SlideShare a Scribd company logo
Design and Synthesis of Functionalized Ligands for Adsorptive
Separation of CO2/N2 and CO2/CH4 Mixtures
Dr. Kalpesh Mohan Khot
Institute of Chemical Technology
Overview
Institute of Chemical Technology 2
1. Introduction
2. Aliphatic Ligand Functionalized Polystyrene Adsorbents for Separation of CO2 from
N2 and CH4
3. Heterocyclic Saturated Ligand Functionalized Polystyrene Adsorbents for
Separation of CO2 from N2 and CH4
4. Heterocyclic Unsaturated Five Member Ligand Functionalized Polystyrene
Adsorbents for Separation of CO2 from N2 and CH4
5. Heterocyclic Unsaturated Six Member Ligand Functionalized Polystyrene
Adsorbents for Separation of CO2 from N2 and CH4
Introduction
Institute of Chemical Technology
Greenhouse Gas Effect and Global Warming
Institute of Chemical Technology 4
Earth’s Atmospheric Gases
Non-green house gases
(e.g.- N2,O2) ~99%
Green house gases
(e.g.- H2O,CO2,CH4) ~1%
Technologies Used in CO2 Capture
Institute of Chemical Technology 5
CO2 capture technologies
Absorption Membrane Separation AdsorptionCryogenic distillation
Energy requirements: 330-340
kWh/ton CO2
(Environ. Prog., 2006, 25: 208 )
CO2 capture capacity
CO2 selectivity
Ease of regeneration
Pressure Swing Adsorption (PSA)
Energy requirements: 160-170
kWh/ton CO2
(Environ. Prog., 2006, 25: 208 )
Energy requirements: 600-660
kWh/ton CO2
(Environ. Prog., 2006, 25: 208 )
Energy requirements: 70-75
kWh/ton CO2
(Environ. Prog., 2006, 25: 208 )
Literature Reported Adsorbents for CO2 Capture
Institute of Chemical Technology 6
Adsorbent Surface
area
(m2/g)
Amine
loading
(mol/kg)
Temp
(K)
Adsorption
capacity
(mol/kg)
Adsorption
(mol
CO2/mol
amine)
Reference
Zeolite
β-Zeolite 574.0 - 303 1.80 - J. Nat. Gas Chem.,
2009, 18: 167.
13X (MEA) 14.9 8.20 348 1.11 0.14 Micropor. Mesopor. Mater.,
2009, 121: 84.
Activated
carbon
Pitch based AC
fibers OG-A7
907.0 - 298 0.70 - J. Colloid Interface Sci.,
2006, 298: 523.
NH3- AC 1323 - 309 1.73 - Appl. Surf. Sci. 2004, 225:
235.
Silica
SBA-15 (EDA) - 1.32 295 1.95 1.47 Ind. Eng. Chem. Res,
2005, 44: 3099.
SBA-15 (PEI) 13.0 0.83 348 2.88 3.47 Micropor. Mesopor. Mater.,
2008, 113: 31.
Metal Organic
Frameworks
Mg-MOF -74 1174.0 - 298 8.61 - J. Colloid Interface Sci.
2011, 353: 549.
Cu-MOF - - 298 0.70 - J. Colloid Interface Sci.,
2011, 357: 504.
Polymers
PMMA(MEA) 470.0 5.57 293 0.78 0.14 Ind. Eng. Chem. Res.,
2005, 44: 1542.
OC 1065 IER 26.2 6.69 323 2.50 0.37 Ind. Eng. Chem. Res.,
2012, 51: 6907.
Institute of Chemical Technology 7
Design of CO2 Selective Ligands
Objectives:
Tertiary ‘N’ atom based ligand on hydrophobic matrix
Presence of tertiary ‘N’ will avoid chemisorption
Covalent attachment to the matrix
Covalent attachment of the ligand will help in overcoming limitation of lack of
stability over repeated cycles
+ CO2
RNHCO2
-
RNH3
+
Low
temp
H2O
+ RNH2RNH3
+
HCO3
-
2 RNH2
2 RNH3
+ CO3
2-
pH
Carbonate
Bicarbonate
Carbamate
R3N + CO2 + H2O R3NH+
HCO3
-
Bicarbonate
Reaction of primary amine or secondary amine with CO2
Reaction of tertiary amine with CO2
Ref : J. Phys. Chem. 1981, 85: 3660.
Institute of Chemical Technology
2. Aliphatic Ligand Functionalized Polystyrene Adsorbents for Separation of CO2
from CH4 and N2
Synthesis and Characterization
Institute of Chemical Technology 9
Cl
HN
CH2CH2OH
CH2CH2OH
Diethanolamine
n
N
CH2CH2OH
CH2CH2OH
n
N
CH3
CH3
n
PS-DMA
DMF, 363 K
PS-DEA
Chloromethylated polystyrene
FTIR Characterization
PS-DEA PS-DMA
CMPS PS-DEA PS-DMA
Ligand loading
(mol/kg)
- 2.8 3.2
BET surface are
(m2/g)
28 21 28
Equilibrium Adsorption Studies
Institute of Chemical Technology 10
Gravimetric Method
Atmospheric Pressure Equilibrium Adsorption
CO2
Institute of Chemical Technology 11
0
0.1
0.2
0.3
0 200 400 600 800
CO2adsorbed(mol/kg)
Times (sec)
CMPS
PS-DEA
PS-DMA
CO2 equilibrium capacity (mol/kg)
CMPS PS-DEA PS-DMA
0.16 0.20 0.25
303 K
High Pressure Equilibrium Adsorption Studies at 303 K
CO2 CH4
Dual Mode sorption Parameter
Institute of Chemical Technology 12
0
10
20
30
40
50
60
70
80
90
100
0 10 20 30 40
q(CO2adsorbed(cc/g)atSTP)
Pressure(atm)
CMPS
PS-DEA
PS-DMA
0
0.5
1
1.5
2
2.5
3
0 5 10
q(CH4adsorbed(cc/g)atSTP)
Pressure(atm)
CMPS
PS-DEA
PS-DMA
Adsorbent kD
(cm3(STP)/g poly/atm)
CH
’
(cm3(STP)/g poly)
b
(atm-1)
Adsorption capacity
(mol/kg)
CO2 CH4 CO2 CH4 CO2 CH4 CO2 CH4
CMPS 1.29 0.09 40.95 2.10 0.17 1.26 3.86 0.12
PS-DEA 0.43 0.11 81.61 1.10 0.23 0.17 1.16 0.08
PS-DMA 0.92 0.09 30.22 1.66 0.41 0.18 2.06 0.08
bP
bPC
PkC H
D


1
'
*(CO2 (Tb=216 K, Tc=304 K), CH4 (Tb=112 K, Tc=190 K), N2 (Tb=77 K, Tc=126 K))
* Nat. Mater., 2011,10: 372.
20:80 40:60
50:50
Institute of Chemical Technology 13
Ideal Adsorbed Solution Theory (IAST) Selectivity for CO2/CH4
0
20
40
60
2 4 6 8 10
Sads(CO2/CH4)
Pressure (atm)
CMPS
PS-DEA
PS-DMA
0
20
40
60
2 4 6 8 10
Sads(CO2/CH4)
Pressure (atm)
CMPS
PS-DEA
PS-DMA
0
20
40
2 4 6 8 10
Sads(CO2/CH4)
Pressure (atm)
CMPS
PS-DEA
PS-DMA













2
1
2
1
2,1
y
y
x
x
S ads
FTIR Characterization of Post CO2 Sorbed Adsorbents
CO O CO O CO O
v1 v2 v3
(1388 cm-1)
Symmetric stretching
Raman active
(666 cm-1)
Bending
IR active
(2349 cm-1)
Asymmetric stretching
IR active
CMPS PS-DEA PS-DMA
Institute of Chemical Technology 14
CMPS PS-DEA PS-DMA
2347 cm-1 2348 cm-1 2348 cm-1
Pulse Chromatography Studies
Institute of Chemical Technology 15
Conc(kg/m3)
Time (sec)
N2
CH4
CO2
Column length (mm) 1500
Column diameter (mm) 6
Average weight of adsorbent (g) 20
Detector TCD
Carrier gas H2
Pulse Chromatographic Studies
Institute of Chemical Technology 16
CMPS PS-DEA
PS-DMA
Ref: Heer, P. K. K. S. Engineering analysis of
renewable energy and chemical resources.
Ph.D. Thesis. Institute of Chemical
Technology, 2014.
0.0
0.1
0.2
50 150 250 350 450 550
Conc(kg/m3)
Time (sec)
0.0
0.1
0.2
50 100 150 200 250 300 350 400 450
Conc(kg/m3)
Time (sec)
◊ CO2 ∆ CH4 Ο N2
0
0.1
0.2
50 150 250 350 450
Conc(kg/m3)
Time (sec)
Pulse Chromatographic Studies
PS-DMA
CO2 CH4 N2
PS-DEA
CO2 CH4 N2
0
200
400
600
800
1000
0 0.2 0.4 0.6
σ2L/2μ2ν(sec)(CO2)
1/ν2 (s2/m2)
0
10000
20000
30000
40000
0 0.5
σ2L/2μ2ν(sec)(CH4)
1/ν2 (s2/m2)
0
10000
20000
30000
40000
50000
60000
0 0.2 0.4 0.6
σ2L/2μ2ν(sec)(N2)
1/ν2 (s2/m2)
0
200
400
600
800
1000
0 0.5
σ2L/2μ2ν(sec)(CO2)
1/ν2 (s2/m2)
0
20000
40000
60000
80000
0 0.5
σ2L/2μ2ν(sec)(CH4)
1/ν2 (s2/m2)
0
40000
80000
120000
160000
0 0.5
σ2L/2μ2ν(sec)(N2)
1/ν2 (s2/m2)
Mass Transfer Resistance
◊ 308K □ 318K Δ 328K × 338K ○ 348K
Institute of Chemical Technology 17
)(
)1(
.
2 22
2
cpf
L
v
D
v
L








Pulse Chromatographic Studies
CMPS
CO2 CH4 N2
0
100
200
0 0.2 0.4 0.6
σ2L/2μ2ν(sec)(CO2)
1/ν2 (s2/m2)
0
1000
2000
3000
0 0.1 0.2 0.3 0.4 0.5 0.6
σ2L/2μ2ν(sec)(CH4)
1/ν2 (s2/m2)
0
10000
20000
30000
0 0.5
σ2L/2μ2ν(sec)(N2)
1/ν2 (s2/m2)
Mass Transfer Resistance
◊ 308K □ 318K Δ 328K × 338K ○ 348K
Institute of Chemical Technology 18
Equilibrium Adsorption Constant
Institute of Chemical Technology 19
CO2 CH4
N2
1
10
100
2.8 2.9 3 3.1 3.2 3.3
K(mol/kg/atm)×102
1/T (K-1) ×103
CMPS
PS-DEA
PS-DMA
1
10
2.8 2.9 3 3.1 3.2 3.3
K(mol/kg/atm)×103
1/T (K-1) ×103
CMPS
PS-DEA
PS-DMA
2
20
2.8 2.9 3 3.1 3.2 3.3
K(mol/kg/atm)×103
1/T (K-1) ×103
CMPS
PS-DEA
PS-DMA
Equilibrium Separation Factor
Institute of Chemical Technology 20
CO2
/N2 CO2
/CH4
CH4
/N2
0
5
10
15
20
25
30
35
2.8 2.9 3 3.1 3.2 3.3
αCO2/N2
1/T (K-1) ×103
CMPS
PS-DEA
PS-DMA
0
1
2
3
4
5
6
7
8
9
10
2.8 2.9 3 3.1 3.2 3.3
αCO2/CH4
1/T (K-1) ×103
CMPS
PS-DEA
PS-DMA
1.0
2.0
3.0
4.0
2.8 2.9 3 3.1 3.2 3.3
αCH4/N2
1/T (K-1) ×103
CMPS
PS-DEA
PS-DMA
B
A
BAei
K
K
/,

Institute of Chemical Technology
3. Heterocyclic Saturated Ligand Functionalized Polystyrene Adsorbents for
Separation of CO2 from N2 and CH4
Synthesis and Characterization
Institute of Chemical Technology 30
FTIR Characterization
PS-Piperdine PS-Piperazine
PS-Piperdine PS-Piperazine
Ligand loading (mol/kg) 2.04 2.08
BET surface are
(m2/g)
26 26
Cl
N
N
CH3
Chloromethylated polystyrene n
n
NHN CH3
HN
N
PS-Piperdine
n
Piperidine
PS-PiperazineN-methyl piperazine
DMF, 363K
DMF, 363K
CO2
Institute of Chemical Technology 31
0
0.1
0.2
0.3
0.4
0.5
0 200 400 600 800
CO2adsorbed(mol/kg)
Times (sec)
PS-Piperidine
PS-Piperazine
CO2 equilibrium capacity
(mol/kg)
PS-Piperdine PS-Piperazine
0.39 0.42
303 K
Atmospheric Pressure Equilibrium Adsorption
High Pressure Equilibrium Adsorption Studies
CO2 CH4
Dual Mode sorption Parameter
Institute of Chemical Technology 32
0
10
20
30
40
50
60
70
80
0 10 20 30 40
q(CO2adsorbed(cc/g)atSTP)
Pressure(atm)
PS-Piperdine
PS-Piperazine
0
0.5
1
1.5
2
2.5
0 5 10
q(CH4adsorbed(cc/g)atSTP)
Pressure(atm)
PS-Piperdine
PS-Piperazine
Adsorbent kD
(cm3(STP)/g poly /atm)
CH
’
(cm3(STP)/g poly)
b
(atm-1)
Adsorption capacity
(mol/kg)
CO2 CH4 CO2 CH4 CO2 CH4 CO2 CH4
PS-Piperdine 0.04 0.07 86.66 1.40 0.07 0.31 2.92 0.09
PS-Piperazine 0.82 0.11 39.25 1.04 0.22 1.61 3.08 0.10
bP
bPC
PkC H
D


1
'
Institute of Chemical Technology 33
20:80 40:60
50:50
IAST Selectivity for CO2/CH4
0
20
40
60
2 4 6 8 10
Sads(CO2/CH4)
Pressure (atm)
PS-Piperidine
PS-Piperazine
0
20
40
60
2 4 6 8 10
Sads(CO2/CH4)
Pressure (atm)
PS-Piperidine
PS-Piperazine
0
20
40
60
1 3 5 7 9
Sads(CO2/CH4)
Pressure (atm)
PS-Piperidine
PS-Piperazine
FTIR Characterization of Post CO2 Sorbed Adsorbents
PS-Piperdine PS-Piperazine
Institute of Chemical Technology 34
PS-Piperdine PS-Piperazine
2340 cm-1 2336 cm-1
Pulse Chromatographic Studies
Institute of Chemical Technology 35
PS-Piperdine PS-Piperazine
◊ CO2 ∆ CH4 Ο N2
0
0.1
0.2
50 150 250 350 450
Conc(kg/m3)
Time (sec)
0.0E+00
4.0E-03
8.0E-03
1.2E-02
0 100 200 300 400 500
Conc(kg/m3)
Time (sec)
Ref: Heer, P. K. K. S. Engineering analysis of renewable energy and chemical resources. Ph.D.
Thesis. Institute of Chemical Technology, 2014.
Equilibrium Adsorption Constant
Institute of Chemical Technology 36
CO2 CH4
N2
4
2.8 2.9 3 3.1 3.2 3.3
K(mol/kg/atm)×103
1/T (K-1) ×103
PS-Piperidine
PS-Piperazine
1
2.8 2.9 3 3.1 3.2 3.3
K(mol/kg/atm)×103
1/T (K-1) ×103
PS-Piperidine
PS-Piperazine
2
20
2.8 2.9 3 3.1 3.2 3.3
K(mol/kg/atm)×102
1/T (K-1) ×103
PS-Piperdine
PS-Piperazine
Equilibrium Separation Factor
Institute of Chemical Technology 37
CO2
/N2 CO2
/CH4
CH4
/N2
0
1
1
2
2
3
3
4
4
5
2.8 2.9 3 3.1 3.2 3.3
αCH4/N2
1/T (K-1) ×103
PS-Piperdine
PS-Piperazine
0
2
4
6
8
10
12
2.8 2.9 3 3.1 3.2 3.3
αCO2/CH4
1/T (K-1) ×103
PS-Piperidine
Ps-Piperazine
0
5
10
15
20
25
30
35
40
45
50
2.8 2.9 3 3.1 3.2 3.3
αCO2/N2
1/T (K-1) ×103
PS-Piperdine
PS-Piperazine
B
A
BAei
K
K
/,

Institute of Chemical Technology
4. Heterocyclic Unsaturated Five Member Ligand Functionalized Polystyrene
Adsorbents for Separation of CO2 from N2 and CH4
Synthesis and Characterization
Institute of Chemical Technology 46
FTIR Characterization
PS-Pyrrole PS-Imidazole
PS-Pyrrole PS-Imidazole
Ligand Loading
(mol/kg)
1.98 1.55
BET surface are
(m2/g)
28 31Cl
N
N
Chloromethylated polystyrene
PS-Imidazole
n
n
N
N
H
N
H
N
n
PS-PyrrolePyrrole
Imidazole
DMF, 363 K
DMF, 363 K
CO2
Institute of Chemical Technology 47
CO2 equilibrium capacity
(mol/kg)
PS-Pyrrole PS-Imidazole
0.42 0.46
303 K
Atmospheric Pressure Equilibrium Adsorption
0
0.1
0.2
0.3
0.4
0.5
0 200 400 600 800
CO2adsorbed(mol/kg)
Times (sec)
PS-Pyrrole
PS-Imidazole
High Pressure Equilibrium Adsorption Studies
CO2 CH4
Dual Mode sorption Parameter
Institute of Chemical Technology 48
0
10
20
30
40
50
60
70
80
90
0 10 20 30 40
q(CO2adsorbed(cc/g)atSTP)
Pressure(atm)
PS-Pyrrole
PS-Imidazole
0
0.5
1
1.5
2
2.5
3
0 5 10
q(CH4adsorbed(cc/g)atSTP)
Pressure(atm)
PS-Pyrrole
PS-Imidazole
Adsorbent kD
(cm3(STP)/g poly /atm)
CH
’
(cm3(STP)/g poly)
b
(atm-1)
Adsorption capacity
(mol/kg)
CO2 CH4 CO2 CH4 CO2 CH4 CO2 CH4
PS-Pyrrole 0.24 0.07 76.30 1.43 0.09 0.61 3.12 0.10
PS-Imidazole 1.22 0.11 38.51 1.68 0.25 0.74 3.71 0.11
bP
bPC
PkC H
D


1
'
Institute of Chemical Technology 49
20:80 40:60
50:50
IAST Selectivity for CO2/CH4
0
20
40
60
2 4 6 8 10
Sads(CO2/CH4)
Pressure (atm)
PS-Pyrrole
PS-
Imidazole
0
20
40
60
2 4 6 8 10
Sads(CO2/CH4)
Pressure (atm)
PS-Pyrrole
PS-Imidazole
0
20
40
60
1 3 5 7 9
Sads(CO2/CH4)
Pressure (atm)
PS-Pyrrole
PS-Imidazole
FTIR Characterization of Post CO2 Sorbed Adsorbents
PS-Pyrrole PS-Imidazole
Institute of Chemical Technology 50
PS-Pyrrole PS-Imidazole
2337 cm-1 2335 cm-1
Pulse Chromatographic Studies
Institute of Chemical Technology 51
PS-Pyrrole PS-Imidazole
◊ CO2 ∆ CH4 Ο N2
0
0.1
0.2
50 250 450 650 850 1050 1250
Conc(kg/m3) Time (sec)
0.0E+00
4.0E-03
8.0E-03
1.2E-02
0 200 400 600 800 1000
Conc(kg/m3)
Time (sec)
Ref: Heer, P. K. K. S. Engineering analysis of renewable energy and chemical resources. Ph.D.
Thesis. Institute of Chemical Technology, 2014.
Equilibrium Adsorption Constant
Institute of Chemical Technology 52
CO2 CH4
N2
1
10
100
2.8 2.9 3 3.1 3.2 3.3
K(mol/kg/atm)×102
1/T (K-1) ×103
PS-Pyrrole
PS-Imidazole
1
10
2.8 2.9 3 3.1 3.2 3.3
K(mol/kg/atm)×103
1/T (K-1) ×103
PS-Pyrrole
PS-Imidazole
2
20
2.8 2.9 3 3.1 3.2 3.3
K(mol/kg/atm)×103
1/T (K-1) ×103
PS-Pyrrole
PS-Imidazole
Equilibrium Separation Factor
Institute of Chemical Technology 53
CO2
/N2 CO2
/CH4
CH4
/N2
0
10
20
30
40
50
60
2.8 2.9 3 3.1 3.2 3.3
αCO2/N2
1/T (K-1) ×103
PS-Pyrrole
PS-Imidazole
0
2
4
6
8
10
12
14
2.8 2.9 3 3.1 3.2 3.3
αCO2/CH4
1/T (K-1) ×103
PS-Pyrrole
PS-Imidazole
0
1
1
2
2
3
3
4
4
5
2.8 2.9 3 3.1 3.2 3.3
αCH4/N2
1/T (K-1) ×103
PS-Pyrrole
PS-Imidazole
Institute of Chemical Technology
5. Heterocyclic Unsaturated Six Member Ligand Functionalized Polystyrene
Adsorbents for Separation of CO2 from N2 and CH4
Synthesis
Institute of Chemical Technology 63
PS-HM PS-CA PS-MP PS-BIMP
Ligand Loading
(mol/kg)
- 1.62 1.92 1.52
BET surface are
(m2/g)
29 27 30 31
Cl
n
POCl3
N
COOH
Cl Cl N
H
N+
N
COOH
N
N
N
N
N
HO
N
O
n
4-hydroxymethyl Pyridine PS-MP
O
NHO OH
O
n
PS-HM PS-CA
N
COOH
OH OH
2,6-Bis-imidazol-1-yl-pyridine-4-carboxylic acid
PS-BIMP
n
N
N
N
N
N
OO
(BIMP)
Chloromethylated polystyrene
HO
NHO OH
O
Citrazinic acid
n
OH
H3CO
O
DMF, 358 K
CH3COOK H2NNH2
Acetoxymethyl resin
DMF, 403 K
DMF, 403 K
DMF, 403 K
Mass Characterization
Institute of Chemical Technology 64
2,6-Dichloropyridine-4-Carboxylic Acid 2,6-Bis-Imidazo-1-yl-Pyridine-4-Carboxylic acid
192
174156
146
210
238
256
NMR Characterization
Institute of Chemical Technology 65
2,6-Dichloropyridine-4-Carboxylic Acid 2,6-Bis-Imidazo-1-yl-Pyridine-4-Carboxylic acid
1H
13C
FTIR Characterization
Institute of Chemical Technology 66
PS-CA PS-MP
PS-BIMP
Institute of Chemical Technology 67
CO2 equilibrium capacity
(mol/kg)
PS-HM PS-CA
0.15 0.43
PS-MP PS-BIMP
0.55 0.73
303 K
Atmospheric Pressure Equilibrium Adsorption
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0 200 400 600 800
CO2adsorbed(mol/kg)
Times (sec)
PS-HM
PS-CA
PS-MP
PS-BIMP
CO2
High Pressure Equilibrium Adsorption Studies
CO2 CH4
Dual Mode sorption Parameter
Institute of Chemical Technology 68
Adsorbent kD
(cm3(STP)/g poly /atm)
CH
’
(cm3(STP)/g poly)
b
(atm-1)
Adsorption capacity
(mol/kg)
CO2 CH4 CO2 CH4 CO2 CH4 CO2 CH4
PS-BIMP 1.20 0.06 40.84 2.20 0.34 0.45 3.78 0.12
PS-MP 1.25 0.06 34.96 2.10 0.38 0.45 3.75 0.11
PS-CA 0.94 0.10 43.71 3.56 0.25 0.17 3.51 0.10
PS-HM 0.78 0.06 67.94 2.01 0.08 0.98 3.80 0.12
bP
bPC
PkC H
D


1
'
0
10
20
30
40
50
60
70
80
90
100
0 10 20 30 40
q(CO2adsorbed(cc/g)atSTP)
Pressure(atm)
PS-HM
PS-CA
PS- MP
PS-BIMP
0
0.5
1
1.5
2
2.5
3
0 2 4 6 8 10
q(CH4adsorbed(cc/g)atSTP)
Pressure(atm)
PS-HM
PS-CA
PS- MP
PS-BIMP
IAST Selectivity for CO2/CH4
Institute of Chemical Technology 69
20:80 40:60
50:50
0
20
40
60
80
100
2 4 6 8 10
Sads(CO2/CH4)
Pressure (atm)
PS-HM
PS-CA
PS-MP
PS-BIMP
0
20
40
60
80
100
120
2 4 6 8 10
Sads(CO2/CH4)
Pressure (atm)
PS-HM
PS-CA
PS-MP
PS-BIMP
0
20
40
60
80
100
120
1 3 5 7 9
Sads(CO2/CH4)
Pressure (atm)
PS-HM
PS-CA
PS-MP
PS-BIMP
FTIR Characterization of Post CO2 Sorbed Adsorbents
PS-HM PS-CA
PS-MP PS-BIMP
Institute of Chemical Technology 70
PS-HM PS-CA PS-MP PS-BIMP
2348 2336 2331 2329
Pulse Chromatographic Studies
Institute of Chemical Technology 71
PS-HM PS-CA
PS-MP PS-BIMP
◊ CO2 ∆ CH4 Ο N2
0.0E+00
4.0E-03
8.0E-03
1.2E-02
0 100 200 300 400 500 600 700
Conc(kg/m3)
Time (sec)
0.0E+00
4.0E-03
8.0E-03
1.2E-02
0 200 400 600 800 1000 1200
Conc(kg/m3)
Time (sec)
0.0E+00
4.0E-03
8.0E-03
1.2E-02
0 500 1000 1500 2000
Conc(kg/m3)
Time (sec)
0.0E+00
4.0E-03
8.0E-03
1.2E-02
0 500 1000 1500 2000
Conc(kg/m3)
Time (sec)
Ref: Heer, P. K. K. S. Engineering analysis of renewable energy and chemical resources. Ph.D.
Thesis. Institute of Chemical Technology, 2014.
Equilibrium Adsorption Constant
Institute of Chemical Technology 72
CO2 CH4
N2
2
20
2.8 2.9 3 3.1 3.2 3.3
K(mol/kg/atm)×103
1/T (K-1) ×103
PS-HM
PS-CA
PS-MP
PS-BIMP
1
10
2.8 2.9 3 3.1 3.2 3.3
K(mol/kg/atm)×103
1/T (K-1) ×103
PS-HM
PS-CA
PS-MP
PS-BIMP
1
10
100
2.8 2.9 3 3.1 3.2 3.3
K(mol/kg/atm)×102
1/T (K-1) ×103
PS-HM
PS-CA
PS-MP
PS-BIMP
Equilibrium Separation Factor
Institute of Chemical Technology 73
CO2
/N2 CO2
/CH4
CH4
/N2
0
1
2
3
4
5
6
2.8 2.9 3 3.1 3.2 3.3
αCH4/N2
1/T (K-1) ×103
PS-HM
PS-CA
PS-MP
PS-BIMP
0
2
4
6
8
10
12
14
16
18
2.8 2.9 3 3.1 3.2 3.3
αCO2/CH4
1/T (K-1) ×103
PS-HM
PS-CA
PS-MP
PS-BIMP
0
10
20
30
40
50
60
70
80
90
2.8 2.9 3 3.1 3.2 3.3
αCO2/N2
1/T (K-1) ×103
PS-HM
PS-CA
PS-MP
PS-BIMP
Comparison of adsorbents of current studies
Institute of Chemical Technology
CMPS
PS-HM
PS-DEA
PS-DMA
PS-Piperdine
PS-Piperazine
PS-Pyrrole
PS-CA
PS-Imidazole
PS-MP
PS-BIMP
Comparison of Functionalized Polystyrene Adsorbents
Institute of Chemical Technology 75
0
10
20
30
40
50
60
70
80
90
2.8 3 3.2 3.4
αCO2/N2
1/T (K-1) ×103
CMPS
PS-DEA
PS-DMA
PS-Piperdine
PS-Piperazine
PS-Pyrrole
PS-Imidazole
PS-HM
PS-CA
PS-MP
PS-BIMP
4
6
8
10
12
14
16
18
2.8 3 3.2 3.4
αCO2/CH4
1/T (K-1) ×103
CMPS
PS-DEA
PS-DMA
PS-Piperidine
Ps-Piperazine
PS-Pyrrole
PS-Imidazole
PS-HM
PS-CA
PS-MP
PS-BIMP
CO2
/N2
CO2
/CH4
Comparison of Equilibrium Adsorption Capacity with Literature
Adsorbent
Amine
loading
Temp
Atmospheric pressure
equilibrium adsorption
capacity
High pressure equilibrium
adsorption capacity De
×1011
(m2
/sec-1
)
Reference
(mol/kg) (K)
CO2 adsorbed CO2 adsorbed
/mol of amine
CO2 CH4
(mol/kg) (mol/kg) (mol/kg)
PS-BIMP 1.52 303 0.73 0.48 3.78 0.120 1.49
Present work
PS-MP 1.92 303 0.55 0.29 3.75 0.114 1.54
PS-Imidazole 1.55 303 0.46 0.29 3.71 0.110 1.45
PS-CA 1.62 303 0.43 0.26 3.51 0.104 1.55
PS-Pyrrole 1.98 303 0.42 0.21 3.12 0.097 1.41
PS-Piperazine 2.08 303 0.42 0.20 3.08 0.095 1.44
PS-Piperdine 2.04 303 0.39 0.19 2.92 0.091 1.48
PS-DMA 3.20 303 0.25 0.08 2.06 0.082 1.46
PS-DEA 2.80 303 0.20 0.07 1.16 0.079 1.43
PS-HM - 303 0.15 - 3.80 0.118 1.45
CMPS - 303 0.16 - 3.86 0.120 1.52
OC 1065 IER 6.69 323 2.50 0.37 - -
Ind. Eng. Chem. Res.,
2012 , 51: 6907
PMMA(MEA) 5.57
293
0.78 0.14 - - Ind. Eng. Chem. Res.,
2005, 44: 1542.1.07 0.24 - -PMMA(DEA) 4.47
β- Zeolite
(MEA 40 wt %)
6.56 303 0.77 0.12 - -
J. Nat. Gas Chem.,
2009, 18 :167
Silicalite -
303
- - - - 0.09
J. Colloid Interface Sci.,
2007,313:12NaY - - - - - 0.00004
4A zeolite -
303
- - - -
0.00004
Adsorption,
2004,10: 111
CaX - - - - - 0.02
13X - 313 - - - - 0.0006
Micropor. Mesopor. Mat.
2012,158: 219.
Institute of Chemical Technology 76
Comparison of CO2 capture Efficiency with Literature
Method Adsorbent
Surface
area
(m2/g)
Amine
loading
Temp
Atmospheric pressure
equilibrium adsorption capacity
Reference
(mol/kg) (K)
CO2 adsorbed CO2 adsorbed
/mol of amine(mol/kg)
Adsorption
PS-BIMP 31 1.52 303 0.73 0.48
Present work
PS-MP 30 1.92 303 0.55 0.29
PS-Imidazole 31 1.55 303 0.46 0.29
PS-CA 27 1.62 303 0.43 0.26
PS-Pyrrole 28 1.98 303 0.42 0.21
PS-Piperazine 26 2.08 303 0.42 0.20
PS-Piperdine 26 2.04 303 0.39 0.19
PS-DMA 28 3.20 303 0.25 0.08
PS-DEA 21 2.80 303 0.20 0.07
PS-HM 29 - 303 0.15 -
CMPS 28 - 303 0.16 -
Absorption
MEA (30%) - 313 - 0.47
Bull. Korean Chem. Soc.
2013, 34: 783
DEA (30%) - 313 - 0.50
TEA (30%) - 313 - 0.27
DEA /MDEA
(80:20)
- 313 - 0.61
Ind. Eng. Chem. Res.,
2013, 3: 12-23
Institute of Chemical Technology 77
Adsorbent
Temp
(K)
Equilibrium Separation Factor
ΔH
(kj/mol)
K0
(mol/kg/atm) ×107
Reference
αCO2-CH4 αCO2-N2 αCH4-N2 CO2 CH4 N2 CO2 CH4 N2
PS-BIMP 308 17.1 83.3 4.9 38.1 26.3 17.9 2.0 12.3 67.2
PS-MP 308 15.9 69.1 4.3 37.4 27.9 20.8 2.0 5.6 20.7
PS-Imidazole 308 12.8 53.9 4.2 37.6 29.3 18.1 1.4 2.9 52.1
PS-CA 308 12.1 48.1 3.9 38.8 25.4 18.2 0.7 12.4 51.3
PS-Pyrrole 308 45.1 12.0 3.8 37.4 26.4 20.2 1.2 7.8 22.2
PS-Piperazine 308 10.4 43.1 4.1 38.1 29.3 15.6 0.6 2.0 102.0 Present work
PS-Piperdine 308 10.3 41.4 4.0 37.6 25.7 20.3 0.7 8.1 16.3
PS-DMA 308 9.0 30.6 3.4 37.2 29.4 21.1 0.7 1.5 11.3
PS-DEA 308 6.9 24.9 3.6 33.9 29.1 17.8 1.7 1.5 36.2
PS-HM 308 7.1 26.1 3.4 33.4 28.0 21.6 1.9 2.2 7.4
CMPS 308 7.6 25.9 3.4 33.7 28.1 17.5 1.6 2.0 34.6
β-Zeolite
(40%MEA)
303 7.7 25.7 3.3 - - - - - -
J. Nat. Gas Chem.,
2009, 18: 167
MOF-5 298 15.5 17.5 1.1 - - - - - - Environ. Sci. Technol.,
2010,44: 1820MOF-117 298 4.4 17.7 4.0 - - - - - -
ZSM-5 313 1.7 5.4 3.3 - - - - - -
Sep. Purif. Technol.,
2003,33: 199
BILP 1 298 7.0 36.0 - - - - - -
- Chem. Mater. 23
(2011) 1650-1653.
MPI 3 273 10.0 41.0 - - - - - - -
Macromolecules 46
(2013) 3058-3066.
Comparison of Equilibrium separation Factor with Literature
Institute of Chemical Technology 78
Summary
Institute of Chemical Technology 80
 Heterocyclic ligand functionalized polystyrene showed enhanced equilibrium capacity and
separation factor over aliphatic ligand functionalized adsorbents due to presence of steric
hindrance in the latter.
 Amongst heterocyclic ligand functionalized adsorbents planar unsaturated ligand functionalized
adsorbents showed higher equilibrium uptake and selectivity for CO2 due to strong Lewis acid-
Lewis base interaction and weak intermolecular hydrogen bonding when compared to the saturated
heterocyclic ligand functionalized polystyrene.
 The six member pyridine based ‘BIMP’ functionalized polystyrene adsorbent having multiple
interaction sites for CO2 showed best equilibrium adsorption capacity and separation factor for
CO2/N2 and CO2/CH4 system over other adsorbents. The deficiency of electronic charge on ‘N’ atom
of citrazinic acid due to the presence of proximal phenolic group leads to its weaker interaction
with CO2 as compared to PS-BIMP, PS-MP and PS-Imidazole.
 Lewis-acid-Lewis base interaction of CO2 with CO2-phile is more dominating over weak
intermolecular ‘H’ bonding of ‘O’ atom of CO2 with proton attached to a group (eg. –OH) or carbon
at ‘α’ positions of electron donating CO2-phile.
 Presence of covalently attached tertiary ‘N’ atom ensures strong CO2-pilicity with regeneration of
adsorbents was achieved by pressure swing and overcomes the limitation of lack of stability over
repeated cycles.

More Related Content

What's hot

N – methyl thiomethylation and n hydroxymethylation of phthalimide
N – methyl thiomethylation and n hydroxymethylation of phthalimideN – methyl thiomethylation and n hydroxymethylation of phthalimide
N – methyl thiomethylation and n hydroxymethylation of phthalimideAlexander Decker
 
Selection of amine solvents for CO2 capture from natural gas power plant
Selection of amine solvents for CO2 capture from natural gas power plantSelection of amine solvents for CO2 capture from natural gas power plant
Selection of amine solvents for CO2 capture from natural gas power plant
UK Carbon Capture and Storage Research Centre
 
SYNTHESIS AND CHARACTERIZATION OF SOME TRANSITION METAL COMPLEXES WITH A NEW ...
SYNTHESIS AND CHARACTERIZATION OF SOME TRANSITION METAL COMPLEXES WITH A NEW ...SYNTHESIS AND CHARACTERIZATION OF SOME TRANSITION METAL COMPLEXES WITH A NEW ...
SYNTHESIS AND CHARACTERIZATION OF SOME TRANSITION METAL COMPLEXES WITH A NEW ...
EDITOR IJCRCPS
 
M.Sc. Organic Chemistry Student Project Presentation
M.Sc. Organic Chemistry Student Project PresentationM.Sc. Organic Chemistry Student Project Presentation
M.Sc. Organic Chemistry Student Project Presentation
Dr. Krishna Swamy. G
 
Optical resolution trials and a process-concept assessment of the industrial ...
Optical resolution trials and a process-concept assessment of the industrial ...Optical resolution trials and a process-concept assessment of the industrial ...
Optical resolution trials and a process-concept assessment of the industrial ...
Katalin Nemák
 
Use of Solid Core Chromatography for the Analysis of Pharmaceutical Compounds
Use of Solid Core Chromatography for the Analysis of Pharmaceutical CompoundsUse of Solid Core Chromatography for the Analysis of Pharmaceutical Compounds
Use of Solid Core Chromatography for the Analysis of Pharmaceutical Compounds
Chromatography & Mass Spectrometry Solutions
 
Hien nguyen science, vol 315, 493, 2007
Hien nguyen science, vol 315, 493, 2007Hien nguyen science, vol 315, 493, 2007
Hien nguyen science, vol 315, 493, 2007
Hiền Mira
 
Defense Presentation 2014 October 14 New
Defense Presentation 2014 October 14 NewDefense Presentation 2014 October 14 New
Defense Presentation 2014 October 14 NewAmanda Jameer
 
2013 proceed-apsorc-jrnc
2013 proceed-apsorc-jrnc2013 proceed-apsorc-jrnc
2013 proceed-apsorc-jrnc
Konstantin German
 
Hydrodeoxygenation-supported metal catalyst-lignin-aromatic monomers- A.K.Dee...
Hydrodeoxygenation-supported metal catalyst-lignin-aromatic monomers- A.K.Dee...Hydrodeoxygenation-supported metal catalyst-lignin-aromatic monomers- A.K.Dee...
Hydrodeoxygenation-supported metal catalyst-lignin-aromatic monomers- A.K.Dee...
Deepa A K
 
GRDS International ICRST proceedings,October 2016,Hongkong
GRDS International ICRST proceedings,October 2016,HongkongGRDS International ICRST proceedings,October 2016,Hongkong
GRDS International ICRST proceedings,October 2016,Hongkong
Global R & D Services
 
PNAS-1998-Barawkar-11047-52
PNAS-1998-Barawkar-11047-52PNAS-1998-Barawkar-11047-52
PNAS-1998-Barawkar-11047-52Dinesh Barawkar
 
264-JMES-2335-Ellouze-Published Paper-May 2016
264-JMES-2335-Ellouze-Published Paper-May 2016264-JMES-2335-Ellouze-Published Paper-May 2016
264-JMES-2335-Ellouze-Published Paper-May 2016Ibrahim Abdel-Rahman
 
Modification & Application of Borate Zirconia Catalyst
Modification & Application of Borate Zirconia CatalystModification & Application of Borate Zirconia Catalyst
Modification & Application of Borate Zirconia Catalyst
Ranjeet Kumar
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
IJERD Editor
 

What's hot (20)

N – methyl thiomethylation and n hydroxymethylation of phthalimide
N – methyl thiomethylation and n hydroxymethylation of phthalimideN – methyl thiomethylation and n hydroxymethylation of phthalimide
N – methyl thiomethylation and n hydroxymethylation of phthalimide
 
Selection of amine solvents for CO2 capture from natural gas power plant
Selection of amine solvents for CO2 capture from natural gas power plantSelection of amine solvents for CO2 capture from natural gas power plant
Selection of amine solvents for CO2 capture from natural gas power plant
 
SYNTHESIS AND CHARACTERIZATION OF SOME TRANSITION METAL COMPLEXES WITH A NEW ...
SYNTHESIS AND CHARACTERIZATION OF SOME TRANSITION METAL COMPLEXES WITH A NEW ...SYNTHESIS AND CHARACTERIZATION OF SOME TRANSITION METAL COMPLEXES WITH A NEW ...
SYNTHESIS AND CHARACTERIZATION OF SOME TRANSITION METAL COMPLEXES WITH A NEW ...
 
M.Sc. Organic Chemistry Student Project Presentation
M.Sc. Organic Chemistry Student Project PresentationM.Sc. Organic Chemistry Student Project Presentation
M.Sc. Organic Chemistry Student Project Presentation
 
Optical resolution trials and a process-concept assessment of the industrial ...
Optical resolution trials and a process-concept assessment of the industrial ...Optical resolution trials and a process-concept assessment of the industrial ...
Optical resolution trials and a process-concept assessment of the industrial ...
 
572a91
572a91572a91
572a91
 
Use of Solid Core Chromatography for the Analysis of Pharmaceutical Compounds
Use of Solid Core Chromatography for the Analysis of Pharmaceutical CompoundsUse of Solid Core Chromatography for the Analysis of Pharmaceutical Compounds
Use of Solid Core Chromatography for the Analysis of Pharmaceutical Compounds
 
Hien nguyen science, vol 315, 493, 2007
Hien nguyen science, vol 315, 493, 2007Hien nguyen science, vol 315, 493, 2007
Hien nguyen science, vol 315, 493, 2007
 
Defense Presentation 2014 October 14 New
Defense Presentation 2014 October 14 NewDefense Presentation 2014 October 14 New
Defense Presentation 2014 October 14 New
 
slide2(updated)
slide2(updated)slide2(updated)
slide2(updated)
 
2013 proceed-apsorc-jrnc
2013 proceed-apsorc-jrnc2013 proceed-apsorc-jrnc
2013 proceed-apsorc-jrnc
 
Hydrodeoxygenation-supported metal catalyst-lignin-aromatic monomers- A.K.Dee...
Hydrodeoxygenation-supported metal catalyst-lignin-aromatic monomers- A.K.Dee...Hydrodeoxygenation-supported metal catalyst-lignin-aromatic monomers- A.K.Dee...
Hydrodeoxygenation-supported metal catalyst-lignin-aromatic monomers- A.K.Dee...
 
GRDS International ICRST proceedings,October 2016,Hongkong
GRDS International ICRST proceedings,October 2016,HongkongGRDS International ICRST proceedings,October 2016,Hongkong
GRDS International ICRST proceedings,October 2016,Hongkong
 
PNAS-1998-Barawkar-11047-52
PNAS-1998-Barawkar-11047-52PNAS-1998-Barawkar-11047-52
PNAS-1998-Barawkar-11047-52
 
264-JMES-2335-Ellouze-Published Paper-May 2016
264-JMES-2335-Ellouze-Published Paper-May 2016264-JMES-2335-Ellouze-Published Paper-May 2016
264-JMES-2335-Ellouze-Published Paper-May 2016
 
Sulfated zirconia[1]
Sulfated zirconia[1]Sulfated zirconia[1]
Sulfated zirconia[1]
 
Modification & Application of Borate Zirconia Catalyst
Modification & Application of Borate Zirconia CatalystModification & Application of Borate Zirconia Catalyst
Modification & Application of Borate Zirconia Catalyst
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
Final poster October 18
Final poster October 18Final poster October 18
Final poster October 18
 
M.Sc. 13 c nmr
M.Sc. 13 c nmrM.Sc. 13 c nmr
M.Sc. 13 c nmr
 

Similar to PhD work

Webinar: Assessing atmospheric emissions from amine-based CO2 post-combustion...
Webinar: Assessing atmospheric emissions from amine-based CO2 post-combustion...Webinar: Assessing atmospheric emissions from amine-based CO2 post-combustion...
Webinar: Assessing atmospheric emissions from amine-based CO2 post-combustion...
Global CCS Institute
 
Awais Thesis Final Defense ppt updated.pptx
Awais Thesis Final Defense ppt updated.pptxAwais Thesis Final Defense ppt updated.pptx
Awais Thesis Final Defense ppt updated.pptx
Naseem89
 
An Update on Gas CCS Project: Effective Adsorbents for Establishing Solids Lo...
An Update on Gas CCS Project: Effective Adsorbents for Establishing Solids Lo...An Update on Gas CCS Project: Effective Adsorbents for Establishing Solids Lo...
An Update on Gas CCS Project: Effective Adsorbents for Establishing Solids Lo...
UK Carbon Capture and Storage Research Centre
 
Dr Debdeep Maity
Dr Debdeep MaityDr Debdeep Maity
Dr Debdeep Maity
DEBDEEP MAITY
 
S in ambient air by gc pid fpd acs fall 2013 final
S in ambient air by gc pid  fpd acs fall 2013 finalS in ambient air by gc pid  fpd acs fall 2013 final
S in ambient air by gc pid fpd acs fall 2013 finalJennifer Maclachlan
 
Adsorption Materials and Processes for Carbon Capture from Gas-Fired Power Pl...
Adsorption Materials and Processes for Carbon Capture from Gas-Fired Power Pl...Adsorption Materials and Processes for Carbon Capture from Gas-Fired Power Pl...
Adsorption Materials and Processes for Carbon Capture from Gas-Fired Power Pl...
UK Carbon Capture and Storage Research Centre
 
1,3-Dihydroxypropan-2-one (DHA) synthesis from Glycerol for pharmaceutical ap...
1,3-Dihydroxypropan-2-one (DHA) synthesis from Glycerol for pharmaceutical ap...1,3-Dihydroxypropan-2-one (DHA) synthesis from Glycerol for pharmaceutical ap...
1,3-Dihydroxypropan-2-one (DHA) synthesis from Glycerol for pharmaceutical ap...
Simone Ripandelli
 
Thesis Defense
Thesis DefenseThesis Defense
Thesis DefenseYijiang Wu
 
Zazzeri, Giulia: Efficient sampling of atmospheric methane for radiocarbon an...
Zazzeri, Giulia: Efficient sampling of atmospheric methane for radiocarbon an...Zazzeri, Giulia: Efficient sampling of atmospheric methane for radiocarbon an...
Zazzeri, Giulia: Efficient sampling of atmospheric methane for radiocarbon an...
Integrated Carbon Observation System (ICOS)
 
dynamicchemistryatthecatalyticinterface-190304061810.pdf
dynamicchemistryatthecatalyticinterface-190304061810.pdfdynamicchemistryatthecatalyticinterface-190304061810.pdf
dynamicchemistryatthecatalyticinterface-190304061810.pdf
QamarIqbal50
 
Ozonolysis of TME
Ozonolysis of TMEOzonolysis of TME
Ozonolysis of TME
Mixtli Campos-Pineda
 
Pawan CO2 REDUCTION PPT
Pawan CO2 REDUCTION PPTPawan CO2 REDUCTION PPT
Pawan CO2 REDUCTION PPT
Pawan Kumar
 
Molecular simulation of carbon capture in MOFs: challenges and pitfalls - Dr ...
Molecular simulation of carbon capture in MOFs: challenges and pitfalls - Dr ...Molecular simulation of carbon capture in MOFs: challenges and pitfalls - Dr ...
Molecular simulation of carbon capture in MOFs: challenges and pitfalls - Dr ...
UK Carbon Capture and Storage Research Centre
 
Steward Advanced Materials fryxell_glenn
Steward Advanced Materials fryxell_glennSteward Advanced Materials fryxell_glenn
Steward Advanced Materials fryxell_glennJohn Glenning
 
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
LandimarMendesDuarte
 
SYNTHESIS OF NICKEL NANOPARTICLES AND APPLICATION IN MALACHITE GREEN DYE COLO...
SYNTHESIS OF NICKEL NANOPARTICLES AND APPLICATION IN MALACHITE GREEN DYE COLO...SYNTHESIS OF NICKEL NANOPARTICLES AND APPLICATION IN MALACHITE GREEN DYE COLO...
SYNTHESIS OF NICKEL NANOPARTICLES AND APPLICATION IN MALACHITE GREEN DYE COLO...
vinubhanu
 
Emission Measurements of Various Biofuels using a Commercial Swirl-Type Air-A...
Emission Measurements of Various Biofuels using a Commercial Swirl-Type Air-A...Emission Measurements of Various Biofuels using a Commercial Swirl-Type Air-A...
Emission Measurements of Various Biofuels using a Commercial Swirl-Type Air-A...
JOACHIM AGOU
 
Presentation_(B4-1).pdf
Presentation_(B4-1).pdfPresentation_(B4-1).pdf
Presentation_(B4-1).pdf
RamonEstebanMartinez2
 

Similar to PhD work (20)

Webinar: Assessing atmospheric emissions from amine-based CO2 post-combustion...
Webinar: Assessing atmospheric emissions from amine-based CO2 post-combustion...Webinar: Assessing atmospheric emissions from amine-based CO2 post-combustion...
Webinar: Assessing atmospheric emissions from amine-based CO2 post-combustion...
 
Awais Thesis Final Defense ppt updated.pptx
Awais Thesis Final Defense ppt updated.pptxAwais Thesis Final Defense ppt updated.pptx
Awais Thesis Final Defense ppt updated.pptx
 
An Update on Gas CCS Project: Effective Adsorbents for Establishing Solids Lo...
An Update on Gas CCS Project: Effective Adsorbents for Establishing Solids Lo...An Update on Gas CCS Project: Effective Adsorbents for Establishing Solids Lo...
An Update on Gas CCS Project: Effective Adsorbents for Establishing Solids Lo...
 
Dr Debdeep Maity
Dr Debdeep MaityDr Debdeep Maity
Dr Debdeep Maity
 
S in ambient air by gc pid fpd acs fall 2013 final
S in ambient air by gc pid  fpd acs fall 2013 finalS in ambient air by gc pid  fpd acs fall 2013 final
S in ambient air by gc pid fpd acs fall 2013 final
 
Adsorption Materials and Processes for Carbon Capture from Gas-Fired Power Pl...
Adsorption Materials and Processes for Carbon Capture from Gas-Fired Power Pl...Adsorption Materials and Processes for Carbon Capture from Gas-Fired Power Pl...
Adsorption Materials and Processes for Carbon Capture from Gas-Fired Power Pl...
 
1,3-Dihydroxypropan-2-one (DHA) synthesis from Glycerol for pharmaceutical ap...
1,3-Dihydroxypropan-2-one (DHA) synthesis from Glycerol for pharmaceutical ap...1,3-Dihydroxypropan-2-one (DHA) synthesis from Glycerol for pharmaceutical ap...
1,3-Dihydroxypropan-2-one (DHA) synthesis from Glycerol for pharmaceutical ap...
 
Thesis Defense
Thesis DefenseThesis Defense
Thesis Defense
 
Zazzeri, Giulia: Efficient sampling of atmospheric methane for radiocarbon an...
Zazzeri, Giulia: Efficient sampling of atmospheric methane for radiocarbon an...Zazzeri, Giulia: Efficient sampling of atmospheric methane for radiocarbon an...
Zazzeri, Giulia: Efficient sampling of atmospheric methane for radiocarbon an...
 
dynamicchemistryatthecatalyticinterface-190304061810.pdf
dynamicchemistryatthecatalyticinterface-190304061810.pdfdynamicchemistryatthecatalyticinterface-190304061810.pdf
dynamicchemistryatthecatalyticinterface-190304061810.pdf
 
Ozonolysis of TME
Ozonolysis of TMEOzonolysis of TME
Ozonolysis of TME
 
Pawan CO2 REDUCTION PPT
Pawan CO2 REDUCTION PPTPawan CO2 REDUCTION PPT
Pawan CO2 REDUCTION PPT
 
Molecular simulation of carbon capture in MOFs: challenges and pitfalls - Dr ...
Molecular simulation of carbon capture in MOFs: challenges and pitfalls - Dr ...Molecular simulation of carbon capture in MOFs: challenges and pitfalls - Dr ...
Molecular simulation of carbon capture in MOFs: challenges and pitfalls - Dr ...
 
Alkene ozonolysis
Alkene ozonolysisAlkene ozonolysis
Alkene ozonolysis
 
Steward Advanced Materials fryxell_glenn
Steward Advanced Materials fryxell_glennSteward Advanced Materials fryxell_glenn
Steward Advanced Materials fryxell_glenn
 
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
 
Pushkar N Patil
Pushkar N PatilPushkar N Patil
Pushkar N Patil
 
SYNTHESIS OF NICKEL NANOPARTICLES AND APPLICATION IN MALACHITE GREEN DYE COLO...
SYNTHESIS OF NICKEL NANOPARTICLES AND APPLICATION IN MALACHITE GREEN DYE COLO...SYNTHESIS OF NICKEL NANOPARTICLES AND APPLICATION IN MALACHITE GREEN DYE COLO...
SYNTHESIS OF NICKEL NANOPARTICLES AND APPLICATION IN MALACHITE GREEN DYE COLO...
 
Emission Measurements of Various Biofuels using a Commercial Swirl-Type Air-A...
Emission Measurements of Various Biofuels using a Commercial Swirl-Type Air-A...Emission Measurements of Various Biofuels using a Commercial Swirl-Type Air-A...
Emission Measurements of Various Biofuels using a Commercial Swirl-Type Air-A...
 
Presentation_(B4-1).pdf
Presentation_(B4-1).pdfPresentation_(B4-1).pdf
Presentation_(B4-1).pdf
 

PhD work

  • 1. Design and Synthesis of Functionalized Ligands for Adsorptive Separation of CO2/N2 and CO2/CH4 Mixtures Dr. Kalpesh Mohan Khot Institute of Chemical Technology
  • 2. Overview Institute of Chemical Technology 2 1. Introduction 2. Aliphatic Ligand Functionalized Polystyrene Adsorbents for Separation of CO2 from N2 and CH4 3. Heterocyclic Saturated Ligand Functionalized Polystyrene Adsorbents for Separation of CO2 from N2 and CH4 4. Heterocyclic Unsaturated Five Member Ligand Functionalized Polystyrene Adsorbents for Separation of CO2 from N2 and CH4 5. Heterocyclic Unsaturated Six Member Ligand Functionalized Polystyrene Adsorbents for Separation of CO2 from N2 and CH4
  • 4. Greenhouse Gas Effect and Global Warming Institute of Chemical Technology 4 Earth’s Atmospheric Gases Non-green house gases (e.g.- N2,O2) ~99% Green house gases (e.g.- H2O,CO2,CH4) ~1%
  • 5. Technologies Used in CO2 Capture Institute of Chemical Technology 5 CO2 capture technologies Absorption Membrane Separation AdsorptionCryogenic distillation Energy requirements: 330-340 kWh/ton CO2 (Environ. Prog., 2006, 25: 208 ) CO2 capture capacity CO2 selectivity Ease of regeneration Pressure Swing Adsorption (PSA) Energy requirements: 160-170 kWh/ton CO2 (Environ. Prog., 2006, 25: 208 ) Energy requirements: 600-660 kWh/ton CO2 (Environ. Prog., 2006, 25: 208 ) Energy requirements: 70-75 kWh/ton CO2 (Environ. Prog., 2006, 25: 208 )
  • 6. Literature Reported Adsorbents for CO2 Capture Institute of Chemical Technology 6 Adsorbent Surface area (m2/g) Amine loading (mol/kg) Temp (K) Adsorption capacity (mol/kg) Adsorption (mol CO2/mol amine) Reference Zeolite β-Zeolite 574.0 - 303 1.80 - J. Nat. Gas Chem., 2009, 18: 167. 13X (MEA) 14.9 8.20 348 1.11 0.14 Micropor. Mesopor. Mater., 2009, 121: 84. Activated carbon Pitch based AC fibers OG-A7 907.0 - 298 0.70 - J. Colloid Interface Sci., 2006, 298: 523. NH3- AC 1323 - 309 1.73 - Appl. Surf. Sci. 2004, 225: 235. Silica SBA-15 (EDA) - 1.32 295 1.95 1.47 Ind. Eng. Chem. Res, 2005, 44: 3099. SBA-15 (PEI) 13.0 0.83 348 2.88 3.47 Micropor. Mesopor. Mater., 2008, 113: 31. Metal Organic Frameworks Mg-MOF -74 1174.0 - 298 8.61 - J. Colloid Interface Sci. 2011, 353: 549. Cu-MOF - - 298 0.70 - J. Colloid Interface Sci., 2011, 357: 504. Polymers PMMA(MEA) 470.0 5.57 293 0.78 0.14 Ind. Eng. Chem. Res., 2005, 44: 1542. OC 1065 IER 26.2 6.69 323 2.50 0.37 Ind. Eng. Chem. Res., 2012, 51: 6907.
  • 7. Institute of Chemical Technology 7 Design of CO2 Selective Ligands Objectives: Tertiary ‘N’ atom based ligand on hydrophobic matrix Presence of tertiary ‘N’ will avoid chemisorption Covalent attachment to the matrix Covalent attachment of the ligand will help in overcoming limitation of lack of stability over repeated cycles + CO2 RNHCO2 - RNH3 + Low temp H2O + RNH2RNH3 + HCO3 - 2 RNH2 2 RNH3 + CO3 2- pH Carbonate Bicarbonate Carbamate R3N + CO2 + H2O R3NH+ HCO3 - Bicarbonate Reaction of primary amine or secondary amine with CO2 Reaction of tertiary amine with CO2 Ref : J. Phys. Chem. 1981, 85: 3660.
  • 8. Institute of Chemical Technology 2. Aliphatic Ligand Functionalized Polystyrene Adsorbents for Separation of CO2 from CH4 and N2
  • 9. Synthesis and Characterization Institute of Chemical Technology 9 Cl HN CH2CH2OH CH2CH2OH Diethanolamine n N CH2CH2OH CH2CH2OH n N CH3 CH3 n PS-DMA DMF, 363 K PS-DEA Chloromethylated polystyrene FTIR Characterization PS-DEA PS-DMA CMPS PS-DEA PS-DMA Ligand loading (mol/kg) - 2.8 3.2 BET surface are (m2/g) 28 21 28
  • 10. Equilibrium Adsorption Studies Institute of Chemical Technology 10 Gravimetric Method
  • 11. Atmospheric Pressure Equilibrium Adsorption CO2 Institute of Chemical Technology 11 0 0.1 0.2 0.3 0 200 400 600 800 CO2adsorbed(mol/kg) Times (sec) CMPS PS-DEA PS-DMA CO2 equilibrium capacity (mol/kg) CMPS PS-DEA PS-DMA 0.16 0.20 0.25 303 K
  • 12. High Pressure Equilibrium Adsorption Studies at 303 K CO2 CH4 Dual Mode sorption Parameter Institute of Chemical Technology 12 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 q(CO2adsorbed(cc/g)atSTP) Pressure(atm) CMPS PS-DEA PS-DMA 0 0.5 1 1.5 2 2.5 3 0 5 10 q(CH4adsorbed(cc/g)atSTP) Pressure(atm) CMPS PS-DEA PS-DMA Adsorbent kD (cm3(STP)/g poly/atm) CH ’ (cm3(STP)/g poly) b (atm-1) Adsorption capacity (mol/kg) CO2 CH4 CO2 CH4 CO2 CH4 CO2 CH4 CMPS 1.29 0.09 40.95 2.10 0.17 1.26 3.86 0.12 PS-DEA 0.43 0.11 81.61 1.10 0.23 0.17 1.16 0.08 PS-DMA 0.92 0.09 30.22 1.66 0.41 0.18 2.06 0.08 bP bPC PkC H D   1 ' *(CO2 (Tb=216 K, Tc=304 K), CH4 (Tb=112 K, Tc=190 K), N2 (Tb=77 K, Tc=126 K)) * Nat. Mater., 2011,10: 372.
  • 13. 20:80 40:60 50:50 Institute of Chemical Technology 13 Ideal Adsorbed Solution Theory (IAST) Selectivity for CO2/CH4 0 20 40 60 2 4 6 8 10 Sads(CO2/CH4) Pressure (atm) CMPS PS-DEA PS-DMA 0 20 40 60 2 4 6 8 10 Sads(CO2/CH4) Pressure (atm) CMPS PS-DEA PS-DMA 0 20 40 2 4 6 8 10 Sads(CO2/CH4) Pressure (atm) CMPS PS-DEA PS-DMA              2 1 2 1 2,1 y y x x S ads
  • 14. FTIR Characterization of Post CO2 Sorbed Adsorbents CO O CO O CO O v1 v2 v3 (1388 cm-1) Symmetric stretching Raman active (666 cm-1) Bending IR active (2349 cm-1) Asymmetric stretching IR active CMPS PS-DEA PS-DMA Institute of Chemical Technology 14 CMPS PS-DEA PS-DMA 2347 cm-1 2348 cm-1 2348 cm-1
  • 15. Pulse Chromatography Studies Institute of Chemical Technology 15 Conc(kg/m3) Time (sec) N2 CH4 CO2 Column length (mm) 1500 Column diameter (mm) 6 Average weight of adsorbent (g) 20 Detector TCD Carrier gas H2
  • 16. Pulse Chromatographic Studies Institute of Chemical Technology 16 CMPS PS-DEA PS-DMA Ref: Heer, P. K. K. S. Engineering analysis of renewable energy and chemical resources. Ph.D. Thesis. Institute of Chemical Technology, 2014. 0.0 0.1 0.2 50 150 250 350 450 550 Conc(kg/m3) Time (sec) 0.0 0.1 0.2 50 100 150 200 250 300 350 400 450 Conc(kg/m3) Time (sec) ◊ CO2 ∆ CH4 Ο N2 0 0.1 0.2 50 150 250 350 450 Conc(kg/m3) Time (sec)
  • 17. Pulse Chromatographic Studies PS-DMA CO2 CH4 N2 PS-DEA CO2 CH4 N2 0 200 400 600 800 1000 0 0.2 0.4 0.6 σ2L/2μ2ν(sec)(CO2) 1/ν2 (s2/m2) 0 10000 20000 30000 40000 0 0.5 σ2L/2μ2ν(sec)(CH4) 1/ν2 (s2/m2) 0 10000 20000 30000 40000 50000 60000 0 0.2 0.4 0.6 σ2L/2μ2ν(sec)(N2) 1/ν2 (s2/m2) 0 200 400 600 800 1000 0 0.5 σ2L/2μ2ν(sec)(CO2) 1/ν2 (s2/m2) 0 20000 40000 60000 80000 0 0.5 σ2L/2μ2ν(sec)(CH4) 1/ν2 (s2/m2) 0 40000 80000 120000 160000 0 0.5 σ2L/2μ2ν(sec)(N2) 1/ν2 (s2/m2) Mass Transfer Resistance ◊ 308K □ 318K Δ 328K × 338K ○ 348K Institute of Chemical Technology 17 )( )1( . 2 22 2 cpf L v D v L        
  • 18. Pulse Chromatographic Studies CMPS CO2 CH4 N2 0 100 200 0 0.2 0.4 0.6 σ2L/2μ2ν(sec)(CO2) 1/ν2 (s2/m2) 0 1000 2000 3000 0 0.1 0.2 0.3 0.4 0.5 0.6 σ2L/2μ2ν(sec)(CH4) 1/ν2 (s2/m2) 0 10000 20000 30000 0 0.5 σ2L/2μ2ν(sec)(N2) 1/ν2 (s2/m2) Mass Transfer Resistance ◊ 308K □ 318K Δ 328K × 338K ○ 348K Institute of Chemical Technology 18
  • 19. Equilibrium Adsorption Constant Institute of Chemical Technology 19 CO2 CH4 N2 1 10 100 2.8 2.9 3 3.1 3.2 3.3 K(mol/kg/atm)×102 1/T (K-1) ×103 CMPS PS-DEA PS-DMA 1 10 2.8 2.9 3 3.1 3.2 3.3 K(mol/kg/atm)×103 1/T (K-1) ×103 CMPS PS-DEA PS-DMA 2 20 2.8 2.9 3 3.1 3.2 3.3 K(mol/kg/atm)×103 1/T (K-1) ×103 CMPS PS-DEA PS-DMA
  • 20. Equilibrium Separation Factor Institute of Chemical Technology 20 CO2 /N2 CO2 /CH4 CH4 /N2 0 5 10 15 20 25 30 35 2.8 2.9 3 3.1 3.2 3.3 αCO2/N2 1/T (K-1) ×103 CMPS PS-DEA PS-DMA 0 1 2 3 4 5 6 7 8 9 10 2.8 2.9 3 3.1 3.2 3.3 αCO2/CH4 1/T (K-1) ×103 CMPS PS-DEA PS-DMA 1.0 2.0 3.0 4.0 2.8 2.9 3 3.1 3.2 3.3 αCH4/N2 1/T (K-1) ×103 CMPS PS-DEA PS-DMA B A BAei K K /, 
  • 21. Institute of Chemical Technology 3. Heterocyclic Saturated Ligand Functionalized Polystyrene Adsorbents for Separation of CO2 from N2 and CH4
  • 22. Synthesis and Characterization Institute of Chemical Technology 30 FTIR Characterization PS-Piperdine PS-Piperazine PS-Piperdine PS-Piperazine Ligand loading (mol/kg) 2.04 2.08 BET surface are (m2/g) 26 26 Cl N N CH3 Chloromethylated polystyrene n n NHN CH3 HN N PS-Piperdine n Piperidine PS-PiperazineN-methyl piperazine DMF, 363K DMF, 363K
  • 23. CO2 Institute of Chemical Technology 31 0 0.1 0.2 0.3 0.4 0.5 0 200 400 600 800 CO2adsorbed(mol/kg) Times (sec) PS-Piperidine PS-Piperazine CO2 equilibrium capacity (mol/kg) PS-Piperdine PS-Piperazine 0.39 0.42 303 K Atmospheric Pressure Equilibrium Adsorption
  • 24. High Pressure Equilibrium Adsorption Studies CO2 CH4 Dual Mode sorption Parameter Institute of Chemical Technology 32 0 10 20 30 40 50 60 70 80 0 10 20 30 40 q(CO2adsorbed(cc/g)atSTP) Pressure(atm) PS-Piperdine PS-Piperazine 0 0.5 1 1.5 2 2.5 0 5 10 q(CH4adsorbed(cc/g)atSTP) Pressure(atm) PS-Piperdine PS-Piperazine Adsorbent kD (cm3(STP)/g poly /atm) CH ’ (cm3(STP)/g poly) b (atm-1) Adsorption capacity (mol/kg) CO2 CH4 CO2 CH4 CO2 CH4 CO2 CH4 PS-Piperdine 0.04 0.07 86.66 1.40 0.07 0.31 2.92 0.09 PS-Piperazine 0.82 0.11 39.25 1.04 0.22 1.61 3.08 0.10 bP bPC PkC H D   1 '
  • 25. Institute of Chemical Technology 33 20:80 40:60 50:50 IAST Selectivity for CO2/CH4 0 20 40 60 2 4 6 8 10 Sads(CO2/CH4) Pressure (atm) PS-Piperidine PS-Piperazine 0 20 40 60 2 4 6 8 10 Sads(CO2/CH4) Pressure (atm) PS-Piperidine PS-Piperazine 0 20 40 60 1 3 5 7 9 Sads(CO2/CH4) Pressure (atm) PS-Piperidine PS-Piperazine
  • 26. FTIR Characterization of Post CO2 Sorbed Adsorbents PS-Piperdine PS-Piperazine Institute of Chemical Technology 34 PS-Piperdine PS-Piperazine 2340 cm-1 2336 cm-1
  • 27. Pulse Chromatographic Studies Institute of Chemical Technology 35 PS-Piperdine PS-Piperazine ◊ CO2 ∆ CH4 Ο N2 0 0.1 0.2 50 150 250 350 450 Conc(kg/m3) Time (sec) 0.0E+00 4.0E-03 8.0E-03 1.2E-02 0 100 200 300 400 500 Conc(kg/m3) Time (sec) Ref: Heer, P. K. K. S. Engineering analysis of renewable energy and chemical resources. Ph.D. Thesis. Institute of Chemical Technology, 2014.
  • 28. Equilibrium Adsorption Constant Institute of Chemical Technology 36 CO2 CH4 N2 4 2.8 2.9 3 3.1 3.2 3.3 K(mol/kg/atm)×103 1/T (K-1) ×103 PS-Piperidine PS-Piperazine 1 2.8 2.9 3 3.1 3.2 3.3 K(mol/kg/atm)×103 1/T (K-1) ×103 PS-Piperidine PS-Piperazine 2 20 2.8 2.9 3 3.1 3.2 3.3 K(mol/kg/atm)×102 1/T (K-1) ×103 PS-Piperdine PS-Piperazine
  • 29. Equilibrium Separation Factor Institute of Chemical Technology 37 CO2 /N2 CO2 /CH4 CH4 /N2 0 1 1 2 2 3 3 4 4 5 2.8 2.9 3 3.1 3.2 3.3 αCH4/N2 1/T (K-1) ×103 PS-Piperdine PS-Piperazine 0 2 4 6 8 10 12 2.8 2.9 3 3.1 3.2 3.3 αCO2/CH4 1/T (K-1) ×103 PS-Piperidine Ps-Piperazine 0 5 10 15 20 25 30 35 40 45 50 2.8 2.9 3 3.1 3.2 3.3 αCO2/N2 1/T (K-1) ×103 PS-Piperdine PS-Piperazine B A BAei K K /, 
  • 30. Institute of Chemical Technology 4. Heterocyclic Unsaturated Five Member Ligand Functionalized Polystyrene Adsorbents for Separation of CO2 from N2 and CH4
  • 31. Synthesis and Characterization Institute of Chemical Technology 46 FTIR Characterization PS-Pyrrole PS-Imidazole PS-Pyrrole PS-Imidazole Ligand Loading (mol/kg) 1.98 1.55 BET surface are (m2/g) 28 31Cl N N Chloromethylated polystyrene PS-Imidazole n n N N H N H N n PS-PyrrolePyrrole Imidazole DMF, 363 K DMF, 363 K
  • 32. CO2 Institute of Chemical Technology 47 CO2 equilibrium capacity (mol/kg) PS-Pyrrole PS-Imidazole 0.42 0.46 303 K Atmospheric Pressure Equilibrium Adsorption 0 0.1 0.2 0.3 0.4 0.5 0 200 400 600 800 CO2adsorbed(mol/kg) Times (sec) PS-Pyrrole PS-Imidazole
  • 33. High Pressure Equilibrium Adsorption Studies CO2 CH4 Dual Mode sorption Parameter Institute of Chemical Technology 48 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 q(CO2adsorbed(cc/g)atSTP) Pressure(atm) PS-Pyrrole PS-Imidazole 0 0.5 1 1.5 2 2.5 3 0 5 10 q(CH4adsorbed(cc/g)atSTP) Pressure(atm) PS-Pyrrole PS-Imidazole Adsorbent kD (cm3(STP)/g poly /atm) CH ’ (cm3(STP)/g poly) b (atm-1) Adsorption capacity (mol/kg) CO2 CH4 CO2 CH4 CO2 CH4 CO2 CH4 PS-Pyrrole 0.24 0.07 76.30 1.43 0.09 0.61 3.12 0.10 PS-Imidazole 1.22 0.11 38.51 1.68 0.25 0.74 3.71 0.11 bP bPC PkC H D   1 '
  • 34. Institute of Chemical Technology 49 20:80 40:60 50:50 IAST Selectivity for CO2/CH4 0 20 40 60 2 4 6 8 10 Sads(CO2/CH4) Pressure (atm) PS-Pyrrole PS- Imidazole 0 20 40 60 2 4 6 8 10 Sads(CO2/CH4) Pressure (atm) PS-Pyrrole PS-Imidazole 0 20 40 60 1 3 5 7 9 Sads(CO2/CH4) Pressure (atm) PS-Pyrrole PS-Imidazole
  • 35. FTIR Characterization of Post CO2 Sorbed Adsorbents PS-Pyrrole PS-Imidazole Institute of Chemical Technology 50 PS-Pyrrole PS-Imidazole 2337 cm-1 2335 cm-1
  • 36. Pulse Chromatographic Studies Institute of Chemical Technology 51 PS-Pyrrole PS-Imidazole ◊ CO2 ∆ CH4 Ο N2 0 0.1 0.2 50 250 450 650 850 1050 1250 Conc(kg/m3) Time (sec) 0.0E+00 4.0E-03 8.0E-03 1.2E-02 0 200 400 600 800 1000 Conc(kg/m3) Time (sec) Ref: Heer, P. K. K. S. Engineering analysis of renewable energy and chemical resources. Ph.D. Thesis. Institute of Chemical Technology, 2014.
  • 37. Equilibrium Adsorption Constant Institute of Chemical Technology 52 CO2 CH4 N2 1 10 100 2.8 2.9 3 3.1 3.2 3.3 K(mol/kg/atm)×102 1/T (K-1) ×103 PS-Pyrrole PS-Imidazole 1 10 2.8 2.9 3 3.1 3.2 3.3 K(mol/kg/atm)×103 1/T (K-1) ×103 PS-Pyrrole PS-Imidazole 2 20 2.8 2.9 3 3.1 3.2 3.3 K(mol/kg/atm)×103 1/T (K-1) ×103 PS-Pyrrole PS-Imidazole
  • 38. Equilibrium Separation Factor Institute of Chemical Technology 53 CO2 /N2 CO2 /CH4 CH4 /N2 0 10 20 30 40 50 60 2.8 2.9 3 3.1 3.2 3.3 αCO2/N2 1/T (K-1) ×103 PS-Pyrrole PS-Imidazole 0 2 4 6 8 10 12 14 2.8 2.9 3 3.1 3.2 3.3 αCO2/CH4 1/T (K-1) ×103 PS-Pyrrole PS-Imidazole 0 1 1 2 2 3 3 4 4 5 2.8 2.9 3 3.1 3.2 3.3 αCH4/N2 1/T (K-1) ×103 PS-Pyrrole PS-Imidazole
  • 39. Institute of Chemical Technology 5. Heterocyclic Unsaturated Six Member Ligand Functionalized Polystyrene Adsorbents for Separation of CO2 from N2 and CH4
  • 40. Synthesis Institute of Chemical Technology 63 PS-HM PS-CA PS-MP PS-BIMP Ligand Loading (mol/kg) - 1.62 1.92 1.52 BET surface are (m2/g) 29 27 30 31 Cl n POCl3 N COOH Cl Cl N H N+ N COOH N N N N N HO N O n 4-hydroxymethyl Pyridine PS-MP O NHO OH O n PS-HM PS-CA N COOH OH OH 2,6-Bis-imidazol-1-yl-pyridine-4-carboxylic acid PS-BIMP n N N N N N OO (BIMP) Chloromethylated polystyrene HO NHO OH O Citrazinic acid n OH H3CO O DMF, 358 K CH3COOK H2NNH2 Acetoxymethyl resin DMF, 403 K DMF, 403 K DMF, 403 K
  • 41. Mass Characterization Institute of Chemical Technology 64 2,6-Dichloropyridine-4-Carboxylic Acid 2,6-Bis-Imidazo-1-yl-Pyridine-4-Carboxylic acid 192 174156 146 210 238 256
  • 42. NMR Characterization Institute of Chemical Technology 65 2,6-Dichloropyridine-4-Carboxylic Acid 2,6-Bis-Imidazo-1-yl-Pyridine-4-Carboxylic acid 1H 13C
  • 43. FTIR Characterization Institute of Chemical Technology 66 PS-CA PS-MP PS-BIMP
  • 44. Institute of Chemical Technology 67 CO2 equilibrium capacity (mol/kg) PS-HM PS-CA 0.15 0.43 PS-MP PS-BIMP 0.55 0.73 303 K Atmospheric Pressure Equilibrium Adsorption 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 200 400 600 800 CO2adsorbed(mol/kg) Times (sec) PS-HM PS-CA PS-MP PS-BIMP CO2
  • 45. High Pressure Equilibrium Adsorption Studies CO2 CH4 Dual Mode sorption Parameter Institute of Chemical Technology 68 Adsorbent kD (cm3(STP)/g poly /atm) CH ’ (cm3(STP)/g poly) b (atm-1) Adsorption capacity (mol/kg) CO2 CH4 CO2 CH4 CO2 CH4 CO2 CH4 PS-BIMP 1.20 0.06 40.84 2.20 0.34 0.45 3.78 0.12 PS-MP 1.25 0.06 34.96 2.10 0.38 0.45 3.75 0.11 PS-CA 0.94 0.10 43.71 3.56 0.25 0.17 3.51 0.10 PS-HM 0.78 0.06 67.94 2.01 0.08 0.98 3.80 0.12 bP bPC PkC H D   1 ' 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 q(CO2adsorbed(cc/g)atSTP) Pressure(atm) PS-HM PS-CA PS- MP PS-BIMP 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 q(CH4adsorbed(cc/g)atSTP) Pressure(atm) PS-HM PS-CA PS- MP PS-BIMP
  • 46. IAST Selectivity for CO2/CH4 Institute of Chemical Technology 69 20:80 40:60 50:50 0 20 40 60 80 100 2 4 6 8 10 Sads(CO2/CH4) Pressure (atm) PS-HM PS-CA PS-MP PS-BIMP 0 20 40 60 80 100 120 2 4 6 8 10 Sads(CO2/CH4) Pressure (atm) PS-HM PS-CA PS-MP PS-BIMP 0 20 40 60 80 100 120 1 3 5 7 9 Sads(CO2/CH4) Pressure (atm) PS-HM PS-CA PS-MP PS-BIMP
  • 47. FTIR Characterization of Post CO2 Sorbed Adsorbents PS-HM PS-CA PS-MP PS-BIMP Institute of Chemical Technology 70 PS-HM PS-CA PS-MP PS-BIMP 2348 2336 2331 2329
  • 48. Pulse Chromatographic Studies Institute of Chemical Technology 71 PS-HM PS-CA PS-MP PS-BIMP ◊ CO2 ∆ CH4 Ο N2 0.0E+00 4.0E-03 8.0E-03 1.2E-02 0 100 200 300 400 500 600 700 Conc(kg/m3) Time (sec) 0.0E+00 4.0E-03 8.0E-03 1.2E-02 0 200 400 600 800 1000 1200 Conc(kg/m3) Time (sec) 0.0E+00 4.0E-03 8.0E-03 1.2E-02 0 500 1000 1500 2000 Conc(kg/m3) Time (sec) 0.0E+00 4.0E-03 8.0E-03 1.2E-02 0 500 1000 1500 2000 Conc(kg/m3) Time (sec) Ref: Heer, P. K. K. S. Engineering analysis of renewable energy and chemical resources. Ph.D. Thesis. Institute of Chemical Technology, 2014.
  • 49. Equilibrium Adsorption Constant Institute of Chemical Technology 72 CO2 CH4 N2 2 20 2.8 2.9 3 3.1 3.2 3.3 K(mol/kg/atm)×103 1/T (K-1) ×103 PS-HM PS-CA PS-MP PS-BIMP 1 10 2.8 2.9 3 3.1 3.2 3.3 K(mol/kg/atm)×103 1/T (K-1) ×103 PS-HM PS-CA PS-MP PS-BIMP 1 10 100 2.8 2.9 3 3.1 3.2 3.3 K(mol/kg/atm)×102 1/T (K-1) ×103 PS-HM PS-CA PS-MP PS-BIMP
  • 50. Equilibrium Separation Factor Institute of Chemical Technology 73 CO2 /N2 CO2 /CH4 CH4 /N2 0 1 2 3 4 5 6 2.8 2.9 3 3.1 3.2 3.3 αCH4/N2 1/T (K-1) ×103 PS-HM PS-CA PS-MP PS-BIMP 0 2 4 6 8 10 12 14 16 18 2.8 2.9 3 3.1 3.2 3.3 αCO2/CH4 1/T (K-1) ×103 PS-HM PS-CA PS-MP PS-BIMP 0 10 20 30 40 50 60 70 80 90 2.8 2.9 3 3.1 3.2 3.3 αCO2/N2 1/T (K-1) ×103 PS-HM PS-CA PS-MP PS-BIMP
  • 51. Comparison of adsorbents of current studies Institute of Chemical Technology
  • 52. CMPS PS-HM PS-DEA PS-DMA PS-Piperdine PS-Piperazine PS-Pyrrole PS-CA PS-Imidazole PS-MP PS-BIMP Comparison of Functionalized Polystyrene Adsorbents Institute of Chemical Technology 75 0 10 20 30 40 50 60 70 80 90 2.8 3 3.2 3.4 αCO2/N2 1/T (K-1) ×103 CMPS PS-DEA PS-DMA PS-Piperdine PS-Piperazine PS-Pyrrole PS-Imidazole PS-HM PS-CA PS-MP PS-BIMP 4 6 8 10 12 14 16 18 2.8 3 3.2 3.4 αCO2/CH4 1/T (K-1) ×103 CMPS PS-DEA PS-DMA PS-Piperidine Ps-Piperazine PS-Pyrrole PS-Imidazole PS-HM PS-CA PS-MP PS-BIMP CO2 /N2 CO2 /CH4
  • 53. Comparison of Equilibrium Adsorption Capacity with Literature Adsorbent Amine loading Temp Atmospheric pressure equilibrium adsorption capacity High pressure equilibrium adsorption capacity De ×1011 (m2 /sec-1 ) Reference (mol/kg) (K) CO2 adsorbed CO2 adsorbed /mol of amine CO2 CH4 (mol/kg) (mol/kg) (mol/kg) PS-BIMP 1.52 303 0.73 0.48 3.78 0.120 1.49 Present work PS-MP 1.92 303 0.55 0.29 3.75 0.114 1.54 PS-Imidazole 1.55 303 0.46 0.29 3.71 0.110 1.45 PS-CA 1.62 303 0.43 0.26 3.51 0.104 1.55 PS-Pyrrole 1.98 303 0.42 0.21 3.12 0.097 1.41 PS-Piperazine 2.08 303 0.42 0.20 3.08 0.095 1.44 PS-Piperdine 2.04 303 0.39 0.19 2.92 0.091 1.48 PS-DMA 3.20 303 0.25 0.08 2.06 0.082 1.46 PS-DEA 2.80 303 0.20 0.07 1.16 0.079 1.43 PS-HM - 303 0.15 - 3.80 0.118 1.45 CMPS - 303 0.16 - 3.86 0.120 1.52 OC 1065 IER 6.69 323 2.50 0.37 - - Ind. Eng. Chem. Res., 2012 , 51: 6907 PMMA(MEA) 5.57 293 0.78 0.14 - - Ind. Eng. Chem. Res., 2005, 44: 1542.1.07 0.24 - -PMMA(DEA) 4.47 β- Zeolite (MEA 40 wt %) 6.56 303 0.77 0.12 - - J. Nat. Gas Chem., 2009, 18 :167 Silicalite - 303 - - - - 0.09 J. Colloid Interface Sci., 2007,313:12NaY - - - - - 0.00004 4A zeolite - 303 - - - - 0.00004 Adsorption, 2004,10: 111 CaX - - - - - 0.02 13X - 313 - - - - 0.0006 Micropor. Mesopor. Mat. 2012,158: 219. Institute of Chemical Technology 76
  • 54. Comparison of CO2 capture Efficiency with Literature Method Adsorbent Surface area (m2/g) Amine loading Temp Atmospheric pressure equilibrium adsorption capacity Reference (mol/kg) (K) CO2 adsorbed CO2 adsorbed /mol of amine(mol/kg) Adsorption PS-BIMP 31 1.52 303 0.73 0.48 Present work PS-MP 30 1.92 303 0.55 0.29 PS-Imidazole 31 1.55 303 0.46 0.29 PS-CA 27 1.62 303 0.43 0.26 PS-Pyrrole 28 1.98 303 0.42 0.21 PS-Piperazine 26 2.08 303 0.42 0.20 PS-Piperdine 26 2.04 303 0.39 0.19 PS-DMA 28 3.20 303 0.25 0.08 PS-DEA 21 2.80 303 0.20 0.07 PS-HM 29 - 303 0.15 - CMPS 28 - 303 0.16 - Absorption MEA (30%) - 313 - 0.47 Bull. Korean Chem. Soc. 2013, 34: 783 DEA (30%) - 313 - 0.50 TEA (30%) - 313 - 0.27 DEA /MDEA (80:20) - 313 - 0.61 Ind. Eng. Chem. Res., 2013, 3: 12-23 Institute of Chemical Technology 77
  • 55. Adsorbent Temp (K) Equilibrium Separation Factor ΔH (kj/mol) K0 (mol/kg/atm) ×107 Reference αCO2-CH4 αCO2-N2 αCH4-N2 CO2 CH4 N2 CO2 CH4 N2 PS-BIMP 308 17.1 83.3 4.9 38.1 26.3 17.9 2.0 12.3 67.2 PS-MP 308 15.9 69.1 4.3 37.4 27.9 20.8 2.0 5.6 20.7 PS-Imidazole 308 12.8 53.9 4.2 37.6 29.3 18.1 1.4 2.9 52.1 PS-CA 308 12.1 48.1 3.9 38.8 25.4 18.2 0.7 12.4 51.3 PS-Pyrrole 308 45.1 12.0 3.8 37.4 26.4 20.2 1.2 7.8 22.2 PS-Piperazine 308 10.4 43.1 4.1 38.1 29.3 15.6 0.6 2.0 102.0 Present work PS-Piperdine 308 10.3 41.4 4.0 37.6 25.7 20.3 0.7 8.1 16.3 PS-DMA 308 9.0 30.6 3.4 37.2 29.4 21.1 0.7 1.5 11.3 PS-DEA 308 6.9 24.9 3.6 33.9 29.1 17.8 1.7 1.5 36.2 PS-HM 308 7.1 26.1 3.4 33.4 28.0 21.6 1.9 2.2 7.4 CMPS 308 7.6 25.9 3.4 33.7 28.1 17.5 1.6 2.0 34.6 β-Zeolite (40%MEA) 303 7.7 25.7 3.3 - - - - - - J. Nat. Gas Chem., 2009, 18: 167 MOF-5 298 15.5 17.5 1.1 - - - - - - Environ. Sci. Technol., 2010,44: 1820MOF-117 298 4.4 17.7 4.0 - - - - - - ZSM-5 313 1.7 5.4 3.3 - - - - - - Sep. Purif. Technol., 2003,33: 199 BILP 1 298 7.0 36.0 - - - - - - - Chem. Mater. 23 (2011) 1650-1653. MPI 3 273 10.0 41.0 - - - - - - - Macromolecules 46 (2013) 3058-3066. Comparison of Equilibrium separation Factor with Literature Institute of Chemical Technology 78
  • 56. Summary Institute of Chemical Technology 80  Heterocyclic ligand functionalized polystyrene showed enhanced equilibrium capacity and separation factor over aliphatic ligand functionalized adsorbents due to presence of steric hindrance in the latter.  Amongst heterocyclic ligand functionalized adsorbents planar unsaturated ligand functionalized adsorbents showed higher equilibrium uptake and selectivity for CO2 due to strong Lewis acid- Lewis base interaction and weak intermolecular hydrogen bonding when compared to the saturated heterocyclic ligand functionalized polystyrene.  The six member pyridine based ‘BIMP’ functionalized polystyrene adsorbent having multiple interaction sites for CO2 showed best equilibrium adsorption capacity and separation factor for CO2/N2 and CO2/CH4 system over other adsorbents. The deficiency of electronic charge on ‘N’ atom of citrazinic acid due to the presence of proximal phenolic group leads to its weaker interaction with CO2 as compared to PS-BIMP, PS-MP and PS-Imidazole.  Lewis-acid-Lewis base interaction of CO2 with CO2-phile is more dominating over weak intermolecular ‘H’ bonding of ‘O’ atom of CO2 with proton attached to a group (eg. –OH) or carbon at ‘α’ positions of electron donating CO2-phile.  Presence of covalently attached tertiary ‘N’ atom ensures strong CO2-pilicity with regeneration of adsorbents was achieved by pressure swing and overcomes the limitation of lack of stability over repeated cycles.