2 3.5 kN/mk =
( )( )2
13.5 kN/m 1.6667 3.5 kN/mk= +
or 1 6.22 kN/mk =
(b)
1
2π
τ′ =
A
k
m
A
A
W
m
g
=
( )
( )
2
1 1
2
2
A
k
m
τ
π
=
And with 3
1 6.22 kN/m 6.22 10 N/mk = = ×
( ) ( )
( )
2 3
2
2
0.12 s 6.22 10 N/m
2.2688 Ns /m 2.2688 kg
2
Am
π
×
= = =
2.27 kgAm =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 26.
The equivalent spring constant, accounting for the springs in series, is
eq
2
k
k k= +
( )( ) ( )( )
eq
22
2 2
0.4 s
3 /2
100 lb 32.2 ft/s100 lb 32.2 ft/s
k k
π π
τ = = =
It follows that 510.849 lb/ftk =
511 lb/ftk = !
After the changes
eq
2
0.4 s
120/32.2
k
π
τ = =
Thus eq 919.528 lb/ftk =
Since
eq
A
A
kk
k k
k k
= +
+
or
( ) ( )
( )
eq
eq
510.849 919.528 510.849
2 2 510.849 919.528
A
k k k
k
k k
− −
= =
− −
2043.4 lb/ft=
2040 lb/ftAk = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 27.
Initially
2
1.6 s
A
k
m
π
τ = =
After the 14 lb weight is added to A,
2
2.1 s
A B
k
m m
π
τ′ = =
+
(a) A B
A
m m
m
τ
τ
′ +
=
2
2.1
1.6
A B
A
m m
m
+ 
= 
 
( )( )1.7227 A A Bm m m= + Note 2
14 lb
32.2 ft/s
Bm =
2
14 lb
1.3838 1.3838
32.2 ft/s
A Bm m
 
= =  
 
( )2
2
14 lb
32.2 ft/s 1.3838 19.373 lb
32.2 ft/s
A AW m
 
= = = 
 
19.37 lbAW = !
(b)
2
A
k
m
π
τ =
( )
( )
( )
2
2
2 Am
k π
τ
=
( )
( )
2
2
2
19.373 lb
32.2 ft/s
2
1.6 s
k π
 
 
 =
9.278 lb/ftk =
9.28 lb/ftk = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 28.
, 2 2 2s s
d d
x x F kx k x
h h
= = =
( ) ( )eff
: 2A AM M Fd mgx mx hΣ = Σ − = − &&
2
d
k x d mg x mxh
h
 
− = − 
 
&&
2
2
2
0
kd g
x x
hmh
 
+ − = 
 
&&
22
2 2
2
2 2
,
kd g k d g
h m h hmh
ω ω
   
= − = −   
  
(1)
Data: 0.3 m; 0.7 m; 20 kgd h m= = =
(a) For 1 s:τ =
2
;
π
τ
ω
= 2 22
1 s = ; 4
π
ω π
ω
=
Eq. (1):
2
2 2 0.3 9.81
4
20 0.7 0.7
k
π
 
= − 
 
2912.4 N/mk = 2.91 kN/mk =
(b) For Infinite:τ =
2
;
π
τ
ω
= 0ω =
Eq. (1):
2
2 2 0.3 9.81
0
20 0.7 0.7
k
ω
 
= = − 
 
763.0 N/mk = 763 N/mk =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 29.
(a) The equation of motion is:
( )( )( ) ( )( ): 0.75 0.75 2 1.2 m 1.2AM kθ θΣ − = &&
1.125 1.44k mθ θ− = &&
1.44 1.125 0m kθ θ+ =&&
( )3
1.125 1.35 10
0
1.44m
θ θ
×
+ =&&
1054.69
0
m
θ θ+ =&&
Then 2 1054.69 2
, and 4n n
n
s
m
π
ω τ
ω
= = =
2
2 1054.69 1054.69 2
or
4 4m m
π π 
= =  
 
427.45 kgm =
427 kgm =
(b)
( )sinm ntθ θ ω φ= +
At 0t =
0.06
0.03636 rad
1.65
m
m
θ = =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
And 0θ =&&
Then 0.03636 sinmθ φ=
( )0 cosm n ntθ ω ω φ= +
Thus , 0.0363 rad
2
m
π
φ θ= =
Now
0.06
0.03636 rad
1.65
m
m
θ = =
( )cosm n ntθ θ ω ω φ= +&
1054.69
1.5708 rad/s
427.45
nω = =
Then
0.06
0.03636 rad
1.65
m
m
θ = =
( )( ) ( )0.03636 rad 1.5708 rad/s cos 1.5708 rad/s
2
t
π
θ
 
= + 
 
&
( )( )max 0.03636 rad 1.5708 rad/s 0.05712 rad/sθ = =&
( ) ( )( )max
1.2 0.05712 rad/s 0.06854 m/scv m= =
( )max
68.5 mm/scv =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 30.
(a)
( )( )( )
( )
6 2 2 2 3 4
3 3
48 30 10 lb/in. 144 in. /ft 2 10 ft48
15 ft
P EI
k
Lδ
−
× ×
= = =
122880 lb/ft= 5
1.229 10 lb/ftk = ×
(b)
( )2
122880 lb/ft
51.360 rad/s
1500 lb 32.2 ft/s
n
k
m
ω = = =
or
1 51.36
8.17 Hz
2 2 2
n
n
k
f
m
ω
π π π
= = = =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 31.
(a) , ,e
PL AE
P k P
AE L
δ δ δ
 
= = =  
 
( )2
6
3
0.32 in.
29 10 psi
4
129.57 10 lb/in.
18 in.
e
AE
k
L
π 
   ×   = = = ×
3
129.6 10 lb/in.ek = × !
(b)
( )
( )
( )
3
2
129.57 10 lb/in.
16 lb
32.2 ft/s
81.272 Hz
2 2
e
n
k
mf
π π
×
= = =
81.3 Hznf = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 32.
st
W
k
δ
=
W
m
g
=
2 st
W
n W
stg
k g
m
δ
ω
δ
= = =
1
2 2
n
n
st
g
F
ω
π π δ
= = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 33.
(a) ( )( )2
0.10 kg 9.81 m/s 0.981 Nmg − =
1
2
2
00
0.981 N
4
4
F mg x x
 
= = ⇒ =  
 
0.06015 m=
0 60.1 mmx = !
(b) At 0,x ( )
1 1
2 2
0
0
4
2 0.06015
2x
dF
x
dx
− − 
= = 
 
8.1549 N/m=
0
8.1549 N/me
x
dF
k
dx
 
= = 
 
8.1549 N/m
0.10 kg
1.4372 Hz
2 2π π
= = =
e
n
k
mF
1.437 HznF = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 34.
Using the Binomial Theorem we write
1
2
2
2 2
1
1 sin sin
2
1 sin sin
2
m
m
θ
φ
θ
φ
−
  
= −   
    
−  
 
2 21
1 sin sin
2 2
mθ
φ= + + ⋅ ⋅ ⋅ ⋅
Neglecting terms of order higher than 2 and setting ( )2 1
sin 1 cos2 ,
2
φ φ= − we have
( )2 2
0
1 1
4 1 sin 1 cos2
2 2 2
m
n
l
d
g
π θ
τ φ φ
  
= + −  
  
∫
2 2 2
0
1 1
4 1 sin sin cos2
4 2 4 2
m ml
d
g
π θ θ
φ φ
 
= + − 
 
∫
2
2 2
0
1 1
4 sin sin sin 2
4 2 8 2
m ml
g
π
θ θ
φ φ φ
  
= + −  
  
21
4 sin 0
2 4 2 2
ml
g
π θ π  
= + +  
  
21
2 1 sin
4 2
m
n
l
g
θ
τ π
 
= + 
 
!
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 35.
For small oscillations: 0 2
l
g
τ π=
We want ( )01.01 1.01 2
l
g
τ τ π= =
Using the formula of Prob. 19.34, we write
2
0 0
1
1 sin 1.01
4 2
mθ
τ τ τ
 
= + = 
 
( )2
sin 4 1.01 1 0.04; sin 0.2; 11.54
2 2 2
m m mθ θ θ
= − = = = °
23.1mθ = ° !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 36.
Eq. (19.20)
2
2
k l
g
τ π
π
 
=   
 
For 0.8 m:l =
2
0.8 m
2 2 1.7943 s
9.81 m/s
l
g
π π= =
Thus: ( )
2
1.7943 s
k
τ
π
=
Using Table 19.1:
(a) For small oscillations:
2
0; 1m
k
θ
π
= =
1.7943 sτ = !
(b) For
2
30 : 1.017m
k
θ
π
= ° =
( )( )1.017 1.7943 sτ = 1.825 sτ = !
(c) For
2
90 : 1.180m
k
θ
π
= ° =
( )( )1.180 1.7943 sτ = 2.12 sτ = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 37.
From Equation 19.20:
2
2n
k l
g
τ π
π
  
=      
For 60 , 1.686m kθ = ° =
( ) ( )( )( )3 s 2 1.686 2
32.2
l
=
3
0.44484 0.19788
32.2 6.744 32.2
l l
= = ⇒ =
Thus 6.3718 ft 76.462 in.l = =
76.5 in.l = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 38.
( ) ( )0.6 , 0.4A st B stA B
F k l F k lθ δ θ δ   = + = +   
(a) ( )eff
:C CM MΣ = Σ
( ) ( )0.6 0.6 0.1 0.4 0.4 0.1st st tA B
lk l lmg lk l I lmaθ δ θ δ α   − + + − + = +    (1)
Equilibrium position: 0θ =
( ) ( )0.6 0.1 0.4 0st stA B
lk lmg lkδ δ− + − = (2)
Substitute (2) into (1)
( ) ( )2 2
0.1 0.6 0.4 0tI lma l k l kα θ θ+ + + =
or 2
0.1 0.52 0tI lma l kα θ+ + =
But
2
, 0.1 , ,
12
t
ml
I a lα α θ= = = &&
So ( )
2
2 2
0.1 0.52 0
12
ml
l m l kθ θ
 
+ + = 
 
&&
or 2
0.09333 0.52 0l kθ θ+ =&&
2
5.5714 0l kθ θ+ =&&
( )
850 N/m
5.5714 0
9 kg
θ θ
 
+ = 
 
&&
2
526.19 s 0θ θ−
+ =&&
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Thus 2
526.19 s 22.939 rad/s, 3.6508 Hz
2
n
n nf
ω
ω
π
−
= = = =
3.65 Hznf =
(b) ( ) ( )sin , cosm n m n nt tθ θ ω φ θ θ ω ω φ= + = +&
m m nθ θ ω=&
( ) ( )0.6A mm
x l θ= &&
( )( )( )0.0011 m/s 0.6 0.6 m 22.939 rad/smθ=
0.0001332 rad 0.0076mθ = = °
0.0076mθ = °
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 39.
( )eff
:B BM MΣ = Σ
Diskcos
2 2 2
AB
L L L
mg kxr I m Iθ α α α
  
− = + +  
  
(1)
where where from statics
2
st st
L
x r mg k rθ δ δ= + =
into (1) and assuming small angles ( )cos 1θ ≈
2
L
mg θ 2
stkr krθ δ− −
2
Disk
2
AB
L
I m I α
  
 = + +    
so
2
2
Disk 0
4
AB
mL
I I krθ θ
 
+ + + =  
 
&&
so
2 2
2
2 2
2 2
Disk Disk
1 1
4 12 4 2
n
AB
kr kr
mL mL
I I mL M r
ω = =
+ + + +
(2)
Disk
: 0.9 m
7.5 kg
0.25 m into (2)
6 kg
5 kN/m
Data L
m
r
M
k
= 

= 

= 
= 
= 
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
( )( )
( )( ) ( )( ) ( )( )
2
2
2 2 2
5000 N/m 0.25 m
1 1 1
7.5 kg 0.9 m 7.5 kg 0.9 m 6 kg 0.25 m
12 4 2
nω =
+ +
2 2
141.243 rad/snω =
11.8846 rad/snω =
(a) so
2 2
11.8846n
π π
τ
ω
= = 0.529 sτ = !
(b) 0.020 mmx =
( )0.02 11.8846 0.2377 m/sm m nv x ω= = =
max 238 mm/sv = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 40.
At equilibrium, ( )spring tension 20 lb sin15= °
( )
0
20 lb sin15
stretch
50 lb/ft
x
°
= =
20sin15PMΣ = °( ) 0
4
50
12
x−
4
12
x
  +    
2
4
12
1 20 4 20 4
16.667 0.310559
2 32.2 12 32.2 12
x
x x x
       
= + − =               
!!
!! !!
0.310559 16.667 0, 7.326 rad/snx x ω+ = =!!
(a) 0.858 sτ = !
(b) sin , cosn n nx A t x A tω ω ω= =!
( )0.5 7.326 3.66 in./snAω = = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 41.
Kinematics
2
cos sin
Non-linear terms
: sin
2
A
x A
a l l
ml
F N ma
θ θ θ θ
θ θ
= +

+
Σ = − 

& &&
&&
2 2
sin cos sin sin
2 3 2
A A
kl ml l
M Nl ma
θ
θ θ θ θΣ = − + = −
&&
or, letting cos 1,θ = sin cos , sin 0, since 1θ θ θ θ θ= = <<
2 2
2 3
0,
3 2 2
n
ml kl k
m
θ θ ω+ = =&&
For 1.5 ft,l = 2
6 lb
, 23 lb/in. 276 lb/ft
32.2 ft/s
m k= = =
(a)
1 3
7.50 Hz
2 2
k
f
mπ
= = !
(b) 2 2 max
max maxn n
x
L
θ ω θ ω= − = −&&
( )
( )
2max
0.8
3 276
3 12
98.747 rad/s
62
2 1.5
32.2
k x
m L
 
−  
 = − = =
 
 
 
2
max 98.7 rad/sθ =&& !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 42.
(a)
( )eff
:A AM MΣ = Σ
( ) ( ) ( )1.2 0.825 2 0.75 0.825 1.2R S R t tG C
mg m g F I m a m aα+ − = + + (1)
Where ( )0.75S stF k θ δ= +
At equilibrium, 0θ =
And
( )0: 1.2 0.825 2 0.75 0A R stM mg m g kδΣ = + − = (2)
Substitute (2) into (1)
( ) ( ) ( ) ( )0.825 1.2 2 0.75 0.75R t tG C
I m a m a kα θ+ + = −
( ) ( ), 0.825 , 1.2t tG C
a aα θ α α= = =&&
( )( )22
21.2 kg 1.65 m
0.2725 kg m
12 12
ml
I = = = −
( ) ( ) ( ) ( ) ( )2 2 2
0.2725 0.825 1.2 1.2 2 0.75 450 0m θ θ + + + =  
&&
[ ]1.08925 1.44 506.25 0m θ θ+ + =&&
506.25
0
1.08925 1.44m
θ θ+ =
+
&&
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Now ( )
( )
( )
2 2
22
2
2506.25 2
2 109.66
1.08925 1.44 0.6
n n
n
f
m
π π
ω π
τ
 
= = = = = 
+  
( )506.25 109.66 1.08925 1.44m= +
2.4495 kgm =
2.45 kgm =
(b) ( ) ( )max max
0.06
1.2 , 0.03636 rad
1.65 1.65
θ θ= = = =& B
C m
y
v
( )( )
1
22
0.03636 rad 109.66 s 0.38075 rad/sm m nθ θ ω −
= = =&
( ) ( )max
1.2 0.38075 rad/s 0.45691 m/sCv = =
( )max
457 mm/sCv =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 43.
2mx kx P= −&& Mx P F= −&&
21
2
Mr Frθ =&&
Eliminate , andP F θ
3
2 0
2
M
m x kx
 
+ + = 
 
&&
( )2 2 5000 N/m2
769.23
3 4 kg 9 kg
2
n
k
M
m
ω = = =
++
27.735 rad/snω =
(a)
2
0.22654 sn
n
π
τ
ω
= =
0.227 snτ = !
(b) ( )max 12 mm 333 mm/snv ω= = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 44.
From Problem 19.43
( )2 2 3500 N/m2
538.46; 23.2048 rad/s
3 4 kg 9 kg
2
n n
k
M
m
ω ω= = = =
++
( )( ) ( )( )2 2
6 kg 9.81 m/s 4 kg 9.81 m/s 98.1 NN W Mg mg= = + = + =
2 21 1
2 2
x
Fr Mr Mr
r
θ
 
= =  
 
&&&&
( )1
22
6 kg
max , ; Amplitude
98.1 N
ω= = =&& &&m m n
F
x x A A
N
( )
( )2
1
6 kg
20.5 23.2048 rad/s
98.1 N
s Aµ = =
or 0.03036 mA =
30.4 mmA = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 45.
2
2
2
4
2
2 3
0.021440 m
16
2
r r
r
b
r
r
π
π
π
  
−     = =
−
( )2
16 0.22546 kg
2
m tr t
π
ρ ρ
 
= − = 
 
( )
24 4 2
4 8 4
4 2
6 4 9 2 3
o
t r r r r
I r t r
ρ π π
ρ
π π
  
= − − + −  
   
( )4 136 9
0.009342
3 4
tr t
π
ρ ρ
 
= − = 
 
(a) 2
0,o n
o
tmgb
I mgb
I
ρ
θ θ ω+ = = =&& ( )( )( )0.22546 9.81 0.021440
tρ ( )0.009342
2
5.07602, 2.2530 rad/sn nω ω= =
2
2.79 s
n
π
τ
ω
= = !
(b)
2
2
2 2 2
9.81 m/s
, 1.9326 m
5.07602 rad /s
n
n
g g
l
l
ω
ω
= = = =
1.933 ml = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 46.
Kinematics: / ,G O G Oa a a GO d= + =
0.3 m, 4 2 /3 0.180063 mr d r π= = =
( )
2
PM mgd I m r dθ θ θ Σ = − = + −  
&& &&
Where
2 2
2
32
2 9
mr mr
I
π
= −
2
n
m
ω =
gd
m 2
32
2
r m
−
2
2
9
r
m
π
+ ( )2
65.515
r d
=
 
− 
 
2
0.776264 s
n
π
τ
ω
= = 0.776 sτ = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 47.
21
2
AI mr=
(a)
2
4
0
2 3
mr r
mgθ θ
π
 
+ = 
 
&&
or
8
0
3
g
r
θ θ
π
+ =&&
8
3
n
g
r
ω
π
=
2 2
6.82
8
3
n
n
r
gg
r
π π
τ
ω
π
= = = !
(b)
2
2 2 4
3
r
b r
π
 
= +  
 
2 2
2 2 21 4 4
2 3 3
B G
r r
I I mb mr m mr m
mπ
   
= + = − + +   
   
23
2
mr=
23
0
2
mr mgbθ θ+ =&&
or 2
2
3
gb
r
θ =&&
2
2
3
n
gb
r
ω =
2
2 2
7.38
16
2 1
9
3
n
n
r
g
g
r
π π
τ
ω
π
= = =
+
!
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 48.
( )
( )
2
22 1.61 1.6
2 0.6
3 3.6 3.6 12
A
bm m
I b b
     
 = + +    
       
211
25
mb=
( )2 0.3
3.6 6
b b b
y
b
= =
13
0.6
6 30
b
AG b b= − =
2
2 211 13
0.64
25 30 36
B
b
I mb m b m b
  
= − + +  
   
223
25
mb=
24.04
6
b
GB =
(a)
2
11 13 2
0, 6.33
25 30
n
n
mb b b
mg
g
π
θ θ τ
ω
+ = = =&& !
(b)
2
23 24.04 2
0, 6.67
25 6
n
n
mb b
mg b
g
π
θ θ τ
ω
 
+ = = =  
 
&& !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 49.
( )2 21
12
I m b c= +
1
2
ta r cα θ= = &&
( )eff
1 1
: sin
2 2
A Α tM M mg c I ma cθ α
   
Σ = Σ − = +   
   
( )
2
2 21 1
sin
2 12 2
m
mgc b c m cθ θ θ
 
− = + +  
 
&& &&
2 2
sin 0
2
3 12
g c
c b
θ θ
 
 
+ = 
 +  
&&
2
2 2 2
6
2
4 1
3 12
c
g c g b
bc b c
b
ω
 
 
 = =
  + +  
   
(1)
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
(a) Since
2
,
π
τ
ω
= minimum τ occurs when 2
ω is maximum. We consider
c
b
 
 
 
as the variable.
( )
2
2
2
2
4 1 8
6
4 1
c c c
d b b bg
c b
d c
b
b
ω
        
+ −       
        = =
      +   
   
2 2
4 1 8 0
c c
b b
   
+ − =   
   
2
1
4
c
b
 
= 
 
0.5
c
b
= !
(b) For a simple pendulum of length c we have 2 8
.
c
ω = We equate the value of 2
ω to that of Eq. (1).
2
6
4 1
c
g gb
b cc
b
 
 
  =
  
+  
   
2 2 2
1
4 1;
2
     
= + =     
     
c c c
b
b b b
0.707
c
b
= !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 50.
Consider general pendulum of centroidal radius of gyration k.
( ) ( ) 2
0 eff
: sinM Μ mgr mr r mkθ θ θ0Σ = Σ = +&& &&
2 2
sin 0
gr
r k
θ θ
 
+ = 
+ 
&&
For small oscillations, sin ,θ θ≈ we have
2 2
2
2 2 2 2
2
0 ; ; 2
gr gr r k
grr k r k
π
θ θ ω τ π
ω
  +
+ = = = = 
+ + 
&&
Connecting rod suspended at A: 1.03 sτ =
160 mm 0.16 mar r= = =
Thus
( )
( )( )
2 2
0.16
1.03 2
9.81 0.16
k
π
+
=
( ) ( )( )
2
2 2 1.03
0.16 9.81 0.16 0.04218
2
k
π
 
+ = = 
 
2
0.04218 0.0256 0.01658 ; 0.12876 mk k= − = = 128.8 mmk = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 51.
2
21 1 10
m 0.334722 m
2 2 12
I mr
 
= = = 
 
α θ= &&
(a) The disk is free to rotate and is in curvilinear translation.
Thus 0Iα =
Then ( )effB BM MΣ = Σ
sin , sintmgl lmaθ θ θ− = ≈
2
0ml mglθ θ+ =&&
And
2
2 2
26
12
32.2 ft/s
14.861 s
ft
n
g
l
ω −
= = =
1
3.8551 snω −
=
2
1.6299 sn
n
π
τ
ω
= =
1.630 snτ =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
(b) When the disk is riveted at A, it rotates at an angular acceleration α
( )effB BM MΣ = Σ
21
sin , , sin
2
tmgl I lma I mrθ α θ θ− = + = ≈
2 21
0
2
mr ml mglθ θ
 
+ + = 
 
&&
Then
( )2
2 2
2 2
2
2
26
32.2 ft/s ft
12
13.838 s
10
ft
2 2612
ft
2 12
ω −
 
 
 = = =
    +           +    
 
  
n
gl
r
l
1
3.7199 snω −
=
2
1.6891 sn
n
π
τ
ω
= =
1.689 snτ =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 52.
( )0 0 eff
: sin tM M W r I ma rθ αΣ = Σ − = +
2 2
sinmgr mk mrθ θ θ− = +&& &&
2 2
sin 0
gr
r k
θ θ+ =
+
&& (1)
For a simple pendulum of length OA l=
0
g
l
θ θ+ =&& (2)
Comparing Equations (1) and (2)
2 2
r k
l
r
+
=
2
k
GA l r
r
= − = (Q.E.D) !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 53.
See Solution to Problem 19.52 for derivation of
2 2
sin 0
gr
r k
θ θ+ =
+
&&
For small oscillations sinθ θ≈ and
2 2 2
2 2
2n
n
r k k
r
gF rg
π π
τ π
ω
+
= = = +
For smallest nτ we must have
2
k
r
r
+ a minimum
2
2
2
1 0
k
d r
r k
dr r
 
+  
  = − =
2 2
r k=
r k= (Q.E.D) !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 54.
Same derivation as in Problem 19.52 with r replaced by .R
Thus 2
0
gR
R k
θ θ+ =
+
&&
Length of the equivalent simple pendulum is
2 2 2
R k k
L R
R R
+
= = +
( )
2
2
= − + =
k
L l r l
k
r
Thus the length of the equivalent simple pendulum is the same as in
Problem 19.52. It follows that the period is the same and that the new
center of oscillation is at O (Q.E.D)
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 55.
2 2
2 2
5
4 4
l l
d l= + =
Ignore static terms: 2
2
C
l
M mg klθ θΣ = − −
2
2 2 2 5
2
12 4 4
ml
mgl kl ml ml
θ θ
θ θ θ
 
− − = + +   
 
&& &&
&&
2
3
2
2
5
3
mg
k
l
m
ω
+
=
1 6 9
2 5 10
n
k g
f
m lπ
= + !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 56.
( )eff
:
4 4 2
D D
kL r mrL mLr
M M mgr
θ
θ θ θΣ = Σ − − = +&& &&
3
0
4 2
mLr kLr
mgrθ θ
 
+ + = 
 
&&
2 4 2
3 3
n
g k
L m
ω = +
1 2 4
Hz
2 3 3
n
k g
f
m Lπ
= + !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 57.
2
2
2
1 16 lb 1 12.5 in.
12 12 12 in./ft32.2 ft/s
I ml
   
= = ⋅   
  
2
0.04493 lb ft s= ⋅ ⋅
α θ= !!
2
0.16667
12
ta α θ
 
= = 
 
!!
sinθ θ≈
( )effC CM MΣ = Σ
( ) ( )2 2
0.6875 0.16667 0.16667k mg I mθ θ θ θ− + = +!! !!
( )( )
16
0.04493 0.02778 0.47266 0.16667 16 0
32.2
kθ θ
  
 + + − =    
  
!!
[ ]0.05693 0.47266 2.6667 0kθ θ+ − =!! (1)
(a) For 50 lb/ft,k = 368.28 0θ θ+ =!!
368.28
3.007 Hz
2 2
n
nf
ω
π π
= = =
3.01Hznf = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
(b) For ,nτ → ∞ 0nω → oscillations will not occur
From Equation (1)
2 0.47266 2.6667
0
0.05873
n
k
ω
−
= =
5.642 lb/ftk =
5.64 lb/ftk = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 58.
2 3
3
3 2 3
a a
b
 
= =  
 
4 4
23 3
96 96
O
a a
I t mbρ
 
= + +  
 
23 5
,
2 2 12
O
t a
m a I ma
ρ  
= =  
 
With
2
20 lb s 16
, ft, 14 lb/ft
32.2 ft 12
m a k
⋅ 
= = = 
 
So with sinθ θ≈ for small ,θ ( )effO ΟΜ ΜΣ = Σ yields
2
25
2 0
12 3
ma mga
kaθ θ
 
+ + = 
 
&&
2
2
12
2 0
5 3
mga
ka
ma
θ θ
 
+ + = 
 
&&
2 2
2
12 12 24
2
55 3 5 3
n
mga g k
ka
a mma
ω θ
     
= + = +     
    
2 212 32.2 24 14
141.655 s
16 2055 3
12 32.2
nω −
  
  
= + =  
     
   
11.90 rad/snω =
1.894 Hz
2
n
f
ω
π
= = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 59.
Ignore static terms
( ) ( ) ( ) ( )( ) ( )( )2 2 2 21 1
50 0.6 50 0.9 1.2 0.3 1.2 0.6 1.8 0.9
3 3
BM gθ θ θ θ
 
Σ = − − + = + 
 
&&
54.9684
0.63 54.9684 0, 9.3408 rad/s
0.63
nθ θ ω+ = = =&&
0
15
cos cos
900
t tθ θ ω ω
 
= =  
 
At 2 2
00.7 s, cos 0.7 1.407 rad/sn nt θ ω θ ω= = − = −&&
2
1.407 rad/sα =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 60.
Determine location of the centroid G.
Let mass per unit lengthρ =
Then total mass ( ) ( )2 2m r r rρ π ρ π= + = +
About C 22
0 2
r
mgc r g r gπ ρ ρ
π
 
= + = 
 
2r
y
π
=
( ) 2
2 2r c rρ π ρ+ =
( )
2
2
r
c
π
=
+
( )0 0 eff tM M a c cα θ α θΣ = Σ = = =&& &&
sin sinnmgc I mcaθ α θ θ− = + ≈
( )2
00 0I mc mgc I mgcθ θ θ θ+ + = + =&& &&
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
But 2
0I mc I+ =
( ) ( )
( )2
2
0 0 0 s-circ linesemi circ line
2
12
r
I I I m r m= + = +
( )s-circ line 2
2
m
m r m r
r
ρπ ρ ρ
π
= = =
+
( )
2 2
2
0
2 2
3 2 3
r r mr
I r rρ π π
π
 ⋅  
= ⋅ + = +   +   
( ) ( )
2
2 2
0
2 3 2
mr r
mgπ θ θ
π π
 
+ + = + + 
&&
( )
( )
( )( )
2
2
2 2
3 3
2 9.81 m/s2
0.32 m
n
g
r
ω
π π
= =
+ +
2 2
16.0999 s 4.0125 rad/sn nω ω−
= =
( )sinm n Bt y rθ θ ω φ θ= + =
( ) ( ) ( )sin sinB m n B nm
y r t y tθ ω φ ω φ= + = +
At 0t = 0.03 m 0B By y= =&
( ) ( ) ( )0 0 cos 0
2
B B m
t y y
π
φ φ= = = + =&
( ) ( )0.03 sin 0 0.03 m
2
B B Bm m
y y y
π 
= = + = 
 
1
0.03sin 4.0125 s
2
B n ny t
π
ω ω − 
= + = 
 
( )( ) ( )0.03 cos 0.03 sin
2
B n n n ny t t
π
ω ω ω ω
 
= + = − 
 
&
( )( )2 2
0.03 sin 0.03 cos
2
B n n n ny t t
π
ω ω ω ω
 
= − + = 
 
&&
At 10 s:t = ( ) ( ) ( )( )2 2
0.03 4.0125 cos 4.0125 10 0.36437 m/sB Bt
a y= = = −&&
( ) ( ) ( )( )0.03 4.0125 sin 4.0125 10 0.07902 m/sB Bv y= = =&
( ) ( )
( )
11
2 22 222
2 2 20.07902
0.36437 0.365 m/s
0.32
B
B B t
v
a a
r
          = + = − + =             
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 61.
( )221 1
0.250
2 2 32
m
I mr m α θ= = = = &&
0.650ta lα θ= = &&
(a) The disk is free to rotate and is in curvilinear translation.
Thus 0I α =
( )effB BM MΣ = Σ
sin tmgl lmaθ− =
2 2
0 n
g
ml mgl
l
θ θ ω+ = =&&
From 19.17, the solution to this Equation is
( )sinm ntθ θ ω φ= +
At 0,t = 2 rad, 0
180 90
π π
θ θ= ⋅ = =&
( )cosm n ntθ θ ω ω φ= +&
0 0 cos
2
m nt
π
θ ω φ φ= = =
sin 0
90 2
m
π π
θ
 
= + 
 
rad
90
m
π
θ =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Thus sin
90 2
nt
π π
θ ω
 
= + 
 
( ) maxmaxA m nv l lθ θ ω= =&
With 26 in. 2.1667 ft, rad,
90
m n
g
l
l
π
θ ω= = = =
( ) ( )
( )2
max
32.2 ft/s
2.1667 ft rad
90 2.1667 ft
Av
π 
=  
 
0.29156 ft/s=
3.4987 in./s=
( )max
3.50 in./sAv =
(b) For disk riveted at A ( I α included)
( )effB BM MΣ = Σ sin tmgl I lmaθ α− = +
2 21
0
2
mr ml mglθ θ
 
+ + = 
 
&
2
2
2
2
n
r
gl
l
ω =
+
sin
90 2
nt
π π
θ ω
 
= + 
 
(See (a))
( ) maxmaxA m nv l lθ θ ω= =&
( )
( )( )2
2 2
32.2 ft/s 2.1667 ft
2.1667 ft
90 1 10 in. 26 in.
2 12 in./ft 12 in./ft
rad
π 
=  
     
+   
   
0.28135 ft/s=
3.376 in./s=
( )max
3.38 in./sAv =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 62.
( )1
8 0.3
8 in. = ft, 2 ,
12 32.2
r m rπ
   
= =   
   
( )2
0.3
32.2
m r
 
=  
 
2
1 2
2 0.045767 ft
r
m
b
m m
= =
+
2 2 2
1 2
1
0.58813 lb s ft
3
= + = ⋅ ⋅AI m r m r
( )1 2 0AI m m gbθ θ+ + =&&
( )1 22
n
A
m m gb
I
ω
+
=
1.9105 rad/s,nω = 0 cos ntθ θ ω=
2
2 rad,
180
π
θ° = ° = 0 sinn ntω θ ω ω= −
2
0 cosn ntα θ ω ω= −
At 5 s,t = 0.00849 rad/sω = !
0.1264 rad/sα = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 63.
( )eff
M MΣ = Σ
K Iθ θ− = &&
0
K
I
θ θ+ =&&
2
,n
K
I
ω = 2
I
K
τ π= (1)
For 50-mm-diameter sphere, 0.025 mr =
2 3 2 52 2 4 8
5 5 3 15
SI mr r r rπ ρ π ρ
 
= = = 
 
( ) ( )5 3 6 28
0.025 7850 kg/m 128.45 10 kg m
15
π −
= = × ⋅
Solve Eq. (1) For :I
2
2
;
4
K
I τ
π
=
2
R R
S S
I
I
τ
τ
 
=  
 
(2)
Data: 4.1 s, 6.2 s, 0.45 kgR S Rmτ τ= = =
Eq. (2):
2
4.1 s
0.4373
6.2 s
R
S
I
I
 
= = 
 
( )6 2
0.4373 0.4373 128.45 10 kg m−
= = × ⋅R SI I
6 2
56.17 10 kg m−
= × ⋅I
6 2
2 56.17 10 kg m
0.45 kg
R
R
R
I
k
m
−
× ⋅
= =
2 6 2
124.82 10 mk −
= ×
3
11.173 10 mk −
= × 11.17 mmRk = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 64.
( )effG GM MΣ = Σ
K Iθ θ− = &&
0
K
I
θ θ+ =&&
2
n
K
I
ω = (1)
2
I
K
τ π= (2)
Data: 1.95 N m/radK = ⋅
3 kgm =
( )( )22 3 21 1
3 kg 0.5 m 62.5 10 kg m
12 12
I ml −
= = = × ⋅
(a) Eq. (2)
3 2
62.5 10 kg m
2
1.95 N m/rad
τ π
−
× ⋅
=
⋅
1.125 sτ = !
(b) Max velocity
Eq. (1) 2
3 2
1.95 N m/rad
31.2
62.5 10 kg m
ω −
⋅
= = =
× ⋅
n
K
I
5.586 rad/snω =
Simple harmonic motion
m m nω θ ω= 180 radmθ π= °=
( )( )rad 5.586 rad/s 17.548 rad/smω π= =
( ) ( ) ( )( )0.25 m 17.548 rad/s 4.387 m/sA mm
v AG ω= = =
( ) 4.39 m/sA m
v = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 65.
Equivalent torsional spring constant
( )2 1 1 1, ,eT K T K T Kθ θ θ θ= = − =
( )2 1 2 1K K Kθ θ= +
2
1
1 2
K
K K
θ θ=
+
1eT K Kθ θ= =
2
1
1 2
e
K
K K
K K
θ θ=
+
1 2
1 2
e
K K
K
K K
=
+
Newton’s Law
( )effc cM MΣ = Σ
eK Jθ θ− = &&
21
2
J mr=
21
0
2
emr Kθ θ+ =&&
( )( )
2
2
4 40
2 2 32.2 12
2
3 1.52
2
3 1.5
n
n eK
mr
π π
τ π
ω
  
  
  = = =
 
 
+ 
5.2197 s=
5.22 snτ = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 66.
2 21
4
ABI mr mb= +
[ ]2 0ABI k mgbθ θ+ + =&&
2
2
2
2
4
n
k mgb
r
m b
ω
+
=
 
+  
 
2
120 lb 8
, ft
1232.2 ft/s
m r
   
= =   
  
6.4
ft,
12
b
 
=  
 
150 lb ft/radk = ⋅
(a)
( ) ( )
2
2
2
120 6.4
2 150 32.2
32.2 12
246.93
8
120 6.412
32.2 4 12
nω
   
+    
   = =
  
       +       
 
  
15.7139 rad/snω =
2 2
0.3998 s
15.7139n
π π
τ
ω
= = =
0.400 sτ = !
(b) 0 0 max 0sin ; cos ;n n n nt tθ θ ω θ θ ω ω θ θ ω= = =& &
So max max 0 nv b bθ θ ω= =&
( )max
6.4 2
ft 15.7139 rad/s 0.2925 ft/s
12 180
v
π  
= =  
  
max 3.51 in./sv = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 67.
( )effG GM MΣ = Σ 0K J J Kθ θ θ θ− = + =&& &&
Empty platform centroidal of platformPJ J=
( )( )
22
2 2
27 N m/rad 2.2 s2 2
4 4
n
n P
n
P
K
J
K
J
π π τ
τ
ω π π
⋅
= = = =
2
3.31 N m sPJ = ⋅ ⋅
Platform with object A centroidal ofAJ J A=
( )
( )2
2
2 2
4
n
n P A
n
P A
K
J J
K
J J
τπ π
τ
ω π
′
′ = = + =
′
+
( )( )
2
2
2
27 N m/rad 3.8 s
3.31 N m s
4
AJ
π
⋅
= − ⋅ ⋅
2
9.88 3.31 6.57 N m sAJ = − = ⋅ ⋅
2
6.57 N m sAJ = ⋅ ⋅ !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 68.
Geometry
3
b
l
θ
φ =
3 3
mg b
F
l
θ
=
Then
3
G G
b
M I Fθ θ
 
Σ = = −  
 
&&
or
2 2
0
12 3
mb mgb
L
θ θ+ =&&
(a) 2 4 2
,n
n
g l
l g
π
ω τ π
ω
= = = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
(b)
3mx F= −&&
mgx
l
= −
2
n
g
l
ω =
2
l
g
τ π= !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 69.
( )2 2 21
2
T m b c θ= + &
2 21
2
V kc θ=
( )
2
2
2 2n
kc
m b c
ω =
+
720 N/m, 1.5 kgk m= =
17.5271 rad/snω =
0
0.015 m
0.033333 rad
0.45 m
θ = =
0max 0.351 m/sD nv cω θ= =
max 0.351 m/sDv = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 70.
From Problem 19.69
17.5271 rad/snω =
( )
0
0.25 m/s
0.5555 rad/s
0.45 m
θ = =&
0
max 0.01902 mD
n
c
x
θ
ω
= =
&
max 19.02 mmDx = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 71.
2
2 2 21 1
2 2 2
B
l
T I ml mθ θ
  
= = +  
   
& &
2
1
2 2
l
V k
θ 
=  
 
2
2
2
8
5
8
n
kl
ml
ω =
5
k
m
=
1
Hz
2 5
n
k
f
mπ
= !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 72.
Equilibrium:
0
0
0
2
2
20 lb
1
ft
9
k y
T
T k y
y

=

+ =

∴ =

Vibration: 2
2 2
1 20
,
2
T v
g
 
=  
 
( ) ( )
2
2 1
1 1
1 1
144 144
2 2 2
x
V x
 
= +  
 
1 2:V T= 2 2
1
1 20
2 32.2
n xω
 
 
 
( ) ( ) 2
1
1 1
144
2 8
x
 
= + 
 
2
289.8, 17.0235 rad/sn nω ω= =
(a)
2
0.36909 s,
n
π
τ
ω
= = 0.369 sτ = !
(b)
1
ft 1.8915 ft/s
9
nm
v ω
 
= = 
 
1.892 ft/sm
v = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 73.
Datum at 1
Position 1
2
1 0 1
1
0
2
mT J Vθ= =&
Position 2
2 20T V mgh= =
( ) 2
1 cos 2sin
2
m
mh r r
θ
θ= − =
2
2
mrθ
≈
2
2
2
m
V mgr
θ
=
Conservation of energy
2
2
1 1 2 2 0
1
0 0
2 2
m
mT V T V J mgr
θ
θ+ = + + = +&
2 2 2
0m n m n m mJ mgrθ ω θ ω θ θ= =&
( )22
02 2
2
0
44
n n
n
Jmgr
J mgr
ππ
ω τ
ω
= = =
( )( )2
2 2
0 2
4
n mgr
J J mr J mr
τ
π
= + + =
( )( )2
2
2
4
n mgr
J mr
τ
π
= −
( ) ( )( )( )
( )( )
2 2
2
2
1.26 s 38 kg 9.81 m/s 0.175 m
38 kg 0.175 m
4π
= −
2 2 2
2.62345 N m s 1.16375 N m s 1.4597 N m sJ = ⋅ ⋅ − ⋅ ⋅ = ⋅ ⋅
2
1.460 kg mJ = ⋅ !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 74.
Find nω as a function of c.
Datum at 2
Position 1 1 10T V mgh= =
( )1 1 cos mV mgc θ= −
2
2
1 cos 2sin
2 2
m m
m
θ θ
θ− = ≈
2
1
2
m
V mgc
θ
=
Position 2
2
2
1
2
C mT I θ= &
2 2 21
12
CI I mc ml mc= + = +
2
2 2
2 2
1
0
2 12
m
l
T m c Vθ
 
= + =  
 
&
2 2 2
2
1 1 2 2 0 0
2 12 2
m ml
T V T V mgc m c
θ θ 
+ = + + = + +  
 
&
m n mθ ω θ=&
2
2 2
12
n
l
gc m c ω
 
= +  
 
2
2
2
12
n
gc
l
c
ω =
 
+  
 
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Maximum c, when
2
2 2
2
2
2
2
12
0 0
12
n
l
g c c g
d
dc l
c
ω
 
+ −  
 = = =
 
+  
 
2
2
0
12
l
c− =
12
l
c = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 75.
Consider a general pendulum of centroidal radius of gyration .k
Datum at 1
Position 1
2
1 0
1
2
mT J θ= !
1 0V =
Position 2
2 20T V mgh= =
( ) 2
1 cos 2sin
2
m
mh r F
θ
θ= − =
2 2
2
2 2
m m
V mg F
θ θ
= ≈
1 1 2 2T V T V+ = +
2 2
0
1 1
0 0
2 2
m mJ mgrθ θ+ = +!
m n mθ ω θ=!
2 2 2
0 n m mJ mgrω θ θ=
2 0
0
2
2n n
n
mgr J
J mgr
π
ω τ π
ω
= = =
2 2 2
0J J mr mk mr= + = +
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
(a)
2 2
2n
k r
gr
τ π
+
=
For a rod suspended at A:
2 2
0.895 2 ,a
n a
a
k r
r r
gr
τ π
+
= = = (1)
For a rod suspended at B:
2 2
0.805 2 ,b
n b
b
k r
r r
gr
τ π
+
= = = (2)
10.5 in. 0.875 fta br r+ = = (3)
From (1) and (2)
( )22 2
2
0.895
4
a
a
gr
k r
π
+ = ( )1′
( )22 2
2
0.805
4
b
b
gr
k r
π
+ = ( )2′
Taking the difference ( ) ( )1 2′ ′− :
[ ]2 2
2
0.80125 0.648025
4
a b a b
g
r r r r
π
− = −
( )( ) [ ]2
0.80125 0.648025
4
a b a b a b
g
r r r r r r
π
− + = −
( )
( )
[ ]2
32.2
0.80125 0.648025
4 0.875
a b a br r r r
π
− = −
( ) 0.746685 0.60406a b a br r r r− = −
0.25332 0.39594 0.63979a b b ar r r r= ⇒ =
0.63979 0.875 0.533605 fta a ar r r+ = ⇒ =
6.4033 in.= 6.40 in.ar = !
(b)
2
2 20.895
2
a ak gr r
π
 
= − 
 
( )( )
( )
( )
2
22
2
0.895 s
32.2 ft/s 0.533605 ft 0.533605 ft
2π
= −
2 2 2
0.34863 ft 0.28473 ft 0.0639 ft= − =
0.25278 ft 3.0334 in.k = =
3.03 in.k = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 76.
2
2
P
mr
I >
2 2
24 4
1 0.715 0.715 ft
3 3
r
d r r
π π
   
= + − = =   
   
2
2
24 2
2 3
O
mr r
I m md
π
  
 = − +     
0.65117 m=
2
21
,
2 2
OT I V mgd
θ
θ= =&
2 2 35.3564
0.65117
2
n
d
mg
m
ω = =
5.9461 rad/snω =
2
1.057 s
n
π
τ
ω
= = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 77.
Since vibration takes place about the position of equilibrium, we shall neglect the effect of weight and the
static deflection.
Position of Max Displacement
Spring Elongations
2
B m
l
x θ= C mx lθ=
Position 1: 1 0T =
( )
2
22 2
1
1 1 1
2 2 2 2
B B C C B m C m
l
V k x k x k k lθ θ
 
= + = + 
 
2 2
1
1 1
2 4
B C mV k k l θ
 
= + 
 
Position 2: 2 0V =
2
2 2 2 2
2
1 1 1 1 1
2 2 2 12 2 2
m m m m
l
T I mv ml mω ω ω
   
= + = +   
   
2 2
2
1
6
mT ml ω=
Conservation of Energy
2 2 2 2
1 1 2 2
1 1 1
: 0
2 4 6
B C m mT V T V k k l mlθ ω
 
+ = + + + = 
 
For simple harmonic motion, ( )22 2 21 1 1
;
2 4 6
m n m B C m n mk k l mlω ω θ θ ω θ
 
= + = 
 
2 3 1
4
n B Ck k
m
ω
 
= + 
 
(1)
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Note: Result is independent of length of the rod.
Data
6 lb,W = 3 lb/in. 36 lb/ft,k = = 5 lb/in. = 60 lb/ft.Ck =
2
2
3 36 lb/ft
60 lb/ft 1110.9
46 lb
32.2 ft/s
nω
 
= + =    
 
 
33.33 rad/snω =
33.33
2 2
n
f
ω
π π
= = 5.30 Hzf = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 78.
2 2
1
2 2 4
l l
V k mg
θ θ 
= + 
 
2 2 2 2 2
2
1 1
2 4 2 2 4
L mr L
T m
r
θ θ   
= +      
   
& &
2 2
3
16
mL θ
=
&
Then
2
2
2
8 4
3
16
n
kL mgL
mL
ω
+
=
2 2
3
k g
m L
 
= + 
 
1 2 4
Hz
2 3 3
n
k g
f
m Lπ
= + !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 79.
(a) Position 1
( )2
1 1
1
0
2
st mT V k rδ θ= = +
Position 2
( )22 2
2 2
1 1 1
2 2 2
m m stT J mv V mgh kθ δ= + = +!
1 1 2 2T V T V+ = +
( ) ( )2 22 21 1 1 1
0
2 2 2 2
st m m m stk r J mv mgh kδ θ θ δ+ + = + + +!
2
stkδ 2 2 2 2 2
2 2st m m m m stk r kv J mv mgh kδ θ θ θ δ+ + = + + +! (1)
When the disk is in equilibrium
0 sinC stM mg r k rβ δΣ = = −
Also sin mh r βθ=
Thus 0stmgh k rδ− = (2)
Substitute (2) into (1)
2 2 2 2
m m mkr J mvθ θ= +!
m n m m m n mv r rθ ω θ θ ω θ= = =! !
( )2 2 2 2 2
m m nkr J mrθ θ ω= +
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
2
2
2n
kr
J mr
ω =
+
21
2
J mr=
2
2
2 2
2
1 3
2
n
kr k
mmr mr
ω = =
+
( )
2 2
0.71983 s
800 N/m2
3 7 kg
n
n
π π
τ
ω
= = =
0.720 snτ = !
(b)
m mv rθ= !
m m nθ θ ω=!
0.01 mm m n mv r rθ ω θ= =
( )
2
0.01 m 0.0873 m/s
0.720 s
mv
π 
= = 
 
!
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 80.
sinθ θ≈
2
2
1 cos 2sin
2 2
m m
m
θ θ
θ− = ≈
Position1
2
2
1
1 1
2
2 2 2
m m
l
T J mθ θ
   
= +   
   
& &
1 0V =
Position 2
( )
2
2 2
2
0 1 cos
2 2 2
m m
l l
T V W kθ θ
 
= = − − +  
 
2 2
2
2
2 2 4
m
m
Wl kl
V
θ
θ= − +
Conservation of Energy
1 1 2 2T V T V+ = +
( )
2 2 2
2 2 21 1
2 0 0
2 2 4 2 2 4
m
m m m
l wl kl
J m
θ
θ θ θ+ + = − +& &
21
12
m n m
W
J l
g
θ ω θ= =&
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
2
2 2 2 2
6 4 2 2
n m m
W W Wl kl
l
g g
ω θ θ
   −
+ = +    
   
2 62 2
55
12
n
W kl
g k
WlW
l
gg
ω
 −
+  −
 = = +
   
  
  
2
6 9.81 m/s 120 N/m
5 0.160 m 0.6 kg
 −
= +  
 
2
166.43 s−
=
12.901 rad/snω =
1
2.0532 s
2
n
nf
ω
π
−
= =
2.05 Hznf = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 81.
( )
2
21
2 4
l
V k l mg
θ
θ
 
= +   
 
2
2 21 1
2 12 2
l
T ml m θ
  
= +  
   
&
2
2
2
2 4
6
n
kl mgl
ml
ω
+
=
2 3 3
2
n
k g
m l
ω = +
With 1500 N/m, 0.6 m, 10 kgk l m= = =
2 2 2
474.525 rad /snω =
2
0.288 s
n
π
τ
ω
= = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 82.
Let m be the mass of rod and Cm be mass of each collar
Then
2 2 2 2
2 4 2
C
kl mgl l
V m g
θ θ θ 
= + +  
 
( )
2 221 1
2 3 2
C
l
T m m lθ θ
 
= +  
 
& &
2
2
22
2 4 2
6 2
C
n
C
mgl m glkl
m lml
ω
+ +
=
+
2 4 2
6 2
C
C
mg m gk
l l
mm
+ +
=
+
( )( )
( )
( )( )
( )
2 2
2
5 kg 9.81 m/s 2.5 kg 9.81 m/s
1500 N/m
2 4 0.6 m 2 0.6 m
5 kg 2.5 k
6 2
nω
 
 + +
 
 =
 + 
 
2
397.62 s−
=
19.4838 rad/snω =
2
0.322 s
n
π
τ
ω
= = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 83.
2 2
1 20, 2
2 2 2
l
V V mgl mg
θ θ 
= = +   
 
2
mglθ=
2
2 2 2
2 1
1 1
0, 2
2 2 3
ml
T T ml θ θ
 
= = +  
 
& &
2 2
5
6
ml θ
=
&
2
2 2 2 2 25 6
: ,
6 5
n n n
ml g
mgl
l
θ ω θ ω ω= = =&
( )
( )
2 2
1.586 s
9.81 m/s6
0.75 m5
n
π π
τ
ω
= = = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 84.
6.87 NA AW m g= =
4.91 NC CW m g= =
9.81 NAC ACW m g= =
Position 1 ( ) ( ) ( )
2 2 2 2
1
1 1 1 1
0.1 0.16 0.03
2 2 2 2
A m C m AC m AC mT m m m Iθ θ θ θ= + + +& & & &
( )21
0.26
12
AC ACI m=
So ( ) ( ) ( ) ( )( )
2 2 2 2 2
1
1 1
0.7 0.1 0.5 0.16 1 0.03 1 0.26
2 12
mT θ
 
= + + + 
 
&
( )2 21
0.02633 kg m
2
mθ= ⋅ &
1 0V =
Position 2
( )( ) ( )( ) ( )( )2 20, 0.1 1 cos 0.16 1 cos 0.03 1 cosA m C m AC mT V W W Wθ θ θ= = − − + − + −
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
With
2
2
1 cos 2sin
2 2
m m
m
θ θ
θ− = "
( )( ) ( )( ) ( )( )
2 2
2 6.87 0.1 4.91 0.16 9.81 0.03 0.3929
2 2
m m
V
θ θ
 = − + + = 
( ) ( )
2
2
1 1 2 2
1 1
: 0.02633 0 0 0.3929
2 2 2
m
mT V T V
θ
θ+ = + + = +&
m n mθ ω θ=&
So 2 20.3929
14.922 s
0.02633
nω −
= =
2 2
1.6266 s
14.922
n
n
π π
τ
ω
= = =
1.627 snτ = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 85.
Position 1
( ) ( ) ( )( )
2
22 2 2
1 0
1 1 1 1 2
2
2 2 2 2 2 4
A C m mm m
m l
T m v m v I θ θ
 
= + + +   
 
& &
( ) ( )21
12 2
G A C mm m
m
I l v v lθ= = = &
2 2
2 2 2
1
7
24 8 6
m m m
ml ml
T ml mlθ θ θ
 
= + + =  
 
& & &
1
5
2 cos cos cos
2 2
l
V mgl mg mglβ β β= − − = −
Position 2
2 0T =
( ) ( )2 cos cos
2 2
m m
m l
V mgl gβ θ β θ= − − − −
( ) ( )cos cos
2 2
m m
m l
mgl β θ β θ− + − +
[ ]2
5
cos cos sin sin cos cos sin sin
4
m m m mV mgl β θ β θ β θ β θ= − + + −
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
2
5
cos cos
2
mV mgl β θ= −
( )
2
cos 1 small angles
2
m
m
θ
θ ≈ −
2
2
5
cos 1
2 2
m
V mgl
θ
β
 
= − − 
 
1 1 2 2T V T V+ = +
2
2 27 5 5
cos 0 cos 1
6 2 2 2
m
mml mgl mgl
θ
θ θ β
 
− = − −  
 
&
m n mθ ω θ=&
2 2 27 5
cos
6 4
n m ml gω θ βθ= ⋅
2 15
cos
14
n
g
l
ω β=
2
2 15 32.2 ft/s
cos40
25 in.14
12 in./ft
nω
 
 
 = °
 
 
 
2
12.686 s−
=
1
3.5617 snω −
=
1
0.56686 s
2
n
nf
ω
π
−
= =
0.567 Hznf = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 86.
D = Disk
R = Rod
2ABl r=
For small oscillations: ( ) 21
1 cos
2
m mh r rθ θ= − =
Position 1: 1 0T =
2
1
1
2
R R mV W h m grθ= =
Position 2: 2 0V =
( )22 2
2
1 1 1
2 2 2
D m D D R mm
T I m v Iω ω= + +
( )
22 2 2 2 21 1 1 1 1
2
2 2 2 2 12
D m D m R mm r m r m rω ω ω
   
= + +   
   
2 21 3 1
2 2 3
D R mm m r ω
 
= + 
 
Conservation of Energy.
1 1 2 2 :T V T V+ = +
2 2 21 1 3 1
0
2 2 2 3
R m D R mm g m m rθ ω
 
+ = + 
 
But for simple harmonic motion: m n mω ω θ=
( )22 21 1 3 1
2 2 2 3
R m D R n mm gr m m rθ ω θ
 
= + 
 
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
2
3 1
2 3
R
n
D R
m g
rm m
ω
 
=  
 +
or 2
3 1
2 3
R
n
D R
W g
rW W
ω
 
=  
 +
(1)
Data:
4
3 lb, 5 lb, ft
12
R DW W r= = =
( ) ( )
2 3 32.2
34.094
3 1 4
5 3
2 3 12
nω
 
 
= = 
 +  
 
5.839 rad/snω =
2 2
5.839n
π π
τ
ω
= = 1.076 sτ = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 87.
Position 1: 1 0,T = 2
1
1
2
mV kx=
Position 2: 2 0,V = 2 2 2
2
1 1 1
2
2 2 2
AB m m Disk mT m v I m vω
 
= + + 
 
2
2 2 2
2
1 1
2 2
m
AB m Disk Disk m
v
T m v m r m v
r
  
= + +  
  
( ) 2
2
1
3
2
AB Disk mT m m v= +
Conservation of Energy
1 1 2 2:T V T V+ = + ( )2 21 1
0 3
2 2
m AB Disk mkx m m v+ = +
But for simple harmonic motion, :m n mv xω=
( )( )221 1
3
2 2
m AB Disk n mkx m m xω= +
2
3
n
AB Disk
k
m m
ω =
+
Note: Result is independent of r
Data: 5 kN/m, 9 kg, 6 kgAB Diskk m m= = =
( )
2 5000 N/m
185.185
9 kg 3 6 kg
nω = =
+
13.608 rad/snω =
13.608
2 2
n
f
ω
π π
= = 2.17 Hzf = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 88.
( )1
4
1 cos
3
r
V mgh mg θ
π
 
= = − 
 
2
1 cos
2
mθ
θ− ≈
2
1 2
3
m
V mgr
θ
π
=
2 2 2 2
2
1 1 1 1
2 2 2 2
A A B BT I I mrω ω ω
 
= + +  
 
Where
2 2
1
2 8 4 256
A B
m r mr
I I
  
= = =  
  
and 4A Bω ω ω= =
2 2 2 2
2
2
5
16 4 16
mr mr mr
T
ω
ω
 
∴ = + =  
 
1 2
2
,
m
V T=
2
mgrθ 5
3
m
π
=
2 2 2
n mr ω θ
16
2 32
,
15
n
g
r
ω
π
=
1 32
2 15
n
g
f
rπ π
 
=  
 
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 89.
Kinematics:
Data
0.15 , 0.05m m m AB m mv r v bω ω ω ω= = = = 10kgABm =
4kgDm =
Conservation of Energy
1 1 2 2T V T V+ = + (1)
Where
( )
1
1
0
Position 1, Max. Displacement
cosAB m
T
V m g r b θ
= 

= − − 
( )0.10 cos 9.81cosAB m mm g θ θ= − = −
2 2 2
2
1 1 1
2
2 2 2
D m D m AB ABT m v I m vω
 
= + + 
 
( )( ) ( )( ) ( )( )2 22 21 1 1 1
2 4 0.15 4 0.15 10 0.05
2 2 2 2
m m mω ω ω
  
= + +  
  
2
0.1475 mω=
( ) ( )2 0.10 9.81AB ABV m g r b m g= − − = − = −
Into (1)
2
0 9.81cos 0.1475 9.81m mθ ω− = −
( )2
0.1475 9.81 1 cosm mω θ= −
But 21
1 cos
2
m mθ θ− ≈
2 2
0.1475 4.905m mω θ= (2)
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
m n mω ω θ=
Into (2)
( )2 2 2
0.1475 4.905n m mω θ θ=
So
2 4.905
33.254
0.1475
nω = =
5.7666 rad/snω =
0.9178 Hz
2
n
f
ω
π
= = 0.918 Hznf =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 90.
2
2 21 1
2 7
2 2 6
x
T mx my m
 
= + = 
 
&
& &
Equilibrium of BC:
3
0
2 2 2
D
mg l l
M ku
 
Σ = = ⋅ −   
 
Where 0, natural length
2 3
mg
u l l u
k
= = = +
( ) ( )
2 2
0
1
2 2
2 2
k
k
V k l x l x u = − − = + 
,gV mgy= − where
22
2 3
2 2
l l
l x y
  
= − + +       
And ( )
( )2 2
2 2
3 3 4
3 0,
2
l l x lx
y ly x lx y
− + − −
+ + − = =
So 21 1 8
H.O.T.
23 3 3
y x x
l
   
= + − +   
   
Then
2
2 4
2 2 constant
3 3 3
x mgx
V kx kux mg
l
= + + − +
2
4
2
3 3
7
6
n
mg
k
l
m
ω
+
=
1 12 8
Hz
2 7 7 3
n
k g
f
m lπ
= + !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 91.
Position 1
( )
22 2 2 2
1
1 1 1
2 2
2 2 2
D m D m r mT I m r c m rθ θ θ
   
= + − +   
   
& & &
For one disk ( )
2 2 2
2 2 2
2
1 4 16
0.31987
2 3 2 9
D D D D D D DA
r r r
I I m c m r m m m r
π π
  
= − = − = − =  
   
( )
2
2 2 24
1 0.3313
3
D D Dm r c m r m r
π
 
− = − = 
 
( ) 2 2 2
1 0.3199 0.3313 0.5D r mT m r m r θ = + + 
&
( ) 2 2
0.6512 0.5D r mm m r θ= + &
But ,D r
D r
W W
m m
g g
= =
So ( ) ( )
2
2 2
1
1 6
0.65117 6 0.5 4 0.045866
32.2 12
m mT θ θ
 
 = + =  
 
& &
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Position 2 ( )
2
2 2
2
0, 2 1 cos , , 1 cos 1
2 3 2
m m
D m m
r
T V m gc c
θ θ
θ θ
π
 
= = − = − ≅ 
 
"
( )
2
2 2 2
2
4 4 4 6
2 6 1.27324
3 2 3 3 12
m
D D m m m
r
V m g W r
θ
θ θ θ
π π π
   
= = = =   
   
&
2 2
1 1 2 2 : 0.045866 0 0 1.27324m mT V T V θ θ+ = + + = +&
2 1.27324
: 27.747
0.045866
m n m nθ ω θ ω= = =&
2
5.2677, 1.192 sn n
n
π
ω τ
ω
= = =
1.192 snτ = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 92.
With 2 2
4 lb 6 lb 40
, , 20 lb/ft, ft
1232.2 ft/s 32.2 ft/s
m M k l
 
= = = =  
 
2 2 2
1
2 2 2 2 2
l l
V k mg Mgl
θ θ θ    
= + +             
And for small :θ
( )
2
22 2 21 1 1 1 1
2 3 2 2 2
l
T ml M l Mr
r
θ
θ θ
    
= + +     
    
&
& &
So
2
2
2 2
8 4 2 23.05935
3
6 4
n
kl l l
mg Mg
l l
m M
ω
+ +
= =
+
Then
2
1.308 s
n
π
τ
ω
= = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 93.
2 2
2
1 1
2 12
T ml θ
 
=  
 
&
Ignoring static terms:
2 2
1
1 1
2 2 2 2
a a
V k k
θ θ   
= +   
   
2
2
4
ka
θ
=
2
2 2 2 2
2 1
1
:
24 4
n m m
a
T V ml kω θ θ
 
= =   
 
2
2
2
6
n
ka
ml
ω =
6
2
n
a k
f
l mπ
=
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 94.
2 2
m m m m
a a
AA BB l
l
θ α α θ′ ′= = = =
Position 1
( )1 10 1 coscT V mgy mgl α= = = −
For small angles
2 2
2
2
1 cos 2sin
2 2 8
m m
m m
a
l
α α
α θ− = ≈ =
2
2
1 2
8
m
a
V mgl
l
θ
 
=   
 
Position 2 2 2 2
2 2
1 1 1
0
2 2 12
m mT I ma Vθ θ
 
= = = 
 
& &
m n mθ ω θ=&
1 1 2 2T V T V+ = +
2
2 2 2
2
1
0
248
n m
a
mgl ma
l
ω θ
 
+ +  
 
2 3
n
g
l
ω =
1 3
2
n
g
f
lπ
= !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 95.
( ) 2
1 cos
2
m mn r rθ θ
1
= − = ( )m mv r r ω= −
Position 1: 2
1 1
1
0,
2
mT V Wh mgrθ= = =
Position 2: 2 0V =
( )22 2 2 2 2
2
1 1 1 1
2 2 2 2
m m m mT I mv mk m r rω ω ω= + = + −
Conservation of energy
1 1 2 2T V T V+ = +
( )22 2 21 1
0
2 2
m mmgr m k r rθ ω + = + −  
But for simple harmonic motion, m n mω ω θ=
( ) ( )222 21 1
2 2
m n mmgr m k r rθ ω θ = + −  
( )
2
22n
r
g
k r r
ω =
+ −
(1)
For half section of pipe
2 2
1
r
r r r r
π π
 
= − = − 
 
Parallel-Axis Theorem: 2
0I I mr= +
2
2 2
0
2
;
r
I mr mr I m
π
 
= = +  
 
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
2
2
4
1I mr
π
 
= − 
 
2 2
2
4
1k r
π
 
= − 
 
Eq. (1): 2
2
2 2
2
2
4 2
1 1
n
r
g
r r
πω
ππ
=
   
− + −   
   
2
2
2 2
2 2
44 4 4
21 1
n
r
g
g
r
r
π πω
πππ π
= =
  −− + − + 
 
( )
2
2
1
2 4 2 4 2
n
g g g g
r r r
πω
π π π
π
= = =
− − −
2
n
π
τ
ω
=
( )2
2
r
g
π
τ π
−
= !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 96.
( ) 2
sin sinm m mr rθ θ θ≈
( )
2
1 cos
2
m
mr r
θ
θ− ≈
Position 1 maximum deflection 1 0T =
2
1
2
m
mV Wy mgr
θ
= =
Position 2 ( )0θ =
2 2 2
2
1 1 1
2 2 12
m mT I mlθ θ
 
= =  
 
& &
m n mθ ω θ=&
2 2 2
2
1 1
2 12
n mT ml ω θ
 
=  
 
1 1 2 2T V T V+ = +
2 2 2 21 1 1
0
2 2 12
m n mmgr mlθ ω θ
 
+ =  
 
2
2
2
12 2
2
12
n n
n
gr l
grl
π
ω τ π
ω
= = =
3
n
l
gr
π
τ = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 97.
This is not a damped vibration. However, the kinetic energy of the fluid
must be included
(a) Position 2 2 0T =
2
2
1
2
mV kx=
Position 1
2 2
1 spere fluid
1 1
2 4
s m m
r
T T T m v Vv
g
 
= + = +  
 
1 0V =
2 2 2
1 1 2 2
1 1 1
0 0
2 4 2
s m m m
r
T V T V m v Vv kx
g
 
+ = + + + = + 
 
m m m nv x x ω= =&
2 2 2 21 1 1
,
2 2 2
ω ω
  
+ = =        +  
 
s m n m n
s
r k
m V x kx
g r
m V
g
3
2
2
1 1 62.4 lb/ft 4 4 in.
0.15032 lb s /ft
2 2 3 12 in./ft32.2 ft/s
r
V
g
π
    
= = ⋅    
     
2 2
2
2
40 lb/ft
220.54 s
1 lb
0.15032 lb s /ft
32.2 ft/s
nω −
= =
 
+ ⋅ 
 
1
14.850 snω −
=
2
0.4231 sn
n
π
τ
ω
= =
0.423 snτ = !
(b) The acceleration does not change mass
0.423 snτ∴ = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 98.
Eq. (19.33)
2
1
m
m
f
n
P
kx
ω
ω
=
 
−  
 
1450 N/m
10.607 s
4 kg
n
k
m
ω −
= = =
13 N
0.28889 m
450 N/m
mP
k
= =
2
0.28889 m
1
10.607
m
f
x
ω
=
 
−  
 
(a) 2
0.28889 m
5: 0.03714 m
5
1
10.607
f mxω = = =
 
−  
 
( )In Phase 37.1 mmmx = !
(b) 2
0.28889 m
10: 0.25984 m
10
1
10.607
f mxω = = =
 
−  
 
( )In Phase 260 mmmx = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 99.
Eq. (19.33)
2
2
,
1
m
m n
f
n
P
kkx
m
ω
ω
ω
= =
 
−  
 
( ) 22
, orm m
m
m ff
P P
x k
x mk m ωω
= =
+−
(a) In phase
( )( )1
9 N
0.15 m 4 kg 5 s
k −
=
+
160.0 N/m= !
(b) Out of phase 0.15 mmx = −
( )( )1
9 N
40.0 N/m
0.15 m 4 kg 5 s
k −
= =
− +
!
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 100.
Eq. (19.33) 2
2
1
m
m
f
n
P
kx
ω
ω
=
−
2m
st n
P k
k m
δ ω= =
2
2
3
1
st
st
f
n
δ
δ
ω
ω
≥
−
2
2
1
1
3
f
n
ω
ω
− ≤
2
2
2
3
f
n
ω
ω
>
Also 2
2
3
1
st
st
f
n
δ
δ
ω
ω
< −
−
2 2
2 2
1 4
1
3 3
f f
n n
ω ω
ω ω
− < − <
2
2
2 4 2 4
3 3 3 3
f
f
n
k k
m m
ω
ω
ω
< < < < !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 101.
2 2
sinB m fM mb kl P l tθ θ ωΣ = = − +&&
2 2
sinm fmb kl P l tθ θ ω+ =&&
2
2
42.4641 rad/s, sinn m f
kl
t
mb
ω θ θ ω= = =
2
2 2 2
0.14 in. 6.762
0.0175 rad
8 in. 1803.2
m
m
n f f
P l
mbθ
ω ω ω
±
= = ± = =
− −
Lower frequency: ( )2
6.762 0.0175 1803.2 , 37.64 rad/sf fω ω= − =
Upper frequency: ( )2
6.762 0.0175 1803.2 , 46.79 rad/sf fω ω= − − =
37.6 rad/s 46.8 rad/sfω< < !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 19, Solution 102.
Referring to the figure and solution for Problem 19.101
2
2
32
140
1 1 28.309412
40
32.2
n
kl
b m b b
ω
 
 
 = = =
 
 
 
Range
2
2 2
0.14
12
m
m
n f
P l
mb
b
θ
ω ω
 
 
 = ± =
−
( ) 22 2
3.00533 3.00533
801.422 225225n
bb ω
= =
−−
Lower frequency 2
3.00533 9.3499 2.625b b= −
2
2.625 3.00533 9.3499 0b b+ − =
1.3998 ftb =
Upper frequency 2
3.00533 9.3499 2.625b b= − +
2
2.625 3.00533 9.3499 0b b− − =
2.5446 ftb =
16.80 in. 30.5 in.b< < !
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica) 7ma edicion Cap 19

More Related Content

What's hot

solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica...
 solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica... solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica...Sohar Carr
 
Mechanics of materials solution manual (3 rd ed , by beer, johnston, & dewolf)
Mechanics of materials solution manual (3 rd ed , by beer, johnston, & dewolf)Mechanics of materials solution manual (3 rd ed , by beer, johnston, & dewolf)
Mechanics of materials solution manual (3 rd ed , by beer, johnston, & dewolf)Pawnpac
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...Sohar Carr
 
Ecuaciones diferenciales yu takeuchi
Ecuaciones diferenciales yu takeuchiEcuaciones diferenciales yu takeuchi
Ecuaciones diferenciales yu takeuchiJhan Ariza
 
Aceleración de coriolis
Aceleración de coriolisAceleración de coriolis
Aceleración de coriolisAlane1967
 
Beer dinamica 9e_manual_de_soluciones_c11a
Beer dinamica 9e_manual_de_soluciones_c11aBeer dinamica 9e_manual_de_soluciones_c11a
Beer dinamica 9e_manual_de_soluciones_c11aWilmer Moreira
 
Solutions completo elementos de maquinas de shigley 8th edition
Solutions completo elementos de maquinas de shigley 8th editionSolutions completo elementos de maquinas de shigley 8th edition
Solutions completo elementos de maquinas de shigley 8th editionfercrotti
 
Ejercicios resueltos de transformada de laplace
Ejercicios resueltos de transformada de laplaceEjercicios resueltos de transformada de laplace
Ejercicios resueltos de transformada de laplaceSthefany Celeste
 
Beer dinamica 9na solucionario 12
Beer dinamica 9na solucionario 12Beer dinamica 9na solucionario 12
Beer dinamica 9na solucionario 12EliotHdz10
 
Transformada de laplace (tablas)
Transformada de laplace (tablas)Transformada de laplace (tablas)
Transformada de laplace (tablas)MateoLeonidez
 
Momento de una fuerza con respecto a un eje dado
Momento de una fuerza con respecto a un eje dadoMomento de una fuerza con respecto a un eje dado
Momento de una fuerza con respecto a un eje dadoWillians Medina
 
Trabajo terminado ejercicios estatica
Trabajo terminado ejercicios estaticaTrabajo terminado ejercicios estatica
Trabajo terminado ejercicios estaticaChristhopher
 
Mecanica vectorial para ingenieros, dinamica 9 edicion solucionario copia
Mecanica vectorial para ingenieros, dinamica 9 edicion solucionario   copiaMecanica vectorial para ingenieros, dinamica 9 edicion solucionario   copia
Mecanica vectorial para ingenieros, dinamica 9 edicion solucionario copiamfcarras
 

What's hot (20)

solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica...
 solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica... solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica...
 
Mechanics of materials solution manual (3 rd ed , by beer, johnston, & dewolf)
Mechanics of materials solution manual (3 rd ed , by beer, johnston, & dewolf)Mechanics of materials solution manual (3 rd ed , by beer, johnston, & dewolf)
Mechanics of materials solution manual (3 rd ed , by beer, johnston, & dewolf)
 
Dinamica hibbeler
Dinamica hibbelerDinamica hibbeler
Dinamica hibbeler
 
(Solucionario) estatica problemas resueltos
(Solucionario) estatica problemas resueltos(Solucionario) estatica problemas resueltos
(Solucionario) estatica problemas resueltos
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
 
Ecuaciones diferenciales yu takeuchi
Ecuaciones diferenciales yu takeuchiEcuaciones diferenciales yu takeuchi
Ecuaciones diferenciales yu takeuchi
 
Aceleración de coriolis
Aceleración de coriolisAceleración de coriolis
Aceleración de coriolis
 
Beer dinamica 9e_manual_de_soluciones_c11a
Beer dinamica 9e_manual_de_soluciones_c11aBeer dinamica 9e_manual_de_soluciones_c11a
Beer dinamica 9e_manual_de_soluciones_c11a
 
Solutions completo elementos de maquinas de shigley 8th edition
Solutions completo elementos de maquinas de shigley 8th editionSolutions completo elementos de maquinas de shigley 8th edition
Solutions completo elementos de maquinas de shigley 8th edition
 
Mecanica c2
Mecanica c2Mecanica c2
Mecanica c2
 
Ejercicios resueltos de transformada de laplace
Ejercicios resueltos de transformada de laplaceEjercicios resueltos de transformada de laplace
Ejercicios resueltos de transformada de laplace
 
Ejemplos tresca y von
Ejemplos tresca y vonEjemplos tresca y von
Ejemplos tresca y von
 
Solucionario estática beer 9 ed
Solucionario estática beer   9 edSolucionario estática beer   9 ed
Solucionario estática beer 9 ed
 
Beer dinamica 9na solucionario 12
Beer dinamica 9na solucionario 12Beer dinamica 9na solucionario 12
Beer dinamica 9na solucionario 12
 
BEER Cap 05 Solucionario
BEER Cap 05 SolucionarioBEER Cap 05 Solucionario
BEER Cap 05 Solucionario
 
Transformada de laplace (tablas)
Transformada de laplace (tablas)Transformada de laplace (tablas)
Transformada de laplace (tablas)
 
Momento de una fuerza con respecto a un eje dado
Momento de una fuerza con respecto a un eje dadoMomento de una fuerza con respecto a un eje dado
Momento de una fuerza con respecto a un eje dado
 
Trabajo terminado ejercicios estatica
Trabajo terminado ejercicios estaticaTrabajo terminado ejercicios estatica
Trabajo terminado ejercicios estatica
 
Mecanica vectorial para ingenieros, dinamica 9 edicion solucionario copia
Mecanica vectorial para ingenieros, dinamica 9 edicion solucionario   copiaMecanica vectorial para ingenieros, dinamica 9 edicion solucionario   copia
Mecanica vectorial para ingenieros, dinamica 9 edicion solucionario copia
 
Informe yoselin
Informe yoselinInforme yoselin
Informe yoselin
 

Similar to solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica) 7ma edicion Cap 19

Capitulo 12
Capitulo 12Capitulo 12
Capitulo 12vimacive
 
problemas resueltas estatica 2parte
problemas resueltas estatica 2parteproblemas resueltas estatica 2parte
problemas resueltas estatica 2parteQuintana Excélsior
 
Sol cap 03 edicion 8
Sol cap 03   edicion 8Sol cap 03   edicion 8
Sol cap 03 edicion 8Luisa Lopez
 
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdfSolucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdfAntonellaMeaurio
 
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.haide bautista
 
Solución al ejercicio 2
Solución al ejercicio 2Solución al ejercicio 2
Solución al ejercicio 2Jesthiger Cohil
 
Solucion ejercicios beer
Solucion ejercicios beerSolucion ejercicios beer
Solucion ejercicios beerLeomari Garcia
 
Problemas resueltos rozamiento
Problemas resueltos rozamientoProblemas resueltos rozamiento
Problemas resueltos rozamientoPablo Rivas
 
ENGINEERING SYSTEM DYNAMICS-TAKE HOME ASSIGNMENT 2018
ENGINEERING SYSTEM DYNAMICS-TAKE HOME ASSIGNMENT 2018ENGINEERING SYSTEM DYNAMICS-TAKE HOME ASSIGNMENT 2018
ENGINEERING SYSTEM DYNAMICS-TAKE HOME ASSIGNMENT 2018musadoto
 
Solucionario Mecanica Racional Since Capt2
Solucionario Mecanica Racional Since Capt2Solucionario Mecanica Racional Since Capt2
Solucionario Mecanica Racional Since Capt2Nela Marte
 
Problemas de estatica resueltas 1a parte
Problemas de estatica resueltas 1a parteProblemas de estatica resueltas 1a parte
Problemas de estatica resueltas 1a parteQuintana Excélsior
 
OConnor_SimulationProject
OConnor_SimulationProjectOConnor_SimulationProject
OConnor_SimulationProjectKevin O'Connor
 

Similar to solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica) 7ma edicion Cap 19 (20)

Capitulo 12
Capitulo 12Capitulo 12
Capitulo 12
 
Cap 12
Cap 12Cap 12
Cap 12
 
problemas resueltas estatica 2parte
problemas resueltas estatica 2parteproblemas resueltas estatica 2parte
problemas resueltas estatica 2parte
 
Sol cap 03 edicion 8
Sol cap 03   edicion 8Sol cap 03   edicion 8
Sol cap 03 edicion 8
 
Cap 03
Cap 03Cap 03
Cap 03
 
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdfSolucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
 
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
 
Ejercicio dos
Ejercicio dosEjercicio dos
Ejercicio dos
 
Solución al ejercicio 2
Solución al ejercicio 2Solución al ejercicio 2
Solución al ejercicio 2
 
Solucion ejercicios beer
Solucion ejercicios beerSolucion ejercicios beer
Solucion ejercicios beer
 
Problemas resueltos rozamiento
Problemas resueltos rozamientoProblemas resueltos rozamiento
Problemas resueltos rozamiento
 
Sol cap 10 edicion 8
Sol cap 10   edicion 8Sol cap 10   edicion 8
Sol cap 10 edicion 8
 
ENGINEERING SYSTEM DYNAMICS-TAKE HOME ASSIGNMENT 2018
ENGINEERING SYSTEM DYNAMICS-TAKE HOME ASSIGNMENT 2018ENGINEERING SYSTEM DYNAMICS-TAKE HOME ASSIGNMENT 2018
ENGINEERING SYSTEM DYNAMICS-TAKE HOME ASSIGNMENT 2018
 
Solucionario Mecanica Racional Since Capt2
Solucionario Mecanica Racional Since Capt2Solucionario Mecanica Racional Since Capt2
Solucionario Mecanica Racional Since Capt2
 
Cap 02
Cap 02Cap 02
Cap 02
 
Cap 02
Cap 02Cap 02
Cap 02
 
Problemas de estatica resueltas 1a parte
Problemas de estatica resueltas 1a parteProblemas de estatica resueltas 1a parte
Problemas de estatica resueltas 1a parte
 
Base excitation of dynamic systems
Base excitation of dynamic systemsBase excitation of dynamic systems
Base excitation of dynamic systems
 
OConnor_SimulationProject
OConnor_SimulationProjectOConnor_SimulationProject
OConnor_SimulationProject
 
Capítulo 03 materiais
Capítulo 03   materiaisCapítulo 03   materiais
Capítulo 03 materiais
 

More from Sohar Carr

Análisis Mr Holland's Opus
Análisis Mr Holland's OpusAnálisis Mr Holland's Opus
Análisis Mr Holland's OpusSohar Carr
 
Sentencias condicionales y ciclos
Sentencias condicionales y ciclosSentencias condicionales y ciclos
Sentencias condicionales y ciclosSohar Carr
 
Vectores y matrices
Vectores y matricesVectores y matrices
Vectores y matricesSohar Carr
 
Dualidad de ondas
Dualidad de ondasDualidad de ondas
Dualidad de ondasSohar Carr
 
Repaso teoría electromagnética
Repaso teoría electromagnéticaRepaso teoría electromagnética
Repaso teoría electromagnéticaSohar Carr
 
Capitulo 12, 7ma edición
Capitulo 12, 7ma ediciónCapitulo 12, 7ma edición
Capitulo 12, 7ma ediciónSohar Carr
 
Capitulo 10, 7ma edición
Capitulo 10, 7ma ediciónCapitulo 10, 7ma edición
Capitulo 10, 7ma ediciónSohar Carr
 
Capitulo 9, 7ma edición
Capitulo 9, 7ma ediciónCapitulo 9, 7ma edición
Capitulo 9, 7ma ediciónSohar Carr
 
Capitulo 6, 7ma edición
Capitulo 6, 7ma ediciónCapitulo 6, 7ma edición
Capitulo 6, 7ma ediciónSohar Carr
 
Capitulo 5, 7ma edición
Capitulo 5, 7ma ediciónCapitulo 5, 7ma edición
Capitulo 5, 7ma ediciónSohar Carr
 
Capitulo 4, 7ma edición
Capitulo 4, 7ma ediciónCapitulo 4, 7ma edición
Capitulo 4, 7ma ediciónSohar Carr
 
Capitulo 3, 7ma edición
Capitulo 3, 7ma ediciónCapitulo 3, 7ma edición
Capitulo 3, 7ma ediciónSohar Carr
 
Capitulo 2, 7ma edición
Capitulo 2, 7ma ediciónCapitulo 2, 7ma edición
Capitulo 2, 7ma ediciónSohar Carr
 
Capitulo 1, 7ma edición
Capitulo 1, 7ma ediciónCapitulo 1, 7ma edición
Capitulo 1, 7ma ediciónSohar Carr
 
Capitulo 13, 7ma edición
Capitulo 13, 7ma ediciónCapitulo 13, 7ma edición
Capitulo 13, 7ma ediciónSohar Carr
 
Capitulo 12 la onda plana uniforme
Capitulo 12   la onda plana uniformeCapitulo 12   la onda plana uniforme
Capitulo 12 la onda plana uniformeSohar Carr
 
Capitulo 08 el campo magnético estable
Capitulo 08   el campo magnético estableCapitulo 08   el campo magnético estable
Capitulo 08 el campo magnético estableSohar Carr
 
Capitulo 07 ecuaciones de poisson y de laplace
Capitulo 07   ecuaciones de poisson y de laplaceCapitulo 07   ecuaciones de poisson y de laplace
Capitulo 07 ecuaciones de poisson y de laplaceSohar Carr
 
Capitulo 06 dieléctricos y capacitancia
Capitulo 06   dieléctricos y capacitanciaCapitulo 06   dieléctricos y capacitancia
Capitulo 06 dieléctricos y capacitanciaSohar Carr
 
Capitulo 05 corriente y conductores
Capitulo 05   corriente y conductoresCapitulo 05   corriente y conductores
Capitulo 05 corriente y conductoresSohar Carr
 

More from Sohar Carr (20)

Análisis Mr Holland's Opus
Análisis Mr Holland's OpusAnálisis Mr Holland's Opus
Análisis Mr Holland's Opus
 
Sentencias condicionales y ciclos
Sentencias condicionales y ciclosSentencias condicionales y ciclos
Sentencias condicionales y ciclos
 
Vectores y matrices
Vectores y matricesVectores y matrices
Vectores y matrices
 
Dualidad de ondas
Dualidad de ondasDualidad de ondas
Dualidad de ondas
 
Repaso teoría electromagnética
Repaso teoría electromagnéticaRepaso teoría electromagnética
Repaso teoría electromagnética
 
Capitulo 12, 7ma edición
Capitulo 12, 7ma ediciónCapitulo 12, 7ma edición
Capitulo 12, 7ma edición
 
Capitulo 10, 7ma edición
Capitulo 10, 7ma ediciónCapitulo 10, 7ma edición
Capitulo 10, 7ma edición
 
Capitulo 9, 7ma edición
Capitulo 9, 7ma ediciónCapitulo 9, 7ma edición
Capitulo 9, 7ma edición
 
Capitulo 6, 7ma edición
Capitulo 6, 7ma ediciónCapitulo 6, 7ma edición
Capitulo 6, 7ma edición
 
Capitulo 5, 7ma edición
Capitulo 5, 7ma ediciónCapitulo 5, 7ma edición
Capitulo 5, 7ma edición
 
Capitulo 4, 7ma edición
Capitulo 4, 7ma ediciónCapitulo 4, 7ma edición
Capitulo 4, 7ma edición
 
Capitulo 3, 7ma edición
Capitulo 3, 7ma ediciónCapitulo 3, 7ma edición
Capitulo 3, 7ma edición
 
Capitulo 2, 7ma edición
Capitulo 2, 7ma ediciónCapitulo 2, 7ma edición
Capitulo 2, 7ma edición
 
Capitulo 1, 7ma edición
Capitulo 1, 7ma ediciónCapitulo 1, 7ma edición
Capitulo 1, 7ma edición
 
Capitulo 13, 7ma edición
Capitulo 13, 7ma ediciónCapitulo 13, 7ma edición
Capitulo 13, 7ma edición
 
Capitulo 12 la onda plana uniforme
Capitulo 12   la onda plana uniformeCapitulo 12   la onda plana uniforme
Capitulo 12 la onda plana uniforme
 
Capitulo 08 el campo magnético estable
Capitulo 08   el campo magnético estableCapitulo 08   el campo magnético estable
Capitulo 08 el campo magnético estable
 
Capitulo 07 ecuaciones de poisson y de laplace
Capitulo 07   ecuaciones de poisson y de laplaceCapitulo 07   ecuaciones de poisson y de laplace
Capitulo 07 ecuaciones de poisson y de laplace
 
Capitulo 06 dieléctricos y capacitancia
Capitulo 06   dieléctricos y capacitanciaCapitulo 06   dieléctricos y capacitancia
Capitulo 06 dieléctricos y capacitancia
 
Capitulo 05 corriente y conductores
Capitulo 05   corriente y conductoresCapitulo 05   corriente y conductores
Capitulo 05 corriente y conductores
 

Recently uploaded

Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 3652toLead Limited
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure servicePooja Nehwal
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxOnBoard
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphNeo4j
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...HostedbyConfluent
 
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxMaking_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxnull - The Open Security Community
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptxLBM Solutions
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Alan Dix
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Allon Mureinik
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 

Recently uploaded (20)

Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptx
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
 
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxMaking_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptx
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 

solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica) 7ma edicion Cap 19

  • 1. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 2. Eq. 19.15: 2 m m n m m nv x a xω ω= = Given data 2 0.2 m/s 4 m/sm mv a= = : 0.2 m/sm m n m mv x xω ω= = (1) 2 2 2 : 4 m/sm m n m ma x xω ω= = (2) Divide Equ. (2) by Equ. (1): 2 4 m/s 20 rad/s 0.2 m/s nω = = Eq. (1): ( )0.2 m/s 20 rad/smx= 0.01 mmx = 10 mmmx = ! Frequency 20 rad/s 2 2 n nf ω π π = = 3.18 Hznf = !
  • 2. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 3. cycle 2 rad sin , 6 s cycle m n nx x t π ω ω= = × sin 12mx x tπ= 12 cos12mx x tπ π=& 2 144 sin12mx x tπ π= −&& 12 4 ft/smxπ = 4 0.1061 ft 12 mx π = = 1.273 in.mx = ! ( )2 2 Max Acc. 144 0.1061 150.8 ft/sπ= = !
  • 3. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 4. Simple Harmonic Motion 20 lb 0.2222 in. 90 lb/in. s W k δ = = = ( )( )90 12 41.699 rad/s 2 20 32.2 n k f m ω π= = = =       (a) Amplitude 0.222 in.s mxδ= = = 0.222 in.mx = ! 41.699 rad/s 6.6366 2 f π = = 6.64 Hzf = ! (b) ( )( )41.699 rad/s 0.2222 in. 9.2655 in./sm n mv xω= = = 9.27 in./smv = ! ( ) ( )22 2 41.699 rad/s 0.2222 in. 386.36 in./sm n ma xω= = = 2 32.197 ft/s= 2 32.2 ft/sma = !
  • 4. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 5. Simple Harmonic Motion (a) ( )sinm nx x tω φ= + ( )( )2 9000 lb/ft 70 lb 32.2 lb/s n k m ω = = 64.343 rad/s= 2 0.90765 sn n π τ ω = = 0.0977 snτ = ! 1 10.240 Hzn n f τ = = 10.24 Hznf = ! (b) At 0 0 00: 0, 10 ft/st x x v= = = =& ( )( )0 0 sin 0 0m nx x ω φ φ= = + ⇒ = ( )( )0 0 cos 0m n n m nx v x xω ω φ ω= = + =& Substituting 10 ft/s 64.343 rad/smx= or 0.1554 ft 1.865 in.mx = = 1.865 in.mx = ! ( )( )22 0.15542 ft 64.343 rad/sm m na x ω= = 2 643.4 ft/s= 2 643 ft/sma = !
  • 5. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 6. In Simple Harmonic Motion (a) 2 m m na x ω= Substituting ( )2 2 50 m/s 0.058 m nω= or ( )22 862.07 rad/snω = 29.361 rad/snω = Now 29.361 rad/s 4.6729 Hz 2 2 n nf ω π π = = = Then ( )( ) 1 cycle 1 in Hz Hz 1 min 60 s/min 60 f = = So ( ) 11 6060 Hz 4.6729 Hz 280.37 r/min Hz f = = and 280 rpm (b) ( )( )0.058 m 29.361 rad/s 1.7029 m/sm m nv x ω= = = 1.703 m/smv =
  • 6. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 7. Simple Harmonic Motion (a) ( )sinm ntθ θ ω φ= + ( ) 2 2 1.35 s n n π π ω τ = = 4.833 rad/s= ( )cosm n ntθ θ ω ω φ= +& m m nθ θ ω=& m m m nv l lθ θ ω= =& Thus, m m n v l θ ω = (1) For a simple pendulum n g l ω = Thus, ( ) 2 2 2 9.81 m/s 4.833 rad/sn g l ω = = 0.420 m= From (1) ( )( ) 0.4 m/s 0.42 m 4.833 rad/s m m n v l θ ω = = 0.197 rad= or 11.287° 11.29mθ = °!
  • 7. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (b) Now ta lθ= && Hence, the maximum tangential acceleration occurs when θ&& is maximum. ( )2 sinm n ntθ θ ω ω φ= − +&& 2 m m nθ θ ω=&& ( ) 2 t m nm a lθ ω= or ( ) ( )( )( )2 0.42 m 0.197 rad 4.833 rad/st m a = 2 1.9326 m/s= ( ) 2 1.933 m/st m a = !
  • 8. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 8. Simple Harmonic Motion: 2 60 lb/ft 6.2161 rad/s 50 lb 32.2 ft/s n k m ω = = = 6.2161 Hz 2 2 n nf ω π π = = (a) 2.4 in. 0.2 ftmx = = 0.2 ftmx = ! 0.989 Hznf = ! ( )( )22 0.2 ft 6.2161 rad/sm m na x ω= = 2 7.728 ft/s= (b) f m sF ma mgµ= = or 2 2 7.728 ft/s 0.240 32.2 ft/s m s a g µ = = = !
  • 9. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 9. 6 lb/in. 72 lb/ft, 55 in./s, 4 lb.mk v W= = = = : 0 k F ma kx mx x x m = − = + =&& && Thus: 2 72 579.6 24.025 rad/s 4 32.2 k m ω ω= = = =       Eq. (19.15): m mv x ω= ( )55 in./s 24.025 rad/smx= 2.2845 in.mx = 2.28 in.mx = ! ( )( )2 2 2 2.2845 in. 579.6 rad /sm ma x ω= = 2 1324.1 in./sma = 2 110.3 ft/sma = !
  • 10. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 10. ( )60cos 10 45sin 10 3 x t t π π π   = + −    ( )60cos 10 45 sin10 cos cos10 sin 3 3 t t t π π π π π   = + −    22.5sin10 21.02886cos10t tπ π= + (1) Now sin(10 ) sin10 cos cos10 sinm m mx t x t x tπ φ π φ π φ+ = + (2) Comparing (1) and (2) gives 22.5 cos , 21.02866 sinm mx xφ φ= = (a) 2 2 0.2 s 10 n n π π τ ω π = = = ! (b) 2 2 2 (22.5) (21.02866)mx = + 30.8 mmmx = ! (c) 21.02866 tan 22.5 φ = 0.7516 rad 43.1φ = = °!
  • 11. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 11. At both 600 rpm and 1200 rpm, the maximum acceleration is just equal to g. (a) 600 rpm 62.832 rad/sω = = Eq. (19.15): ( ) 2 2 62.832 m m m g a x xω= = SI: ( ) 3 2 9.81 2.4849 10 m 62.832 mx − = = × 2.48 mmmx = US: ( )2 32.2 0.008156 ft 62.832 mx = = 0.0979 in.mx = (b) 1200 rpm 125.664 rad/sω = = Eq. (19.15): ( ) 2 2 125.664 m m m g a x xω= = SI: ( ) 6 2 9.81 621.2 10 m 125.664 mx − = = × 0.621 mmmx = US: ( )2 32.2 0.002039 ft 125.664 mx = = 0.0245 in.mx =
  • 12. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 12. Simple Harmonic Motion, thus ( )sinm nx x tω φ= + 400 N/m 16.903 rad/s 1.4 kg n k m ω = = = Now (0) 0 sin(0 ) 0mx x φ φ= = + ⇒ = Then (0) cos(0 0)m nx x ω= +& or 2.5 m/s ( )m(16.903 rad/s) 0.14790 mm mx x= ⇒ = Then ( ) ( )0.14790 m sin 16.903 rad/sx t =   (a) At ( )0.06 m: 0.06 m (0.14790 m)sin 16.903 rad/sx t = =   or 1 0.06 m sin 0.14790 m 0.02471 s 16.903 rad/s −      = =t 0.0247 st = ! (b) Now ( )cosm n nx x tω ω=& ( )2 sinm n nx x tω ω= −&& Then, for 0.024713 st = ( )( ) ( )( )0.1479 m 16.903 rad/s cos 16.903 rad/s 0.024713 sx  =  & 2.285 m/s= 2.29 m/sx =& ! And ( )( ) ( )( )2 0.1479 m 16.903 rad/s sin 16.903 rad/s 0.024713 sx  = −  && 2 17.143 m/s= − 2 17.14 m/sx =&& !
  • 13. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 13. Referring to the figure of Problem 19.12 ( )sinm nx x tω φ= + ( )cosm n nx x tω ω φ= +& ( )2 sinm n nx x tω ω φ= − +&& Using the data from Problem 19.13: 0, 0.1479 m, 16.903 rad/sm nxφ ω= = = , , arex x x& && And ( ) ( )0.14790 m sin 16.903 rad/sx t =   So, at 0.9 s,t = ( ) ( )( )0.1479 m sin 16.903 rad/s 0.9 sx  =   0.0703 m= 70.3 mmx = ! ( )( ) ( )( )0.1479 m 16.903 rad/s cos 16.903 rad/s 0.9 sx  =  & 2.19957 m/s= − 2.20 m/sx =& ! ( )( ) ( )( )2 0.1479 m 16.903 rad/s sin 16.903 rad/s 0.9 sx  =  && 2 20.083 m/s= − 2 20.1 m/sx =&& !
  • 14. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 14. (a) sin( )m nx x tω φ= + ( ) ( )2 9000 lb/ft 70 lb 32.2 lb/s ω = =n k m 64.343 rad/s= 2 0.9765 sn n π τ ω = = With the initial conditions: (0) 15 in. 1.25 ft, (0) 0x x= = =& ( )1.25 ft sin 0mx φ= + (0) 0 cos(0 ) 2 m nx x π ω φ φ= = + ⇒ =& 1.25 ftmx = Then ( ) (1.25 ft)sin 64.343 2 x t t π  = +    (1.5) (1.25 ft)sin 64.343(1.5 s) 0.80137 ft 2 x π  = + = −    ( )(1.5) (1.25 ft)(64.343)cos 64.343 1.5 s 61.726 ft/s 2 x π  = + = −    & In 1.5 s, the block completes 1.5 s 15.361 cycles 0.09765 s/cycle =
  • 15. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. So, in one cycle, the block travels 4(1.25 ft) 5 ft= Fifteen cycles take 15(0.09765 s/cycle) 1.46477 s= Thus, the total distance traveled is 15(5 ft) 1.25 ft (1.25 0.80137)ft 77.1 ft+ + − = Total 77.1 ft= ! (b) 2 (1.5) (1.25 ft)(64.343 rad/s) sin (64.343 rad/s)(1.5 s) 2 x π  = − +    && 2 3317.68 ft/s= 2 3320 ft/sx =&& !
  • 16. COSMOS: Complete Online Solutions Manual Organization System Chapter 19, Solution 15. 2 2 10 lb 0.31056 lb s /ft 32.2 ft/s m = = ⋅ With the given properties: 2 50 lb/ft 12.6886 rad/s 0.31056 lb s /ft n k m ω = = = ⋅ From free fall of the collar ( )0 2 2 1.5 ft 3 9.82853 ft/sv gh g g= = = = The free-fall time is thus: ( ) 1 2 1.5 ft2 3 0.30523 s y t g g g = = = = Now to simplify the analysis we measure the displacement from the position of static displacement of the spring, under the weight of the collar: Note that the static deflection is: 10 lb 0.2 ft 50 lb/ft st W k δ = = = Then 0,mx kx+ = where x is measured positively up from the position of static deflection. The solution is: ( )sin ,m nx x tω φ= + with velocity ( )cosm n nx x tω ω φ= + Now to determine and ,mx φ impose the conditions at impact and count the time from there. Thus: At impact: 0, 0.2 ft and 9.82853 ft/sstt x vδ= = = = − (down) or 0.2 ft sinmx φ= ( )9.82853 ft/s 12.6886 rad/s cosmx φ− = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 17. COSMOS: Complete Online Solutions Manual Organization System Solving for andmx φ 0.800 ftmx = − 0.25268 radφ = − So, from time of impact, the ‘time of flight’ is the time necessary for the collar to come to rest on its downward motion. Thus, is the time such2t that ( )2 20 12.6886 2 x t t π φ= ⇒ + = or 212.6886 0.25268 2 t π − = Hence, 2 0.14371 st = (a) Thus, the period of the motion is ( ) ( )1 22 2 0.30523 s 0.14371 st tτ = + = + 0.89788 s= 0.898 sτ = (b) After 0.4 seconds, the velocity is ( ) ( )10.4 cos 0.4m n nx x tω ω φ⎡ ⎤= − +⎣ ⎦ ( )( ) ( )( )12.6886 rad/s 0.8 ft cos 12.6886 rad/s 0.4 0.30523 s⎡= − −⎣ ]0.25268 rad− 5.91ft/s= − ( )0.4 5.91 ft/sv = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 18. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 16. sin , cos ,m n m n n n g t t l θ θ ω θ θ ω ω ω= = =& 9.81 2.8592 rad/s, 1.2 nω = = 0.18 0: 1.2 m nt θ θ ω= = =& 0.052462 radiansmθ∴ = At 1.5 s,t = ( )( )0.052462 sin 2.8592 1.5θ = (a) 0.047826θ = − radians 2.74= − ° ! (b) ( )( ) ( )( )1.2 0.052462 2.8592 cos 2.8592 1.5v = 74.0 mm/sv = ! ( )( ) ( )( )2 1.2 0.052462 2.8592 sin 2.8592 1.5a = 2 469 mm/sa = !
  • 19. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 17. (a) ( )sinm nx x tω φ= + ( )0 sin 0 0.75 ftmx x φ= + = ( )0 0 cos 0 , 2 m nx x π ω φ φ= = + ⇒ =& 0.75 ftmx∴ = When the collar just leaves the spring, its acceleration is g (downward) and 0.v = Now ( )0.75 ft cos 2 n nx t π ω ω   = +    & ( ) ( )0 0 0.75 ft cos , 2 2 2 n n nx v t t π π π ω ω ω   = = = + ⇒ + =    & And ( ) 2 0.75 ft sin 2 n na g t π ω ω   = − = − +    or ( ) 2 0.75ft ng ω− = − 2 32.2 ft/s 6.5524 rad/s 0.75 ft nω = = Then ( )22 2 10 lb , 6.5524 rad/s 32.2 ft/s n n k k m m ω ω= ⇒ = = 13.333 lb/ft= 13.33 lb/ftk = ! (b) 6.5524 rad/snω =
  • 20. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. At 1.6 s:t = ( ) ( )( )0.75 ft sin 6.5524 rad/s 1.6 s 0.36727 ft 2 x π  = + = −    0.367 ftx = − above equilibrium ! ( )( ) ( )( )0.75ft 6.5524 rad/s cos 6.5524 rad/s 1.6 s 4.2848ft/s 2 v x π  = = + =    & 4.28 ft/sv = ! ( )( ) ( )( )2 2 0.75 ft 6.5524 rad/s sin 6.5524 rad/s 1.6 s 15.768 ft/s 2 a x π  = = − + =    && 2 15.77 ft/sa = !
  • 21. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 18. Determine the constant k of a single spring equivalent to the three springs shown. Springs 1 and 2: 1 1 1 1 2 1 2 , and P P P k k k δ δ δ= + = + ′ Hence 1 2 1 2 k k k k k ′ = + Where k′is the spring constant of a single spring equivalent of springs 1 and 2. Springs k′and 3 Deflection in each spring is the same So 1 2 1 2 3, and , ,P P P P k P k P kδ δ δ′= + = = = Now 3k k kδ δ δ′= + 1 2 3 3 1 2 k k k k k k k k ′= + = + + or ( )( ) ( ) ( ) 33.5 kN/m 2.1 kN/m 2.8 kN/m 4.11 kN/m 4.11 10 N/m 3.5 kN/m 2.1 kN/m k = + = = × + (a) 3 2 2 0.361 s 4.11 10 N/m 13.6 kg n k m π π τ = = = × 1 1 2.77 Hz 0.3614 s n n f τ = = =
  • 22. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (b) ( )sinm nx x tω φ= + And 44 mm 0.044 mmx = = ( )( )2 2 2.77 Hz 17.384 rad/sn nfω π π= = = And ( ) ( )0.044 m sin 17.4 rad/sx t φ = +  ( )( ) ( )0.044 m 17.4 rad/s cos 17.4 rad/sx t φ = + & Then ( )( )max 0.044 m 17.4 rad/s 0.766 m/sv = = ( )( ) ( )2 0.044 m 17.4 rad/s sin 17.4 rad/sx t φ = − + && Then ( )( )2 2 max 0.044 m 17.4 rad/s 13.3 m/sa = = max 0.765 m/sv = 2 max 13.31 m/sa =
  • 23. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 19. (a) First, calculate the spring constant ( ) ( ) ( ) ( )24 kN/m 12 kN/m 12 kN/m 48 kN/mP δ δ δ δ= + + = 48 kN/mk∴ = Then 3 40 10 N/m 30.984 rad/s 50 kg n k m ω × = = = 2 0.20279 sn n π τ ω = = 1 4.9312 Hzn n f τ = = 0.203 snτ = ! 4.93 Hznf = ! (b) Now ( )sinm nx x tω φ= + And, since 0 0.060 mx = ( ) ( )0.060 m sin 30.984 rad/sx t φ = +  ( )( ) ( )0.060 m 30.984 rad/s cos 30.984 rad/sx t φ = + & ( )( ) ( )2 0.060 m 30.984 rad/s sin 30.984 rad/sx t φ = − + && Hence max 1.859 m/sv = ! 2 max 57.6 m/sa = !
  • 24. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 20. Equivalent spring constant 2 2 4k k k k′ = + = (Deflection of each spring is the same.) ( )1 2 2 6.8 s 10 lb 32.2 ft/s π τ = =n k 2 2 10 6.8 32.2 k π  ⇒ =     0.2651 lb/ftk = ( )2 2 2 4 6 lb 32.2 ft/s π τ =n k ( )( )2 2 4 0.2651 lb/ft 32.2 ft/s 6 lb π = 2.633 s= 2.63 snτ =
  • 25. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 21. Equivalent Springs Series: 1 2 1 2 s k k k k k = + Parallel: 1 2pk k k= + 2 2 2 2 ;s p s ps pk k m m π π π π τ τ ω ω = = = = ( ) ( ) ( ) 2 22 1 21 2 1 2 1 2 1 2 5 2 τ τ   ++  = = = =        + ps p s k k kk k k kk k k k k ( )( ) 2 2 1 2 1 1 2 26.25 2k k k k k k= + + ( ) ( )2 2 2 2 2 2 1 4.25 4.25 4 2 k k k k − = m 1 2 2.125 3.516 k k = m 1 2 1 4 or 4 k k =
  • 26. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 22. For a static load P the total elongation of the spring is: 1 2 3 P P P k k k δ = + + 1 1 1 8 kN/m 12 kN/m 16 kN/m P   = + +    6 4 3 13 48 48 δ + +  = =    P P 48 3.6923 kN/m 13 P k δ = = = 3 3.6923 10 N/m ( ) 12.153 rad/s 25 kg k a m ω × = = = 2 2 0.517 s 12.153 π π τ ω = = = 0.517 sτ = ! 12.153 1.9342 Hz 2 2 f ω π π = = = 1.934 Hzf = ! (b) For 30 mm = 0.03 mmx = ( )( )0.03 m 12.153 rad/sm mv x ω= = 0.365 m/smv = ! ( )( )22 0.03 m 12.153 rad/sm ma x ω= = 2 4.43 m/sma = !
  • 27. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 23. For equilibrium Equal stretch 12 N 16 N ,A C B k k δ δ δ= = = 12 N ,A CT T kx= = + 16 NBT kx= + ( ) ( ) ( )4.08 9.81 2 12 16mx kx kx= × − + − +&& 3 0mx kx+ =&& ( ) 3 0.0125 cos k x t m = (a) Then ( )( )16 0.0125 1 0BT k= + − = 1.280 kN/mk = ! (b) ( ) ( ) 2 2 23 12803 941.76 rad /s 40 9.81 n k m ω = = = 30.688 rad/s 4.88 Hzn fω = ⇒ = ! (c) ( ) 3 12 1280 0.0125 cosA k T t m = + 3 Minimum when cos 1 k t m = = − ( ) ( )min 12 1280 0.0125 4AT = − = − Max Comp: 4 N !
  • 28. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 24. Springs in parallel, eq 1 22k k k= + 12 16,000 2 2 10 0.2 n k m π π ω π τ + = = = = After removal 12 2 8 0.25 n k m π ω π= = = Elimination: 2 12 16,000 100 k m π + = 2 12 64 k m π = (a) 2 2 16,000 100 64 , m π π∴ = × 45.0 kgm = ! (b) 2 1 1 2 64 , 14,222 N m 45.0316 k kπ = = 1 14.22 kN/mk = !
  • 29. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 25. The equivalent spring constant for springs in series is: 1 2 1 2 e k k k k k = + 1 2For andk k ( ) 1 2 1 2 2 2π π τ = = + e A A k k k m m k k 1For alonek 1 2π τ′ = A k m (a) 2 2 1 2k k k τ τ   = + ′  0.2 s 0.16667 0.12 s τ τ = = ′ And with 2 3.5 kN/mk = ( )( )2 13.5 kN/m 1.6667 3.5 kN/mk= + or 1 6.22 kN/mk = (b) 1 2π τ′ = A k m A A W m g = ( ) ( ) 2 1 1 2 2 A k m τ π = And with 3 1 6.22 kN/m 6.22 10 N/mk = = × ( ) ( ) ( ) 2 3 2 2 0.12 s 6.22 10 N/m 2.2688 Ns /m 2.2688 kg 2 Am π × = = = 2.27 kgAm =
  • 30. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 26. The equivalent spring constant, accounting for the springs in series, is eq 2 k k k= + ( )( ) ( )( ) eq 22 2 2 0.4 s 3 /2 100 lb 32.2 ft/s100 lb 32.2 ft/s k k π π τ = = = It follows that 510.849 lb/ftk = 511 lb/ftk = ! After the changes eq 2 0.4 s 120/32.2 k π τ = = Thus eq 919.528 lb/ftk = Since eq A A kk k k k k = + + or ( ) ( ) ( ) eq eq 510.849 919.528 510.849 2 2 510.849 919.528 A k k k k k k − − = = − − 2043.4 lb/ft= 2040 lb/ftAk = !
  • 31. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 27. Initially 2 1.6 s A k m π τ = = After the 14 lb weight is added to A, 2 2.1 s A B k m m π τ′ = = + (a) A B A m m m τ τ ′ + = 2 2.1 1.6 A B A m m m +  =    ( )( )1.7227 A A Bm m m= + Note 2 14 lb 32.2 ft/s Bm = 2 14 lb 1.3838 1.3838 32.2 ft/s A Bm m   = =     ( )2 2 14 lb 32.2 ft/s 1.3838 19.373 lb 32.2 ft/s A AW m   = = =    19.37 lbAW = ! (b) 2 A k m π τ = ( ) ( ) ( ) 2 2 2 Am k π τ = ( ) ( ) 2 2 2 19.373 lb 32.2 ft/s 2 1.6 s k π      = 9.278 lb/ftk = 9.28 lb/ftk = !
  • 32. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 28. , 2 2 2s s d d x x F kx k x h h = = = ( ) ( )eff : 2A AM M Fd mgx mx hΣ = Σ − = − && 2 d k x d mg x mxh h   − = −    && 2 2 2 0 kd g x x hmh   + − =    && 22 2 2 2 2 2 , kd g k d g h m h hmh ω ω     = − = −       (1) Data: 0.3 m; 0.7 m; 20 kgd h m= = = (a) For 1 s:τ = 2 ; π τ ω = 2 22 1 s = ; 4 π ω π ω = Eq. (1): 2 2 2 0.3 9.81 4 20 0.7 0.7 k π   = −    2912.4 N/mk = 2.91 kN/mk = (b) For Infinite:τ = 2 ; π τ ω = 0ω = Eq. (1): 2 2 2 0.3 9.81 0 20 0.7 0.7 k ω   = = −    763.0 N/mk = 763 N/mk =
  • 33. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 29. (a) The equation of motion is: ( )( )( ) ( )( ): 0.75 0.75 2 1.2 m 1.2AM kθ θΣ − = && 1.125 1.44k mθ θ− = && 1.44 1.125 0m kθ θ+ =&& ( )3 1.125 1.35 10 0 1.44m θ θ × + =&& 1054.69 0 m θ θ+ =&& Then 2 1054.69 2 , and 4n n n s m π ω τ ω = = = 2 2 1054.69 1054.69 2 or 4 4m m π π  = =     427.45 kgm = 427 kgm = (b) ( )sinm ntθ θ ω φ= + At 0t = 0.06 0.03636 rad 1.65 m m θ = =
  • 34. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. And 0θ =&& Then 0.03636 sinmθ φ= ( )0 cosm n ntθ ω ω φ= + Thus , 0.0363 rad 2 m π φ θ= = Now 0.06 0.03636 rad 1.65 m m θ = = ( )cosm n ntθ θ ω ω φ= +& 1054.69 1.5708 rad/s 427.45 nω = = Then 0.06 0.03636 rad 1.65 m m θ = = ( )( ) ( )0.03636 rad 1.5708 rad/s cos 1.5708 rad/s 2 t π θ   = +    & ( )( )max 0.03636 rad 1.5708 rad/s 0.05712 rad/sθ = =& ( ) ( )( )max 1.2 0.05712 rad/s 0.06854 m/scv m= = ( )max 68.5 mm/scv =
  • 35. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 30. (a) ( )( )( ) ( ) 6 2 2 2 3 4 3 3 48 30 10 lb/in. 144 in. /ft 2 10 ft48 15 ft P EI k Lδ − × × = = = 122880 lb/ft= 5 1.229 10 lb/ftk = × (b) ( )2 122880 lb/ft 51.360 rad/s 1500 lb 32.2 ft/s n k m ω = = = or 1 51.36 8.17 Hz 2 2 2 n n k f m ω π π π = = = =
  • 36. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 31. (a) , ,e PL AE P k P AE L δ δ δ   = = =     ( )2 6 3 0.32 in. 29 10 psi 4 129.57 10 lb/in. 18 in. e AE k L π     ×   = = = × 3 129.6 10 lb/in.ek = × ! (b) ( ) ( ) ( ) 3 2 129.57 10 lb/in. 16 lb 32.2 ft/s 81.272 Hz 2 2 e n k mf π π × = = = 81.3 Hznf = !
  • 37. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 32. st W k δ = W m g = 2 st W n W stg k g m δ ω δ = = = 1 2 2 n n st g F ω π π δ = = !
  • 38. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 33. (a) ( )( )2 0.10 kg 9.81 m/s 0.981 Nmg − = 1 2 2 00 0.981 N 4 4 F mg x x   = = ⇒ =     0.06015 m= 0 60.1 mmx = ! (b) At 0,x ( ) 1 1 2 2 0 0 4 2 0.06015 2x dF x dx − −  = =    8.1549 N/m= 0 8.1549 N/me x dF k dx   = =    8.1549 N/m 0.10 kg 1.4372 Hz 2 2π π = = = e n k mF 1.437 HznF = !
  • 39. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 34. Using the Binomial Theorem we write 1 2 2 2 2 1 1 sin sin 2 1 sin sin 2 m m θ φ θ φ −    = −         −     2 21 1 sin sin 2 2 mθ φ= + + ⋅ ⋅ ⋅ ⋅ Neglecting terms of order higher than 2 and setting ( )2 1 sin 1 cos2 , 2 φ φ= − we have ( )2 2 0 1 1 4 1 sin 1 cos2 2 2 2 m n l d g π θ τ φ φ    = + −      ∫ 2 2 2 0 1 1 4 1 sin sin cos2 4 2 4 2 m ml d g π θ θ φ φ   = + −    ∫ 2 2 2 0 1 1 4 sin sin sin 2 4 2 8 2 m ml g π θ θ φ φ φ    = + −      21 4 sin 0 2 4 2 2 ml g π θ π   = + +      21 2 1 sin 4 2 m n l g θ τ π   = +    !
  • 40. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 35. For small oscillations: 0 2 l g τ π= We want ( )01.01 1.01 2 l g τ τ π= = Using the formula of Prob. 19.34, we write 2 0 0 1 1 sin 1.01 4 2 mθ τ τ τ   = + =    ( )2 sin 4 1.01 1 0.04; sin 0.2; 11.54 2 2 2 m m mθ θ θ = − = = = ° 23.1mθ = ° !
  • 41. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 36. Eq. (19.20) 2 2 k l g τ π π   =      For 0.8 m:l = 2 0.8 m 2 2 1.7943 s 9.81 m/s l g π π= = Thus: ( ) 2 1.7943 s k τ π = Using Table 19.1: (a) For small oscillations: 2 0; 1m k θ π = = 1.7943 sτ = ! (b) For 2 30 : 1.017m k θ π = ° = ( )( )1.017 1.7943 sτ = 1.825 sτ = ! (c) For 2 90 : 1.180m k θ π = ° = ( )( )1.180 1.7943 sτ = 2.12 sτ = !
  • 42. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 37. From Equation 19.20: 2 2n k l g τ π π    =       For 60 , 1.686m kθ = ° = ( ) ( )( )( )3 s 2 1.686 2 32.2 l = 3 0.44484 0.19788 32.2 6.744 32.2 l l = = ⇒ = Thus 6.3718 ft 76.462 in.l = = 76.5 in.l = !
  • 43. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 38. ( ) ( )0.6 , 0.4A st B stA B F k l F k lθ δ θ δ   = + = +    (a) ( )eff :C CM MΣ = Σ ( ) ( )0.6 0.6 0.1 0.4 0.4 0.1st st tA B lk l lmg lk l I lmaθ δ θ δ α   − + + − + = +    (1) Equilibrium position: 0θ = ( ) ( )0.6 0.1 0.4 0st stA B lk lmg lkδ δ− + − = (2) Substitute (2) into (1) ( ) ( )2 2 0.1 0.6 0.4 0tI lma l k l kα θ θ+ + + = or 2 0.1 0.52 0tI lma l kα θ+ + = But 2 , 0.1 , , 12 t ml I a lα α θ= = = && So ( ) 2 2 2 0.1 0.52 0 12 ml l m l kθ θ   + + =    && or 2 0.09333 0.52 0l kθ θ+ =&& 2 5.5714 0l kθ θ+ =&& ( ) 850 N/m 5.5714 0 9 kg θ θ   + =    && 2 526.19 s 0θ θ− + =&&
  • 44. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Thus 2 526.19 s 22.939 rad/s, 3.6508 Hz 2 n n nf ω ω π − = = = = 3.65 Hznf = (b) ( ) ( )sin , cosm n m n nt tθ θ ω φ θ θ ω ω φ= + = +& m m nθ θ ω=& ( ) ( )0.6A mm x l θ= && ( )( )( )0.0011 m/s 0.6 0.6 m 22.939 rad/smθ= 0.0001332 rad 0.0076mθ = = ° 0.0076mθ = °
  • 45. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 39. ( )eff :B BM MΣ = Σ Diskcos 2 2 2 AB L L L mg kxr I m Iθ α α α    − = + +      (1) where where from statics 2 st st L x r mg k rθ δ δ= + = into (1) and assuming small angles ( )cos 1θ ≈ 2 L mg θ 2 stkr krθ δ− − 2 Disk 2 AB L I m I α     = + +     so 2 2 Disk 0 4 AB mL I I krθ θ   + + + =     && so 2 2 2 2 2 2 2 Disk Disk 1 1 4 12 4 2 n AB kr kr mL mL I I mL M r ω = = + + + + (2) Disk : 0.9 m 7.5 kg 0.25 m into (2) 6 kg 5 kN/m Data L m r M k =   =   =  =  = 
  • 46. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ( )( ) ( )( ) ( )( ) ( )( ) 2 2 2 2 2 5000 N/m 0.25 m 1 1 1 7.5 kg 0.9 m 7.5 kg 0.9 m 6 kg 0.25 m 12 4 2 nω = + + 2 2 141.243 rad/snω = 11.8846 rad/snω = (a) so 2 2 11.8846n π π τ ω = = 0.529 sτ = ! (b) 0.020 mmx = ( )0.02 11.8846 0.2377 m/sm m nv x ω= = = max 238 mm/sv = !
  • 47. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 40. At equilibrium, ( )spring tension 20 lb sin15= ° ( ) 0 20 lb sin15 stretch 50 lb/ft x ° = = 20sin15PMΣ = °( ) 0 4 50 12 x− 4 12 x   +     2 4 12 1 20 4 20 4 16.667 0.310559 2 32.2 12 32.2 12 x x x x         = + − =                !! !! !! 0.310559 16.667 0, 7.326 rad/snx x ω+ = =!! (a) 0.858 sτ = ! (b) sin , cosn n nx A t x A tω ω ω= =! ( )0.5 7.326 3.66 in./snAω = = !
  • 48. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 41. Kinematics 2 cos sin Non-linear terms : sin 2 A x A a l l ml F N ma θ θ θ θ θ θ = +  + Σ = −   & && && 2 2 sin cos sin sin 2 3 2 A A kl ml l M Nl ma θ θ θ θ θΣ = − + = − && or, letting cos 1,θ = sin cos , sin 0, since 1θ θ θ θ θ= = << 2 2 2 3 0, 3 2 2 n ml kl k m θ θ ω+ = =&& For 1.5 ft,l = 2 6 lb , 23 lb/in. 276 lb/ft 32.2 ft/s m k= = = (a) 1 3 7.50 Hz 2 2 k f mπ = = ! (b) 2 2 max max maxn n x L θ ω θ ω= − = −&& ( ) ( ) 2max 0.8 3 276 3 12 98.747 rad/s 62 2 1.5 32.2 k x m L   −    = − = =       2 max 98.7 rad/sθ =&& !
  • 49. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 42. (a) ( )eff :A AM MΣ = Σ ( ) ( ) ( )1.2 0.825 2 0.75 0.825 1.2R S R t tG C mg m g F I m a m aα+ − = + + (1) Where ( )0.75S stF k θ δ= + At equilibrium, 0θ = And ( )0: 1.2 0.825 2 0.75 0A R stM mg m g kδΣ = + − = (2) Substitute (2) into (1) ( ) ( ) ( ) ( )0.825 1.2 2 0.75 0.75R t tG C I m a m a kα θ+ + = − ( ) ( ), 0.825 , 1.2t tG C a aα θ α α= = =&& ( )( )22 21.2 kg 1.65 m 0.2725 kg m 12 12 ml I = = = − ( ) ( ) ( ) ( ) ( )2 2 2 0.2725 0.825 1.2 1.2 2 0.75 450 0m θ θ + + + =   && [ ]1.08925 1.44 506.25 0m θ θ+ + =&& 506.25 0 1.08925 1.44m θ θ+ = + &&
  • 50. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Now ( ) ( ) ( ) 2 2 22 2 2506.25 2 2 109.66 1.08925 1.44 0.6 n n n f m π π ω π τ   = = = = =  +   ( )506.25 109.66 1.08925 1.44m= + 2.4495 kgm = 2.45 kgm = (b) ( ) ( )max max 0.06 1.2 , 0.03636 rad 1.65 1.65 θ θ= = = =& B C m y v ( )( ) 1 22 0.03636 rad 109.66 s 0.38075 rad/sm m nθ θ ω − = = =& ( ) ( )max 1.2 0.38075 rad/s 0.45691 m/sCv = = ( )max 457 mm/sCv =
  • 51. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 43. 2mx kx P= −&& Mx P F= −&& 21 2 Mr Frθ =&& Eliminate , andP F θ 3 2 0 2 M m x kx   + + =    && ( )2 2 5000 N/m2 769.23 3 4 kg 9 kg 2 n k M m ω = = = ++ 27.735 rad/snω = (a) 2 0.22654 sn n π τ ω = = 0.227 snτ = ! (b) ( )max 12 mm 333 mm/snv ω= = !
  • 52. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 44. From Problem 19.43 ( )2 2 3500 N/m2 538.46; 23.2048 rad/s 3 4 kg 9 kg 2 n n k M m ω ω= = = = ++ ( )( ) ( )( )2 2 6 kg 9.81 m/s 4 kg 9.81 m/s 98.1 NN W Mg mg= = + = + = 2 21 1 2 2 x Fr Mr Mr r θ   = =     &&&& ( )1 22 6 kg max , ; Amplitude 98.1 N ω= = =&& &&m m n F x x A A N ( ) ( )2 1 6 kg 20.5 23.2048 rad/s 98.1 N s Aµ = = or 0.03036 mA = 30.4 mmA = !
  • 53. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 45. 2 2 2 4 2 2 3 0.021440 m 16 2 r r r b r r π π π    −     = = − ( )2 16 0.22546 kg 2 m tr t π ρ ρ   = − =    ( ) 24 4 2 4 8 4 4 2 6 4 9 2 3 o t r r r r I r t r ρ π π ρ π π    = − − + −       ( )4 136 9 0.009342 3 4 tr t π ρ ρ   = − =    (a) 2 0,o n o tmgb I mgb I ρ θ θ ω+ = = =&& ( )( )( )0.22546 9.81 0.021440 tρ ( )0.009342 2 5.07602, 2.2530 rad/sn nω ω= = 2 2.79 s n π τ ω = = ! (b) 2 2 2 2 2 9.81 m/s , 1.9326 m 5.07602 rad /s n n g g l l ω ω = = = = 1.933 ml = !
  • 54. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 46. Kinematics: / ,G O G Oa a a GO d= + = 0.3 m, 4 2 /3 0.180063 mr d r π= = = ( ) 2 PM mgd I m r dθ θ θ Σ = − = + −   && && Where 2 2 2 32 2 9 mr mr I π = − 2 n m ω = gd m 2 32 2 r m − 2 2 9 r m π + ( )2 65.515 r d =   −    2 0.776264 s n π τ ω = = 0.776 sτ = !
  • 55. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 47. 21 2 AI mr= (a) 2 4 0 2 3 mr r mgθ θ π   + =    && or 8 0 3 g r θ θ π + =&& 8 3 n g r ω π = 2 2 6.82 8 3 n n r gg r π π τ ω π = = = ! (b) 2 2 2 4 3 r b r π   = +     2 2 2 2 21 4 4 2 3 3 B G r r I I mb mr m mr m mπ     = + = − + +        23 2 mr= 23 0 2 mr mgbθ θ+ =&& or 2 2 3 gb r θ =&& 2 2 3 n gb r ω = 2 2 2 7.38 16 2 1 9 3 n n r g g r π π τ ω π = = = + !
  • 56. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 48. ( ) ( ) 2 22 1.61 1.6 2 0.6 3 3.6 3.6 12 A bm m I b b        = + +             211 25 mb= ( )2 0.3 3.6 6 b b b y b = = 13 0.6 6 30 b AG b b= − = 2 2 211 13 0.64 25 30 36 B b I mb m b m b    = − + +       223 25 mb= 24.04 6 b GB = (a) 2 11 13 2 0, 6.33 25 30 n n mb b b mg g π θ θ τ ω + = = =&& ! (b) 2 23 24.04 2 0, 6.67 25 6 n n mb b mg b g π θ θ τ ω   + = = =     && !
  • 57. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 49. ( )2 21 12 I m b c= + 1 2 ta r cα θ= = && ( )eff 1 1 : sin 2 2 A Α tM M mg c I ma cθ α     Σ = Σ − = +        ( ) 2 2 21 1 sin 2 12 2 m mgc b c m cθ θ θ   − = + +     && && 2 2 sin 0 2 3 12 g c c b θ θ     + =   +   && 2 2 2 2 6 2 4 1 3 12 c g c g b bc b c b ω      = =   + +       (1)
  • 58. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (a) Since 2 , π τ ω = minimum τ occurs when 2 ω is maximum. We consider c b       as the variable. ( ) 2 2 2 2 4 1 8 6 4 1 c c c d b b bg c b d c b b ω          + −                = =       +        2 2 4 1 8 0 c c b b     + − =        2 1 4 c b   =    0.5 c b = ! (b) For a simple pendulum of length c we have 2 8 . c ω = We equate the value of 2 ω to that of Eq. (1). 2 6 4 1 c g gb b cc b       =    +       2 2 2 1 4 1; 2       = + =            c c c b b b b 0.707 c b = !
  • 59. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 50. Consider general pendulum of centroidal radius of gyration k. ( ) ( ) 2 0 eff : sinM Μ mgr mr r mkθ θ θ0Σ = Σ = +&& && 2 2 sin 0 gr r k θ θ   + =  +  && For small oscillations, sin ,θ θ≈ we have 2 2 2 2 2 2 2 2 0 ; ; 2 gr gr r k grr k r k π θ θ ω τ π ω   + + = = = =  + +  && Connecting rod suspended at A: 1.03 sτ = 160 mm 0.16 mar r= = = Thus ( ) ( )( ) 2 2 0.16 1.03 2 9.81 0.16 k π + = ( ) ( )( ) 2 2 2 1.03 0.16 9.81 0.16 0.04218 2 k π   + = =    2 0.04218 0.0256 0.01658 ; 0.12876 mk k= − = = 128.8 mmk = !
  • 60. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 51. 2 21 1 10 m 0.334722 m 2 2 12 I mr   = = =    α θ= && (a) The disk is free to rotate and is in curvilinear translation. Thus 0Iα = Then ( )effB BM MΣ = Σ sin , sintmgl lmaθ θ θ− = ≈ 2 0ml mglθ θ+ =&& And 2 2 2 26 12 32.2 ft/s 14.861 s ft n g l ω − = = = 1 3.8551 snω − = 2 1.6299 sn n π τ ω = = 1.630 snτ =
  • 61. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (b) When the disk is riveted at A, it rotates at an angular acceleration α ( )effB BM MΣ = Σ 21 sin , , sin 2 tmgl I lma I mrθ α θ θ− = + = ≈ 2 21 0 2 mr ml mglθ θ   + + =    && Then ( )2 2 2 2 2 2 2 26 32.2 ft/s ft 12 13.838 s 10 ft 2 2612 ft 2 12 ω −      = = =     +           +          n gl r l 1 3.7199 snω − = 2 1.6891 sn n π τ ω = = 1.689 snτ =
  • 62. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 52. ( )0 0 eff : sin tM M W r I ma rθ αΣ = Σ − = + 2 2 sinmgr mk mrθ θ θ− = +&& && 2 2 sin 0 gr r k θ θ+ = + && (1) For a simple pendulum of length OA l= 0 g l θ θ+ =&& (2) Comparing Equations (1) and (2) 2 2 r k l r + = 2 k GA l r r = − = (Q.E.D) !
  • 63. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 53. See Solution to Problem 19.52 for derivation of 2 2 sin 0 gr r k θ θ+ = + && For small oscillations sinθ θ≈ and 2 2 2 2 2 2n n r k k r gF rg π π τ π ω + = = = + For smallest nτ we must have 2 k r r + a minimum 2 2 2 1 0 k d r r k dr r   +     = − = 2 2 r k= r k= (Q.E.D) !
  • 64. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 54. Same derivation as in Problem 19.52 with r replaced by .R Thus 2 0 gR R k θ θ+ = + && Length of the equivalent simple pendulum is 2 2 2 R k k L R R R + = = + ( ) 2 2 = − + = k L l r l k r Thus the length of the equivalent simple pendulum is the same as in Problem 19.52. It follows that the period is the same and that the new center of oscillation is at O (Q.E.D)
  • 65. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 55. 2 2 2 2 5 4 4 l l d l= + = Ignore static terms: 2 2 C l M mg klθ θΣ = − − 2 2 2 2 5 2 12 4 4 ml mgl kl ml ml θ θ θ θ θ   − − = + +      && && && 2 3 2 2 5 3 mg k l m ω + = 1 6 9 2 5 10 n k g f m lπ = + !
  • 66. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 56. ( )eff : 4 4 2 D D kL r mrL mLr M M mgr θ θ θ θΣ = Σ − − = +&& && 3 0 4 2 mLr kLr mgrθ θ   + + =    && 2 4 2 3 3 n g k L m ω = + 1 2 4 Hz 2 3 3 n k g f m Lπ = + !
  • 67. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 57. 2 2 2 1 16 lb 1 12.5 in. 12 12 12 in./ft32.2 ft/s I ml     = = ⋅       2 0.04493 lb ft s= ⋅ ⋅ α θ= !! 2 0.16667 12 ta α θ   = =    !! sinθ θ≈ ( )effC CM MΣ = Σ ( ) ( )2 2 0.6875 0.16667 0.16667k mg I mθ θ θ θ− + = +!! !! ( )( ) 16 0.04493 0.02778 0.47266 0.16667 16 0 32.2 kθ θ     + + − =        !! [ ]0.05693 0.47266 2.6667 0kθ θ+ − =!! (1) (a) For 50 lb/ft,k = 368.28 0θ θ+ =!! 368.28 3.007 Hz 2 2 n nf ω π π = = = 3.01Hznf = !
  • 68. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (b) For ,nτ → ∞ 0nω → oscillations will not occur From Equation (1) 2 0.47266 2.6667 0 0.05873 n k ω − = = 5.642 lb/ftk = 5.64 lb/ftk = !
  • 69. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 58. 2 3 3 3 2 3 a a b   = =     4 4 23 3 96 96 O a a I t mbρ   = + +     23 5 , 2 2 12 O t a m a I ma ρ   = =     With 2 20 lb s 16 , ft, 14 lb/ft 32.2 ft 12 m a k ⋅  = = =    So with sinθ θ≈ for small ,θ ( )effO ΟΜ ΜΣ = Σ yields 2 25 2 0 12 3 ma mga kaθ θ   + + =    && 2 2 12 2 0 5 3 mga ka ma θ θ   + + =    && 2 2 2 12 12 24 2 55 3 5 3 n mga g k ka a mma ω θ       = + = +           2 212 32.2 24 14 141.655 s 16 2055 3 12 32.2 nω −       = + =             11.90 rad/snω = 1.894 Hz 2 n f ω π = = !
  • 70. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 59. Ignore static terms ( ) ( ) ( ) ( )( ) ( )( )2 2 2 21 1 50 0.6 50 0.9 1.2 0.3 1.2 0.6 1.8 0.9 3 3 BM gθ θ θ θ   Σ = − − + = +    && 54.9684 0.63 54.9684 0, 9.3408 rad/s 0.63 nθ θ ω+ = = =&& 0 15 cos cos 900 t tθ θ ω ω   = =     At 2 2 00.7 s, cos 0.7 1.407 rad/sn nt θ ω θ ω= = − = −&& 2 1.407 rad/sα =
  • 71. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 60. Determine location of the centroid G. Let mass per unit lengthρ = Then total mass ( ) ( )2 2m r r rρ π ρ π= + = + About C 22 0 2 r mgc r g r gπ ρ ρ π   = + =    2r y π = ( ) 2 2 2r c rρ π ρ+ = ( ) 2 2 r c π = + ( )0 0 eff tM M a c cα θ α θΣ = Σ = = =&& && sin sinnmgc I mcaθ α θ θ− = + ≈ ( )2 00 0I mc mgc I mgcθ θ θ θ+ + = + =&& &&
  • 72. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. But 2 0I mc I+ = ( ) ( ) ( )2 2 0 0 0 s-circ linesemi circ line 2 12 r I I I m r m= + = + ( )s-circ line 2 2 m m r m r r ρπ ρ ρ π = = = + ( ) 2 2 2 0 2 2 3 2 3 r r mr I r rρ π π π  ⋅   = ⋅ + = +   +    ( ) ( ) 2 2 2 0 2 3 2 mr r mgπ θ θ π π   + + = + +  && ( ) ( ) ( )( ) 2 2 2 2 3 3 2 9.81 m/s2 0.32 m n g r ω π π = = + + 2 2 16.0999 s 4.0125 rad/sn nω ω− = = ( )sinm n Bt y rθ θ ω φ θ= + = ( ) ( ) ( )sin sinB m n B nm y r t y tθ ω φ ω φ= + = + At 0t = 0.03 m 0B By y= =& ( ) ( ) ( )0 0 cos 0 2 B B m t y y π φ φ= = = + =& ( ) ( )0.03 sin 0 0.03 m 2 B B Bm m y y y π  = = + =    1 0.03sin 4.0125 s 2 B n ny t π ω ω −  = + =    ( )( ) ( )0.03 cos 0.03 sin 2 B n n n ny t t π ω ω ω ω   = + = −    & ( )( )2 2 0.03 sin 0.03 cos 2 B n n n ny t t π ω ω ω ω   = − + =    && At 10 s:t = ( ) ( ) ( )( )2 2 0.03 4.0125 cos 4.0125 10 0.36437 m/sB Bt a y= = = −&& ( ) ( ) ( )( )0.03 4.0125 sin 4.0125 10 0.07902 m/sB Bv y= = =& ( ) ( ) ( ) 11 2 22 222 2 2 20.07902 0.36437 0.365 m/s 0.32 B B B t v a a r           = + = − + =             
  • 73. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 61. ( )221 1 0.250 2 2 32 m I mr m α θ= = = = && 0.650ta lα θ= = && (a) The disk is free to rotate and is in curvilinear translation. Thus 0I α = ( )effB BM MΣ = Σ sin tmgl lmaθ− = 2 2 0 n g ml mgl l θ θ ω+ = =&& From 19.17, the solution to this Equation is ( )sinm ntθ θ ω φ= + At 0,t = 2 rad, 0 180 90 π π θ θ= ⋅ = =& ( )cosm n ntθ θ ω ω φ= +& 0 0 cos 2 m nt π θ ω φ φ= = = sin 0 90 2 m π π θ   = +    rad 90 m π θ =
  • 74. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Thus sin 90 2 nt π π θ ω   = +    ( ) maxmaxA m nv l lθ θ ω= =& With 26 in. 2.1667 ft, rad, 90 m n g l l π θ ω= = = = ( ) ( ) ( )2 max 32.2 ft/s 2.1667 ft rad 90 2.1667 ft Av π  =     0.29156 ft/s= 3.4987 in./s= ( )max 3.50 in./sAv = (b) For disk riveted at A ( I α included) ( )effB BM MΣ = Σ sin tmgl I lmaθ α− = + 2 21 0 2 mr ml mglθ θ   + + =    & 2 2 2 2 n r gl l ω = + sin 90 2 nt π π θ ω   = +    (See (a)) ( ) maxmaxA m nv l lθ θ ω= =& ( ) ( )( )2 2 2 32.2 ft/s 2.1667 ft 2.1667 ft 90 1 10 in. 26 in. 2 12 in./ft 12 in./ft rad π  =         +        0.28135 ft/s= 3.376 in./s= ( )max 3.38 in./sAv =
  • 75. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 62. ( )1 8 0.3 8 in. = ft, 2 , 12 32.2 r m rπ     = =        ( )2 0.3 32.2 m r   =     2 1 2 2 0.045767 ft r m b m m = = + 2 2 2 1 2 1 0.58813 lb s ft 3 = + = ⋅ ⋅AI m r m r ( )1 2 0AI m m gbθ θ+ + =&& ( )1 22 n A m m gb I ω + = 1.9105 rad/s,nω = 0 cos ntθ θ ω= 2 2 rad, 180 π θ° = ° = 0 sinn ntω θ ω ω= − 2 0 cosn ntα θ ω ω= − At 5 s,t = 0.00849 rad/sω = ! 0.1264 rad/sα = !
  • 76. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 63. ( )eff M MΣ = Σ K Iθ θ− = && 0 K I θ θ+ =&& 2 ,n K I ω = 2 I K τ π= (1) For 50-mm-diameter sphere, 0.025 mr = 2 3 2 52 2 4 8 5 5 3 15 SI mr r r rπ ρ π ρ   = = =    ( ) ( )5 3 6 28 0.025 7850 kg/m 128.45 10 kg m 15 π − = = × ⋅ Solve Eq. (1) For :I 2 2 ; 4 K I τ π = 2 R R S S I I τ τ   =     (2) Data: 4.1 s, 6.2 s, 0.45 kgR S Rmτ τ= = = Eq. (2): 2 4.1 s 0.4373 6.2 s R S I I   = =    ( )6 2 0.4373 0.4373 128.45 10 kg m− = = × ⋅R SI I 6 2 56.17 10 kg m− = × ⋅I 6 2 2 56.17 10 kg m 0.45 kg R R R I k m − × ⋅ = = 2 6 2 124.82 10 mk − = × 3 11.173 10 mk − = × 11.17 mmRk = !
  • 77. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 64. ( )effG GM MΣ = Σ K Iθ θ− = && 0 K I θ θ+ =&& 2 n K I ω = (1) 2 I K τ π= (2) Data: 1.95 N m/radK = ⋅ 3 kgm = ( )( )22 3 21 1 3 kg 0.5 m 62.5 10 kg m 12 12 I ml − = = = × ⋅ (a) Eq. (2) 3 2 62.5 10 kg m 2 1.95 N m/rad τ π − × ⋅ = ⋅ 1.125 sτ = ! (b) Max velocity Eq. (1) 2 3 2 1.95 N m/rad 31.2 62.5 10 kg m ω − ⋅ = = = × ⋅ n K I 5.586 rad/snω = Simple harmonic motion m m nω θ ω= 180 radmθ π= °= ( )( )rad 5.586 rad/s 17.548 rad/smω π= = ( ) ( ) ( )( )0.25 m 17.548 rad/s 4.387 m/sA mm v AG ω= = = ( ) 4.39 m/sA m v = !
  • 78. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 65. Equivalent torsional spring constant ( )2 1 1 1, ,eT K T K T Kθ θ θ θ= = − = ( )2 1 2 1K K Kθ θ= + 2 1 1 2 K K K θ θ= + 1eT K Kθ θ= = 2 1 1 2 e K K K K K θ θ= + 1 2 1 2 e K K K K K = + Newton’s Law ( )effc cM MΣ = Σ eK Jθ θ− = && 21 2 J mr= 21 0 2 emr Kθ θ+ =&& ( )( ) 2 2 4 40 2 2 32.2 12 2 3 1.52 2 3 1.5 n n eK mr π π τ π ω         = = =     +  5.2197 s= 5.22 snτ = !
  • 79. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 66. 2 21 4 ABI mr mb= + [ ]2 0ABI k mgbθ θ+ + =&& 2 2 2 2 4 n k mgb r m b ω + =   +     2 120 lb 8 , ft 1232.2 ft/s m r     = =       6.4 ft, 12 b   =     150 lb ft/radk = ⋅ (a) ( ) ( ) 2 2 2 120 6.4 2 150 32.2 32.2 12 246.93 8 120 6.412 32.2 4 12 nω     +        = =           +             15.7139 rad/snω = 2 2 0.3998 s 15.7139n π π τ ω = = = 0.400 sτ = ! (b) 0 0 max 0sin ; cos ;n n n nt tθ θ ω θ θ ω ω θ θ ω= = =& & So max max 0 nv b bθ θ ω= =& ( )max 6.4 2 ft 15.7139 rad/s 0.2925 ft/s 12 180 v π   = =      max 3.51 in./sv = !
  • 80. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 67. ( )effG GM MΣ = Σ 0K J J Kθ θ θ θ− = + =&& && Empty platform centroidal of platformPJ J= ( )( ) 22 2 2 27 N m/rad 2.2 s2 2 4 4 n n P n P K J K J π π τ τ ω π π ⋅ = = = = 2 3.31 N m sPJ = ⋅ ⋅ Platform with object A centroidal ofAJ J A= ( ) ( )2 2 2 2 4 n n P A n P A K J J K J J τπ π τ ω π ′ ′ = = + = ′ + ( )( ) 2 2 2 27 N m/rad 3.8 s 3.31 N m s 4 AJ π ⋅ = − ⋅ ⋅ 2 9.88 3.31 6.57 N m sAJ = − = ⋅ ⋅ 2 6.57 N m sAJ = ⋅ ⋅ !
  • 81. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 68. Geometry 3 b l θ φ = 3 3 mg b F l θ = Then 3 G G b M I Fθ θ   Σ = = −     && or 2 2 0 12 3 mb mgb L θ θ+ =&& (a) 2 4 2 ,n n g l l g π ω τ π ω = = = !
  • 82. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (b) 3mx F= −&& mgx l = − 2 n g l ω = 2 l g τ π= !
  • 83. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 69. ( )2 2 21 2 T m b c θ= + & 2 21 2 V kc θ= ( ) 2 2 2 2n kc m b c ω = + 720 N/m, 1.5 kgk m= = 17.5271 rad/snω = 0 0.015 m 0.033333 rad 0.45 m θ = = 0max 0.351 m/sD nv cω θ= = max 0.351 m/sDv = !
  • 84. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 70. From Problem 19.69 17.5271 rad/snω = ( ) 0 0.25 m/s 0.5555 rad/s 0.45 m θ = =& 0 max 0.01902 mD n c x θ ω = = & max 19.02 mmDx = !
  • 85. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 71. 2 2 2 21 1 2 2 2 B l T I ml mθ θ    = = +       & & 2 1 2 2 l V k θ  =     2 2 2 8 5 8 n kl ml ω = 5 k m = 1 Hz 2 5 n k f mπ = !
  • 86. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 72. Equilibrium: 0 0 0 2 2 20 lb 1 ft 9 k y T T k y y  =  + =  ∴ =  Vibration: 2 2 2 1 20 , 2 T v g   =     ( ) ( ) 2 2 1 1 1 1 1 144 144 2 2 2 x V x   = +     1 2:V T= 2 2 1 1 20 2 32.2 n xω       ( ) ( ) 2 1 1 1 144 2 8 x   = +    2 289.8, 17.0235 rad/sn nω ω= = (a) 2 0.36909 s, n π τ ω = = 0.369 sτ = ! (b) 1 ft 1.8915 ft/s 9 nm v ω   = =    1.892 ft/sm v = !
  • 87. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 73. Datum at 1 Position 1 2 1 0 1 1 0 2 mT J Vθ= =& Position 2 2 20T V mgh= = ( ) 2 1 cos 2sin 2 m mh r r θ θ= − = 2 2 mrθ ≈ 2 2 2 m V mgr θ = Conservation of energy 2 2 1 1 2 2 0 1 0 0 2 2 m mT V T V J mgr θ θ+ = + + = +& 2 2 2 0m n m n m mJ mgrθ ω θ ω θ θ= =& ( )22 02 2 2 0 44 n n n Jmgr J mgr ππ ω τ ω = = = ( )( )2 2 2 0 2 4 n mgr J J mr J mr τ π = + + = ( )( )2 2 2 4 n mgr J mr τ π = − ( ) ( )( )( ) ( )( ) 2 2 2 2 1.26 s 38 kg 9.81 m/s 0.175 m 38 kg 0.175 m 4π = − 2 2 2 2.62345 N m s 1.16375 N m s 1.4597 N m sJ = ⋅ ⋅ − ⋅ ⋅ = ⋅ ⋅ 2 1.460 kg mJ = ⋅ !
  • 88. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 74. Find nω as a function of c. Datum at 2 Position 1 1 10T V mgh= = ( )1 1 cos mV mgc θ= − 2 2 1 cos 2sin 2 2 m m m θ θ θ− = ≈ 2 1 2 m V mgc θ = Position 2 2 2 1 2 C mT I θ= & 2 2 21 12 CI I mc ml mc= + = + 2 2 2 2 2 1 0 2 12 m l T m c Vθ   = + =     & 2 2 2 2 1 1 2 2 0 0 2 12 2 m ml T V T V mgc m c θ θ  + = + + = + +     & m n mθ ω θ=& 2 2 2 12 n l gc m c ω   = +     2 2 2 12 n gc l c ω =   +    
  • 89. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Maximum c, when 2 2 2 2 2 2 2 12 0 0 12 n l g c c g d dc l c ω   + −    = = =   +     2 2 0 12 l c− = 12 l c = !
  • 90. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 75. Consider a general pendulum of centroidal radius of gyration .k Datum at 1 Position 1 2 1 0 1 2 mT J θ= ! 1 0V = Position 2 2 20T V mgh= = ( ) 2 1 cos 2sin 2 m mh r F θ θ= − = 2 2 2 2 2 m m V mg F θ θ = ≈ 1 1 2 2T V T V+ = + 2 2 0 1 1 0 0 2 2 m mJ mgrθ θ+ = +! m n mθ ω θ=! 2 2 2 0 n m mJ mgrω θ θ= 2 0 0 2 2n n n mgr J J mgr π ω τ π ω = = = 2 2 2 0J J mr mk mr= + = +
  • 91. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (a) 2 2 2n k r gr τ π + = For a rod suspended at A: 2 2 0.895 2 ,a n a a k r r r gr τ π + = = = (1) For a rod suspended at B: 2 2 0.805 2 ,b n b b k r r r gr τ π + = = = (2) 10.5 in. 0.875 fta br r+ = = (3) From (1) and (2) ( )22 2 2 0.895 4 a a gr k r π + = ( )1′ ( )22 2 2 0.805 4 b b gr k r π + = ( )2′ Taking the difference ( ) ( )1 2′ ′− : [ ]2 2 2 0.80125 0.648025 4 a b a b g r r r r π − = − ( )( ) [ ]2 0.80125 0.648025 4 a b a b a b g r r r r r r π − + = − ( ) ( ) [ ]2 32.2 0.80125 0.648025 4 0.875 a b a br r r r π − = − ( ) 0.746685 0.60406a b a br r r r− = − 0.25332 0.39594 0.63979a b b ar r r r= ⇒ = 0.63979 0.875 0.533605 fta a ar r r+ = ⇒ = 6.4033 in.= 6.40 in.ar = ! (b) 2 2 20.895 2 a ak gr r π   = −    ( )( ) ( ) ( ) 2 22 2 0.895 s 32.2 ft/s 0.533605 ft 0.533605 ft 2π = − 2 2 2 0.34863 ft 0.28473 ft 0.0639 ft= − = 0.25278 ft 3.0334 in.k = = 3.03 in.k = !
  • 92. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 76. 2 2 P mr I > 2 2 24 4 1 0.715 0.715 ft 3 3 r d r r π π     = + − = =        2 2 24 2 2 3 O mr r I m md π     = − +      0.65117 m= 2 21 , 2 2 OT I V mgd θ θ= =& 2 2 35.3564 0.65117 2 n d mg m ω = = 5.9461 rad/snω = 2 1.057 s n π τ ω = = !
  • 93. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 77. Since vibration takes place about the position of equilibrium, we shall neglect the effect of weight and the static deflection. Position of Max Displacement Spring Elongations 2 B m l x θ= C mx lθ= Position 1: 1 0T = ( ) 2 22 2 1 1 1 1 2 2 2 2 B B C C B m C m l V k x k x k k lθ θ   = + = +    2 2 1 1 1 2 4 B C mV k k l θ   = +    Position 2: 2 0V = 2 2 2 2 2 2 1 1 1 1 1 2 2 2 12 2 2 m m m m l T I mv ml mω ω ω     = + = +        2 2 2 1 6 mT ml ω= Conservation of Energy 2 2 2 2 1 1 2 2 1 1 1 : 0 2 4 6 B C m mT V T V k k l mlθ ω   + = + + + =    For simple harmonic motion, ( )22 2 21 1 1 ; 2 4 6 m n m B C m n mk k l mlω ω θ θ ω θ   = + =    2 3 1 4 n B Ck k m ω   = +    (1)
  • 94. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Note: Result is independent of length of the rod. Data 6 lb,W = 3 lb/in. 36 lb/ft,k = = 5 lb/in. = 60 lb/ft.Ck = 2 2 3 36 lb/ft 60 lb/ft 1110.9 46 lb 32.2 ft/s nω   = + =         33.33 rad/snω = 33.33 2 2 n f ω π π = = 5.30 Hzf = !
  • 95. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 78. 2 2 1 2 2 4 l l V k mg θ θ  = +    2 2 2 2 2 2 1 1 2 4 2 2 4 L mr L T m r θ θ    = +           & & 2 2 3 16 mL θ = & Then 2 2 2 8 4 3 16 n kL mgL mL ω + = 2 2 3 k g m L   = +    1 2 4 Hz 2 3 3 n k g f m Lπ = + !
  • 96. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 79. (a) Position 1 ( )2 1 1 1 0 2 st mT V k rδ θ= = + Position 2 ( )22 2 2 2 1 1 1 2 2 2 m m stT J mv V mgh kθ δ= + = +! 1 1 2 2T V T V+ = + ( ) ( )2 22 21 1 1 1 0 2 2 2 2 st m m m stk r J mv mgh kδ θ θ δ+ + = + + +! 2 stkδ 2 2 2 2 2 2 2st m m m m stk r kv J mv mgh kδ θ θ θ δ+ + = + + +! (1) When the disk is in equilibrium 0 sinC stM mg r k rβ δΣ = = − Also sin mh r βθ= Thus 0stmgh k rδ− = (2) Substitute (2) into (1) 2 2 2 2 m m mkr J mvθ θ= +! m n m m m n mv r rθ ω θ θ ω θ= = =! ! ( )2 2 2 2 2 m m nkr J mrθ θ ω= +
  • 97. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 2 2 2n kr J mr ω = + 21 2 J mr= 2 2 2 2 2 1 3 2 n kr k mmr mr ω = = + ( ) 2 2 0.71983 s 800 N/m2 3 7 kg n n π π τ ω = = = 0.720 snτ = ! (b) m mv rθ= ! m m nθ θ ω=! 0.01 mm m n mv r rθ ω θ= = ( ) 2 0.01 m 0.0873 m/s 0.720 s mv π  = =    !
  • 98. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 80. sinθ θ≈ 2 2 1 cos 2sin 2 2 m m m θ θ θ− = ≈ Position1 2 2 1 1 1 2 2 2 2 m m l T J mθ θ     = +        & & 1 0V = Position 2 ( ) 2 2 2 2 0 1 cos 2 2 2 m m l l T V W kθ θ   = = − − +     2 2 2 2 2 2 4 m m Wl kl V θ θ= − + Conservation of Energy 1 1 2 2T V T V+ = + ( ) 2 2 2 2 2 21 1 2 0 0 2 2 4 2 2 4 m m m m l wl kl J m θ θ θ θ+ + = − +& & 21 12 m n m W J l g θ ω θ= =&
  • 99. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 2 2 2 2 2 6 4 2 2 n m m W W Wl kl l g g ω θ θ    − + = +         2 62 2 55 12 n W kl g k WlW l gg ω  − +  −  = = +           2 6 9.81 m/s 120 N/m 5 0.160 m 0.6 kg  − = +     2 166.43 s− = 12.901 rad/snω = 1 2.0532 s 2 n nf ω π − = = 2.05 Hznf = !
  • 100. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 81. ( ) 2 21 2 4 l V k l mg θ θ   = +      2 2 21 1 2 12 2 l T ml m θ    = +       & 2 2 2 2 4 6 n kl mgl ml ω + = 2 3 3 2 n k g m l ω = + With 1500 N/m, 0.6 m, 10 kgk l m= = = 2 2 2 474.525 rad /snω = 2 0.288 s n π τ ω = = !
  • 101. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 82. Let m be the mass of rod and Cm be mass of each collar Then 2 2 2 2 2 4 2 C kl mgl l V m g θ θ θ  = + +     ( ) 2 221 1 2 3 2 C l T m m lθ θ   = +     & & 2 2 22 2 4 2 6 2 C n C mgl m glkl m lml ω + + = + 2 4 2 6 2 C C mg m gk l l mm + + = + ( )( ) ( ) ( )( ) ( ) 2 2 2 5 kg 9.81 m/s 2.5 kg 9.81 m/s 1500 N/m 2 4 0.6 m 2 0.6 m 5 kg 2.5 k 6 2 nω    + +    =  +    2 397.62 s− = 19.4838 rad/snω = 2 0.322 s n π τ ω = = !
  • 102. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 83. 2 2 1 20, 2 2 2 2 l V V mgl mg θ θ  = = +      2 mglθ= 2 2 2 2 2 1 1 1 0, 2 2 2 3 ml T T ml θ θ   = = +     & & 2 2 5 6 ml θ = & 2 2 2 2 2 25 6 : , 6 5 n n n ml g mgl l θ ω θ ω ω= = =& ( ) ( ) 2 2 1.586 s 9.81 m/s6 0.75 m5 n π π τ ω = = = !
  • 103. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 84. 6.87 NA AW m g= = 4.91 NC CW m g= = 9.81 NAC ACW m g= = Position 1 ( ) ( ) ( ) 2 2 2 2 1 1 1 1 1 0.1 0.16 0.03 2 2 2 2 A m C m AC m AC mT m m m Iθ θ θ θ= + + +& & & & ( )21 0.26 12 AC ACI m= So ( ) ( ) ( ) ( )( ) 2 2 2 2 2 1 1 1 0.7 0.1 0.5 0.16 1 0.03 1 0.26 2 12 mT θ   = + + +    & ( )2 21 0.02633 kg m 2 mθ= ⋅ & 1 0V = Position 2 ( )( ) ( )( ) ( )( )2 20, 0.1 1 cos 0.16 1 cos 0.03 1 cosA m C m AC mT V W W Wθ θ θ= = − − + − + −
  • 104. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. With 2 2 1 cos 2sin 2 2 m m m θ θ θ− = " ( )( ) ( )( ) ( )( ) 2 2 2 6.87 0.1 4.91 0.16 9.81 0.03 0.3929 2 2 m m V θ θ  = − + + =  ( ) ( ) 2 2 1 1 2 2 1 1 : 0.02633 0 0 0.3929 2 2 2 m mT V T V θ θ+ = + + = +& m n mθ ω θ=& So 2 20.3929 14.922 s 0.02633 nω − = = 2 2 1.6266 s 14.922 n n π π τ ω = = = 1.627 snτ = !
  • 105. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 85. Position 1 ( ) ( ) ( )( ) 2 22 2 2 1 0 1 1 1 1 2 2 2 2 2 2 2 4 A C m mm m m l T m v m v I θ θ   = + + +      & & ( ) ( )21 12 2 G A C mm m m I l v v lθ= = = & 2 2 2 2 2 1 7 24 8 6 m m m ml ml T ml mlθ θ θ   = + + =     & & & 1 5 2 cos cos cos 2 2 l V mgl mg mglβ β β= − − = − Position 2 2 0T = ( ) ( )2 cos cos 2 2 m m m l V mgl gβ θ β θ= − − − − ( ) ( )cos cos 2 2 m m m l mgl β θ β θ− + − + [ ]2 5 cos cos sin sin cos cos sin sin 4 m m m mV mgl β θ β θ β θ β θ= − + + −
  • 106. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 2 5 cos cos 2 mV mgl β θ= − ( ) 2 cos 1 small angles 2 m m θ θ ≈ − 2 2 5 cos 1 2 2 m V mgl θ β   = − −    1 1 2 2T V T V+ = + 2 2 27 5 5 cos 0 cos 1 6 2 2 2 m mml mgl mgl θ θ θ β   − = − −     & m n mθ ω θ=& 2 2 27 5 cos 6 4 n m ml gω θ βθ= ⋅ 2 15 cos 14 n g l ω β= 2 2 15 32.2 ft/s cos40 25 in.14 12 in./ft nω      = °       2 12.686 s− = 1 3.5617 snω − = 1 0.56686 s 2 n nf ω π − = = 0.567 Hznf = !
  • 107. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 86. D = Disk R = Rod 2ABl r= For small oscillations: ( ) 21 1 cos 2 m mh r rθ θ= − = Position 1: 1 0T = 2 1 1 2 R R mV W h m grθ= = Position 2: 2 0V = ( )22 2 2 1 1 1 2 2 2 D m D D R mm T I m v Iω ω= + + ( ) 22 2 2 2 21 1 1 1 1 2 2 2 2 2 12 D m D m R mm r m r m rω ω ω     = + +        2 21 3 1 2 2 3 D R mm m r ω   = +    Conservation of Energy. 1 1 2 2 :T V T V+ = + 2 2 21 1 3 1 0 2 2 2 3 R m D R mm g m m rθ ω   + = +    But for simple harmonic motion: m n mω ω θ= ( )22 21 1 3 1 2 2 2 3 R m D R n mm gr m m rθ ω θ   = +   
  • 108. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 2 3 1 2 3 R n D R m g rm m ω   =    + or 2 3 1 2 3 R n D R W g rW W ω   =    + (1) Data: 4 3 lb, 5 lb, ft 12 R DW W r= = = ( ) ( ) 2 3 32.2 34.094 3 1 4 5 3 2 3 12 nω     = =   +     5.839 rad/snω = 2 2 5.839n π π τ ω = = 1.076 sτ = !
  • 109. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 87. Position 1: 1 0,T = 2 1 1 2 mV kx= Position 2: 2 0,V = 2 2 2 2 1 1 1 2 2 2 2 AB m m Disk mT m v I m vω   = + +    2 2 2 2 2 1 1 2 2 m AB m Disk Disk m v T m v m r m v r    = + +      ( ) 2 2 1 3 2 AB Disk mT m m v= + Conservation of Energy 1 1 2 2:T V T V+ = + ( )2 21 1 0 3 2 2 m AB Disk mkx m m v+ = + But for simple harmonic motion, :m n mv xω= ( )( )221 1 3 2 2 m AB Disk n mkx m m xω= + 2 3 n AB Disk k m m ω = + Note: Result is independent of r Data: 5 kN/m, 9 kg, 6 kgAB Diskk m m= = = ( ) 2 5000 N/m 185.185 9 kg 3 6 kg nω = = + 13.608 rad/snω = 13.608 2 2 n f ω π π = = 2.17 Hzf = !
  • 110. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 88. ( )1 4 1 cos 3 r V mgh mg θ π   = = −    2 1 cos 2 mθ θ− ≈ 2 1 2 3 m V mgr θ π = 2 2 2 2 2 1 1 1 1 2 2 2 2 A A B BT I I mrω ω ω   = + +     Where 2 2 1 2 8 4 256 A B m r mr I I    = = =      and 4A Bω ω ω= = 2 2 2 2 2 2 5 16 4 16 mr mr mr T ω ω   ∴ = + =     1 2 2 , m V T= 2 mgrθ 5 3 m π = 2 2 2 n mr ω θ 16 2 32 , 15 n g r ω π = 1 32 2 15 n g f rπ π   =    
  • 111. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 89. Kinematics: Data 0.15 , 0.05m m m AB m mv r v bω ω ω ω= = = = 10kgABm = 4kgDm = Conservation of Energy 1 1 2 2T V T V+ = + (1) Where ( ) 1 1 0 Position 1, Max. Displacement cosAB m T V m g r b θ =   = − −  ( )0.10 cos 9.81cosAB m mm g θ θ= − = − 2 2 2 2 1 1 1 2 2 2 2 D m D m AB ABT m v I m vω   = + +    ( )( ) ( )( ) ( )( )2 22 21 1 1 1 2 4 0.15 4 0.15 10 0.05 2 2 2 2 m m mω ω ω    = + +      2 0.1475 mω= ( ) ( )2 0.10 9.81AB ABV m g r b m g= − − = − = − Into (1) 2 0 9.81cos 0.1475 9.81m mθ ω− = − ( )2 0.1475 9.81 1 cosm mω θ= − But 21 1 cos 2 m mθ θ− ≈ 2 2 0.1475 4.905m mω θ= (2)
  • 112. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. m n mω ω θ= Into (2) ( )2 2 2 0.1475 4.905n m mω θ θ= So 2 4.905 33.254 0.1475 nω = = 5.7666 rad/snω = 0.9178 Hz 2 n f ω π = = 0.918 Hznf =
  • 113. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 90. 2 2 21 1 2 7 2 2 6 x T mx my m   = + =    & & & Equilibrium of BC: 3 0 2 2 2 D mg l l M ku   Σ = = ⋅ −      Where 0, natural length 2 3 mg u l l u k = = = + ( ) ( ) 2 2 0 1 2 2 2 2 k k V k l x l x u = − − = +  ,gV mgy= − where 22 2 3 2 2 l l l x y    = − + +        And ( ) ( )2 2 2 2 3 3 4 3 0, 2 l l x lx y ly x lx y − + − − + + − = = So 21 1 8 H.O.T. 23 3 3 y x x l     = + − +        Then 2 2 4 2 2 constant 3 3 3 x mgx V kx kux mg l = + + − + 2 4 2 3 3 7 6 n mg k l m ω + = 1 12 8 Hz 2 7 7 3 n k g f m lπ = + !
  • 114. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 91. Position 1 ( ) 22 2 2 2 1 1 1 1 2 2 2 2 2 D m D m r mT I m r c m rθ θ θ     = + − +        & & & For one disk ( ) 2 2 2 2 2 2 2 1 4 16 0.31987 2 3 2 9 D D D D D D DA r r r I I m c m r m m m r π π    = − = − = − =       ( ) 2 2 2 24 1 0.3313 3 D D Dm r c m r m r π   − = − =    ( ) 2 2 2 1 0.3199 0.3313 0.5D r mT m r m r θ = + +  & ( ) 2 2 0.6512 0.5D r mm m r θ= + & But ,D r D r W W m m g g = = So ( ) ( ) 2 2 2 1 1 6 0.65117 6 0.5 4 0.045866 32.2 12 m mT θ θ    = + =     & &
  • 115. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Position 2 ( ) 2 2 2 2 0, 2 1 cos , , 1 cos 1 2 3 2 m m D m m r T V m gc c θ θ θ θ π   = = − = − ≅    " ( ) 2 2 2 2 2 4 4 4 6 2 6 1.27324 3 2 3 3 12 m D D m m m r V m g W r θ θ θ θ π π π     = = = =        & 2 2 1 1 2 2 : 0.045866 0 0 1.27324m mT V T V θ θ+ = + + = +& 2 1.27324 : 27.747 0.045866 m n m nθ ω θ ω= = =& 2 5.2677, 1.192 sn n n π ω τ ω = = = 1.192 snτ = !
  • 116. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 92. With 2 2 4 lb 6 lb 40 , , 20 lb/ft, ft 1232.2 ft/s 32.2 ft/s m M k l   = = = =     2 2 2 1 2 2 2 2 2 l l V k mg Mgl θ θ θ     = + +              And for small :θ ( ) 2 22 2 21 1 1 1 1 2 3 2 2 2 l T ml M l Mr r θ θ θ      = + +           & & & So 2 2 2 2 8 4 2 23.05935 3 6 4 n kl l l mg Mg l l m M ω + + = = + Then 2 1.308 s n π τ ω = = !
  • 117. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 93. 2 2 2 1 1 2 12 T ml θ   =     & Ignoring static terms: 2 2 1 1 1 2 2 2 2 a a V k k θ θ    = +        2 2 4 ka θ = 2 2 2 2 2 2 1 1 : 24 4 n m m a T V ml kω θ θ   = =      2 2 2 6 n ka ml ω = 6 2 n a k f l mπ =
  • 118. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 94. 2 2 m m m m a a AA BB l l θ α α θ′ ′= = = = Position 1 ( )1 10 1 coscT V mgy mgl α= = = − For small angles 2 2 2 2 1 cos 2sin 2 2 8 m m m m a l α α α θ− = ≈ = 2 2 1 2 8 m a V mgl l θ   =      Position 2 2 2 2 2 2 1 1 1 0 2 2 12 m mT I ma Vθ θ   = = =    & & m n mθ ω θ=& 1 1 2 2T V T V+ = + 2 2 2 2 2 1 0 248 n m a mgl ma l ω θ   + +     2 3 n g l ω = 1 3 2 n g f lπ = !
  • 119. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 95. ( ) 2 1 cos 2 m mn r rθ θ 1 = − = ( )m mv r r ω= − Position 1: 2 1 1 1 0, 2 mT V Wh mgrθ= = = Position 2: 2 0V = ( )22 2 2 2 2 2 1 1 1 1 2 2 2 2 m m m mT I mv mk m r rω ω ω= + = + − Conservation of energy 1 1 2 2T V T V+ = + ( )22 2 21 1 0 2 2 m mmgr m k r rθ ω + = + −   But for simple harmonic motion, m n mω ω θ= ( ) ( )222 21 1 2 2 m n mmgr m k r rθ ω θ = + −   ( ) 2 22n r g k r r ω = + − (1) For half section of pipe 2 2 1 r r r r r π π   = − = −    Parallel-Axis Theorem: 2 0I I mr= + 2 2 2 0 2 ; r I mr mr I m π   = = +    
  • 120. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 2 2 4 1I mr π   = −    2 2 2 4 1k r π   = −    Eq. (1): 2 2 2 2 2 2 4 2 1 1 n r g r r πω ππ =     − + −        2 2 2 2 2 2 44 4 4 21 1 n r g g r r π πω πππ π = =   −− + − +    ( ) 2 2 1 2 4 2 4 2 n g g g g r r r πω π π π π = = = − − − 2 n π τ ω = ( )2 2 r g π τ π − = !
  • 121. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 96. ( ) 2 sin sinm m mr rθ θ θ≈ ( ) 2 1 cos 2 m mr r θ θ− ≈ Position 1 maximum deflection 1 0T = 2 1 2 m mV Wy mgr θ = = Position 2 ( )0θ = 2 2 2 2 1 1 1 2 2 12 m mT I mlθ θ   = =     & & m n mθ ω θ=& 2 2 2 2 1 1 2 12 n mT ml ω θ   =     1 1 2 2T V T V+ = + 2 2 2 21 1 1 0 2 2 12 m n mmgr mlθ ω θ   + =     2 2 2 12 2 2 12 n n n gr l grl π ω τ π ω = = = 3 n l gr π τ = !
  • 122. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 97. This is not a damped vibration. However, the kinetic energy of the fluid must be included (a) Position 2 2 0T = 2 2 1 2 mV kx= Position 1 2 2 1 spere fluid 1 1 2 4 s m m r T T T m v Vv g   = + = +     1 0V = 2 2 2 1 1 2 2 1 1 1 0 0 2 4 2 s m m m r T V T V m v Vv kx g   + = + + + = +    m m m nv x x ω= =& 2 2 2 21 1 1 , 2 2 2 ω ω    + = =        +     s m n m n s r k m V x kx g r m V g 3 2 2 1 1 62.4 lb/ft 4 4 in. 0.15032 lb s /ft 2 2 3 12 in./ft32.2 ft/s r V g π      = = ⋅           2 2 2 2 40 lb/ft 220.54 s 1 lb 0.15032 lb s /ft 32.2 ft/s nω − = =   + ⋅    1 14.850 snω − = 2 0.4231 sn n π τ ω = = 0.423 snτ = ! (b) The acceleration does not change mass 0.423 snτ∴ = !
  • 123. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 98. Eq. (19.33) 2 1 m m f n P kx ω ω =   −     1450 N/m 10.607 s 4 kg n k m ω − = = = 13 N 0.28889 m 450 N/m mP k = = 2 0.28889 m 1 10.607 m f x ω =   −     (a) 2 0.28889 m 5: 0.03714 m 5 1 10.607 f mxω = = =   −     ( )In Phase 37.1 mmmx = ! (b) 2 0.28889 m 10: 0.25984 m 10 1 10.607 f mxω = = =   −     ( )In Phase 260 mmmx = !
  • 124. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 99. Eq. (19.33) 2 2 , 1 m m n f n P kkx m ω ω ω = =   −     ( ) 22 , orm m m m ff P P x k x mk m ωω = = +− (a) In phase ( )( )1 9 N 0.15 m 4 kg 5 s k − = + 160.0 N/m= ! (b) Out of phase 0.15 mmx = − ( )( )1 9 N 40.0 N/m 0.15 m 4 kg 5 s k − = = − + !
  • 125. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 100. Eq. (19.33) 2 2 1 m m f n P kx ω ω = − 2m st n P k k m δ ω= = 2 2 3 1 st st f n δ δ ω ω ≥ − 2 2 1 1 3 f n ω ω − ≤ 2 2 2 3 f n ω ω > Also 2 2 3 1 st st f n δ δ ω ω < − − 2 2 2 2 1 4 1 3 3 f f n n ω ω ω ω − < − < 2 2 2 4 2 4 3 3 3 3 f f n k k m m ω ω ω < < < < !
  • 126. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 101. 2 2 sinB m fM mb kl P l tθ θ ωΣ = = − +&& 2 2 sinm fmb kl P l tθ θ ω+ =&& 2 2 42.4641 rad/s, sinn m f kl t mb ω θ θ ω= = = 2 2 2 2 0.14 in. 6.762 0.0175 rad 8 in. 1803.2 m m n f f P l mbθ ω ω ω ± = = ± = = − − Lower frequency: ( )2 6.762 0.0175 1803.2 , 37.64 rad/sf fω ω= − = Upper frequency: ( )2 6.762 0.0175 1803.2 , 46.79 rad/sf fω ω= − − = 37.6 rad/s 46.8 rad/sfω< < !
  • 127. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 19, Solution 102. Referring to the figure and solution for Problem 19.101 2 2 32 140 1 1 28.309412 40 32.2 n kl b m b b ω      = = =       Range 2 2 2 0.14 12 m m n f P l mb b θ ω ω      = ± = − ( ) 22 2 3.00533 3.00533 801.422 225225n bb ω = = −− Lower frequency 2 3.00533 9.3499 2.625b b= − 2 2.625 3.00533 9.3499 0b b+ − = 1.3998 ftb = Upper frequency 2 3.00533 9.3499 2.625b b= − + 2 2.625 3.00533 9.3499 0b b− − = 2.5446 ftb = 16.80 in. 30.5 in.b< < !