SlideShare a Scribd company logo
Study of transmetallation
mechanisms of gadolinium
complexes
Doctoral Thesis Presentation, 16 December 2013
Vijetha MOGILIREDDY
1
16/12/2013 1
This work was funded by the Région Champagne Ardenne
16/12/2013 2
Motivation
T1 image
H. William et. al, Clinical Radiol. 2000, 55, 825-831
Magnetic Resonance Imaging
(MRI)
Anatomical imaging
Resolution Sensitivity
×
16/12/2013 3
Motivation
H. William et. al, Clinical Radiol. 2000, 55, 825-831
Magnetic Resonance Imaging
(MRI)
Anatomical imaging
Resolution Sensitivity
Contrast agents
T1 image
 Paramagnetic systems
 Reduced T1 values and increased brightness on T1 weighted images
 T1 (cerebral lesion)without CA = 1000 ms
 T1 (cerebral lesion)with CA = 330 ms
Constitution of Contrast agents
16/12/2013 4
Contributions
M
N
N
N
N
coo-
-OOC
-OOC
COO-
n
n = 0, 1M
Complex
 Paramagnetic metal ions (Mn(II), Fe(III), Cu(II), Gd(III))
 Gd3+ - 7 unpaired electrons
 Free Gd3+ ion is toxic
 Complexed with a cage like structure (multidentate chelate /
ligand)
J-C. G. Bunzli et al. Chem. Soc. Rev. 2005, 34, 1048–1077; A.E. Merbach, E. Toth (eds). The Chemistry of Contrast Agents in
Medical Magnetic Resonance Imaging. Wiley: New York, 2001
N N N
COO-
COO--OOC
-OOC
COO- N N
NN
COO--OOC
-OOC COO-
DTPA DOTA
16/12/2013 5
Contributions
M. Port et al. BioMetals. 2008, 21, 469–490
Ionic Non ionic Ionic Non ionic
Macrocyclic Linear
Gadolinium
16/12/2013 6
Contributions
Gd-DOTA Gd-HPDO3A Gd-DTPA
Gd-DTPA-BMA
Gadolinium
Gd-BTDO3A
Ionic Non ionic Ionic Non ionic
Macrocyclic Linear
22 22
CH2 CH2
O O
CH3 CH3
2 2
M. Port et al. BioMetals. 2008, 21, 469–490
Gd-DTPA-BMEA
 First case in 1997
 Damages internal organs sometimes leading to death
 Patients with low glomerular filteration rate
16/12/2013 7
Nephrogenic Systemic Fibrosis (NSF) –
Problem definition
Peau d’orange appearance
Fibrosis of skin, joints, eyes
and internal organs
S. E. Cowper et al. The Lancet. 2000, 356, 1000–1001
Gd3+
N
N
N
N
coo-
-OOC
-OOC
COO-
n
n = 0, 1
A = PO4
3-, CO3
2-
B = Citrate, lactate, amino acids
M = Zn2+, Cu2+, Fe3+
, Mg2+, Ca2+
16/12/2013 8
Link of NSF with contrast agents
T. Grobner, Nephrol. Dial. Transplant. 2006, 21, 1104–1108
P. Marckmann et al. J. Am. Soc. Nephrolog. 2006, 17, 2359–2362
E. Brücher. et al. Chem. Eur. J. 2000, 6, 719–724
GdL
L*GdL GdL* + L
+ L
GdLM + ML
Gd3+
Gd3+
GdHL
GdH2L+ H2LGd3+
+ HLGd3+
H+H+
L*
M
pH 3.6 – 5.2
16/12/2013 9
Link of NSF with contrast agents
Classification of European Medicine Agency
 Safest  cyclic structure
 Intermediate  ionic linear structure
 least safest non ionic linear structure
Gd3+
N
N
N
N
coo-
-OOC
-OOC
COO-
n
n = 0, 1
A = PO4
3-, CO3
2-
B = Citrate, lactate, amino acids
M = Zn2+, Cu2+, Fe3+
, Mg2+, Ca2+
T. Grobner, Nephrol. Dial. Transplant. 2006, 21, 1104–1108
P. Marckmann et al. J. Am. Soc. Nephrolog. 2006, 17, 2359–2362
16/12/2013 10
How to improve the Gd contrast agents
I. Lukes et al. Dalton Trans. 2008, 3027–3047
C. Alric et al. J. Am. Chem. Soc. 2008, 130, 5908–5915
Relaxivity enhancement
 Rotational correlation time : R
 Accelerate the exchange of H2O molecules : kex
 Number of water molecules : q
 Number of Gd(III) complexes : nGd
16/12/2013 10
16/12/2013 11
How to improve the Gd contrast agents
I. Lukes et al. Dalton Trans. 2008, 3027–3047
Relaxivity enhancement
 Rotational correlation time : R
 Accelerate the exchange of H2O molecules : kex
 Number of water molecules : q
 Number of Gd(III) complexes : nGd
16/12/2013 11
N
N
N
COOH
HOOC
O
NH
O
HN S
S
HOOC
AuNP
N
N
N
COOH
COOH
N
H
O
HN
S
S
HOOC
N N
N
COOH
COOH
O
NH
O
NH
S S
COOH
N N
NN
CO2H
HO2C
HO2C
N
H
N
C. Alric et al. J. Am. Chem. Soc. 2008, 130, 5908–5915
16/12/2013 12
Contrast agents
Physico-chemical study of newly developped contrast agents
Safety Efficiency
Outline
 Potentiometric study of ligands and metal complexes
 Kinetic inertness evaluation of Gd complexes towards demetallation
 Investigation of transmetallation mechanisms
16/12/2013 13
Macrocyclic ligands
N N
NN
CO2H
HO2C
HO2C
N
H
N
L1H4
N N
NN
CO2H
HO2C
HO2C
N
N
O2N
L2H3
Dr. S. J. Archibald group, University of Hull, UK
16/12/2013 14
Species distribution diagrams
HYSS treatment
 Potentiometric titrations of ligands L1H4
2 4 6 8 10 12
0
20
40
60
80
100
[L
1
]
4-
L
1
H
3-
L
1
H2
2-L
1
H3
-
L
1
H4
L
1
H5
+L
1
H6
2+
%ofprotonatedspeciesofL
1
H4
pH
N N
NN
CO2H
HO2C
HO2C
N
H
N
[L] = 2×10-3 M, 25°C, NMe4Cl (0.1 M)
L1H4
log b log K
LH 12.5 12.5
LH2 22.4 9.9
LH3 30.7 8.3
LH4 35.4 4.7
LH5 39.5 4.1
LH6 42.1 2.6
N N
NN
CO2H
HO2C
HO2C
HN
H
N
16/12/2013 15
200 300 400
0,0
0,5
1,0
Absorbance
 (nm)
UV NMR
Identification of the species
A. El Majzoub et al. Eur. J. Inorg. Chem. 2007, 5087–5097
BIMHn
16/12/2013 16
UV spectroscopic studies
 Bathochromic and hypochromic shift
( = 274 and 280 nm) between pH 4.1 and 6
Evolution of spectra as a function of pH
N N
NN
CO2H
HO2C
HO2C
HN
H
N
A. El Majzoub et al. Eur. J. Inorg. Chem. 2007, 5087–5097
H
N
N
H
H
N
N
BIMH2
+
BIMH
240 280 320
0,0
0,5
1,0
Absorbance
 (nm)
pH = 2.3
pH = 3.4
pH = 4.1
pH = 6.0
16/12/2013 17
UV spectroscopic studies
 Bathochromic and hypochromic shift
( = 274 and 280 nm) between pH 4.1 and 6
Evolution of spectra as a function of pH
N N
NN
CO2H
HO2C
HO2C
HN
H
N
 Hyperchromic shift beyond pH 11
H
N
N
N
N
BIM-BIMH
A. El Majzoub et al. Eur. J. Inorg. Chem. 2007, 5087–5097
H
N
N
H
H
N
N
BIMH2
+
BIMH
240 280 320
0,0
0,5
1,0
Absorbance
 (nm)
pH = 2.3
pH = 3.4
pH = 4.1
pH = 6.0
240 280 320
0,0
0,5
1,0
Absorbance
 (nm)
pH = 8.2
pH = 10.6
pH = 11.5
16/12/2013 18
NMR spectroscopic studies
7.8 7.6 7.4 7.2 4.4 4.2 4.0 3.8
Aromatic zone Aliphatic zone
ppm
pH = 11.0
pH = 6.5
pH = 1.9
pH = 1.0
pH = 3.0
pH = 3.7
pH = 4.7
pH = 8.8
pH = 7.7
pH = 10.0
7.8 7.6 7.4 7.2 4.4 4.2 4.0 3.8
Aromatic zone Aliphatic zone
ppm







7.8 7.6 7.4 7.2 4.4 4.2 4.0 3.8
Aromatic zone Aliphatic zone
ppm
7.8 7.6 7.4 7.2 4.4 4.2 4.0 3.8
Aromatic zone Aliphatic zone
7.8 7.6 7.4 7.2 4.4 4.2 4.0 3.8
Aromatic zone Aliphatic zone
ppm
pH = 11.0
pH = 6.5
pH = 1.9
pH = 1.0
pH = 3.0
pH = 3.7
pH = 4.7
pH = 8.8
pH = 7.7
pH = 10.0
7.8 7.6 7.4 7.2 4.4 4.2 4.0 3.8
Aromatic zone Aliphatic zone
ppm







 Upfield chemical shift between pH 3.7
and 6.5
Evolution of spectra as a function of pH, D2O, 300 MHz
N N
NN
CO2H
HO2C
HO2C
HN
H
N
*
16/12/2013 19
NMR spectroscopic studies
7.8 7.6 7.4 7.2 4.4 4.2 4.0 3.8
Aromatic zone Aliphatic zone
ppm
pH = 11.0
pH = 6.5
pH = 1.9
pH = 1.0
pH = 3.0
pH = 3.7
pH = 4.7
pH = 8.8
pH = 7.7
pH = 10.0
7.8 7.6 7.4 7.2 4.4 4.2 4.0 3.8
Aromatic zone Aliphatic zone
ppm







7.8 7.6 7.4 7.2 4.4 4.2 4.0 3.8
Aromatic zone Aliphatic zone
ppm
7.8 7.6 7.4 7.2 4.4 4.2 4.0 3.8
Aromatic zone Aliphatic zone
7.8 7.6 7.4 7.2 4.4 4.2 4.0 3.8
Aromatic zone Aliphatic zone
ppm
pH = 11.0
pH = 6.5
pH = 1.9
pH = 1.0
pH = 3.0
pH = 3.7
pH = 4.7
pH = 8.8
pH = 7.7
pH = 10.0
7.8 7.6 7.4 7.2 4.4 4.2 4.0 3.8
Aromatic zone Aliphatic zone
ppm







 Upfield chemical shift between pH 3.7
and 6.5

Evolution of spectra as a function of pH, D2O, 300 MHz
N N
NN
CO2H
HO2C
HO2C
HN
H
N
*
H
N
N
H
H
N
N
BIMH2
+
BIMH
4.7
16/12/2013 20
Protonation scheme
N N
NN
-
OOC COO-
-
OOC
N
N
[L1]4-
N N
NN
-
OOC COO-
-
OOC
N
H
N
[L1H]3-
N N
NN
-
OOC COO-
-
OOC
N
H
N
[L1H2]2-
H+
N N
NN
-
OOC COO-
-
OOC
N
H
N
[L1H3]-
2H+
N N
NN
-
OOC COO-
-
OOC
HN
H
N
[L1H4]
2H+
N N
NN
-
OOC COOH
-
OOC
HN
H
N
[L1H5]+
2H+
N N
NN
-
OOC COOH
HOOC
HN
H
N
[L1H6]2+
2H+
2.6
4.1 4.7
8.3
12.5 9.9
16/12/2013 21
Determination of stability constants
of the metal complexes - Methodology
Out-of-Cell Method
 Storage at 37°C under argon for one month
 Measurement of pH of each cell at 25°C
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7
2,0
2,5
3,0
3,5
4,0
4,5
pH
VOH
- /mL
J. Moreau et al. Chem. Eur. J. 2004, 10, 5218–5232
1
2
3
4
5
6
7pH
[L] = [M] = 10-3 M, NMe4Cl (0.1 M)
16/12/2013 22
Determination of stability constants
Methodology
Out-of-Cell Method
 Storage at 37°C under argon for one month
 Measurement of pH of each cell at 25°C
 Selection of a tube (appropriate pH) followed
by the titration with NMe4OH in conventionnal manner
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7
2,0
2,5
3,0
3,5
4,0
4,5
pH
VOH
- /mL
0,0 0,1 0,2 0,3 0,4 0,5 0,6
4
5
6
7
8
9
10
11
12
pH
VOH
- /mL
1
2
3
4
5
6
7pH
J. Moreau et al. Chem. Eur. J. 2004, 10, 5218–5232
16/12/2013 23
Species distribution diagrams of Gd(III) and
Eu(III) complexes
2 4 6 8 10 12
0
20
40
60
80
100
L
1
H4
L
1
H5
+
L
1
H7
3+
L
1
H6
2+
[GdL
1
]
-[GdL
1
H]
[GdL
1
H2
]
+
Gd
3+
%Gd
pH 2 4 6 8 10 12
0
20
40
60
80
100
[EuL
1
]
-[EuL
1
H]
[EuL
1
H2
]
+
L
1
H5
+
L
1
H6
2+
Eu
3+
%Eu
pH
• Gd(III) • Eu(III)
[L] = [M] = 2×10-3 M, 25°C, NMe4Cl (0.1 M)
N N
NN
CO2H
HO2C
HO2C
N
H
N
L1H4
2 4 6 8 10 12
0
20
40
60
80
100
LH5
+
LH6
2+
[GdL]
-
[GdLH]
[GdLH2
]
+
Gd
3+
%Gd
pH
7800
8000
8200
8400
8600
8800
9000

(mol
-1
Lcm
-1
)
16/12/2013 24
UV spectroscopic studies
[L] = [M] = 2×10-3 M, 25°C, NMe4Cl (0.1 M)
2 4 6 8 10 12
0
20
40
60
80
100
[EuL
1
H] [EuL
1
]
-
[EuL
1
H2
]
+
Eu
3+
L
1
H6
2+
L
1
H5
+
%Eu
pH
8400
8600
8800
9000
9200
9400

(mol
-1
Lcm
-1
)
M = Gd
M = Eu
N N
NN
CO2H
HO2C
HO2C
HN
H
N
A. El Majzoub et al. Eur. J. Inorg. Chem. 2007, 5087–5097
log K Gd Eu L1H4
ML1H2 ML1H 3.0 4.1 4.67 BIMH2
+  BIMH
ML1H ML1 8.4 9.3 12.5 BIMH  BIM-
• 278nm = f(pH)
2 4 6 8 10 12
0
20
40
60
80
100
LH5
+
LH6
2+
[GdL]
-
[GdLH]
[GdLH2
]
+
Gd
3+
%Gd
pH
7800
8000
8200
8400
8600
8800
9000

(mol
-1
Lcm
-1
)
16/12/2013 25
UV spectroscopic studies
[L] = [M] = 2×10-3 M, 25°C, NMe4Cl (0.1 M)
2 4 6 8 10 12
0
20
40
60
80
100
[EuL
1
H] [EuL
1
]
-
[EuL
1
H2
]
+
Eu
3+
L
1
H6
2+
L
1
H5
+
%Eu
pH
8400
8600
8800
9000
9200
9400

(mol
-1
Lcm
-1
)
M = Gd
M = Eu
N N
NN
CO2H
HO2C
HO2C
HN
H
N
A. El Majzoub et al. Eur. J. Inorg. Chem. 2007, 5087–5097
log K Gd Eu L1H4
ML1H2 ML1H 3.0 4.1 4.67 BIMH2
+  BIMH
ML1H ML1 8.4 9.3 12.5 BIMH  BIM-
• 278nm = f(pH)
 Involvement of BIMH moiety in the Ln(III)
coordination sphere
16/12/2013 26
Gd
Eu
3.0
4.1
8.4
9.3
N N
N N
CO2
--
O2C
-
O2C
HN
N
H
M
[ML1
H2]+
N N
N N
CO2
--
O2C
-
O2C
HN
N
M
N N
N N
CO2
--
O2C
-
O2C
N
N
M
OH2
[ML1
H] [ML1
]-
OH2
H2O OH2
Gd
Eu
3.0
4.1
8.4
9.3
N N
N N
CO2
--
O2C
-
O2C
HN
N
H
M
[ML1
H2]+
N N
N N
CO2
--
O2C
-
O2C
HN
N
M
N N
N N
CO2
--
O2C
-
O2C
N
N
M
OH2
[ML1
H] [ML1
]-
OH2
H2O OH2
Gadolinium and Europium complexes
 nH2O determined by fluorescence (S.J Archibald group)
Complexation Schemes
3 8.4
4 9.3
16/12/2013 27
Stability of Gd(III) complexes
L4H4 > L1H4 > L5H3 M = Gd(III)
[L] = [M] = 2×10-3 M, 25°C, NMe4Cl (0.1 M)
 Log([Gd]free/[Gd]total) = f(pH)
N N
NN
CO2H
HO2C
HO2C
N
H
N
L1H4
N N
NN
CO2H
CO2H
CO2H
L4H4
HO2C
N N
NN
CO2H
HO2C
HO2C L5H3
HO
OH
OH
-12
-10
-8
-6
-4
-2
0
L
1
H4
L
5
H3
L
4
H4
log([Gd]free
/[Gd]total
)
2 4 6 8 10 12pH
16/12/2013 28
Species distribution diagrams of transition
metal complexes (Cu(II) and Zn(II))
2 4 6 8 10 12
0
20
40
60
80
100
L
1
H6
2+
Cu
2+
% Cu
[CuL
1
]
2-
[CuL
1
H]
-
[CuL
1
H2
]
[CuL
1
H3
]
+
pH
2 4 6 8 10 12
0
20
40
60
80
100
LH5
+
LH6
2+
Zn
2+
[ZnL
1
H4
]
2+
[ZnL
1
H3
]
+
[ZnL
1
H2
]
[ZnL
1
H]
-
[ZnL
1
]
2-
%Zn
pH
[L] = [M] = 2×10-3 M, 25°C, NMe4Cl (0.1 M)
N N
N N
CO2
--
O2C
-
O2C
HN
N
HM
[ML1
H2]
N N
N N
CO2
--
O2C
-
O2C
HN
N
M
N N
N N
CO2
--
O2C
-
O2C
N
N
M
[ML1
H]-
[ML1
]2-
Cu
Zn
4.5 9.2
5.1 9.7
 Gd>Eu>Cu>Zn
16/12/2013 29
Stability of metal complexes
 Comparison of stability of all metal
complexes
[L] = [M] = 2×10-3 M, 25°C, NMe4Cl (0.1 M)
N N
NN
CO2H
HO2C
HO2C
N
H
N
-10
-8
-6
-4
-2
0
log([M]free
/[M]total
)
2 4 6 8 10 12
Zn-L
1
H4
Cu-L
1
H4
Eu-L
1
H4
pH
Gd-L
1
H4
16/12/2013 30
At pH~7:
- [GdLH] > 95%
- [ZnLH] < 5%
[L] = [Gd] = [Zn] = 2×10-3 M
Stability of metal complexes
N N
NN
CO2H
HO2C
HO2C
N
H
N
What happens for L1H4 in the presence of Gd(III) and Zn(II)?
From thermodynamic determinations
Transmetallation?
2 4 6 8 10 12
0
20
40
60
80
100
ZnLH2
ZnLH
ZnLH3
GdLH2
LH6
ZnLH4
GdLGdLH
%L
pH
16/12/2013 31
 Relaxometric measurements, phosphate buffer (pH~7.4)
 R1(t)/R1(t=0) = f(t)
 What is expected :
Gd release  R1(t) < R1(t = 0) in the current conditions
S. Laurent et al. CMMI, 2010, 5, 305–308
Kinetic inertness
GdL ZnL ++ Zn Gd
Relaxation rate versus time, [GdL] =[Zn] = 1:1; T= 37°C, pH 7.4, in phosphate buffer
16/12/2013 32
 Relaxometric measurements, phosphate buffer at pH~7.4
 R1(t)/R1(t=0) = f(t)
Here no decrease in R1(t) values
S. Laurent et al. CMMI, 2010, 5, 305–308
Kinetic inertness
GdL ZnL ++ Zn Gd
No transmetallation was detected
0 1000 2000 3000 4000 5000
0,0
0,2
0,4
0,6
0,8
1,0
1,2
R1t
/R10
t (min)
Gd-L
1
H4
Gd-L
4
H4
Relaxation rate versus time, [GdL] =[Zn] = 1:1; T= 37°C, pH 7.4, in phosphate buffer
16/12/2013 33
Linear ligands
N
N
N
COOH
HOOC
O
NH
O
HN S
S
HOOC
AuNP
N
N
N
COOH
COOH
N
H
O
HN
S
S
HOOC
N N
N
COOH
COOH
O
NH
O
NH
S S
COOH
L@
2H3
Dr. S. Roux group, Université de Franche-Comté, France
N N N
COOHHOOC
COOH
OO
NHHN SHHS
L@
1H5
16/12/2013 34
Protonation constants of ligands
Potentiometry, [L] = 2×10-3 M, OH- = 5×10-2 M, HCl = 1×10-2 M
10.37 (2) 9.77 (1) 8.96 (2) 4.79 (1) 3.43 (1) 2.34 (1)
C.F.G.C Geraldes et al. MRI 1995, 13, 401–420. G. Crisponi et al. Polyhedron 2002, 21, 1319–1327
9.4 4.4 3.1
NH NH HN
C
COO
COO
C
OOC
O
NH
CH3
O
HN
H3C
L@
1H5
DTPA – BMA or L@
3H3
NH NH HN
C
COO
COO
C
OOC
O
NH SH
O
HNHS
16/12/2013 35
Protonation constants of ligands
Potentiometry, [L] = 2×10-3 M, OH- = 5×10-2 M, HCl = 1×10-2 M
L. J. Garcés et al. J. Phys. Chem. B. 2009, 113, 15145–15155. C. David et al. J. Phys. Chem. B. 2007, 111, 10421–10430
NH NH HN
C
COO
COOH
C
OOC
O
NH SH
O
HNHS
L@
1H5
L@
2H3
N
N
N
COOH
HOOC
O
NH
O
HN S
S
HOOC
AuNP
N
N
N
COOH
COOH
N
H
O
HN
S
S
HOOC
N N
N
COOH
COOH
O
NH
O
NH
S S
COOH
Basicity increase for L@
2H3
L@
2H3 11.26(3) 10.12(2) 7.27(3) 5.75(2) 3.78(1)
L@
1H5 10,37(2) 9.77(1) 8.86(2) 4.79(1) 3.43(1) 2.34(1)
16/12/2013 36
Protonation constants of ligands
Potentiometry, [L] = 2×10-3 M, OH- = 5×10-2 M, HCl = 1×10-2 M
L@
1H5
• Ligand packing at the nanoparticle surface
• H bond network that stabilize added protons
L. Morrigi et al., JACS 2009, 131, 10828-–10829
L@
2H3
NH NH HN
C
COO
COOH
C
OOC
O
NH SH
O
HNHS
L@
2H3 11.26(3) 10.12(2) 7.27(3) 5.75(2) 3.78(1)
L@
1H5 10,37(2) 9.77(1) 8.86(2) 4.79(1) 3.43(1) 2.34(1)
Basicity increase for L@
2H3
16/12/2013 37
2 4 6 8 10 12
0
20
40
60
80
100
[GdL@
1
]
2-
[GdL@
1
H]
-
[GdL@
1
H2
]
Gd
3+
L@
1
H5
%Gd
pH
2 4 6 8 10 12
0
20
40
60
80
100
[GdL@
2
]
[GdL@
2
H]
[GdL@
2
H2
]
Gd
3+
%Gd
pH
 Stability constants obtained through direct titrations
using potentiometry
Species distribution diagrams of Gd(III)
complexes
[L] = [M] = 2×10-3 M, 25°C, NMe4Cl (0.1 M)
N N N
COOHHOOC
COOH
OO
NHHN SHHS
N
N
N
COOH
HOOC
O
NH
O
HN S
S
HOOC
AuNP
N
N
N
COOH
COOH
N
H
O
HN
S
S
HOOC
N N
N
COOH
COOH
O
NH
O
NH
S S
COOH
16/12/2013 38
Stability of Gd(III) complexes
 Log([Gd]free/[Gd]total)
[L] = [M] = 2×10-3 M, 25°C, NMe4Cl (0.1 M)
N N N
COOH
COOHHOOC
HOOC
COOH
L@
4H5
N
N
N
COOH
HOOC
O
NH
O
HN S
S
HOOC
AuNP
N
N
N
COOH
COOH
N
H
O
HN
S
S
HOOC
N N
N
COOH
COOH
O
NH
O
NH
S S
COOH
L@
2H3
L@
4H5 = L@
2H3 > L@
1H5 M = Gd(III)
-10
-8
-6
-4
-2
0
L@
1
H5
L@
2
H3
pH
log([Gd]free
/[Gd]total
)
L@
4
H5
2 4 6 8 10 12
N N N
COOHHOOC
O
NH
O
HNHS SH
COOH
L@
1H 5
16/12/2013 39
[L] = [M] = 2×10-3 M, 25°C, NMe4Cl (0.1 M)
2 4 6 8 10 12
0
20
40
60
80
100
[Cu2
L@
1
(OH)2
]
3-
[CuL@
1
]
3-[CuL@
1
H]
2-
[Cu2
L@
1
]
-
[CuL@
1
H2
]
-
[Cu2
L@
1
H]
Cu
2+
[CuL@
1
H3
]
%Cu
pH
Species distribution diagrams of Cu(II) and
Zn(II) complexes (M/L = 1/1)
2 4 6 8 10 12
0
20
40
60
80
100
[ZnL@
1
H]
-
[ZnL@
1
]
2-
[ZnL@
1
H2
]
[ZnL@
1
H3
]
+
Zn
2+
%Zn
pH
N N N
C
COOH
COOH
C
HOOC
O
NH SH
O
HNHS
L@
1H5
• M = Cu(II)
• M = Zn(II)
 Dinuclear Cu(II) complexes even in
M/L = 1/1 conditions
16/12/2013 40
[L] = [M] = 2×10-3 M, 25°C, NMe4Cl (0.1 M)
2 4 6 8 10 12
0
20
40
60
80
100
[CuL@
2
H2
]
[CuL@
2
H] [CuL@
2
]
Cu
2+
%Cu
pH
2 4 6 8 10 12
0
20
40
60
80
100
[ZnL@
2
]
[ZnLH@
2
]
[ZnL@
2
H2
]
Zn
2+
%Zn
pH
• M = Cu(II)
• M = Zn(II)
L@
2H3
Species distribution diagrams of Cu(II) and
Zn(II) complexes
N
N
N
COOH
HOOC
O
NH
O
HN S
S
HOOC
AuNP
N
N
N
COOH
COOH
N
H
O
HN
S
S
HOOC
N N
N
COOH
COOH
O
NH
O
NH
S S
COOH
16/12/2013 41
Stability of metal complexes
Cu>Gd>(Zn>Ca)
[L] = [M] = 2×10-3 M, 25°C, NMe4Cl (0.1 M)
Gd>(Cu>Zn>Ca)
N N N
COOHHOOC
COOH
OO
NHHN SHHS
L@
1H5
-16
-14
-12
-10
-8
-6
-4
-2
0
Ca-L@
1
H5
Zn-L@
1
H5
Gd-L@
1
H5
pH
log([M]free
/[M]total
)
Cu-L@
1
H5
2 4 6 8 10 12
-10
-8
-6
-4
-2
0
Ca-L@
2
H3
Gd-L@
2
H3
Cu-L@
2
H3
pH
log([M]total
/[M]free
)
Zn-L@
2
H3
2 4 6 8 10 12
L@
2H3
N
N
N
COOH
HOOC
O
NH
O
HN S
S
HOOC
AuNP
N
N
N
COOH
COOH
N
H
O
HN
S
S
HOOC
N N
N
COOH
COOH
O
NH
O
NH
S S
COOH
16/12/2013 42
Stability of metal complexes
• At pH = 7.4
N N N
COOHHOOC
COOH
OO
NHHN SHHS
L@
1H5 L@
2H3
N
N
N
COOH
HOOC
O
NH
O
HN S
S
HOOC
AuNP
N
N
N
COOH
COOH
N
H
O
HN
S
S
HOOC
N N
N
COOH
COOH
O
NH
O
NH
S S
COOH
0
2
4
6
8
10
1
Gd Cu Zn Ca
Log([M]free/[M]total)
Cu > Gd > Zn > Ca
0
2
4
6
8
10
1
Gd Cu Zn Ca
Gd > Cu > Zn > Ca
Log([M]free/[M]total)
[L] = [M] = 2×10-3 M, 25°C, NMe4Cl (0.1 M)
16/12/2013 43
Stability of metal complexes
 At pH~7
- [GdL@
1H2] > 80%
- [ZnL@
1H2] < 20%
0
20
40
60
80
100
2 4 6 8 10 12pH
%M
Gd3+
Zn2+
ZnL1
@H3
ZnL1
@H2
ZnL1
@H ZnL1
@
ZnL1
@(OH)
GdL1
@H2
GdL1
@H
GdL1
@
[L] = [Gd] = [M] = 2×10-3 M
What happens for L@
1H5 in the presence of Gd(III) and Zn(II)?
Transmetallation
N N N
COOHHOOC
COOH
OO
NHHN SHHS
From thermodynamic determinations
16/12/2013 44
Stability of metal complexes
[L] = [Gd] = [M] = 2×10-3 M
 At pH~7
-[GdL@
2] > 95%
-[ZnL@
2H] < 5%
0
20
40
60
80
100
2 4 6 8 10 12
pH
%M
Zn2+Gd3+
GdL2
@
ZnL2
@H2
ZnL2
@H
What happens for L@
2H3 in the presence of Gd(III) and Zn(II)?
Transmetallation
N
N
N
COOH
HOOC
O
NH
O
HN S
S
HOOC
AuNP
N
N
N
COOH
COOH
N
H
O
HN
S
S
HOOC
N N
N
COOH
COOH
O
NH
O
NH
S S
COOH
From thermodynamic determinations
16/12/2013 45
Kinetic inertness
 With Zn(II) in excess
(mechanism)
M = competitive cations (Zn(II))
GdL ML ++ M Gd
 Under stoichiometric conditions
between GdL and Zn(II)
Relaxometry UV-vis spectroscopy
L = L@
1H5 and L@
2H3 L = L@
1H5
16/12/2013 46
Stoichiometric conditions
 Relaxation rates are measured as a function of time
Relaxation rate versus time, [GdL] =[Zn] = 1:1; T= 37°C, pH 7.4, in phosphate buffer
0 1000 2000 3000 4000 5000
0,0
0,2
0,4
0,6
0,8
1,0
R1
(t)/R1
(t=0)
t (mins)
DTPA:Gd
L@
1
H5
:Gd
L@
2
H3
:Gd
 Kinetic index
 t80%: Time for R1(t)/ R1(t = 0) = 0.8 GdL ZnL ++ Zn Gd
Gd-L@
1H5
Gd-L@
2H3 Gd-DTPA
t80%
108 min
≈ 2h
216 min
≈ 4h
275 min
≈ 5h
 Kinetic stability order
 Gd-DTPA > Gd-L@
2H3 > Gd-L@
1H5
S. Laurent et al. CMMI, 2010, 5, 305–308
16/12/2013 47
Stoichiometric conditions
 Relaxation rates are measured as a function of time
Relaxation rate versus time, [GdL] =[Zn] = 1:1; T= 37°C, pH 7.4, in phosphate buffer
0 1000 2000 3000 4000 5000
0,0
0,2
0,4
0,6
0,8
1,0
R1
(t)/R1
(t=0)
t (mins)
DTPA:Gd
L@
1
H5
:Gd
L@
2
H3
:Gd
 Kinetic index
 t80%: Time for R1(t)/ R1(t = 0) = 0.8 GdL ZnL ++ Zn Gd
Thermodynamic index
 % GdL 4320min = R1(t = 4320) / R1(t = 0)
Gd-L@
1H5
Gd-L@
2H3 Gd-DTPA
t80%
108 min
≈ 2h
216 min
≈ 4h
275 min
≈ 5h
Gd-L@
1H5
Gd-L@
2H3 Gd-DTPA
% GdL
4320min
10% 30% 42%
S. Laurent et al. CMMI, 2010, 5, 305–308
16/12/2013 48
Excess of competitive cation
In the presence of excess Zn(II) and at various pH conditions
 4×10-3 M < [Zn2+] < 10×10-3 M
 5.8 < pH < 6.5
A = f(t), [GdL] =5×10-4 M; [Zn] = 4×10-3 M; T= 25°C, pH 6.5, NMe4Cl (0.1M)
200 250 300 350 400
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
GdDTPA(0.5mM)+Cu(5mM) in NMe4
Cl at 25°C
Absorbance
Wavelength(nm)
tk
AA
AA
ln obs
e0
et








y =-0,001x
R² =0,991
-1,4
-1,2
-1
-0,8
-0,6
-0,4
-0,2
0
0 200 400 600 800 1000
t (mins)
Ln(At-Ae/A0-Ae)
Pseudo first order
kobs
N N N
COOHHOOC
COOH
OO
NHHN SHHS
16/12/2013 49
4×10-3 M < [Zn2+] < 10×10-3 M, 5.8 < pH < 6.5, T= 25°C, NMe4Cl (0.1 M)
• kobs = f([Zn2+])
 pH = 5.8
 pH = 6.0
pH = 6.2
 pH = 6.5
Investigation of transmetallation mechanism
• For a given [H+]:
kobs ↗ when [Zn2+] ↗
0,004 0,005 0,006 0,007 0,008 0,009 0,010
10
15
20
25
30
kobs
(10
-4
s
-1
)
[Zn
2+
] (mol L
-1
)
16/12/2013 50
4×10-3 M < [Zn2+] < 10×10-3 M, 5.8 < pH < 6.5, T= 25°C, NMe4Cl (0.1 M)
• kobs = f([Zn2+])
 pH = 5.8
 pH = 6.0
pH = 6.2
 pH = 6.5
Investigation of transmetallation mechanism
• For a given [Zn2+]:
kobs ↗ when [H+] ↗
• For a given [H+]:
kobs ↗ when [Zn2+] ↗
GdLZnHn complexes involved in the transmetallation mechanism
0,004 0,005 0,006 0,007 0,008 0,009 0,010
10
15
20
25
30
kobs
(10
-4
s
-1
)
[Zn
2+
] (mol L
-1
)
16/12/2013 51
Investigation of transmetallation mechanism
5.8 < pH < 6.5, T= 25°C, NMe4Cl (0.1 M)
E. Brücher. et al. Chem. Eur. J. 2000, 6, 719–724
GdLHn
Zn
Zn
GdLZnH + H
GdLZn + 2H
ZnL + Gd + 2H
Zn2L + Gd + 2H
ZnL + Gd + 2H
Zn2L + Gd + 2H
Zn
Zn
Zn
ZnxLHn + H
- spontaneous
- H assisted
transmet. pathways
16/12/2013 52
Investigation of transmetallation mechanism
   
 



 2
54
22
3
2
21
obs
ZnBB
ZnBZnBB
k
     
    76
2
5
43
2
2
3
1
obs
PHPHP
PHPHPHP
k



Versus [Zn2+]
pH fixed
Versus [H+]
[Zn2+] fixed
 Tobsi i GdLkvv  
           GdLZnGdLZnHGdLHGdLHGdLGdL 2T 
16/12/2013 53
Investigation of transmetallation mechanism
E. Brücher. et al. Chem. Eur. J. 2000, 6, 719–724
GdLHn
Zn
Zn
GdLZnH + H
GdLZn + 2H
ZnL + Gd + 2H
Zn2L + Gd + 2H
ZnL + Gd + 2H
Zn2L + Gd + 2H
Zn
Zn
k1
k2
k3
k4
Zn
ZnxLHn + H
- spontaneous
- H assisted
transmet. pathways
(1)
(2)
(3)
(4)
1 2 3 4
ki (104 M-1s-1) 38 0.08
ki (104 M-2s-1) 1007 654
Transmetallation is driven by Zn(II) attack on heteronuclear GdLZnH and GdLZn complexes
16/12/2013 54
Conclusion
16/12/2013 55
Conclusion
- half-life of the Gd complexes
- demetallation pathways in
competitive conditions
2 4 6 8 10 12
0
20
40
60
80
100
[GdL@
2
]
[GdL@
2
H]
[GdL@
2
H2
]
Gd
3+
%Gd
pH
Thermodynamic stability
- stability of Gd complexes
- identification of the species at
physiological pH
Kinetic inertness
From a methodological point of view
GdLHn
Zn
Zn
GdLZnH + H
GdLZn + 2H
ZnL + Gd + 2H
Zn2L + Gd + 2H
ZnL + Gd + 2H
Zn2L + Gd + 2H
Zn
Zn
Zn
ZnxLHn + H
- spontaneous
- H assisted
transmet. pathways
16/12/2013 56
Conclusion
No transmetallation
N N
NN
CO2H
HO2C
HO2C
N
H
N
Gd-L@
2H3 Gd-DTPA
t1/2 257 min 277 min
Thermodynamic stability
Kinetic inertness
Good candidates for MRI applications
0
1
2
3
4
5
6
7
8
1Gd-
L4H4
Gd-
L1H4
Gd-
L5H3
Log([M]free/[M]total)
0
1
2
3
4
5
6
7
8
1Gd-
L@
4H5
Gd-
L@
2H3
Log([M]free/[M]total)
PhD presentation-V.Mogilireddy

More Related Content

What's hot

Antibacterial Application of Novel Mixed-Ligand Dithiocarbamate Complexes of ...
Antibacterial Application of Novel Mixed-Ligand Dithiocarbamate Complexes of ...Antibacterial Application of Novel Mixed-Ligand Dithiocarbamate Complexes of ...
Antibacterial Application of Novel Mixed-Ligand Dithiocarbamate Complexes of ...
IOSR Journals
 
Nmr assignment-of-n-(1-adamantyl)-1-pentyl-1 h-indazole-3-carboxamide-seized-...
Nmr assignment-of-n-(1-adamantyl)-1-pentyl-1 h-indazole-3-carboxamide-seized-...Nmr assignment-of-n-(1-adamantyl)-1-pentyl-1 h-indazole-3-carboxamide-seized-...
Nmr assignment-of-n-(1-adamantyl)-1-pentyl-1 h-indazole-3-carboxamide-seized-...
Annex Publishers
 
M.Sc. Organic Chemistry Student Project Presentation
M.Sc. Organic Chemistry Student Project PresentationM.Sc. Organic Chemistry Student Project Presentation
M.Sc. Organic Chemistry Student Project Presentation
Dr. Krishna Swamy. G
 
AN INVESTIGATION LEADING TO THE DESIGN AND SYNTHESIS OF BENZIMIDAZOLO/ TETRAZ...
AN INVESTIGATION LEADING TO THE DESIGN AND SYNTHESIS OF BENZIMIDAZOLO/ TETRAZ...AN INVESTIGATION LEADING TO THE DESIGN AND SYNTHESIS OF BENZIMIDAZOLO/ TETRAZ...
AN INVESTIGATION LEADING TO THE DESIGN AND SYNTHESIS OF BENZIMIDAZOLO/ TETRAZ...
International Journal of Technical Research & Application
 
An Efficient Synthetic Approach Towards 4-Cyano-3-(Methylthio)-5-Oxo-2H-Pyraz...
An Efficient Synthetic Approach Towards 4-Cyano-3-(Methylthio)-5-Oxo-2H-Pyraz...An Efficient Synthetic Approach Towards 4-Cyano-3-(Methylthio)-5-Oxo-2H-Pyraz...
An Efficient Synthetic Approach Towards 4-Cyano-3-(Methylthio)-5-Oxo-2H-Pyraz...
inventionjournals
 
Ijetr011832
Ijetr011832Ijetr011832
Ijetr011832
ER Publication.org
 
C05521422
C05521422C05521422
C05521422
IOSR-JEN
 
Synthesis characterization-and-antimicrobial-activities-offeiicoiiniiicuiiand...
Synthesis characterization-and-antimicrobial-activities-offeiicoiiniiicuiiand...Synthesis characterization-and-antimicrobial-activities-offeiicoiiniiicuiiand...
Synthesis characterization-and-antimicrobial-activities-offeiicoiiniiicuiiand...Taghreed Al-Noor
 
A kinetic, thermodynamic and stoichiometric study on the reductive detoxifica...
A kinetic, thermodynamic and stoichiometric study on the reductive detoxifica...A kinetic, thermodynamic and stoichiometric study on the reductive detoxifica...
A kinetic, thermodynamic and stoichiometric study on the reductive detoxifica...
Alexander Decker
 
Synthesis, Spectroscopic study & Biological Activity Of Some Organotin(Iv) De...
Synthesis, Spectroscopic study & Biological Activity Of Some Organotin(Iv) De...Synthesis, Spectroscopic study & Biological Activity Of Some Organotin(Iv) De...
Synthesis, Spectroscopic study & Biological Activity Of Some Organotin(Iv) De...
IOSR Journals
 
Study of the Influence of Nickel Content and Reaction Temperature on Glycerol...
Study of the Influence of Nickel Content and Reaction Temperature on Glycerol...Study of the Influence of Nickel Content and Reaction Temperature on Glycerol...
Study of the Influence of Nickel Content and Reaction Temperature on Glycerol...
IJRESJOURNAL
 
8454
84548454
Synthesis and Characterization of Schiff Base from Aromatic Amine and Aromati...
Synthesis and Characterization of Schiff Base from Aromatic Amine and Aromati...Synthesis and Characterization of Schiff Base from Aromatic Amine and Aromati...
Synthesis and Characterization of Schiff Base from Aromatic Amine and Aromati...
ijtsrd
 
Synthesis, Characterization and Antibacterial Activity of New Complexes of So...
Synthesis, Characterization and Antibacterial Activity of New Complexes of So...Synthesis, Characterization and Antibacterial Activity of New Complexes of So...
Synthesis, Characterization and Antibacterial Activity of New Complexes of So...
IOSR Journals
 
1,3-Dihydroxypropan-2-one (DHA) synthesis from Glycerol for pharmaceutical ap...
1,3-Dihydroxypropan-2-one (DHA) synthesis from Glycerol for pharmaceutical ap...1,3-Dihydroxypropan-2-one (DHA) synthesis from Glycerol for pharmaceutical ap...
1,3-Dihydroxypropan-2-one (DHA) synthesis from Glycerol for pharmaceutical ap...
Simone Ripandelli
 
Lenhardt Pac
Lenhardt PacLenhardt Pac
Lenhardt Pacjlenhardt
 
SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL ACTIVITIES OF{FE(II),CO(II),NI(...
SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL ACTIVITIES OF{FE(II),CO(II),NI(...SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL ACTIVITIES OF{FE(II),CO(II),NI(...
SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL ACTIVITIES OF{FE(II),CO(II),NI(...
International Journal of Technical Research & Application
 
Deciphering reaction mechanism with intermediate trapping
Deciphering reaction mechanism with intermediate trappingDeciphering reaction mechanism with intermediate trapping
Deciphering reaction mechanism with intermediate trapping
Daniel Morton
 
Si-Imidazole-HSO4 Functionalized Magnetic Fe3O4 Nanoparticles as an Efficient...
Si-Imidazole-HSO4 Functionalized Magnetic Fe3O4 Nanoparticles as an Efficient...Si-Imidazole-HSO4 Functionalized Magnetic Fe3O4 Nanoparticles as an Efficient...
Si-Imidazole-HSO4 Functionalized Magnetic Fe3O4 Nanoparticles as an Efficient...
Iranian Chemical Society
 

What's hot (20)

Antibacterial Application of Novel Mixed-Ligand Dithiocarbamate Complexes of ...
Antibacterial Application of Novel Mixed-Ligand Dithiocarbamate Complexes of ...Antibacterial Application of Novel Mixed-Ligand Dithiocarbamate Complexes of ...
Antibacterial Application of Novel Mixed-Ligand Dithiocarbamate Complexes of ...
 
Nmr assignment-of-n-(1-adamantyl)-1-pentyl-1 h-indazole-3-carboxamide-seized-...
Nmr assignment-of-n-(1-adamantyl)-1-pentyl-1 h-indazole-3-carboxamide-seized-...Nmr assignment-of-n-(1-adamantyl)-1-pentyl-1 h-indazole-3-carboxamide-seized-...
Nmr assignment-of-n-(1-adamantyl)-1-pentyl-1 h-indazole-3-carboxamide-seized-...
 
M.Sc. Organic Chemistry Student Project Presentation
M.Sc. Organic Chemistry Student Project PresentationM.Sc. Organic Chemistry Student Project Presentation
M.Sc. Organic Chemistry Student Project Presentation
 
AN INVESTIGATION LEADING TO THE DESIGN AND SYNTHESIS OF BENZIMIDAZOLO/ TETRAZ...
AN INVESTIGATION LEADING TO THE DESIGN AND SYNTHESIS OF BENZIMIDAZOLO/ TETRAZ...AN INVESTIGATION LEADING TO THE DESIGN AND SYNTHESIS OF BENZIMIDAZOLO/ TETRAZ...
AN INVESTIGATION LEADING TO THE DESIGN AND SYNTHESIS OF BENZIMIDAZOLO/ TETRAZ...
 
An Efficient Synthetic Approach Towards 4-Cyano-3-(Methylthio)-5-Oxo-2H-Pyraz...
An Efficient Synthetic Approach Towards 4-Cyano-3-(Methylthio)-5-Oxo-2H-Pyraz...An Efficient Synthetic Approach Towards 4-Cyano-3-(Methylthio)-5-Oxo-2H-Pyraz...
An Efficient Synthetic Approach Towards 4-Cyano-3-(Methylthio)-5-Oxo-2H-Pyraz...
 
Ijetr011832
Ijetr011832Ijetr011832
Ijetr011832
 
C05521422
C05521422C05521422
C05521422
 
Synthesis characterization-and-antimicrobial-activities-offeiicoiiniiicuiiand...
Synthesis characterization-and-antimicrobial-activities-offeiicoiiniiicuiiand...Synthesis characterization-and-antimicrobial-activities-offeiicoiiniiicuiiand...
Synthesis characterization-and-antimicrobial-activities-offeiicoiiniiicuiiand...
 
A kinetic, thermodynamic and stoichiometric study on the reductive detoxifica...
A kinetic, thermodynamic and stoichiometric study on the reductive detoxifica...A kinetic, thermodynamic and stoichiometric study on the reductive detoxifica...
A kinetic, thermodynamic and stoichiometric study on the reductive detoxifica...
 
Synthesis, Spectroscopic study & Biological Activity Of Some Organotin(Iv) De...
Synthesis, Spectroscopic study & Biological Activity Of Some Organotin(Iv) De...Synthesis, Spectroscopic study & Biological Activity Of Some Organotin(Iv) De...
Synthesis, Spectroscopic study & Biological Activity Of Some Organotin(Iv) De...
 
PhD work
PhD workPhD work
PhD work
 
Study of the Influence of Nickel Content and Reaction Temperature on Glycerol...
Study of the Influence of Nickel Content and Reaction Temperature on Glycerol...Study of the Influence of Nickel Content and Reaction Temperature on Glycerol...
Study of the Influence of Nickel Content and Reaction Temperature on Glycerol...
 
8454
84548454
8454
 
Synthesis and Characterization of Schiff Base from Aromatic Amine and Aromati...
Synthesis and Characterization of Schiff Base from Aromatic Amine and Aromati...Synthesis and Characterization of Schiff Base from Aromatic Amine and Aromati...
Synthesis and Characterization of Schiff Base from Aromatic Amine and Aromati...
 
Synthesis, Characterization and Antibacterial Activity of New Complexes of So...
Synthesis, Characterization and Antibacterial Activity of New Complexes of So...Synthesis, Characterization and Antibacterial Activity of New Complexes of So...
Synthesis, Characterization and Antibacterial Activity of New Complexes of So...
 
1,3-Dihydroxypropan-2-one (DHA) synthesis from Glycerol for pharmaceutical ap...
1,3-Dihydroxypropan-2-one (DHA) synthesis from Glycerol for pharmaceutical ap...1,3-Dihydroxypropan-2-one (DHA) synthesis from Glycerol for pharmaceutical ap...
1,3-Dihydroxypropan-2-one (DHA) synthesis from Glycerol for pharmaceutical ap...
 
Lenhardt Pac
Lenhardt PacLenhardt Pac
Lenhardt Pac
 
SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL ACTIVITIES OF{FE(II),CO(II),NI(...
SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL ACTIVITIES OF{FE(II),CO(II),NI(...SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL ACTIVITIES OF{FE(II),CO(II),NI(...
SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL ACTIVITIES OF{FE(II),CO(II),NI(...
 
Deciphering reaction mechanism with intermediate trapping
Deciphering reaction mechanism with intermediate trappingDeciphering reaction mechanism with intermediate trapping
Deciphering reaction mechanism with intermediate trapping
 
Si-Imidazole-HSO4 Functionalized Magnetic Fe3O4 Nanoparticles as an Efficient...
Si-Imidazole-HSO4 Functionalized Magnetic Fe3O4 Nanoparticles as an Efficient...Si-Imidazole-HSO4 Functionalized Magnetic Fe3O4 Nanoparticles as an Efficient...
Si-Imidazole-HSO4 Functionalized Magnetic Fe3O4 Nanoparticles as an Efficient...
 

Viewers also liked

Content marketing - La connaissance de votre cible
Content marketing - La connaissance de votre cibleContent marketing - La connaissance de votre cible
Content marketing - La connaissance de votre cible
Jean-Charles Gautard
 
Delitos informaticos 10 01 (1)
Delitos informaticos 10 01 (1)Delitos informaticos 10 01 (1)
Delitos informaticos 10 01 (1)
yeni piraneque
 
Genpact Sports Day @ UW Gala 2016
Genpact Sports Day @ UW Gala 2016Genpact Sports Day @ UW Gala 2016
Genpact Sports Day @ UW Gala 2016
Dana Bazzolo
 
Educacao positiva dos_seus_filhos
Educacao positiva dos_seus_filhosEducacao positiva dos_seus_filhos
Educacao positiva dos_seus_filhos
ACECTALCT
 
Group Project 2 Technical Report_Visual Analytics
Group Project 2 Technical Report_Visual AnalyticsGroup Project 2 Technical Report_Visual Analytics
Group Project 2 Technical Report_Visual AnalyticsChristy C Langdon
 
Power of Influence Quantified
Power of Influence QuantifiedPower of Influence Quantified
Power of Influence QuantifiedPreston Robinson
 
Question 4
Question 4Question 4
Question 4
ben scandrett
 
Partial Greek Presenatation
Partial Greek PresenatationPartial Greek Presenatation
Partial Greek PresenatationDino Voutsinas
 
Vacantes
VacantesVacantes
Vacantes
Lesslynda
 
Turismo
TurismoTurismo
производство детского питания
производство детского питанияпроизводство детского питания
производство детского питания
Кундыз Кошанова
 
Referencias crepop-protecao-a-crianca
Referencias crepop-protecao-a-criancaReferencias crepop-protecao-a-crianca
Referencias crepop-protecao-a-crianca
ACECTALCT
 
6 популярных видов черепицы для крыши дома
6 популярных видов черепицы для крыши дома6 популярных видов черепицы для крыши дома
6 популярных видов черепицы для крыши дома
Александр Гуляев
 
Blfd - rc - SUPPLEMENTAL PPM to Blfd. Twp 04-25-2016 (Autosaved)
Blfd - rc - SUPPLEMENTAL  PPM to Blfd. Twp 04-25-2016 (Autosaved)Blfd - rc - SUPPLEMENTAL  PPM to Blfd. Twp 04-25-2016 (Autosaved)
Blfd - rc - SUPPLEMENTAL PPM to Blfd. Twp 04-25-2016 (Autosaved)Stephen V. St. Hilaire
 

Viewers also liked (16)

Content marketing - La connaissance de votre cible
Content marketing - La connaissance de votre cibleContent marketing - La connaissance de votre cible
Content marketing - La connaissance de votre cible
 
Delitos informaticos 10 01 (1)
Delitos informaticos 10 01 (1)Delitos informaticos 10 01 (1)
Delitos informaticos 10 01 (1)
 
Genpact Sports Day @ UW Gala 2016
Genpact Sports Day @ UW Gala 2016Genpact Sports Day @ UW Gala 2016
Genpact Sports Day @ UW Gala 2016
 
Educacao positiva dos_seus_filhos
Educacao positiva dos_seus_filhosEducacao positiva dos_seus_filhos
Educacao positiva dos_seus_filhos
 
BBBSMDFINAL3
BBBSMDFINAL3BBBSMDFINAL3
BBBSMDFINAL3
 
Group Project 2 Technical Report_Visual Analytics
Group Project 2 Technical Report_Visual AnalyticsGroup Project 2 Technical Report_Visual Analytics
Group Project 2 Technical Report_Visual Analytics
 
Power of Influence Quantified
Power of Influence QuantifiedPower of Influence Quantified
Power of Influence Quantified
 
Question 4
Question 4Question 4
Question 4
 
Partial Greek Presenatation
Partial Greek PresenatationPartial Greek Presenatation
Partial Greek Presenatation
 
Vacantes
VacantesVacantes
Vacantes
 
Turismo
TurismoTurismo
Turismo
 
производство детского питания
производство детского питанияпроизводство детского питания
производство детского питания
 
Referencias crepop-protecao-a-crianca
Referencias crepop-protecao-a-criancaReferencias crepop-protecao-a-crianca
Referencias crepop-protecao-a-crianca
 
Journal 2
Journal 2Journal 2
Journal 2
 
6 популярных видов черепицы для крыши дома
6 популярных видов черепицы для крыши дома6 популярных видов черепицы для крыши дома
6 популярных видов черепицы для крыши дома
 
Blfd - rc - SUPPLEMENTAL PPM to Blfd. Twp 04-25-2016 (Autosaved)
Blfd - rc - SUPPLEMENTAL  PPM to Blfd. Twp 04-25-2016 (Autosaved)Blfd - rc - SUPPLEMENTAL  PPM to Blfd. Twp 04-25-2016 (Autosaved)
Blfd - rc - SUPPLEMENTAL PPM to Blfd. Twp 04-25-2016 (Autosaved)
 

Similar to PhD presentation-V.Mogilireddy

Vinyl sulfones: Click applications in bioconjugation. The resurgence of a che...
Vinyl sulfones: Click applications in bioconjugation. The resurgence of a che...Vinyl sulfones: Click applications in bioconjugation. The resurgence of a che...
Vinyl sulfones: Click applications in bioconjugation. The resurgence of a che...
Fernando Hernandez-Mateo
 
Research proposal.pptx
Research proposal.pptxResearch proposal.pptx
Research proposal.pptx
Rajeev Chand Nishad
 
Proline catalyzed aldol reaction
Proline catalyzed aldol reactionProline catalyzed aldol reaction
Proline catalyzed aldol reaction
Debtanu Chakraborty
 
Unraveling interfacial processes by scanning (electrochemical) probe microscopy
Unraveling interfacial processes by scanning  (electrochemical) probe microscopyUnraveling interfacial processes by scanning  (electrochemical) probe microscopy
Unraveling interfacial processes by scanning (electrochemical) probe microscopy
BMRS Meeting
 
N-alkylation methods, Characterization and Evaluation of antibacterial activi...
N-alkylation methods, Characterization and Evaluation of antibacterial activi...N-alkylation methods, Characterization and Evaluation of antibacterial activi...
N-alkylation methods, Characterization and Evaluation of antibacterial activi...
IJERA Editor
 
Nuclear Magnetic Resonance (NMR) Analysis of D - (+) - Glucose: A Guide to Sp...
Nuclear Magnetic Resonance (NMR) Analysis of D - (+) - Glucose: A Guide to Sp...Nuclear Magnetic Resonance (NMR) Analysis of D - (+) - Glucose: A Guide to Sp...
Nuclear Magnetic Resonance (NMR) Analysis of D - (+) - Glucose: A Guide to Sp...
IOSR Journals
 
The chelate formation of thorium with 1, 2-naphthoquinone, 1-oxime
The chelate formation of thorium with 1, 2-naphthoquinone, 1-oximeThe chelate formation of thorium with 1, 2-naphthoquinone, 1-oxime
The chelate formation of thorium with 1, 2-naphthoquinone, 1-oxime
IOSR Journals
 
PNAS-1998-Barawkar-11047-52
PNAS-1998-Barawkar-11047-52PNAS-1998-Barawkar-11047-52
PNAS-1998-Barawkar-11047-52Dinesh Barawkar
 
Micellar Effect On Dephosphorylation Of Bis-4-Chloro-3,5-Dimethylphenylphosph...
Micellar Effect On Dephosphorylation Of Bis-4-Chloro-3,5-Dimethylphenylphosph...Micellar Effect On Dephosphorylation Of Bis-4-Chloro-3,5-Dimethylphenylphosph...
Micellar Effect On Dephosphorylation Of Bis-4-Chloro-3,5-Dimethylphenylphosph...
IOSR Journals
 
Micellar Effect On Dephosphorylation Of Bis-4-Chloro-3,5-Dimethylphenylphosph...
Micellar Effect On Dephosphorylation Of Bis-4-Chloro-3,5-Dimethylphenylphosph...Micellar Effect On Dephosphorylation Of Bis-4-Chloro-3,5-Dimethylphenylphosph...
Micellar Effect On Dephosphorylation Of Bis-4-Chloro-3,5-Dimethylphenylphosph...
IOSR Journals
 
Synthesis Of Lidocaine Lab Report
Synthesis Of Lidocaine Lab ReportSynthesis Of Lidocaine Lab Report
Synthesis Of Lidocaine Lab Report
Michelle Singh
 
Detailed characterization of saponins isolated from Zygophyllum Propinqueem D...
Detailed characterization of saponins isolated from Zygophyllum Propinqueem D...Detailed characterization of saponins isolated from Zygophyllum Propinqueem D...
Detailed characterization of saponins isolated from Zygophyllum Propinqueem D...
Open Access Research Paper
 
Catalytic N2 Conversion
Catalytic  N2 ConversionCatalytic  N2 Conversion
Catalytic N2 Conversion
YutoYabuuchi
 
Research Published Paper-157-JMES-2207-Hjouji-March-2016
Research Published Paper-157-JMES-2207-Hjouji-March-2016Research Published Paper-157-JMES-2207-Hjouji-March-2016
Research Published Paper-157-JMES-2207-Hjouji-March-2016Ibrahim Abdel-Rahman
 
Thesis Defense
Thesis DefenseThesis Defense
Thesis DefenseYijiang Wu
 
Mixed Ligand, Palladium(II) and Platinum(II) Complexes of Tertiary Diphosphin...
Mixed Ligand, Palladium(II) and Platinum(II) Complexes of Tertiary Diphosphin...Mixed Ligand, Palladium(II) and Platinum(II) Complexes of Tertiary Diphosphin...
Mixed Ligand, Palladium(II) and Platinum(II) Complexes of Tertiary Diphosphin...
Karwan Omer
 

Similar to PhD presentation-V.Mogilireddy (20)

Vinyl sulfones: Click applications in bioconjugation. The resurgence of a che...
Vinyl sulfones: Click applications in bioconjugation. The resurgence of a che...Vinyl sulfones: Click applications in bioconjugation. The resurgence of a che...
Vinyl sulfones: Click applications in bioconjugation. The resurgence of a che...
 
1
11
1
 
Research proposal.pptx
Research proposal.pptxResearch proposal.pptx
Research proposal.pptx
 
Proline catalyzed aldol reaction
Proline catalyzed aldol reactionProline catalyzed aldol reaction
Proline catalyzed aldol reaction
 
Unraveling interfacial processes by scanning (electrochemical) probe microscopy
Unraveling interfacial processes by scanning  (electrochemical) probe microscopyUnraveling interfacial processes by scanning  (electrochemical) probe microscopy
Unraveling interfacial processes by scanning (electrochemical) probe microscopy
 
N-alkylation methods, Characterization and Evaluation of antibacterial activi...
N-alkylation methods, Characterization and Evaluation of antibacterial activi...N-alkylation methods, Characterization and Evaluation of antibacterial activi...
N-alkylation methods, Characterization and Evaluation of antibacterial activi...
 
Nuclear Magnetic Resonance (NMR) Analysis of D - (+) - Glucose: A Guide to Sp...
Nuclear Magnetic Resonance (NMR) Analysis of D - (+) - Glucose: A Guide to Sp...Nuclear Magnetic Resonance (NMR) Analysis of D - (+) - Glucose: A Guide to Sp...
Nuclear Magnetic Resonance (NMR) Analysis of D - (+) - Glucose: A Guide to Sp...
 
The chelate formation of thorium with 1, 2-naphthoquinone, 1-oxime
The chelate formation of thorium with 1, 2-naphthoquinone, 1-oximeThe chelate formation of thorium with 1, 2-naphthoquinone, 1-oxime
The chelate formation of thorium with 1, 2-naphthoquinone, 1-oxime
 
PNAS-1998-Barawkar-11047-52
PNAS-1998-Barawkar-11047-52PNAS-1998-Barawkar-11047-52
PNAS-1998-Barawkar-11047-52
 
Micellar Effect On Dephosphorylation Of Bis-4-Chloro-3,5-Dimethylphenylphosph...
Micellar Effect On Dephosphorylation Of Bis-4-Chloro-3,5-Dimethylphenylphosph...Micellar Effect On Dephosphorylation Of Bis-4-Chloro-3,5-Dimethylphenylphosph...
Micellar Effect On Dephosphorylation Of Bis-4-Chloro-3,5-Dimethylphenylphosph...
 
Micellar Effect On Dephosphorylation Of Bis-4-Chloro-3,5-Dimethylphenylphosph...
Micellar Effect On Dephosphorylation Of Bis-4-Chloro-3,5-Dimethylphenylphosph...Micellar Effect On Dephosphorylation Of Bis-4-Chloro-3,5-Dimethylphenylphosph...
Micellar Effect On Dephosphorylation Of Bis-4-Chloro-3,5-Dimethylphenylphosph...
 
Synthesis Of Lidocaine Lab Report
Synthesis Of Lidocaine Lab ReportSynthesis Of Lidocaine Lab Report
Synthesis Of Lidocaine Lab Report
 
Detailed characterization of saponins isolated from Zygophyllum Propinqueem D...
Detailed characterization of saponins isolated from Zygophyllum Propinqueem D...Detailed characterization of saponins isolated from Zygophyllum Propinqueem D...
Detailed characterization of saponins isolated from Zygophyllum Propinqueem D...
 
Catalytic N2 Conversion
Catalytic  N2 ConversionCatalytic  N2 Conversion
Catalytic N2 Conversion
 
Research Published Paper-157-JMES-2207-Hjouji-March-2016
Research Published Paper-157-JMES-2207-Hjouji-March-2016Research Published Paper-157-JMES-2207-Hjouji-March-2016
Research Published Paper-157-JMES-2207-Hjouji-March-2016
 
M.Sc. 13 c nmr
M.Sc. 13 c nmrM.Sc. 13 c nmr
M.Sc. 13 c nmr
 
AGU_2014 Poster_v3
AGU_2014 Poster_v3AGU_2014 Poster_v3
AGU_2014 Poster_v3
 
Thesis Defense
Thesis DefenseThesis Defense
Thesis Defense
 
Mixed Ligand, Palladium(II) and Platinum(II) Complexes of Tertiary Diphosphin...
Mixed Ligand, Palladium(II) and Platinum(II) Complexes of Tertiary Diphosphin...Mixed Ligand, Palladium(II) and Platinum(II) Complexes of Tertiary Diphosphin...
Mixed Ligand, Palladium(II) and Platinum(II) Complexes of Tertiary Diphosphin...
 
5034 7127-1-pb
5034 7127-1-pb5034 7127-1-pb
5034 7127-1-pb
 

PhD presentation-V.Mogilireddy

  • 1. Study of transmetallation mechanisms of gadolinium complexes Doctoral Thesis Presentation, 16 December 2013 Vijetha MOGILIREDDY 1 16/12/2013 1 This work was funded by the Région Champagne Ardenne
  • 2. 16/12/2013 2 Motivation T1 image H. William et. al, Clinical Radiol. 2000, 55, 825-831 Magnetic Resonance Imaging (MRI) Anatomical imaging Resolution Sensitivity ×
  • 3. 16/12/2013 3 Motivation H. William et. al, Clinical Radiol. 2000, 55, 825-831 Magnetic Resonance Imaging (MRI) Anatomical imaging Resolution Sensitivity Contrast agents T1 image  Paramagnetic systems  Reduced T1 values and increased brightness on T1 weighted images  T1 (cerebral lesion)without CA = 1000 ms  T1 (cerebral lesion)with CA = 330 ms
  • 4. Constitution of Contrast agents 16/12/2013 4 Contributions M N N N N coo- -OOC -OOC COO- n n = 0, 1M Complex  Paramagnetic metal ions (Mn(II), Fe(III), Cu(II), Gd(III))  Gd3+ - 7 unpaired electrons  Free Gd3+ ion is toxic  Complexed with a cage like structure (multidentate chelate / ligand) J-C. G. Bunzli et al. Chem. Soc. Rev. 2005, 34, 1048–1077; A.E. Merbach, E. Toth (eds). The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging. Wiley: New York, 2001 N N N COO- COO--OOC -OOC COO- N N NN COO--OOC -OOC COO- DTPA DOTA
  • 5. 16/12/2013 5 Contributions M. Port et al. BioMetals. 2008, 21, 469–490 Ionic Non ionic Ionic Non ionic Macrocyclic Linear Gadolinium
  • 6. 16/12/2013 6 Contributions Gd-DOTA Gd-HPDO3A Gd-DTPA Gd-DTPA-BMA Gadolinium Gd-BTDO3A Ionic Non ionic Ionic Non ionic Macrocyclic Linear 22 22 CH2 CH2 O O CH3 CH3 2 2 M. Port et al. BioMetals. 2008, 21, 469–490 Gd-DTPA-BMEA
  • 7.  First case in 1997  Damages internal organs sometimes leading to death  Patients with low glomerular filteration rate 16/12/2013 7 Nephrogenic Systemic Fibrosis (NSF) – Problem definition Peau d’orange appearance Fibrosis of skin, joints, eyes and internal organs S. E. Cowper et al. The Lancet. 2000, 356, 1000–1001
  • 8. Gd3+ N N N N coo- -OOC -OOC COO- n n = 0, 1 A = PO4 3-, CO3 2- B = Citrate, lactate, amino acids M = Zn2+, Cu2+, Fe3+ , Mg2+, Ca2+ 16/12/2013 8 Link of NSF with contrast agents T. Grobner, Nephrol. Dial. Transplant. 2006, 21, 1104–1108 P. Marckmann et al. J. Am. Soc. Nephrolog. 2006, 17, 2359–2362 E. Brücher. et al. Chem. Eur. J. 2000, 6, 719–724 GdL L*GdL GdL* + L + L GdLM + ML Gd3+ Gd3+ GdHL GdH2L+ H2LGd3+ + HLGd3+ H+H+ L* M pH 3.6 – 5.2
  • 9. 16/12/2013 9 Link of NSF with contrast agents Classification of European Medicine Agency  Safest  cyclic structure  Intermediate  ionic linear structure  least safest non ionic linear structure Gd3+ N N N N coo- -OOC -OOC COO- n n = 0, 1 A = PO4 3-, CO3 2- B = Citrate, lactate, amino acids M = Zn2+, Cu2+, Fe3+ , Mg2+, Ca2+ T. Grobner, Nephrol. Dial. Transplant. 2006, 21, 1104–1108 P. Marckmann et al. J. Am. Soc. Nephrolog. 2006, 17, 2359–2362
  • 10. 16/12/2013 10 How to improve the Gd contrast agents I. Lukes et al. Dalton Trans. 2008, 3027–3047 C. Alric et al. J. Am. Chem. Soc. 2008, 130, 5908–5915 Relaxivity enhancement  Rotational correlation time : R  Accelerate the exchange of H2O molecules : kex  Number of water molecules : q  Number of Gd(III) complexes : nGd 16/12/2013 10
  • 11. 16/12/2013 11 How to improve the Gd contrast agents I. Lukes et al. Dalton Trans. 2008, 3027–3047 Relaxivity enhancement  Rotational correlation time : R  Accelerate the exchange of H2O molecules : kex  Number of water molecules : q  Number of Gd(III) complexes : nGd 16/12/2013 11 N N N COOH HOOC O NH O HN S S HOOC AuNP N N N COOH COOH N H O HN S S HOOC N N N COOH COOH O NH O NH S S COOH N N NN CO2H HO2C HO2C N H N C. Alric et al. J. Am. Chem. Soc. 2008, 130, 5908–5915
  • 12. 16/12/2013 12 Contrast agents Physico-chemical study of newly developped contrast agents Safety Efficiency Outline  Potentiometric study of ligands and metal complexes  Kinetic inertness evaluation of Gd complexes towards demetallation  Investigation of transmetallation mechanisms
  • 13. 16/12/2013 13 Macrocyclic ligands N N NN CO2H HO2C HO2C N H N L1H4 N N NN CO2H HO2C HO2C N N O2N L2H3 Dr. S. J. Archibald group, University of Hull, UK
  • 14. 16/12/2013 14 Species distribution diagrams HYSS treatment  Potentiometric titrations of ligands L1H4 2 4 6 8 10 12 0 20 40 60 80 100 [L 1 ] 4- L 1 H 3- L 1 H2 2-L 1 H3 - L 1 H4 L 1 H5 +L 1 H6 2+ %ofprotonatedspeciesofL 1 H4 pH N N NN CO2H HO2C HO2C N H N [L] = 2×10-3 M, 25°C, NMe4Cl (0.1 M) L1H4 log b log K LH 12.5 12.5 LH2 22.4 9.9 LH3 30.7 8.3 LH4 35.4 4.7 LH5 39.5 4.1 LH6 42.1 2.6
  • 15. N N NN CO2H HO2C HO2C HN H N 16/12/2013 15 200 300 400 0,0 0,5 1,0 Absorbance  (nm) UV NMR Identification of the species A. El Majzoub et al. Eur. J. Inorg. Chem. 2007, 5087–5097 BIMHn
  • 16. 16/12/2013 16 UV spectroscopic studies  Bathochromic and hypochromic shift ( = 274 and 280 nm) between pH 4.1 and 6 Evolution of spectra as a function of pH N N NN CO2H HO2C HO2C HN H N A. El Majzoub et al. Eur. J. Inorg. Chem. 2007, 5087–5097 H N N H H N N BIMH2 + BIMH 240 280 320 0,0 0,5 1,0 Absorbance  (nm) pH = 2.3 pH = 3.4 pH = 4.1 pH = 6.0
  • 17. 16/12/2013 17 UV spectroscopic studies  Bathochromic and hypochromic shift ( = 274 and 280 nm) between pH 4.1 and 6 Evolution of spectra as a function of pH N N NN CO2H HO2C HO2C HN H N  Hyperchromic shift beyond pH 11 H N N N N BIM-BIMH A. El Majzoub et al. Eur. J. Inorg. Chem. 2007, 5087–5097 H N N H H N N BIMH2 + BIMH 240 280 320 0,0 0,5 1,0 Absorbance  (nm) pH = 2.3 pH = 3.4 pH = 4.1 pH = 6.0 240 280 320 0,0 0,5 1,0 Absorbance  (nm) pH = 8.2 pH = 10.6 pH = 11.5
  • 18. 16/12/2013 18 NMR spectroscopic studies 7.8 7.6 7.4 7.2 4.4 4.2 4.0 3.8 Aromatic zone Aliphatic zone ppm pH = 11.0 pH = 6.5 pH = 1.9 pH = 1.0 pH = 3.0 pH = 3.7 pH = 4.7 pH = 8.8 pH = 7.7 pH = 10.0 7.8 7.6 7.4 7.2 4.4 4.2 4.0 3.8 Aromatic zone Aliphatic zone ppm        7.8 7.6 7.4 7.2 4.4 4.2 4.0 3.8 Aromatic zone Aliphatic zone ppm 7.8 7.6 7.4 7.2 4.4 4.2 4.0 3.8 Aromatic zone Aliphatic zone 7.8 7.6 7.4 7.2 4.4 4.2 4.0 3.8 Aromatic zone Aliphatic zone ppm pH = 11.0 pH = 6.5 pH = 1.9 pH = 1.0 pH = 3.0 pH = 3.7 pH = 4.7 pH = 8.8 pH = 7.7 pH = 10.0 7.8 7.6 7.4 7.2 4.4 4.2 4.0 3.8 Aromatic zone Aliphatic zone ppm         Upfield chemical shift between pH 3.7 and 6.5 Evolution of spectra as a function of pH, D2O, 300 MHz N N NN CO2H HO2C HO2C HN H N *
  • 19. 16/12/2013 19 NMR spectroscopic studies 7.8 7.6 7.4 7.2 4.4 4.2 4.0 3.8 Aromatic zone Aliphatic zone ppm pH = 11.0 pH = 6.5 pH = 1.9 pH = 1.0 pH = 3.0 pH = 3.7 pH = 4.7 pH = 8.8 pH = 7.7 pH = 10.0 7.8 7.6 7.4 7.2 4.4 4.2 4.0 3.8 Aromatic zone Aliphatic zone ppm        7.8 7.6 7.4 7.2 4.4 4.2 4.0 3.8 Aromatic zone Aliphatic zone ppm 7.8 7.6 7.4 7.2 4.4 4.2 4.0 3.8 Aromatic zone Aliphatic zone 7.8 7.6 7.4 7.2 4.4 4.2 4.0 3.8 Aromatic zone Aliphatic zone ppm pH = 11.0 pH = 6.5 pH = 1.9 pH = 1.0 pH = 3.0 pH = 3.7 pH = 4.7 pH = 8.8 pH = 7.7 pH = 10.0 7.8 7.6 7.4 7.2 4.4 4.2 4.0 3.8 Aromatic zone Aliphatic zone ppm         Upfield chemical shift between pH 3.7 and 6.5  Evolution of spectra as a function of pH, D2O, 300 MHz N N NN CO2H HO2C HO2C HN H N * H N N H H N N BIMH2 + BIMH 4.7
  • 20. 16/12/2013 20 Protonation scheme N N NN - OOC COO- - OOC N N [L1]4- N N NN - OOC COO- - OOC N H N [L1H]3- N N NN - OOC COO- - OOC N H N [L1H2]2- H+ N N NN - OOC COO- - OOC N H N [L1H3]- 2H+ N N NN - OOC COO- - OOC HN H N [L1H4] 2H+ N N NN - OOC COOH - OOC HN H N [L1H5]+ 2H+ N N NN - OOC COOH HOOC HN H N [L1H6]2+ 2H+ 2.6 4.1 4.7 8.3 12.5 9.9
  • 21. 16/12/2013 21 Determination of stability constants of the metal complexes - Methodology Out-of-Cell Method  Storage at 37°C under argon for one month  Measurement of pH of each cell at 25°C 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 2,0 2,5 3,0 3,5 4,0 4,5 pH VOH - /mL J. Moreau et al. Chem. Eur. J. 2004, 10, 5218–5232 1 2 3 4 5 6 7pH [L] = [M] = 10-3 M, NMe4Cl (0.1 M)
  • 22. 16/12/2013 22 Determination of stability constants Methodology Out-of-Cell Method  Storage at 37°C under argon for one month  Measurement of pH of each cell at 25°C  Selection of a tube (appropriate pH) followed by the titration with NMe4OH in conventionnal manner 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 2,0 2,5 3,0 3,5 4,0 4,5 pH VOH - /mL 0,0 0,1 0,2 0,3 0,4 0,5 0,6 4 5 6 7 8 9 10 11 12 pH VOH - /mL 1 2 3 4 5 6 7pH J. Moreau et al. Chem. Eur. J. 2004, 10, 5218–5232
  • 23. 16/12/2013 23 Species distribution diagrams of Gd(III) and Eu(III) complexes 2 4 6 8 10 12 0 20 40 60 80 100 L 1 H4 L 1 H5 + L 1 H7 3+ L 1 H6 2+ [GdL 1 ] -[GdL 1 H] [GdL 1 H2 ] + Gd 3+ %Gd pH 2 4 6 8 10 12 0 20 40 60 80 100 [EuL 1 ] -[EuL 1 H] [EuL 1 H2 ] + L 1 H5 + L 1 H6 2+ Eu 3+ %Eu pH • Gd(III) • Eu(III) [L] = [M] = 2×10-3 M, 25°C, NMe4Cl (0.1 M) N N NN CO2H HO2C HO2C N H N L1H4
  • 24. 2 4 6 8 10 12 0 20 40 60 80 100 LH5 + LH6 2+ [GdL] - [GdLH] [GdLH2 ] + Gd 3+ %Gd pH 7800 8000 8200 8400 8600 8800 9000  (mol -1 Lcm -1 ) 16/12/2013 24 UV spectroscopic studies [L] = [M] = 2×10-3 M, 25°C, NMe4Cl (0.1 M) 2 4 6 8 10 12 0 20 40 60 80 100 [EuL 1 H] [EuL 1 ] - [EuL 1 H2 ] + Eu 3+ L 1 H6 2+ L 1 H5 + %Eu pH 8400 8600 8800 9000 9200 9400  (mol -1 Lcm -1 ) M = Gd M = Eu N N NN CO2H HO2C HO2C HN H N A. El Majzoub et al. Eur. J. Inorg. Chem. 2007, 5087–5097 log K Gd Eu L1H4 ML1H2 ML1H 3.0 4.1 4.67 BIMH2 +  BIMH ML1H ML1 8.4 9.3 12.5 BIMH  BIM- • 278nm = f(pH)
  • 25. 2 4 6 8 10 12 0 20 40 60 80 100 LH5 + LH6 2+ [GdL] - [GdLH] [GdLH2 ] + Gd 3+ %Gd pH 7800 8000 8200 8400 8600 8800 9000  (mol -1 Lcm -1 ) 16/12/2013 25 UV spectroscopic studies [L] = [M] = 2×10-3 M, 25°C, NMe4Cl (0.1 M) 2 4 6 8 10 12 0 20 40 60 80 100 [EuL 1 H] [EuL 1 ] - [EuL 1 H2 ] + Eu 3+ L 1 H6 2+ L 1 H5 + %Eu pH 8400 8600 8800 9000 9200 9400  (mol -1 Lcm -1 ) M = Gd M = Eu N N NN CO2H HO2C HO2C HN H N A. El Majzoub et al. Eur. J. Inorg. Chem. 2007, 5087–5097 log K Gd Eu L1H4 ML1H2 ML1H 3.0 4.1 4.67 BIMH2 +  BIMH ML1H ML1 8.4 9.3 12.5 BIMH  BIM- • 278nm = f(pH)  Involvement of BIMH moiety in the Ln(III) coordination sphere
  • 26. 16/12/2013 26 Gd Eu 3.0 4.1 8.4 9.3 N N N N CO2 -- O2C - O2C HN N H M [ML1 H2]+ N N N N CO2 -- O2C - O2C HN N M N N N N CO2 -- O2C - O2C N N M OH2 [ML1 H] [ML1 ]- OH2 H2O OH2 Gd Eu 3.0 4.1 8.4 9.3 N N N N CO2 -- O2C - O2C HN N H M [ML1 H2]+ N N N N CO2 -- O2C - O2C HN N M N N N N CO2 -- O2C - O2C N N M OH2 [ML1 H] [ML1 ]- OH2 H2O OH2 Gadolinium and Europium complexes  nH2O determined by fluorescence (S.J Archibald group) Complexation Schemes 3 8.4 4 9.3
  • 27. 16/12/2013 27 Stability of Gd(III) complexes L4H4 > L1H4 > L5H3 M = Gd(III) [L] = [M] = 2×10-3 M, 25°C, NMe4Cl (0.1 M)  Log([Gd]free/[Gd]total) = f(pH) N N NN CO2H HO2C HO2C N H N L1H4 N N NN CO2H CO2H CO2H L4H4 HO2C N N NN CO2H HO2C HO2C L5H3 HO OH OH -12 -10 -8 -6 -4 -2 0 L 1 H4 L 5 H3 L 4 H4 log([Gd]free /[Gd]total ) 2 4 6 8 10 12pH
  • 28. 16/12/2013 28 Species distribution diagrams of transition metal complexes (Cu(II) and Zn(II)) 2 4 6 8 10 12 0 20 40 60 80 100 L 1 H6 2+ Cu 2+ % Cu [CuL 1 ] 2- [CuL 1 H] - [CuL 1 H2 ] [CuL 1 H3 ] + pH 2 4 6 8 10 12 0 20 40 60 80 100 LH5 + LH6 2+ Zn 2+ [ZnL 1 H4 ] 2+ [ZnL 1 H3 ] + [ZnL 1 H2 ] [ZnL 1 H] - [ZnL 1 ] 2- %Zn pH [L] = [M] = 2×10-3 M, 25°C, NMe4Cl (0.1 M) N N N N CO2 -- O2C - O2C HN N HM [ML1 H2] N N N N CO2 -- O2C - O2C HN N M N N N N CO2 -- O2C - O2C N N M [ML1 H]- [ML1 ]2- Cu Zn 4.5 9.2 5.1 9.7
  • 29.  Gd>Eu>Cu>Zn 16/12/2013 29 Stability of metal complexes  Comparison of stability of all metal complexes [L] = [M] = 2×10-3 M, 25°C, NMe4Cl (0.1 M) N N NN CO2H HO2C HO2C N H N -10 -8 -6 -4 -2 0 log([M]free /[M]total ) 2 4 6 8 10 12 Zn-L 1 H4 Cu-L 1 H4 Eu-L 1 H4 pH Gd-L 1 H4
  • 30. 16/12/2013 30 At pH~7: - [GdLH] > 95% - [ZnLH] < 5% [L] = [Gd] = [Zn] = 2×10-3 M Stability of metal complexes N N NN CO2H HO2C HO2C N H N What happens for L1H4 in the presence of Gd(III) and Zn(II)? From thermodynamic determinations Transmetallation? 2 4 6 8 10 12 0 20 40 60 80 100 ZnLH2 ZnLH ZnLH3 GdLH2 LH6 ZnLH4 GdLGdLH %L pH
  • 31. 16/12/2013 31  Relaxometric measurements, phosphate buffer (pH~7.4)  R1(t)/R1(t=0) = f(t)  What is expected : Gd release  R1(t) < R1(t = 0) in the current conditions S. Laurent et al. CMMI, 2010, 5, 305–308 Kinetic inertness GdL ZnL ++ Zn Gd Relaxation rate versus time, [GdL] =[Zn] = 1:1; T= 37°C, pH 7.4, in phosphate buffer
  • 32. 16/12/2013 32  Relaxometric measurements, phosphate buffer at pH~7.4  R1(t)/R1(t=0) = f(t) Here no decrease in R1(t) values S. Laurent et al. CMMI, 2010, 5, 305–308 Kinetic inertness GdL ZnL ++ Zn Gd No transmetallation was detected 0 1000 2000 3000 4000 5000 0,0 0,2 0,4 0,6 0,8 1,0 1,2 R1t /R10 t (min) Gd-L 1 H4 Gd-L 4 H4 Relaxation rate versus time, [GdL] =[Zn] = 1:1; T= 37°C, pH 7.4, in phosphate buffer
  • 33. 16/12/2013 33 Linear ligands N N N COOH HOOC O NH O HN S S HOOC AuNP N N N COOH COOH N H O HN S S HOOC N N N COOH COOH O NH O NH S S COOH L@ 2H3 Dr. S. Roux group, Université de Franche-Comté, France N N N COOHHOOC COOH OO NHHN SHHS L@ 1H5
  • 34. 16/12/2013 34 Protonation constants of ligands Potentiometry, [L] = 2×10-3 M, OH- = 5×10-2 M, HCl = 1×10-2 M 10.37 (2) 9.77 (1) 8.96 (2) 4.79 (1) 3.43 (1) 2.34 (1) C.F.G.C Geraldes et al. MRI 1995, 13, 401–420. G. Crisponi et al. Polyhedron 2002, 21, 1319–1327 9.4 4.4 3.1 NH NH HN C COO COO C OOC O NH CH3 O HN H3C L@ 1H5 DTPA – BMA or L@ 3H3 NH NH HN C COO COO C OOC O NH SH O HNHS
  • 35. 16/12/2013 35 Protonation constants of ligands Potentiometry, [L] = 2×10-3 M, OH- = 5×10-2 M, HCl = 1×10-2 M L. J. Garcés et al. J. Phys. Chem. B. 2009, 113, 15145–15155. C. David et al. J. Phys. Chem. B. 2007, 111, 10421–10430 NH NH HN C COO COOH C OOC O NH SH O HNHS L@ 1H5 L@ 2H3 N N N COOH HOOC O NH O HN S S HOOC AuNP N N N COOH COOH N H O HN S S HOOC N N N COOH COOH O NH O NH S S COOH Basicity increase for L@ 2H3 L@ 2H3 11.26(3) 10.12(2) 7.27(3) 5.75(2) 3.78(1) L@ 1H5 10,37(2) 9.77(1) 8.86(2) 4.79(1) 3.43(1) 2.34(1)
  • 36. 16/12/2013 36 Protonation constants of ligands Potentiometry, [L] = 2×10-3 M, OH- = 5×10-2 M, HCl = 1×10-2 M L@ 1H5 • Ligand packing at the nanoparticle surface • H bond network that stabilize added protons L. Morrigi et al., JACS 2009, 131, 10828-–10829 L@ 2H3 NH NH HN C COO COOH C OOC O NH SH O HNHS L@ 2H3 11.26(3) 10.12(2) 7.27(3) 5.75(2) 3.78(1) L@ 1H5 10,37(2) 9.77(1) 8.86(2) 4.79(1) 3.43(1) 2.34(1) Basicity increase for L@ 2H3
  • 37. 16/12/2013 37 2 4 6 8 10 12 0 20 40 60 80 100 [GdL@ 1 ] 2- [GdL@ 1 H] - [GdL@ 1 H2 ] Gd 3+ L@ 1 H5 %Gd pH 2 4 6 8 10 12 0 20 40 60 80 100 [GdL@ 2 ] [GdL@ 2 H] [GdL@ 2 H2 ] Gd 3+ %Gd pH  Stability constants obtained through direct titrations using potentiometry Species distribution diagrams of Gd(III) complexes [L] = [M] = 2×10-3 M, 25°C, NMe4Cl (0.1 M) N N N COOHHOOC COOH OO NHHN SHHS N N N COOH HOOC O NH O HN S S HOOC AuNP N N N COOH COOH N H O HN S S HOOC N N N COOH COOH O NH O NH S S COOH
  • 38. 16/12/2013 38 Stability of Gd(III) complexes  Log([Gd]free/[Gd]total) [L] = [M] = 2×10-3 M, 25°C, NMe4Cl (0.1 M) N N N COOH COOHHOOC HOOC COOH L@ 4H5 N N N COOH HOOC O NH O HN S S HOOC AuNP N N N COOH COOH N H O HN S S HOOC N N N COOH COOH O NH O NH S S COOH L@ 2H3 L@ 4H5 = L@ 2H3 > L@ 1H5 M = Gd(III) -10 -8 -6 -4 -2 0 L@ 1 H5 L@ 2 H3 pH log([Gd]free /[Gd]total ) L@ 4 H5 2 4 6 8 10 12 N N N COOHHOOC O NH O HNHS SH COOH L@ 1H 5
  • 39. 16/12/2013 39 [L] = [M] = 2×10-3 M, 25°C, NMe4Cl (0.1 M) 2 4 6 8 10 12 0 20 40 60 80 100 [Cu2 L@ 1 (OH)2 ] 3- [CuL@ 1 ] 3-[CuL@ 1 H] 2- [Cu2 L@ 1 ] - [CuL@ 1 H2 ] - [Cu2 L@ 1 H] Cu 2+ [CuL@ 1 H3 ] %Cu pH Species distribution diagrams of Cu(II) and Zn(II) complexes (M/L = 1/1) 2 4 6 8 10 12 0 20 40 60 80 100 [ZnL@ 1 H] - [ZnL@ 1 ] 2- [ZnL@ 1 H2 ] [ZnL@ 1 H3 ] + Zn 2+ %Zn pH N N N C COOH COOH C HOOC O NH SH O HNHS L@ 1H5 • M = Cu(II) • M = Zn(II)  Dinuclear Cu(II) complexes even in M/L = 1/1 conditions
  • 40. 16/12/2013 40 [L] = [M] = 2×10-3 M, 25°C, NMe4Cl (0.1 M) 2 4 6 8 10 12 0 20 40 60 80 100 [CuL@ 2 H2 ] [CuL@ 2 H] [CuL@ 2 ] Cu 2+ %Cu pH 2 4 6 8 10 12 0 20 40 60 80 100 [ZnL@ 2 ] [ZnLH@ 2 ] [ZnL@ 2 H2 ] Zn 2+ %Zn pH • M = Cu(II) • M = Zn(II) L@ 2H3 Species distribution diagrams of Cu(II) and Zn(II) complexes N N N COOH HOOC O NH O HN S S HOOC AuNP N N N COOH COOH N H O HN S S HOOC N N N COOH COOH O NH O NH S S COOH
  • 41. 16/12/2013 41 Stability of metal complexes Cu>Gd>(Zn>Ca) [L] = [M] = 2×10-3 M, 25°C, NMe4Cl (0.1 M) Gd>(Cu>Zn>Ca) N N N COOHHOOC COOH OO NHHN SHHS L@ 1H5 -16 -14 -12 -10 -8 -6 -4 -2 0 Ca-L@ 1 H5 Zn-L@ 1 H5 Gd-L@ 1 H5 pH log([M]free /[M]total ) Cu-L@ 1 H5 2 4 6 8 10 12 -10 -8 -6 -4 -2 0 Ca-L@ 2 H3 Gd-L@ 2 H3 Cu-L@ 2 H3 pH log([M]total /[M]free ) Zn-L@ 2 H3 2 4 6 8 10 12 L@ 2H3 N N N COOH HOOC O NH O HN S S HOOC AuNP N N N COOH COOH N H O HN S S HOOC N N N COOH COOH O NH O NH S S COOH
  • 42. 16/12/2013 42 Stability of metal complexes • At pH = 7.4 N N N COOHHOOC COOH OO NHHN SHHS L@ 1H5 L@ 2H3 N N N COOH HOOC O NH O HN S S HOOC AuNP N N N COOH COOH N H O HN S S HOOC N N N COOH COOH O NH O NH S S COOH 0 2 4 6 8 10 1 Gd Cu Zn Ca Log([M]free/[M]total) Cu > Gd > Zn > Ca 0 2 4 6 8 10 1 Gd Cu Zn Ca Gd > Cu > Zn > Ca Log([M]free/[M]total) [L] = [M] = 2×10-3 M, 25°C, NMe4Cl (0.1 M)
  • 43. 16/12/2013 43 Stability of metal complexes  At pH~7 - [GdL@ 1H2] > 80% - [ZnL@ 1H2] < 20% 0 20 40 60 80 100 2 4 6 8 10 12pH %M Gd3+ Zn2+ ZnL1 @H3 ZnL1 @H2 ZnL1 @H ZnL1 @ ZnL1 @(OH) GdL1 @H2 GdL1 @H GdL1 @ [L] = [Gd] = [M] = 2×10-3 M What happens for L@ 1H5 in the presence of Gd(III) and Zn(II)? Transmetallation N N N COOHHOOC COOH OO NHHN SHHS From thermodynamic determinations
  • 44. 16/12/2013 44 Stability of metal complexes [L] = [Gd] = [M] = 2×10-3 M  At pH~7 -[GdL@ 2] > 95% -[ZnL@ 2H] < 5% 0 20 40 60 80 100 2 4 6 8 10 12 pH %M Zn2+Gd3+ GdL2 @ ZnL2 @H2 ZnL2 @H What happens for L@ 2H3 in the presence of Gd(III) and Zn(II)? Transmetallation N N N COOH HOOC O NH O HN S S HOOC AuNP N N N COOH COOH N H O HN S S HOOC N N N COOH COOH O NH O NH S S COOH From thermodynamic determinations
  • 45. 16/12/2013 45 Kinetic inertness  With Zn(II) in excess (mechanism) M = competitive cations (Zn(II)) GdL ML ++ M Gd  Under stoichiometric conditions between GdL and Zn(II) Relaxometry UV-vis spectroscopy L = L@ 1H5 and L@ 2H3 L = L@ 1H5
  • 46. 16/12/2013 46 Stoichiometric conditions  Relaxation rates are measured as a function of time Relaxation rate versus time, [GdL] =[Zn] = 1:1; T= 37°C, pH 7.4, in phosphate buffer 0 1000 2000 3000 4000 5000 0,0 0,2 0,4 0,6 0,8 1,0 R1 (t)/R1 (t=0) t (mins) DTPA:Gd L@ 1 H5 :Gd L@ 2 H3 :Gd  Kinetic index  t80%: Time for R1(t)/ R1(t = 0) = 0.8 GdL ZnL ++ Zn Gd Gd-L@ 1H5 Gd-L@ 2H3 Gd-DTPA t80% 108 min ≈ 2h 216 min ≈ 4h 275 min ≈ 5h  Kinetic stability order  Gd-DTPA > Gd-L@ 2H3 > Gd-L@ 1H5 S. Laurent et al. CMMI, 2010, 5, 305–308
  • 47. 16/12/2013 47 Stoichiometric conditions  Relaxation rates are measured as a function of time Relaxation rate versus time, [GdL] =[Zn] = 1:1; T= 37°C, pH 7.4, in phosphate buffer 0 1000 2000 3000 4000 5000 0,0 0,2 0,4 0,6 0,8 1,0 R1 (t)/R1 (t=0) t (mins) DTPA:Gd L@ 1 H5 :Gd L@ 2 H3 :Gd  Kinetic index  t80%: Time for R1(t)/ R1(t = 0) = 0.8 GdL ZnL ++ Zn Gd Thermodynamic index  % GdL 4320min = R1(t = 4320) / R1(t = 0) Gd-L@ 1H5 Gd-L@ 2H3 Gd-DTPA t80% 108 min ≈ 2h 216 min ≈ 4h 275 min ≈ 5h Gd-L@ 1H5 Gd-L@ 2H3 Gd-DTPA % GdL 4320min 10% 30% 42% S. Laurent et al. CMMI, 2010, 5, 305–308
  • 48. 16/12/2013 48 Excess of competitive cation In the presence of excess Zn(II) and at various pH conditions  4×10-3 M < [Zn2+] < 10×10-3 M  5.8 < pH < 6.5 A = f(t), [GdL] =5×10-4 M; [Zn] = 4×10-3 M; T= 25°C, pH 6.5, NMe4Cl (0.1M) 200 250 300 350 400 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 GdDTPA(0.5mM)+Cu(5mM) in NMe4 Cl at 25°C Absorbance Wavelength(nm) tk AA AA ln obs e0 et         y =-0,001x R² =0,991 -1,4 -1,2 -1 -0,8 -0,6 -0,4 -0,2 0 0 200 400 600 800 1000 t (mins) Ln(At-Ae/A0-Ae) Pseudo first order kobs N N N COOHHOOC COOH OO NHHN SHHS
  • 49. 16/12/2013 49 4×10-3 M < [Zn2+] < 10×10-3 M, 5.8 < pH < 6.5, T= 25°C, NMe4Cl (0.1 M) • kobs = f([Zn2+])  pH = 5.8  pH = 6.0 pH = 6.2  pH = 6.5 Investigation of transmetallation mechanism • For a given [H+]: kobs ↗ when [Zn2+] ↗ 0,004 0,005 0,006 0,007 0,008 0,009 0,010 10 15 20 25 30 kobs (10 -4 s -1 ) [Zn 2+ ] (mol L -1 )
  • 50. 16/12/2013 50 4×10-3 M < [Zn2+] < 10×10-3 M, 5.8 < pH < 6.5, T= 25°C, NMe4Cl (0.1 M) • kobs = f([Zn2+])  pH = 5.8  pH = 6.0 pH = 6.2  pH = 6.5 Investigation of transmetallation mechanism • For a given [Zn2+]: kobs ↗ when [H+] ↗ • For a given [H+]: kobs ↗ when [Zn2+] ↗ GdLZnHn complexes involved in the transmetallation mechanism 0,004 0,005 0,006 0,007 0,008 0,009 0,010 10 15 20 25 30 kobs (10 -4 s -1 ) [Zn 2+ ] (mol L -1 )
  • 51. 16/12/2013 51 Investigation of transmetallation mechanism 5.8 < pH < 6.5, T= 25°C, NMe4Cl (0.1 M) E. Brücher. et al. Chem. Eur. J. 2000, 6, 719–724 GdLHn Zn Zn GdLZnH + H GdLZn + 2H ZnL + Gd + 2H Zn2L + Gd + 2H ZnL + Gd + 2H Zn2L + Gd + 2H Zn Zn Zn ZnxLHn + H - spontaneous - H assisted transmet. pathways
  • 52. 16/12/2013 52 Investigation of transmetallation mechanism           2 54 22 3 2 21 obs ZnBB ZnBZnBB k           76 2 5 43 2 2 3 1 obs PHPHP PHPHPHP k    Versus [Zn2+] pH fixed Versus [H+] [Zn2+] fixed  Tobsi i GdLkvv              GdLZnGdLZnHGdLHGdLHGdLGdL 2T 
  • 53. 16/12/2013 53 Investigation of transmetallation mechanism E. Brücher. et al. Chem. Eur. J. 2000, 6, 719–724 GdLHn Zn Zn GdLZnH + H GdLZn + 2H ZnL + Gd + 2H Zn2L + Gd + 2H ZnL + Gd + 2H Zn2L + Gd + 2H Zn Zn k1 k2 k3 k4 Zn ZnxLHn + H - spontaneous - H assisted transmet. pathways (1) (2) (3) (4) 1 2 3 4 ki (104 M-1s-1) 38 0.08 ki (104 M-2s-1) 1007 654 Transmetallation is driven by Zn(II) attack on heteronuclear GdLZnH and GdLZn complexes
  • 55. 16/12/2013 55 Conclusion - half-life of the Gd complexes - demetallation pathways in competitive conditions 2 4 6 8 10 12 0 20 40 60 80 100 [GdL@ 2 ] [GdL@ 2 H] [GdL@ 2 H2 ] Gd 3+ %Gd pH Thermodynamic stability - stability of Gd complexes - identification of the species at physiological pH Kinetic inertness From a methodological point of view GdLHn Zn Zn GdLZnH + H GdLZn + 2H ZnL + Gd + 2H Zn2L + Gd + 2H ZnL + Gd + 2H Zn2L + Gd + 2H Zn Zn Zn ZnxLHn + H - spontaneous - H assisted transmet. pathways
  • 56. 16/12/2013 56 Conclusion No transmetallation N N NN CO2H HO2C HO2C N H N Gd-L@ 2H3 Gd-DTPA t1/2 257 min 277 min Thermodynamic stability Kinetic inertness Good candidates for MRI applications 0 1 2 3 4 5 6 7 8 1Gd- L4H4 Gd- L1H4 Gd- L5H3 Log([M]free/[M]total) 0 1 2 3 4 5 6 7 8 1Gd- L@ 4H5 Gd- L@ 2H3 Log([M]free/[M]total)