SlideShare a Scribd company logo
1 of 16
Download to read offline
1
PERANCANGAN JEMBATAN BETON BERTULANG DENGAN
TAMPANG BALOK T
Gambar 1. Penampang melintang jembatan
1. Kondisi Jembatan
• Panjang bentang : 17,5 m
• Lebar jembatan : 9 m
• Lebar perkerasan : 7 m
• Tipe jembatan : beton bertulang dengan gelagar balok T
• Jumlah balok gelagar : 6 buah
• Panjang bersih gelagar : 16,5 m
2. Spesifikasi Pembebanan
a. Beban hidup : PPJJR No. 12/1970 (BM 100 %)
• Beban roda T : 100% x 10 t = 10 t
• Beban garis P : 100% x 12 t/m = 12 t/m
• Beban merata q : 100% x 2,2 t/m2 = 2,2 t/m2
b. Beban kejut, 2963,1
5,1750
20
1
50
20
1 =
+
+=
+
+=
L
k
3. Spesifikasi beton dan baja tulangan
a. Beton
• Kuat tekan, fc’ = 25 MPa
• Kuat tekan ijin, fc’ = 10 MPa
• Modulus elastis, Ec = 4700√25 = 23500 MPa
b. Baja tulangan
• Kuat leleh, fy = 400 MPa
• Modulus elastis, Es = 2x105 MPa
2
PERANCANGAN
1. Tiang sandaran
momen lentur, Mu = 1,2×2×100×1,0 = 240 kg-m = 2400 N-m
gaya geser, V = 1,2 × 2 × 100 = 240 kg = 2400 N
Mn = φ bd2k
Mu = Mn
1095,1
1301608,0
102400
2
3
2
=
××
×
=
××
=
db
M
k u
φ
Mpa
3
'
'
108502,2
2585,0
1095,12
11
400
25
85,0
85,0
2
1185,0 −
×=⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
×
×
−−=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−−=
cy
c
perlu
f
k
f
f
ρ
3
min 105,3
400
4,14,1 −
×===
yf
ρ
As = ρ x b x d = 3,5×10-3 ×160×130 = 72,8 mm2
Dipakai tulangan 2∅10 (As = 157,0796 mm2)
Kontrol kapasitas momen balok
Dianggap baja tulangan telah luluh pada saat beton mulai retak (εc = 0,003)
5,18
1602585,0
4000796,157
85,0 '
=
××
×
=
××
×
=
bf
fA
a
c
ys
mm
7647,21
85,0
5,18
1
===
β
a
c mm
7847,2983
7647,21
7647,21130
600600 =⎟
⎠
⎞
⎜
⎝
⎛ −
=⎟
⎠
⎞
⎜
⎝
⎛ −
=
c
cd
fs MPa > fy O K
68,7586944
2
5,18
1304000796,157
2
=⎟
⎠
⎞
⎜
⎝
⎛
−×=⎟
⎠
⎞
⎜
⎝
⎛
−×=
a
dfAM ysn N-mm
=7586,9447 N-m > Mu (2400 N-m) O K
Perencanaan tulangan geser
Vu = 2400 N
3333,1733313016020
6
1
6
1 '
=××=××= dbfV cc N
9999,51993333,173336,0
2
1
2
1
=××=cVφ N > Vu (secara teoritis tidak perlu sengkang)
b=160 mm
h=160 mm d=130 mm
3
walaupun secara teoritis tidak perlu sengkang, tetapi untuk kestabilan struktur dan
peraturan mensyaratkan dipasang tulangan minimum
smaksimum = ½ d = ½ x 130 = 65 mm
luas tulangan geser minimum
3333,43
400
6516025
3
1
3
1 '
min =
××
=
××
=
y
c
v
f
sbf
A mm2
dipakai tulangan ∅8 (As = 100,5310 mm2), maka jarak sengkang
7965,150
16025
3
1
4005310,100
3
1 '
=
×
×
=
×
×
=
bf
fA
s
c
yv
mm
untuk penulangan geser dipakai sengkang ∅8-100
2. Perhitungan plat kantilever
Gambar 2. Pembebanan pada plat kantilever
a. momen lentur (bending moment)
Perhitungan momen lentur
No. Volume (m3) γ
(kg/m3)
W
(kg)
Lengan
(m)
Momen
(kg-m)
1 0,10 × 0,16 × 0,50 = 0,008 2400 19,2 1,8 34,5600
2 0,10×(0,70×0,110)/2 = 0,00385 2400 9,24 1,04 9,6096
3 0,10×0,05×0,50 = 0,0025 2400 6 1,025 6,1500
4 0,10 × (0,15 × 0,50)/2 = 0,00375 2400 9 0,95 8,5500
5 1,00 × 1,00 × 0,20 = 0,2 2400 480 0,5 240,0000
6 1,00 × (1,00 × 0,10)/2 = 0,05 2400 120 0,33 39,6000
7 1,00 × 0,90 × 0,07 = 0,063 2200 138,6 0,375 51,9750
P 2,0 × 100 kg/m 200 1,2 240,0000
4
T 1,2963 × 10000 12963 0,5 6481,5000
Air hujan = 2 × 0,90 × 0,05 = 0,0625 1000 62,5 0,375 23,4375
Railing = 2 × 2m× 6 kg/m = 24 24 1,08 25,9200
Total momen, M 7161,3021
Total momen, M (N-m) 71613,0210
b. Gaya geser (shear force)
Berat tiang sandaran = 1 + 2 + 3 +4 + railing = 67,4400 Kg
Slab kantilever dan perkerasan = 5 + 6 +7 = 738,6000 Kg
Beban roda = 12963,0000 Kg
Beban genangan air hujan = 62,5000 Kg
Toal gaya lintang = 13831,5400 Kg
= 138315,4000 N
c. perhitungan baja tulangan
Mu = 1,2×71613,021 =85935,6252 N-m
Vu = 1,2×138315,400 = 165978,48 N
h = 300 mm d = 300-40 = 260 mm
5890,1
26010008,0
1085935,6252
2
3
2
=
××
×
=
××
=
db
M
k u
φ
MPa
027094,0
200000
400
003,0
003,0
400
85,025
85,0
003,0
003,0
85,0 1
'
=
+
×
×
=
+
×
×
=
s
yy
c
b
E
ff
f β
ρ
ρmaks = 0,75 ρb = 0,75 x 0,027094 = 0,0203205
3
'
'
101333,4
2585,0
5890,12
11
400
25
85,0
85,0
2
1185,0 −
×=⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
×
×
−−=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−−=
cy
c
perlu
f
k
f
f
ρ
3
min 105,3
400
4,14,1 −
×===
yf
ρ
As = ρ x b x d = 4,1333x10-3 x 1000 x 260 = 1074,658 mm2
Dipakai tulangan ∅16 (As = 210,0619 mm2), dengan jarak antar tulangan
4686,195
658,1074
10000619,210
=
×
=perlus mm
dipakai tulangan ∅16-125 mm
kontrol terhadap geser beton
7296,0
2601000
165978,48
8
7
8
7
=
××
=
××
=
hb
V
cτ MPa < 0,45 fc = 11,25 MPa O K
5
3. Perhitungan plat bagian dalam (inner slab)
a. Momen lentur akibat beban hidup
Gambar 3. posisi roda
Penyebaran beban hidup (roda) pada slab
P
20cm21 21
6cm
15cm
15cm
50cm21 21
P
Gambar 4. Penyebaran beban hidup pada slab
lx = 1,4 m
ly = ∞
tx = 0,92 m
ty =0,62 m
6
Beban roda, T = 10000 kg
Bidang kontak = 0,92 m × 0,62 m
Penyebaran beban roda, 1571,22726
62,092,0
2963,110000
=
×
×
=T kg/m2
Dipakai tabel-Bittner (dari Dr. Ing Ernst Bittner)
Dengan lx = 1,4 , ly = ∞ (lantai tidak menumpu pada diafragma)
657,0
4,1
92,0
==
x
x
l
t
fxm = 0,1233
443,0
4,1
62,0
==
x
y
l
t
fym = 0,0661
Mxm = 0,1233 × 22726,1571 × 0,92 × 0,62 = 1598,3379 kgm = 15983,379 Nm
Mym = 0,0661 × 22726,1571 × 0,92 × 0,62 = 856,8543 kgm = 8568,543 Nm
b. momen lentur akibat beban mati
Berat slab = 0,30 × 2400 = 720 kg/m2
Berat perkerasan = 0,06 × 2200 = 132 kg/m2
Berat air hujan = 0,05 × 1000 = 50 kg/m2
Total qDL = 902 kg/m2
7920,1764,1902
10
1
10
1 22
=××=××= xDLxm lqM kgm = 1767,920 Nm
9307,587920,176
3
1
3
1
=×=×= xmym MM kgm = 589,307 Nm
c. momen total
Mx = 15983,379 + 1767,920 = 17661,299 Nm
My =8568,543 + 589,307 = 9157,85 Nm
d. perhitungan baja tulangan
arah melintang lx
M = 17661,299 Nm
h = 300 mm d = 300-40 = 260 mm
3267,0
26010008,0
1017661,299
2
3
2
=
××
×
=
××
=
db
M
k
φ
MPa
027094,0
200000
400
003,0
003,0
400
85,025
85,0
003,0
003,0
85,0 1
'
=
+
×
×
=
+
×
×
=
s
yy
c
b
E
ff
f β
ρ
ρmaks = 0,75 ρb = 0,75 x 0,027094 = 0,0203205
7
4
'
'
102313,8
2585,0
3267,02
11
400
25
85,0
85,0
2
1185,0 −
×=⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
×
×
−−=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−−=
cy
c
perlu
f
k
f
f
ρ
3
min 105,3
400
4,14,1 −
×===
yf
ρ
As = ρ x b x d = 3,5 x10-3 x 1000 x 260 = 910 mm2
Dipakai tulangan ∅16 (As = 210,0619 mm2), dengan jarak antar tulangan
8373,230
910
10000619,210
=
×
=perlus mm
dipakai tulangan ∅16-125 mm
arah memanjang ly
M = 9157,85 Nm
h = 300 mm d = 300-40 = 260 mm
1693,0
26010008,0
109157,85
2
3
2
=
××
×
=
××
=
db
M
k
φ
MPa
027094,0
200000
400
003,0
003,0
400
85,025
85,0
003,0
003,0
85,0 1
'
=
+
×
×
=
+
×
×
=
s
yy
c
b
E
ff
f β
ρ
ρmaks = 0,75 ρb = 0,75 x 0,027094 = 0,0203205
4
'
'
102495,4
2585,0
1693,02
11
400
25
85,0
85,0
2
1185,0 −
×=⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
×
×
−−=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−−=
cy
c
perlu
f
k
f
f
ρ
3
min 105,3
400
4,14,1 −
×===
yf
ρ
As = ρ x b x d = 3,5 x10-3 x 1000 x 260 = 910 mm2
Dipakai tulangan ∅16 (As = 210,0619 mm2), dengan jarak antar tulangan
8373,230
910
10000619,210
=
×
=perlus mm
dipakai tulangan ∅16-125 mm
4. Perhitungan Gelagar
a. beban mati (dead load)
Hand rail = {(0,10 × 0,16 × 1,00 × 2400)/2} × 1,1871 = 22,7923 kg/m
Railing = 2 × 1,00 × 6 × 1,1871 = 14,2452 kg/m
Perkerasan = 0,06 × 2200 × 4,5716 = 603,4512 kg/m
Air hujan = 0,05 × 1000 × 4,5716 = 228,5800 kg/m
Pelat lantai = 0,30 × 2400 × 4,5716 = 3291,5520 kg/m
8
Gelagar = 1,00 × 0,50 × 2400 × 1,00 = 1200,0000 kg/m
Total = 5360,6207 kg/m
Balok melintang (diafragma), Tb = 0,30 × 0,60 × 2400 × 0,9 = 388,8 kg
Gambar 5. Garis pengaruh momen
Gambar 6. Potongan memanjang balok pada perhitungan momen lentur
b. momen lentur akibat beban mati
⎭
⎬
⎫
⎩
⎨
⎧
⎟
⎠
⎞
⎜
⎝
⎛
−×=→
L
x
L
x
LqMM DLxqDL 1
2
1 2
Momen pada potongan 1, x = 2,0 m (M1 DL)
⎭
⎬
⎫
⎩
⎨
⎧
⎟
⎠
⎞
⎜
⎝
⎛
−××=
5,16
2
1
5,16
2
5,166207,5360
2
1 2
qDLM = 77729,0002 kgm
MTb= ½ × 388,8 × 2 = 388,8000 kgm
M1 DL = 78117,8002 kgm
781178,0020 Nm
9
Momen pada potongan 2, x = 4,0 m (M2 DL)
⎭
⎬
⎫
⎩
⎨
⎧
⎟
⎠
⎞
⎜
⎝
⎛
−××=
5,16
4
1
5,16
4
5,166207,5360
2
1 2
qDLM = 134015,5175 kgm
MTb= ½ × 388,8 × 4 = 777,6000 kgm
M2 DL = 134793,1175 kgm
1347931,1750 Nm
Momen pada potongan 3, x = 6,0 m (M3 DL)
⎭
⎬
⎫
⎩
⎨
⎧
⎟
⎠
⎞
⎜
⎝
⎛
−××=
5,16
6
1
5,16
6
5,166207,5360
2
1 2
qDLM = 168859,5521 kgm
MTb= ½ × 388,8 × 6 = 1166,4000 kgm
M3 DL 170025,9521 kgm
1700259,5210 Nm
Momen pada potongan 4, x = 8,25 m (M4 DL)
⎭
⎬
⎫
⎩
⎨
⎧
⎟
⎠
⎞
⎜
⎝
⎛
−××=
5,16
25,8
1
5,16
25,8
5,166207,5360
2
1 2
qDLM = 182428,6232 kgm
MTb= ½ × 388,8 × 8,25 = 1603,8000 kgm
M4 DL 184032,4232 kgm
1840324,2320 Nm
c. Beban hidup (live load)
koefisien kejut = 1,2963
beban garis, 6294,258595716,4
75,2
12000
2963,1 =××=P kg
beban terbagi merata, 28,36575716,4
75,2
2200
=×=q kg/m
d. Momen lentur akibat beban hidup
( )
⎭
⎬
⎫
⎩
⎨
⎧
⎟
⎠
⎞
⎜
⎝
⎛
−×=
L
x
L
x
LPPM x 1
( )
⎭
⎬
⎫
⎩
⎨
⎧
⎟
⎠
⎞
⎜
⎝
⎛
−×=
L
x
L
x
LqqM x 1
2
1 2
Momen pada potongan 1, x = 2,0 m (M1 LL)
( )
⎭
⎬
⎫
⎩
⎨
⎧
⎟
⎠
⎞
⎜
⎝
⎛
−×=
5,16
2
1
5,16
2
5,166294,25859PM x = 45450,2577 kgm
( )
⎭
⎬
⎫
⎩
⎨
⎧
⎟
⎠
⎞
⎜
⎝
⎛
−××=
5,16
2
1
5,16
2
5,1628,3657
2
1 2
qM x = 53030,5600 kgm
M1 LL = 98480,8177 kgm
984808,1770 Nm
10
Momen pada potongan 2, x = 4,0 m (M2 LL)
( )
⎭
⎬
⎫
⎩
⎨
⎧
⎟
⎠
⎞
⎜
⎝
⎛
−×=
5,16
4
1
5,16
4
5,166294,25859PM x = 78362,5133 kgm
( )
⎭
⎬
⎫
⎩
⎨
⎧
⎟
⎠
⎞
⎜
⎝
⎛
−××=
5,16
4
1
5,16
4
5,1628,3657
2
1 2
qM x = 91432,0000 kgm
M2 LL = 169794,5133 kgm
1697945,1330 Nm
Momen pada potongan 3, x = 6,0 m (M3 LL)
( )
⎭
⎬
⎫
⎩
⎨
⎧
⎟
⎠
⎞
⎜
⎝
⎛
−×=
5,16
6
1
5,16
6
5,166294,25859PM x = 98736,7668 kgm
( )
⎭
⎬
⎫
⎩
⎨
⎧
⎟
⎠
⎞
⎜
⎝
⎛
−××=
5,16
6
1
5,16
6
5,1628,3657
2
1 2
qM x = 115204,3200 kgm
M3 LL 213941,0868 kgm
2139410,8680 Nm
Momen pada potongan 4, x = 8,25 m (M4 LL)
( )
⎭
⎬
⎫
⎩
⎨
⎧
⎟
⎠
⎞
⎜
⎝
⎛
−×=
5,16
25,8
1
5,16
25,8
5,166294,25859PM x = 106670,9713 kgm
( )
⎭
⎬
⎫
⎩
⎨
⎧
⎟
⎠
⎞
⎜
⎝
⎛
−××=
5,16
25,8
1
5,16
25,8
5,1628,3657
2
1 2
qM x = 124461,8100 kgm
M4 LL 231132,7813 kgm
2311327,8130 Nm
Tabel. Momen lentur total
Pembebanan M.1 M.2 M.3 M.4
Beban mati, DL
Beban hidup, LL
781178,0020
984808,1770
1347931,1750
1697945,1330
1700259,5210
2139410,8680
1840324,2320
2311327,8130
Total, Mu
(1,2MD+1,6ML) 2513106,6856 4334229,6228 5463368,8140 5906513,5792
e. Gaya geser (shearing force)
Beban mati terbagi merata = 0,5 × 5360,6207 × 16,5 44225,1208 kg
Balok melintang = 1,4 × 388,8 544,3200 kg
Beban hidup garis P = 0,5 × 6294,25859 12928,8147 kg
Beban hidup terbagi merata q = 0,5 × 28,3657 × 16,5 30172,5600 kg
Total V 87870,8155 kg
878708,1550 N
11
f. Perhitungan baja tulangan
Pada tumpuan
V = 878708,1550 N h = 1300 mm
b = 500 mm d = 1300 - 60 = 1240 mm
Perencanaan tulangan geser
Vu = 878708,1550 N
6667,5072911217,550025
6
1
6
1 '
=××=××= dbfV cc N
5,1521876667,5072916,0
2
1
2
1
=××=cVφ N < Vu (perlu sengkang)
Gambar 7. Diagram gaya geser (SFD)
Hasil perhitungan dapat dilihat pada tabel berikut
No. Penampang titik 1 titik 2 titik 3 titik 4
kritis 0 - 2 m 2 - 4 m 4 - 6 m 6 - 8,25 m
1 Vu (N) 878708.1550 698350.141 517992.127 337089.793
2 Vc (N) 507291.6667 507291.6667 507291.6667 507291.6667
3 ½ φ Vc (N) 152187.5 152187.5 152187.5 152187.5
Perlu sengkang Perlu sengkang Perlu sengkang Perlu sengkang
4 Vs (N) 957221.925 656625.235 356028.545 54524.655
5 s (mm) 79.91645314 116.5014334 214.8641793 1402.994317
6 s mak (mm) 608.75 608.75 608.75 608.75
7 Dipakai D10 - 75 D10 - 110 D10 - 200 D10 - 500
Potongan I-I (8,25 m dari tumpuan)
lebar efektif, diambil nilai terkecil dari :
375,45,174
1
4
1
=×== LbE m
( ) 53003001650016 =×+=+= fwE hbb mm
1400== gelagarjarakbE mm
CL
878708,1550
698350.141 517992.127
517447.807
337089.793
111642.2755
bw = 500 mm
bE = 1400 mm
hf = 300 mm
h = 1300 mm
12
Mu = 5906513,5792 N-m
s
yb
b
E
fd
c
+
=
003,0
003,0
b
s
y
b d
E
f
a
+
=
003,0
003,0
85,0
ab = 0,6 db = 0,6 (1300-40) = 756 mm > 300 mm
dalam keadaan setimbang (ΣH = 0)
( ){ }tbbbaffA wfwbcyb ×−+×××=× '
85,0
( ){ } ( ){ } 34425
400
30050014005007562585,085,0 '
=
×−+×××
=
×−+×××
=
y
wfwbc
b
f
tbbbaf
A mm2
kemampuan sayap mendukung momen
9906750000
2
300
12602585,03001400
2
85,0 '
=
⎭
⎬
⎫
⎩
⎨
⎧
−××××=
⎭
⎬
⎫
⎩
⎨
⎧
−××××=
t
dftbM cf Nmm
M = 9906750 Nm > 5906513,5792 Nm → blok beton a ada di dalam sayap
Letak garis netral, c
⎭
⎬
⎫
⎩
⎨
⎧
−××××=
2
85,0 ' a
dfabM cf
⎭
⎬
⎫
⎩
⎨
⎧
−××××=
2
12602585,01400,25906513579
a
a
a2 – 2520a + 397076,5431 = 0
a = 168,8889 mm, c = 168,8889/0,85 = 198,6928 mm
luas tulangan yang diperlukan
1114,4486
400
8889,1685002585,085,0 '
=
×××
=
×××
=
y
wc
f
abf
A mm2 < 0,75×Ab = 0,75×34425
Dipakai tulangan ∅30 (As = 706,8583 mm2), jumlah tulangan yang dibutuhkan
3,6
8583,706
1114,4486
==n dipakai 8∅30 (As = 5654,8664 mm2)
Potongan II-II (6 m dari tumpuan)
Mu = 5463368,8140 N-m
s
yb
b
E
fd
c
+
=
003,0
003,0
b
s
y
b d
E
f
a
+
=
003,0
003,0
85,0
ab = 0,6 db = 0,6 (1300-40) = 756 mm > 300 mm
13
dalam keadaan setimbang (ΣH = 0)
( ){ }tbbbaffA wfwbcyb ×−+×××=× '
85,0
( ){ } ( ){ } 34425
400
30050014005007562585,085,0 '
=
×−+×××
=
×−+×××
=
y
wfwbc
b
f
tbbbaf
A mm2
kemampuan sayap mendukung momen
9906750000
2
300
12602585,03001400
2
85,0 '
=
⎭
⎬
⎫
⎩
⎨
⎧
−××××=
⎭
⎬
⎫
⎩
⎨
⎧
−××××=
t
dftbM cf Nmm
M = 9906750 Nm > 5463368,8140 Nm → blok beton a ada di dalam sayap
Letak garis netral, c
⎭
⎬
⎫
⎩
⎨
⎧
−××××=
2
85,0 ' a
dfabM cf
⎭
⎬
⎫
⎩
⎨
⎧
−××××=
2
12602585,01400,05463368814
a
a
a2 – 2520a + 367285,2984 = 0
a = 155,3214 mm, c = 155,3214/0,85 = 182,7311 mm
luas tulangan yang diperlukan
7247,4125
400
155,32145002585,085,0 '
=
×××
=
×××
=
y
wc
f
abf
A mm2 < 0,75×Ab = 0,75×34425
Dipakai tulangan ∅30 (As = 706,8583 mm2), jumlah tulangan yang dibutuhkan
8,5
8583,706
7247,4125
==n dipakai 6∅30 (As = 4241,1501 mm2)
Potongan III-III (4 m dari tumpuan)
Mu = 4334229,6228 N-m
s
yb
b
E
fd
c
+
=
003,0
003,0
b
s
y
b d
E
f
a
+
=
003,0
003,0
85,0
ab = 0,6 db = 0,6 (1300-40) = 756 mm > 300 mm
dalam keadaan setimbang (ΣH = 0)
( ){ }tbbbaffA wfwbcyb ×−+×××=× '
85,0
( ){ } ( ){ } 34425
400
30050014005007562585,085,0 '
=
×−+×××
=
×−+×××
=
y
wfwbc
b
f
tbbbaf
A mm2
14
kemampuan sayap mendukung momen
9906750000
2
300
12602585,03001400
2
85,0 '
=
⎭
⎬
⎫
⎩
⎨
⎧
−××××=
⎭
⎬
⎫
⎩
⎨
⎧
−××××=
t
dftbM cf Nmm
M = 9906750 Nm > 4334229,6228 Nm → blok beton a ada di dalam sayap
Letak garis netral, c
⎭
⎬
⎫
⎩
⎨
⎧
−××××=
2
85,0 ' a
dfabM cf
⎭
⎬
⎫
⎩
⎨
⎧
−××××=
2
12602585,01400,84334229622
a
a
a2 – 2520a + 291376,7813 = 0
a = 121,4820 mm, c = 121,4820/0,85 = 142,92 mm
luas tulangan yang diperlukan
8656,3226
400
121,48205002585,085,0 '
=
×××
=
×××
=
y
wc
f
abf
A mm2 < 0,75×Ab = 0,75×34425
Dipakai tulangan ∅30 (As = 706,8583 mm2), jumlah tulangan yang dibutuhkan
6,4
8583,706
8656,3226
==n dipakai 6∅30 (As = 4241,1501 mm2)
Potongan IV- IV (2 m dari tumpuan)
Mu = 2513106,6856 N-m
s
yb
b
E
fd
c
+
=
003,0
003,0
b
s
y
b d
E
f
a
+
=
003,0
003,0
85,0
ab = 0,6 db = 0,6 (1300-40) = 756 mm > 300 mm
dalam keadaan setimbang (ΣH = 0)
( ){ }tbbbaffA wfwbcyb ×−+×××=× '
85,0
( ){ } ( ){ } 34425
400
30050014005007562585,085,0 '
=
×−+×××
=
×−+×××
=
y
wfwbc
b
f
tbbbaf
A mm2
kemampuan sayap mendukung momen
9906750000
2
300
12602585,03001400
2
85,0 '
=
⎭
⎬
⎫
⎩
⎨
⎧
−××××=
⎭
⎬
⎫
⎩
⎨
⎧
−××××=
t
dftbM cf Nmm
M = 9906750 Nm > 2513106,6856 Nm → blok beton a ada di dalam sayap
15
Letak garis netral, c
⎭
⎬
⎫
⎩
⎨
⎧
−××××=
2
85,0 ' a
dfabM cf
⎭
⎬
⎫
⎩
⎨
⎧
−××××=
2
12602585,01400,62513106685
a
a
a2 – 2520a + 168948,3486 = 0
a = 68,9284 mm, c = 68,9284/0,85 = 81,0922 mm
luas tulangan yang diperlukan
9106,1830
400
68,92845002585,085,0 '
=
×××
=
×××
=
y
wc
f
abf
A mm2 < 0,75×Ab = 0,75×34425
Dipakai tulangan ∅30 (As = 706,8583 mm2), jumlah tulangan yang dibutuhkan
6,2
8583,706
9106,1830
==n dipakai 3∅30 (As = 2120,5750 mm2)
Tabel Penulangan balok
Pembebanan M.1 M.2 M.3 M.4
Beban mati, DL
Beban hidup, LL
781178,0020
984808,1770
1347931,1750
1697945,1330
1700259,5210
2139410,8680
1840324,2320
2311327,8130
Total, Mu
(1,2MD+1,6ML) 2513106,6856 4334229,6228 5463368,8140 5906513,5792
tulangan 3∅30 6∅30 6∅30 8∅30
16
DAFTAR PUSTAKA
Agus Iqbal Manu, Ir.,Dipl. Heng., 1995, Dasar-Dasar Perencanaan Jembatan Beton
Bertulang, Cetakan I,P.T. Mediatana Saptakarya, Jakarta
Bambang Supriyadi, DR.,Ir., CES.,DEA., 2000, Jembatan, Edisi pertama, Beta Offset,
Jogjakarta
Departemen Pekerjaan Umum, Standar Bangunan Atas Jembatan Gelagar Beton
Bertulang Tipe T, 1993, Departemen Pekerjaan Umum Ditjen Bina Marga
Dit. Bina Program Jalan Subdit. Perencanaan Teknik Jembatan

More Related Content

What's hot

53309952 utf-8-desain-struktur-beton-bertulang-dengan-sap2000
53309952 utf-8-desain-struktur-beton-bertulang-dengan-sap200053309952 utf-8-desain-struktur-beton-bertulang-dengan-sap2000
53309952 utf-8-desain-struktur-beton-bertulang-dengan-sap2000Botak Doohan Jr
 
Perencanaan sambungan-profil-baja
Perencanaan sambungan-profil-bajaPerencanaan sambungan-profil-baja
Perencanaan sambungan-profil-bajaFajar Istu
 
Konstruksi baja-3 sambungan-baut
Konstruksi baja-3 sambungan-bautKonstruksi baja-3 sambungan-baut
Konstruksi baja-3 sambungan-bautJunaida Wally
 
Momen dan defleksi maksimum struktur statis tertentu dlam sebuah bidang
Momen dan defleksi maksimum struktur statis tertentu dlam sebuah bidangMomen dan defleksi maksimum struktur statis tertentu dlam sebuah bidang
Momen dan defleksi maksimum struktur statis tertentu dlam sebuah bidangAnnez Hutagalung
 
Bab 4. balok sederhana statis tak tentu
Bab 4. balok sederhana statis tak tentuBab 4. balok sederhana statis tak tentu
Bab 4. balok sederhana statis tak tentuYoon Tua Simbolon
 
Bab 09 kekuatan sambungan las
Bab 09 kekuatan sambungan lasBab 09 kekuatan sambungan las
Bab 09 kekuatan sambungan lasRumah Belajar
 
Bab 05 kriteria kegagalan 1
Bab 05 kriteria kegagalan 1Bab 05 kriteria kegagalan 1
Bab 05 kriteria kegagalan 1Rumah Belajar
 
perhitungan jembatan
perhitungan jembatanperhitungan jembatan
perhitungan jembatanFarid Thahura
 
Sni 1741 2008 cara uji ketahanan api komponen struktur bangunan
Sni 1741 2008 cara uji ketahanan api komponen struktur bangunanSni 1741 2008 cara uji ketahanan api komponen struktur bangunan
Sni 1741 2008 cara uji ketahanan api komponen struktur bangunanRonaariyansyah17
 
LAPORAN PRAKTIKUM UJI TEKUK DAN TARIK BAJA.docx 2.docx 2.docx baru.docx
LAPORAN PRAKTIKUM UJI TEKUK DAN TARIK BAJA.docx 2.docx 2.docx baru.docxLAPORAN PRAKTIKUM UJI TEKUK DAN TARIK BAJA.docx 2.docx 2.docx baru.docx
LAPORAN PRAKTIKUM UJI TEKUK DAN TARIK BAJA.docx 2.docx 2.docx baru.docxAgustinaMutiarasiwi
 
Daya dukung pondasi dengan analisis terzaghi
Daya dukung pondasi dengan analisis terzaghiDaya dukung pondasi dengan analisis terzaghi
Daya dukung pondasi dengan analisis terzaghiAyu Fatimah Zahra
 
Sni 1725 2016 pembebanan untuk jembatan
Sni 1725 2016 pembebanan untuk jembatanSni 1725 2016 pembebanan untuk jembatan
Sni 1725 2016 pembebanan untuk jembatanterbott
 
Menentukan beban seismik dasar & distribusi vertikal gaya gempa rsni 03 2847...
Menentukan beban seismik dasar & distribusi vertikal gaya gempa  rsni 03 2847...Menentukan beban seismik dasar & distribusi vertikal gaya gempa  rsni 03 2847...
Menentukan beban seismik dasar & distribusi vertikal gaya gempa rsni 03 2847...Edi Supriyanto
 
Tabel Profil Konstruksi Baja
Tabel Profil Konstruksi BajaTabel Profil Konstruksi Baja
Tabel Profil Konstruksi BajaYusrizal Mahendra
 
Mekanika Bahan jilid 1.pdf
Mekanika Bahan jilid 1.pdfMekanika Bahan jilid 1.pdf
Mekanika Bahan jilid 1.pdfBkkKramat
 
Sni 1727 2013 tata cara pembebanan untuk rumah dan gedung
Sni 1727 2013 tata cara pembebanan untuk rumah dan gedungSni 1727 2013 tata cara pembebanan untuk rumah dan gedung
Sni 1727 2013 tata cara pembebanan untuk rumah dan gedungWSKT
 

What's hot (20)

53309952 utf-8-desain-struktur-beton-bertulang-dengan-sap2000
53309952 utf-8-desain-struktur-beton-bertulang-dengan-sap200053309952 utf-8-desain-struktur-beton-bertulang-dengan-sap2000
53309952 utf-8-desain-struktur-beton-bertulang-dengan-sap2000
 
Perencanaan sambungan-profil-baja
Perencanaan sambungan-profil-bajaPerencanaan sambungan-profil-baja
Perencanaan sambungan-profil-baja
 
Penyaluran tulangan beton
Penyaluran tulangan betonPenyaluran tulangan beton
Penyaluran tulangan beton
 
Konstruksi baja-3 sambungan-baut
Konstruksi baja-3 sambungan-bautKonstruksi baja-3 sambungan-baut
Konstruksi baja-3 sambungan-baut
 
Momen dan defleksi maksimum struktur statis tertentu dlam sebuah bidang
Momen dan defleksi maksimum struktur statis tertentu dlam sebuah bidangMomen dan defleksi maksimum struktur statis tertentu dlam sebuah bidang
Momen dan defleksi maksimum struktur statis tertentu dlam sebuah bidang
 
Bab 4. balok sederhana statis tak tentu
Bab 4. balok sederhana statis tak tentuBab 4. balok sederhana statis tak tentu
Bab 4. balok sederhana statis tak tentu
 
Bab 09 kekuatan sambungan las
Bab 09 kekuatan sambungan lasBab 09 kekuatan sambungan las
Bab 09 kekuatan sambungan las
 
Bab 05 kriteria kegagalan 1
Bab 05 kriteria kegagalan 1Bab 05 kriteria kegagalan 1
Bab 05 kriteria kegagalan 1
 
perhitungan jembatan
perhitungan jembatanperhitungan jembatan
perhitungan jembatan
 
Sni 1741 2008 cara uji ketahanan api komponen struktur bangunan
Sni 1741 2008 cara uji ketahanan api komponen struktur bangunanSni 1741 2008 cara uji ketahanan api komponen struktur bangunan
Sni 1741 2008 cara uji ketahanan api komponen struktur bangunan
 
Kuat tekan baja SNI 1729:2020
Kuat tekan baja SNI 1729:2020Kuat tekan baja SNI 1729:2020
Kuat tekan baja SNI 1729:2020
 
LAPORAN PRAKTIKUM UJI TEKUK DAN TARIK BAJA.docx 2.docx 2.docx baru.docx
LAPORAN PRAKTIKUM UJI TEKUK DAN TARIK BAJA.docx 2.docx 2.docx baru.docxLAPORAN PRAKTIKUM UJI TEKUK DAN TARIK BAJA.docx 2.docx 2.docx baru.docx
LAPORAN PRAKTIKUM UJI TEKUK DAN TARIK BAJA.docx 2.docx 2.docx baru.docx
 
Daya dukung pondasi dengan analisis terzaghi
Daya dukung pondasi dengan analisis terzaghiDaya dukung pondasi dengan analisis terzaghi
Daya dukung pondasi dengan analisis terzaghi
 
Sni 1725 2016 pembebanan untuk jembatan
Sni 1725 2016 pembebanan untuk jembatanSni 1725 2016 pembebanan untuk jembatan
Sni 1725 2016 pembebanan untuk jembatan
 
Metode pelaksanaan-konstruksi-jembatan
Metode pelaksanaan-konstruksi-jembatanMetode pelaksanaan-konstruksi-jembatan
Metode pelaksanaan-konstruksi-jembatan
 
Menentukan beban seismik dasar & distribusi vertikal gaya gempa rsni 03 2847...
Menentukan beban seismik dasar & distribusi vertikal gaya gempa  rsni 03 2847...Menentukan beban seismik dasar & distribusi vertikal gaya gempa  rsni 03 2847...
Menentukan beban seismik dasar & distribusi vertikal gaya gempa rsni 03 2847...
 
Pengenalan sap 2000
Pengenalan sap 2000Pengenalan sap 2000
Pengenalan sap 2000
 
Tabel Profil Konstruksi Baja
Tabel Profil Konstruksi BajaTabel Profil Konstruksi Baja
Tabel Profil Konstruksi Baja
 
Mekanika Bahan jilid 1.pdf
Mekanika Bahan jilid 1.pdfMekanika Bahan jilid 1.pdf
Mekanika Bahan jilid 1.pdf
 
Sni 1727 2013 tata cara pembebanan untuk rumah dan gedung
Sni 1727 2013 tata cara pembebanan untuk rumah dan gedungSni 1727 2013 tata cara pembebanan untuk rumah dan gedung
Sni 1727 2013 tata cara pembebanan untuk rumah dan gedung
 

Similar to 131445983 jembatan-balok-t

Week 9 Lecture Material_watermark.pdf
Week 9 Lecture Material_watermark.pdfWeek 9 Lecture Material_watermark.pdf
Week 9 Lecture Material_watermark.pdfssuser021946
 
materi kuliah it pln perhitungan plat balok
materi kuliah it pln perhitungan plat balokmateri kuliah it pln perhitungan plat balok
materi kuliah it pln perhitungan plat balokIlhamPutera2
 
INDUSTRIAL BUILDING GANTRY GIRDER
INDUSTRIAL BUILDING  GANTRY GIRDERINDUSTRIAL BUILDING  GANTRY GIRDER
INDUSTRIAL BUILDING GANTRY GIRDERHarsh Shani
 
C09 m-403032016 som
C09 m-403032016 somC09 m-403032016 som
C09 m-403032016 somvinodh kumar
 
Ref F2F Week 4 - Solution_unlocked.pdf
Ref F2F Week 4 - Solution_unlocked.pdfRef F2F Week 4 - Solution_unlocked.pdf
Ref F2F Week 4 - Solution_unlocked.pdfRobin Arthur Flores
 
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptx
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptxDESIGN OF CIRCULAR OVERHEAD WATER TANK.pptx
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptxsubhashini214160
 
Possible solution struct_hub_design assessment
Possible solution struct_hub_design assessmentPossible solution struct_hub_design assessment
Possible solution struct_hub_design assessmentVictor Omotoriogun
 
10-Design of Tension Member with Bolted Connection (Steel Structural Design &...
10-Design of Tension Member with Bolted Connection (Steel Structural Design &...10-Design of Tension Member with Bolted Connection (Steel Structural Design &...
10-Design of Tension Member with Bolted Connection (Steel Structural Design &...Hossam Shafiq II
 
Planing,designing and analysis of HI TECH SHOPPING MALL
Planing,designing and analysis of HI TECH SHOPPING MALLPlaning,designing and analysis of HI TECH SHOPPING MALL
Planing,designing and analysis of HI TECH SHOPPING MALLArshana Anu
 
steel question.pdf.pdf
steel question.pdf.pdfsteel question.pdf.pdf
steel question.pdf.pdfnabal_iitb
 
Spur gear problem and solution
Spur gear   problem and solutionSpur gear   problem and solution
Spur gear problem and solutiondodi mulya
 
MERENCANAKAN BALOK BETON PRATEGANG
MERENCANAKAN BALOK BETON PRATEGANGMERENCANAKAN BALOK BETON PRATEGANG
MERENCANAKAN BALOK BETON PRATEGANGMira Pemayun
 
Worked example extract_flat_slabs
Worked example extract_flat_slabsWorked example extract_flat_slabs
Worked example extract_flat_slabsluantvconst
 
Worked example extract_flat_slabs
Worked example extract_flat_slabsWorked example extract_flat_slabs
Worked example extract_flat_slabsLuan Truong Van
 
Columns and struts_-_solved
Columns and struts_-_solvedColumns and struts_-_solved
Columns and struts_-_solvedViriSharma
 
Numericals on Columns and struts_-_solved
Numericals on Columns and struts_-_solvedNumericals on Columns and struts_-_solved
Numericals on Columns and struts_-_solvedViriSharma
 
Columns lecture#3
Columns lecture#3Columns lecture#3
Columns lecture#3Irfan Malik
 

Similar to 131445983 jembatan-balok-t (20)

Week 9 Lecture Material_watermark.pdf
Week 9 Lecture Material_watermark.pdfWeek 9 Lecture Material_watermark.pdf
Week 9 Lecture Material_watermark.pdf
 
Chapter 3 (rib)MOSTAFA
Chapter 3 (rib)MOSTAFAChapter 3 (rib)MOSTAFA
Chapter 3 (rib)MOSTAFA
 
materi kuliah it pln perhitungan plat balok
materi kuliah it pln perhitungan plat balokmateri kuliah it pln perhitungan plat balok
materi kuliah it pln perhitungan plat balok
 
2 compression
2  compression2  compression
2 compression
 
INDUSTRIAL BUILDING GANTRY GIRDER
INDUSTRIAL BUILDING  GANTRY GIRDERINDUSTRIAL BUILDING  GANTRY GIRDER
INDUSTRIAL BUILDING GANTRY GIRDER
 
C09 m-403032016 som
C09 m-403032016 somC09 m-403032016 som
C09 m-403032016 som
 
Ref F2F Week 4 - Solution_unlocked.pdf
Ref F2F Week 4 - Solution_unlocked.pdfRef F2F Week 4 - Solution_unlocked.pdf
Ref F2F Week 4 - Solution_unlocked.pdf
 
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptx
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptxDESIGN OF CIRCULAR OVERHEAD WATER TANK.pptx
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptx
 
Possible solution struct_hub_design assessment
Possible solution struct_hub_design assessmentPossible solution struct_hub_design assessment
Possible solution struct_hub_design assessment
 
10-Design of Tension Member with Bolted Connection (Steel Structural Design &...
10-Design of Tension Member with Bolted Connection (Steel Structural Design &...10-Design of Tension Member with Bolted Connection (Steel Structural Design &...
10-Design of Tension Member with Bolted Connection (Steel Structural Design &...
 
Planing,designing and analysis of HI TECH SHOPPING MALL
Planing,designing and analysis of HI TECH SHOPPING MALLPlaning,designing and analysis of HI TECH SHOPPING MALL
Planing,designing and analysis of HI TECH SHOPPING MALL
 
steel question.pdf.pdf
steel question.pdf.pdfsteel question.pdf.pdf
steel question.pdf.pdf
 
Spur gear problem and solution
Spur gear   problem and solutionSpur gear   problem and solution
Spur gear problem and solution
 
MERENCANAKAN BALOK BETON PRATEGANG
MERENCANAKAN BALOK BETON PRATEGANGMERENCANAKAN BALOK BETON PRATEGANG
MERENCANAKAN BALOK BETON PRATEGANG
 
Ch 8.pdf
Ch 8.pdfCh 8.pdf
Ch 8.pdf
 
Worked example extract_flat_slabs
Worked example extract_flat_slabsWorked example extract_flat_slabs
Worked example extract_flat_slabs
 
Worked example extract_flat_slabs
Worked example extract_flat_slabsWorked example extract_flat_slabs
Worked example extract_flat_slabs
 
Columns and struts_-_solved
Columns and struts_-_solvedColumns and struts_-_solved
Columns and struts_-_solved
 
Numericals on Columns and struts_-_solved
Numericals on Columns and struts_-_solvedNumericals on Columns and struts_-_solved
Numericals on Columns and struts_-_solved
 
Columns lecture#3
Columns lecture#3Columns lecture#3
Columns lecture#3
 

Recently uploaded

Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . pptDineshKumar4165
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaOmar Fathy
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptNANDHAKUMARA10
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdfKamal Acharya
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"mphochane1998
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxJuliansyahHarahap1
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARKOUSTAV SARKAR
 
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...Health
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startQuintin Balsdon
 
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...soginsider
 
2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projectssmsksolar
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VDineshKumar4165
 
Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersMairaAshraf6
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityMorshed Ahmed Rahath
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptxJIT KUMAR GUPTA
 
Rums floating Omkareshwar FSPV IM_16112021.pdf
Rums floating Omkareshwar FSPV IM_16112021.pdfRums floating Omkareshwar FSPV IM_16112021.pdf
Rums floating Omkareshwar FSPV IM_16112021.pdfsmsksolar
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Arindam Chakraborty, Ph.D., P.E. (CA, TX)
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxmaisarahman1
 

Recently uploaded (20)

Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to Computers
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Rums floating Omkareshwar FSPV IM_16112021.pdf
Rums floating Omkareshwar FSPV IM_16112021.pdfRums floating Omkareshwar FSPV IM_16112021.pdf
Rums floating Omkareshwar FSPV IM_16112021.pdf
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 

131445983 jembatan-balok-t

  • 1. 1 PERANCANGAN JEMBATAN BETON BERTULANG DENGAN TAMPANG BALOK T Gambar 1. Penampang melintang jembatan 1. Kondisi Jembatan • Panjang bentang : 17,5 m • Lebar jembatan : 9 m • Lebar perkerasan : 7 m • Tipe jembatan : beton bertulang dengan gelagar balok T • Jumlah balok gelagar : 6 buah • Panjang bersih gelagar : 16,5 m 2. Spesifikasi Pembebanan a. Beban hidup : PPJJR No. 12/1970 (BM 100 %) • Beban roda T : 100% x 10 t = 10 t • Beban garis P : 100% x 12 t/m = 12 t/m • Beban merata q : 100% x 2,2 t/m2 = 2,2 t/m2 b. Beban kejut, 2963,1 5,1750 20 1 50 20 1 = + += + += L k 3. Spesifikasi beton dan baja tulangan a. Beton • Kuat tekan, fc’ = 25 MPa • Kuat tekan ijin, fc’ = 10 MPa • Modulus elastis, Ec = 4700√25 = 23500 MPa b. Baja tulangan • Kuat leleh, fy = 400 MPa • Modulus elastis, Es = 2x105 MPa
  • 2. 2 PERANCANGAN 1. Tiang sandaran momen lentur, Mu = 1,2×2×100×1,0 = 240 kg-m = 2400 N-m gaya geser, V = 1,2 × 2 × 100 = 240 kg = 2400 N Mn = φ bd2k Mu = Mn 1095,1 1301608,0 102400 2 3 2 = ×× × = ×× = db M k u φ Mpa 3 ' ' 108502,2 2585,0 1095,12 11 400 25 85,0 85,0 2 1185,0 − ×=⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ × × −−= ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ −−= cy c perlu f k f f ρ 3 min 105,3 400 4,14,1 − ×=== yf ρ As = ρ x b x d = 3,5×10-3 ×160×130 = 72,8 mm2 Dipakai tulangan 2∅10 (As = 157,0796 mm2) Kontrol kapasitas momen balok Dianggap baja tulangan telah luluh pada saat beton mulai retak (εc = 0,003) 5,18 1602585,0 4000796,157 85,0 ' = ×× × = ×× × = bf fA a c ys mm 7647,21 85,0 5,18 1 === β a c mm 7847,2983 7647,21 7647,21130 600600 =⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − =⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − = c cd fs MPa > fy O K 68,7586944 2 5,18 1304000796,157 2 =⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −×=⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −×= a dfAM ysn N-mm =7586,9447 N-m > Mu (2400 N-m) O K Perencanaan tulangan geser Vu = 2400 N 3333,1733313016020 6 1 6 1 ' =××=××= dbfV cc N 9999,51993333,173336,0 2 1 2 1 =××=cVφ N > Vu (secara teoritis tidak perlu sengkang) b=160 mm h=160 mm d=130 mm
  • 3. 3 walaupun secara teoritis tidak perlu sengkang, tetapi untuk kestabilan struktur dan peraturan mensyaratkan dipasang tulangan minimum smaksimum = ½ d = ½ x 130 = 65 mm luas tulangan geser minimum 3333,43 400 6516025 3 1 3 1 ' min = ×× = ×× = y c v f sbf A mm2 dipakai tulangan ∅8 (As = 100,5310 mm2), maka jarak sengkang 7965,150 16025 3 1 4005310,100 3 1 ' = × × = × × = bf fA s c yv mm untuk penulangan geser dipakai sengkang ∅8-100 2. Perhitungan plat kantilever Gambar 2. Pembebanan pada plat kantilever a. momen lentur (bending moment) Perhitungan momen lentur No. Volume (m3) γ (kg/m3) W (kg) Lengan (m) Momen (kg-m) 1 0,10 × 0,16 × 0,50 = 0,008 2400 19,2 1,8 34,5600 2 0,10×(0,70×0,110)/2 = 0,00385 2400 9,24 1,04 9,6096 3 0,10×0,05×0,50 = 0,0025 2400 6 1,025 6,1500 4 0,10 × (0,15 × 0,50)/2 = 0,00375 2400 9 0,95 8,5500 5 1,00 × 1,00 × 0,20 = 0,2 2400 480 0,5 240,0000 6 1,00 × (1,00 × 0,10)/2 = 0,05 2400 120 0,33 39,6000 7 1,00 × 0,90 × 0,07 = 0,063 2200 138,6 0,375 51,9750 P 2,0 × 100 kg/m 200 1,2 240,0000
  • 4. 4 T 1,2963 × 10000 12963 0,5 6481,5000 Air hujan = 2 × 0,90 × 0,05 = 0,0625 1000 62,5 0,375 23,4375 Railing = 2 × 2m× 6 kg/m = 24 24 1,08 25,9200 Total momen, M 7161,3021 Total momen, M (N-m) 71613,0210 b. Gaya geser (shear force) Berat tiang sandaran = 1 + 2 + 3 +4 + railing = 67,4400 Kg Slab kantilever dan perkerasan = 5 + 6 +7 = 738,6000 Kg Beban roda = 12963,0000 Kg Beban genangan air hujan = 62,5000 Kg Toal gaya lintang = 13831,5400 Kg = 138315,4000 N c. perhitungan baja tulangan Mu = 1,2×71613,021 =85935,6252 N-m Vu = 1,2×138315,400 = 165978,48 N h = 300 mm d = 300-40 = 260 mm 5890,1 26010008,0 1085935,6252 2 3 2 = ×× × = ×× = db M k u φ MPa 027094,0 200000 400 003,0 003,0 400 85,025 85,0 003,0 003,0 85,0 1 ' = + × × = + × × = s yy c b E ff f β ρ ρmaks = 0,75 ρb = 0,75 x 0,027094 = 0,0203205 3 ' ' 101333,4 2585,0 5890,12 11 400 25 85,0 85,0 2 1185,0 − ×=⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ × × −−= ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ −−= cy c perlu f k f f ρ 3 min 105,3 400 4,14,1 − ×=== yf ρ As = ρ x b x d = 4,1333x10-3 x 1000 x 260 = 1074,658 mm2 Dipakai tulangan ∅16 (As = 210,0619 mm2), dengan jarak antar tulangan 4686,195 658,1074 10000619,210 = × =perlus mm dipakai tulangan ∅16-125 mm kontrol terhadap geser beton 7296,0 2601000 165978,48 8 7 8 7 = ×× = ×× = hb V cτ MPa < 0,45 fc = 11,25 MPa O K
  • 5. 5 3. Perhitungan plat bagian dalam (inner slab) a. Momen lentur akibat beban hidup Gambar 3. posisi roda Penyebaran beban hidup (roda) pada slab P 20cm21 21 6cm 15cm 15cm 50cm21 21 P Gambar 4. Penyebaran beban hidup pada slab lx = 1,4 m ly = ∞ tx = 0,92 m ty =0,62 m
  • 6. 6 Beban roda, T = 10000 kg Bidang kontak = 0,92 m × 0,62 m Penyebaran beban roda, 1571,22726 62,092,0 2963,110000 = × × =T kg/m2 Dipakai tabel-Bittner (dari Dr. Ing Ernst Bittner) Dengan lx = 1,4 , ly = ∞ (lantai tidak menumpu pada diafragma) 657,0 4,1 92,0 == x x l t fxm = 0,1233 443,0 4,1 62,0 == x y l t fym = 0,0661 Mxm = 0,1233 × 22726,1571 × 0,92 × 0,62 = 1598,3379 kgm = 15983,379 Nm Mym = 0,0661 × 22726,1571 × 0,92 × 0,62 = 856,8543 kgm = 8568,543 Nm b. momen lentur akibat beban mati Berat slab = 0,30 × 2400 = 720 kg/m2 Berat perkerasan = 0,06 × 2200 = 132 kg/m2 Berat air hujan = 0,05 × 1000 = 50 kg/m2 Total qDL = 902 kg/m2 7920,1764,1902 10 1 10 1 22 =××=××= xDLxm lqM kgm = 1767,920 Nm 9307,587920,176 3 1 3 1 =×=×= xmym MM kgm = 589,307 Nm c. momen total Mx = 15983,379 + 1767,920 = 17661,299 Nm My =8568,543 + 589,307 = 9157,85 Nm d. perhitungan baja tulangan arah melintang lx M = 17661,299 Nm h = 300 mm d = 300-40 = 260 mm 3267,0 26010008,0 1017661,299 2 3 2 = ×× × = ×× = db M k φ MPa 027094,0 200000 400 003,0 003,0 400 85,025 85,0 003,0 003,0 85,0 1 ' = + × × = + × × = s yy c b E ff f β ρ ρmaks = 0,75 ρb = 0,75 x 0,027094 = 0,0203205
  • 7. 7 4 ' ' 102313,8 2585,0 3267,02 11 400 25 85,0 85,0 2 1185,0 − ×=⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ × × −−= ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ −−= cy c perlu f k f f ρ 3 min 105,3 400 4,14,1 − ×=== yf ρ As = ρ x b x d = 3,5 x10-3 x 1000 x 260 = 910 mm2 Dipakai tulangan ∅16 (As = 210,0619 mm2), dengan jarak antar tulangan 8373,230 910 10000619,210 = × =perlus mm dipakai tulangan ∅16-125 mm arah memanjang ly M = 9157,85 Nm h = 300 mm d = 300-40 = 260 mm 1693,0 26010008,0 109157,85 2 3 2 = ×× × = ×× = db M k φ MPa 027094,0 200000 400 003,0 003,0 400 85,025 85,0 003,0 003,0 85,0 1 ' = + × × = + × × = s yy c b E ff f β ρ ρmaks = 0,75 ρb = 0,75 x 0,027094 = 0,0203205 4 ' ' 102495,4 2585,0 1693,02 11 400 25 85,0 85,0 2 1185,0 − ×=⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ × × −−= ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ −−= cy c perlu f k f f ρ 3 min 105,3 400 4,14,1 − ×=== yf ρ As = ρ x b x d = 3,5 x10-3 x 1000 x 260 = 910 mm2 Dipakai tulangan ∅16 (As = 210,0619 mm2), dengan jarak antar tulangan 8373,230 910 10000619,210 = × =perlus mm dipakai tulangan ∅16-125 mm 4. Perhitungan Gelagar a. beban mati (dead load) Hand rail = {(0,10 × 0,16 × 1,00 × 2400)/2} × 1,1871 = 22,7923 kg/m Railing = 2 × 1,00 × 6 × 1,1871 = 14,2452 kg/m Perkerasan = 0,06 × 2200 × 4,5716 = 603,4512 kg/m Air hujan = 0,05 × 1000 × 4,5716 = 228,5800 kg/m Pelat lantai = 0,30 × 2400 × 4,5716 = 3291,5520 kg/m
  • 8. 8 Gelagar = 1,00 × 0,50 × 2400 × 1,00 = 1200,0000 kg/m Total = 5360,6207 kg/m Balok melintang (diafragma), Tb = 0,30 × 0,60 × 2400 × 0,9 = 388,8 kg Gambar 5. Garis pengaruh momen Gambar 6. Potongan memanjang balok pada perhitungan momen lentur b. momen lentur akibat beban mati ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −×=→ L x L x LqMM DLxqDL 1 2 1 2 Momen pada potongan 1, x = 2,0 m (M1 DL) ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −××= 5,16 2 1 5,16 2 5,166207,5360 2 1 2 qDLM = 77729,0002 kgm MTb= ½ × 388,8 × 2 = 388,8000 kgm M1 DL = 78117,8002 kgm 781178,0020 Nm
  • 9. 9 Momen pada potongan 2, x = 4,0 m (M2 DL) ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −××= 5,16 4 1 5,16 4 5,166207,5360 2 1 2 qDLM = 134015,5175 kgm MTb= ½ × 388,8 × 4 = 777,6000 kgm M2 DL = 134793,1175 kgm 1347931,1750 Nm Momen pada potongan 3, x = 6,0 m (M3 DL) ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −××= 5,16 6 1 5,16 6 5,166207,5360 2 1 2 qDLM = 168859,5521 kgm MTb= ½ × 388,8 × 6 = 1166,4000 kgm M3 DL 170025,9521 kgm 1700259,5210 Nm Momen pada potongan 4, x = 8,25 m (M4 DL) ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −××= 5,16 25,8 1 5,16 25,8 5,166207,5360 2 1 2 qDLM = 182428,6232 kgm MTb= ½ × 388,8 × 8,25 = 1603,8000 kgm M4 DL 184032,4232 kgm 1840324,2320 Nm c. Beban hidup (live load) koefisien kejut = 1,2963 beban garis, 6294,258595716,4 75,2 12000 2963,1 =××=P kg beban terbagi merata, 28,36575716,4 75,2 2200 =×=q kg/m d. Momen lentur akibat beban hidup ( ) ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −×= L x L x LPPM x 1 ( ) ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −×= L x L x LqqM x 1 2 1 2 Momen pada potongan 1, x = 2,0 m (M1 LL) ( ) ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −×= 5,16 2 1 5,16 2 5,166294,25859PM x = 45450,2577 kgm ( ) ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −××= 5,16 2 1 5,16 2 5,1628,3657 2 1 2 qM x = 53030,5600 kgm M1 LL = 98480,8177 kgm 984808,1770 Nm
  • 10. 10 Momen pada potongan 2, x = 4,0 m (M2 LL) ( ) ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −×= 5,16 4 1 5,16 4 5,166294,25859PM x = 78362,5133 kgm ( ) ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −××= 5,16 4 1 5,16 4 5,1628,3657 2 1 2 qM x = 91432,0000 kgm M2 LL = 169794,5133 kgm 1697945,1330 Nm Momen pada potongan 3, x = 6,0 m (M3 LL) ( ) ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −×= 5,16 6 1 5,16 6 5,166294,25859PM x = 98736,7668 kgm ( ) ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −××= 5,16 6 1 5,16 6 5,1628,3657 2 1 2 qM x = 115204,3200 kgm M3 LL 213941,0868 kgm 2139410,8680 Nm Momen pada potongan 4, x = 8,25 m (M4 LL) ( ) ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −×= 5,16 25,8 1 5,16 25,8 5,166294,25859PM x = 106670,9713 kgm ( ) ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −××= 5,16 25,8 1 5,16 25,8 5,1628,3657 2 1 2 qM x = 124461,8100 kgm M4 LL 231132,7813 kgm 2311327,8130 Nm Tabel. Momen lentur total Pembebanan M.1 M.2 M.3 M.4 Beban mati, DL Beban hidup, LL 781178,0020 984808,1770 1347931,1750 1697945,1330 1700259,5210 2139410,8680 1840324,2320 2311327,8130 Total, Mu (1,2MD+1,6ML) 2513106,6856 4334229,6228 5463368,8140 5906513,5792 e. Gaya geser (shearing force) Beban mati terbagi merata = 0,5 × 5360,6207 × 16,5 44225,1208 kg Balok melintang = 1,4 × 388,8 544,3200 kg Beban hidup garis P = 0,5 × 6294,25859 12928,8147 kg Beban hidup terbagi merata q = 0,5 × 28,3657 × 16,5 30172,5600 kg Total V 87870,8155 kg 878708,1550 N
  • 11. 11 f. Perhitungan baja tulangan Pada tumpuan V = 878708,1550 N h = 1300 mm b = 500 mm d = 1300 - 60 = 1240 mm Perencanaan tulangan geser Vu = 878708,1550 N 6667,5072911217,550025 6 1 6 1 ' =××=××= dbfV cc N 5,1521876667,5072916,0 2 1 2 1 =××=cVφ N < Vu (perlu sengkang) Gambar 7. Diagram gaya geser (SFD) Hasil perhitungan dapat dilihat pada tabel berikut No. Penampang titik 1 titik 2 titik 3 titik 4 kritis 0 - 2 m 2 - 4 m 4 - 6 m 6 - 8,25 m 1 Vu (N) 878708.1550 698350.141 517992.127 337089.793 2 Vc (N) 507291.6667 507291.6667 507291.6667 507291.6667 3 ½ φ Vc (N) 152187.5 152187.5 152187.5 152187.5 Perlu sengkang Perlu sengkang Perlu sengkang Perlu sengkang 4 Vs (N) 957221.925 656625.235 356028.545 54524.655 5 s (mm) 79.91645314 116.5014334 214.8641793 1402.994317 6 s mak (mm) 608.75 608.75 608.75 608.75 7 Dipakai D10 - 75 D10 - 110 D10 - 200 D10 - 500 Potongan I-I (8,25 m dari tumpuan) lebar efektif, diambil nilai terkecil dari : 375,45,174 1 4 1 =×== LbE m ( ) 53003001650016 =×+=+= fwE hbb mm 1400== gelagarjarakbE mm CL 878708,1550 698350.141 517992.127 517447.807 337089.793 111642.2755 bw = 500 mm bE = 1400 mm hf = 300 mm h = 1300 mm
  • 12. 12 Mu = 5906513,5792 N-m s yb b E fd c + = 003,0 003,0 b s y b d E f a + = 003,0 003,0 85,0 ab = 0,6 db = 0,6 (1300-40) = 756 mm > 300 mm dalam keadaan setimbang (ΣH = 0) ( ){ }tbbbaffA wfwbcyb ×−+×××=× ' 85,0 ( ){ } ( ){ } 34425 400 30050014005007562585,085,0 ' = ×−+××× = ×−+××× = y wfwbc b f tbbbaf A mm2 kemampuan sayap mendukung momen 9906750000 2 300 12602585,03001400 2 85,0 ' = ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ −××××= ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ −××××= t dftbM cf Nmm M = 9906750 Nm > 5906513,5792 Nm → blok beton a ada di dalam sayap Letak garis netral, c ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ −××××= 2 85,0 ' a dfabM cf ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ −××××= 2 12602585,01400,25906513579 a a a2 – 2520a + 397076,5431 = 0 a = 168,8889 mm, c = 168,8889/0,85 = 198,6928 mm luas tulangan yang diperlukan 1114,4486 400 8889,1685002585,085,0 ' = ××× = ××× = y wc f abf A mm2 < 0,75×Ab = 0,75×34425 Dipakai tulangan ∅30 (As = 706,8583 mm2), jumlah tulangan yang dibutuhkan 3,6 8583,706 1114,4486 ==n dipakai 8∅30 (As = 5654,8664 mm2) Potongan II-II (6 m dari tumpuan) Mu = 5463368,8140 N-m s yb b E fd c + = 003,0 003,0 b s y b d E f a + = 003,0 003,0 85,0 ab = 0,6 db = 0,6 (1300-40) = 756 mm > 300 mm
  • 13. 13 dalam keadaan setimbang (ΣH = 0) ( ){ }tbbbaffA wfwbcyb ×−+×××=× ' 85,0 ( ){ } ( ){ } 34425 400 30050014005007562585,085,0 ' = ×−+××× = ×−+××× = y wfwbc b f tbbbaf A mm2 kemampuan sayap mendukung momen 9906750000 2 300 12602585,03001400 2 85,0 ' = ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ −××××= ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ −××××= t dftbM cf Nmm M = 9906750 Nm > 5463368,8140 Nm → blok beton a ada di dalam sayap Letak garis netral, c ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ −××××= 2 85,0 ' a dfabM cf ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ −××××= 2 12602585,01400,05463368814 a a a2 – 2520a + 367285,2984 = 0 a = 155,3214 mm, c = 155,3214/0,85 = 182,7311 mm luas tulangan yang diperlukan 7247,4125 400 155,32145002585,085,0 ' = ××× = ××× = y wc f abf A mm2 < 0,75×Ab = 0,75×34425 Dipakai tulangan ∅30 (As = 706,8583 mm2), jumlah tulangan yang dibutuhkan 8,5 8583,706 7247,4125 ==n dipakai 6∅30 (As = 4241,1501 mm2) Potongan III-III (4 m dari tumpuan) Mu = 4334229,6228 N-m s yb b E fd c + = 003,0 003,0 b s y b d E f a + = 003,0 003,0 85,0 ab = 0,6 db = 0,6 (1300-40) = 756 mm > 300 mm dalam keadaan setimbang (ΣH = 0) ( ){ }tbbbaffA wfwbcyb ×−+×××=× ' 85,0 ( ){ } ( ){ } 34425 400 30050014005007562585,085,0 ' = ×−+××× = ×−+××× = y wfwbc b f tbbbaf A mm2
  • 14. 14 kemampuan sayap mendukung momen 9906750000 2 300 12602585,03001400 2 85,0 ' = ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ −××××= ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ −××××= t dftbM cf Nmm M = 9906750 Nm > 4334229,6228 Nm → blok beton a ada di dalam sayap Letak garis netral, c ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ −××××= 2 85,0 ' a dfabM cf ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ −××××= 2 12602585,01400,84334229622 a a a2 – 2520a + 291376,7813 = 0 a = 121,4820 mm, c = 121,4820/0,85 = 142,92 mm luas tulangan yang diperlukan 8656,3226 400 121,48205002585,085,0 ' = ××× = ××× = y wc f abf A mm2 < 0,75×Ab = 0,75×34425 Dipakai tulangan ∅30 (As = 706,8583 mm2), jumlah tulangan yang dibutuhkan 6,4 8583,706 8656,3226 ==n dipakai 6∅30 (As = 4241,1501 mm2) Potongan IV- IV (2 m dari tumpuan) Mu = 2513106,6856 N-m s yb b E fd c + = 003,0 003,0 b s y b d E f a + = 003,0 003,0 85,0 ab = 0,6 db = 0,6 (1300-40) = 756 mm > 300 mm dalam keadaan setimbang (ΣH = 0) ( ){ }tbbbaffA wfwbcyb ×−+×××=× ' 85,0 ( ){ } ( ){ } 34425 400 30050014005007562585,085,0 ' = ×−+××× = ×−+××× = y wfwbc b f tbbbaf A mm2 kemampuan sayap mendukung momen 9906750000 2 300 12602585,03001400 2 85,0 ' = ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ −××××= ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ −××××= t dftbM cf Nmm M = 9906750 Nm > 2513106,6856 Nm → blok beton a ada di dalam sayap
  • 15. 15 Letak garis netral, c ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ −××××= 2 85,0 ' a dfabM cf ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ −××××= 2 12602585,01400,62513106685 a a a2 – 2520a + 168948,3486 = 0 a = 68,9284 mm, c = 68,9284/0,85 = 81,0922 mm luas tulangan yang diperlukan 9106,1830 400 68,92845002585,085,0 ' = ××× = ××× = y wc f abf A mm2 < 0,75×Ab = 0,75×34425 Dipakai tulangan ∅30 (As = 706,8583 mm2), jumlah tulangan yang dibutuhkan 6,2 8583,706 9106,1830 ==n dipakai 3∅30 (As = 2120,5750 mm2) Tabel Penulangan balok Pembebanan M.1 M.2 M.3 M.4 Beban mati, DL Beban hidup, LL 781178,0020 984808,1770 1347931,1750 1697945,1330 1700259,5210 2139410,8680 1840324,2320 2311327,8130 Total, Mu (1,2MD+1,6ML) 2513106,6856 4334229,6228 5463368,8140 5906513,5792 tulangan 3∅30 6∅30 6∅30 8∅30
  • 16. 16 DAFTAR PUSTAKA Agus Iqbal Manu, Ir.,Dipl. Heng., 1995, Dasar-Dasar Perencanaan Jembatan Beton Bertulang, Cetakan I,P.T. Mediatana Saptakarya, Jakarta Bambang Supriyadi, DR.,Ir., CES.,DEA., 2000, Jembatan, Edisi pertama, Beta Offset, Jogjakarta Departemen Pekerjaan Umum, Standar Bangunan Atas Jembatan Gelagar Beton Bertulang Tipe T, 1993, Departemen Pekerjaan Umum Ditjen Bina Marga Dit. Bina Program Jalan Subdit. Perencanaan Teknik Jembatan