SlideShare a Scribd company logo
Conduction
Transfer Mechanisms
   Heat can be transferred in three ways.
   Transfer can include more than one way.

   Conduction             Convection             Radiation
    • Energy flow           • Fluid flow            • Energy radiating
      from direct             carrying energy         from an object
      thermal contact                                 into
                                                      surroundings
Direct Contact
   Items in direct contact
    transfer heat.

   Molecules in hot regions
    have greater kinetic energy.
     • Elastic collisions with cool
       molecules
     • Kinetic energy transfer at
       boundary
Thermal Conductivity
   Heat flow within an object is   Material     Thermal Cond.
    due to transfer by              Air          0.026 W/m-K
    conduction.                     Stryrofoam   0.029 W/m-K
                                    Wood         0.11 W/m-K
   Thermal conductivity (κ)        Water        0.61 W/m-K
    measures the ability for heat
    to move in a material.          Glass        0.8 W/m-K
     • Measured in W / m-K          Concrete     1.0 W/m-K
     • High number means high       Steel        46 W/m-K
       rate of transfer             Aluminum     240 W/m-K
                                    Copper       400 W/m-K
Heat Flow Rate
                       The rate of heat flow
                        depends on the temperature
                        gradient.
    A                   • Change in temperature with
           H              distance
  T + ∆T        T
                       Depends on surface area A
                        for contact.
           ∆x


                              ∆Q       ∆T
                         H=      = −κA
                              ∆t       ∆x
Conductors and Insulators
                   Thermal conductors have
                    high values of k.
                     • Metals with conducting
                       electrons
                     • Greater than 10 W/m-K


                   Still air is an excellent
                    thermal insulator.
                     • Materials that trap air are
                       good: wood, styrofoam


                   Vacuum would be the best.
Swimming Hole
   A lake with a flat bottom and      Convert area to m2.
    steep sides has a surface             1.5 km2 = 1.5 x 106 m2
    area 1.5 km2 and is 8.0 m
    deep. The surface is at 30         Use the equation for heat
    °C and the bottom is at 4 °C.
                                        flow.
                                          H = -kA(∆T/∆x)
   What is the rate of heat              -(0.61 W/m-K)(1.5 x 106 m2)
    conduction through the lake?           (26 K) / (8.0 m)
                                          H = -3.0 x 106 W.
Two Layers
                                         If there are two layers in
                                          thermal contact, the rate of
     T3    T2       T1
                                          heat flow must be the same
       H           H                      for both.
                                           • Energy doesn’t accumulate
                                             in the layer.
          ∆x2 ∆x1



                T3 − T2        T −T
  H = −κ 2 A            = −κ1 A 2 1
                 ∆x 2           ∆x1
Thermal Resistance
                               For an arbitrary set of layers
                                the intermediate temperature
   T3        T2        T1
                                is unknown.
    H                  H         • Define thermal resistance
                                               ∆x
                                          R=
        R2        R1                           κA

                                 • For multiple layers R adds
           ∆T
        H=
            R                             R = R1 + R2
R-Factor
   In the US, thermal resistance   Material          R-factor
    is measured per unit area.      Glass (1/8”)      1
     • R = ∆x / k
                                    Brick (3½”)       0.6 – 1
     • Units are ft2 °F hr / BTU
                                    Plywood (1/2”) 0.6
     • 1 BTU = 1055 J
                                    Fiberglass
                                      insulation (1”) 4




                                                          next

More Related Content

What's hot

MET 214 Heat exchanger module-1
MET 214 Heat exchanger module-1MET 214 Heat exchanger module-1
MET 214 Heat exchanger module-1
Ibrahim AboKhalil
 
Thermal conductivity of copper
Thermal conductivity of copperThermal conductivity of copper
Thermal conductivity of copper
MidoOoz
 

What's hot (20)

GATE Mechanical Engineering notes on Heat Transfer
GATE Mechanical Engineering notes on Heat TransferGATE Mechanical Engineering notes on Heat Transfer
GATE Mechanical Engineering notes on Heat Transfer
 
Lees disc
Lees discLees disc
Lees disc
 
MET 214 Heat exchanger module-1
MET 214 Heat exchanger module-1MET 214 Heat exchanger module-1
MET 214 Heat exchanger module-1
 
Lee’s disk method
Lee’s disk methodLee’s disk method
Lee’s disk method
 
11 Heat Transfer
11 Heat Transfer11 Heat Transfer
11 Heat Transfer
 
heat conduction equations
heat conduction equationsheat conduction equations
heat conduction equations
 
Heat transfer by conduction
Heat transfer by conductionHeat transfer by conduction
Heat transfer by conduction
 
Chapter 2 1
Chapter 2 1Chapter 2 1
Chapter 2 1
 
Introduction to heat transfer
Introduction to heat transferIntroduction to heat transfer
Introduction to heat transfer
 
2 marks heat and mass transfer
2 marks   heat and mass transfer2 marks   heat and mass transfer
2 marks heat and mass transfer
 
ÖNCEL AKADEMİ: SOLID EARTH GEOPHYSICS
ÖNCEL AKADEMİ: SOLID EARTH GEOPHYSICSÖNCEL AKADEMİ: SOLID EARTH GEOPHYSICS
ÖNCEL AKADEMİ: SOLID EARTH GEOPHYSICS
 
Heat transfer in thermal engineering
Heat transfer in thermal engineeringHeat transfer in thermal engineering
Heat transfer in thermal engineering
 
CLIMO heat loss.pptx
CLIMO heat loss.pptxCLIMO heat loss.pptx
CLIMO heat loss.pptx
 
Thermal Properties of Matter
Thermal Properties of MatterThermal Properties of Matter
Thermal Properties of Matter
 
Thermal conductivity of copper
Thermal conductivity of copperThermal conductivity of copper
Thermal conductivity of copper
 
Thermal conductivity presentation
Thermal conductivity presentationThermal conductivity presentation
Thermal conductivity presentation
 
Conductive Heat Transfer Laboratory Experiment
Conductive Heat Transfer Laboratory ExperimentConductive Heat Transfer Laboratory Experiment
Conductive Heat Transfer Laboratory Experiment
 
conduction
conductionconduction
conduction
 
Thermal and Electrical conductivity of metals
Thermal and Electrical conductivity of metalsThermal and Electrical conductivity of metals
Thermal and Electrical conductivity of metals
 
Heat conduction through a plane wall
Heat conduction through a plane wallHeat conduction through a plane wall
Heat conduction through a plane wall
 

Viewers also liked

Portfolio_Jolene Chen
Portfolio_Jolene ChenPortfolio_Jolene Chen
Portfolio_Jolene Chen
Jolene Chen
 
A8658-99-Unit-23-Business-analysis-tools
A8658-99-Unit-23-Business-analysis-toolsA8658-99-Unit-23-Business-analysis-tools
A8658-99-Unit-23-Business-analysis-tools
ebedford
 

Viewers also liked (20)

โครงงานคอมพิวเตอร์
โครงงานคอมพิวเตอร์โครงงานคอมพิวเตอร์
โครงงานคอมพิวเตอร์
 
Portfolio_Jolene Chen
Portfolio_Jolene ChenPortfolio_Jolene Chen
Portfolio_Jolene Chen
 
Bradley grigson pm 2016_perf_swa
Bradley grigson pm 2016_perf_swaBradley grigson pm 2016_perf_swa
Bradley grigson pm 2016_perf_swa
 
BLsoberJan09
BLsoberJan09BLsoberJan09
BLsoberJan09
 
Processus d'Innovation de l'Espace Delvalle
Processus d'Innovation de l'Espace DelvalleProcessus d'Innovation de l'Espace Delvalle
Processus d'Innovation de l'Espace Delvalle
 
Weihnachten in griechenland
Weihnachten in griechenlandWeihnachten in griechenland
Weihnachten in griechenland
 
A8658-99-Unit-23-Business-analysis-tools
A8658-99-Unit-23-Business-analysis-toolsA8658-99-Unit-23-Business-analysis-tools
A8658-99-Unit-23-Business-analysis-tools
 
Histoire de la semaine - 31 mars 2014 - Microsoft : nouveau PDG, nouveau lead...
Histoire de la semaine - 31 mars 2014 - Microsoft : nouveau PDG, nouveau lead...Histoire de la semaine - 31 mars 2014 - Microsoft : nouveau PDG, nouveau lead...
Histoire de la semaine - 31 mars 2014 - Microsoft : nouveau PDG, nouveau lead...
 
Αφίσα των μαθητών του τμήματος Δ1
Αφίσα των μαθητών του τμήματος Δ1Αφίσα των μαθητών του τμήματος Δ1
Αφίσα των μαθητών του τμήματος Δ1
 
Saison des earnings semaine #2
Saison des earnings   semaine #2Saison des earnings   semaine #2
Saison des earnings semaine #2
 
Αφίσα από τους μαθητές του τμήματος Δ2
Αφίσα από τους μαθητές του τμήματος Δ2Αφίσα από τους μαθητές του τμήματος Δ2
Αφίσα από τους μαθητές του τμήματος Δ2
 
[대구] 제이에스이 기업
[대구] 제이에스이 기업[대구] 제이에스이 기업
[대구] 제이에스이 기업
 
Diaporama EGTS 31 janvier 14 Marseille
Diaporama EGTS 31 janvier 14 MarseilleDiaporama EGTS 31 janvier 14 Marseille
Diaporama EGTS 31 janvier 14 Marseille
 
Robottiekosysteemi uudistuvan teollisuuden kehityskyvyn takaajana, projektip...
 Robottiekosysteemi uudistuvan teollisuuden kehityskyvyn takaajana, projektip... Robottiekosysteemi uudistuvan teollisuuden kehityskyvyn takaajana, projektip...
Robottiekosysteemi uudistuvan teollisuuden kehityskyvyn takaajana, projektip...
 
Le Web au profit de votre chaîne d'approvisionnement.
Le Web au profit de votre chaîne d'approvisionnement.Le Web au profit de votre chaîne d'approvisionnement.
Le Web au profit de votre chaîne d'approvisionnement.
 
Une nouvelle logistique « Internet inside »
Une nouvelle logistique « Internet inside »Une nouvelle logistique « Internet inside »
Une nouvelle logistique « Internet inside »
 
Enquête MIPISE-HEC JUNIOR CONSEIL
Enquête MIPISE-HEC JUNIOR CONSEILEnquête MIPISE-HEC JUNIOR CONSEIL
Enquête MIPISE-HEC JUNIOR CONSEIL
 
Bradley grigson agile collaboration_pm_ 2016
Bradley grigson agile collaboration_pm_ 2016Bradley grigson agile collaboration_pm_ 2016
Bradley grigson agile collaboration_pm_ 2016
 
Le Digital et le Supply chain, vers un nouveau paradigme
Le Digital et le Supply chain, vers un nouveau paradigmeLe Digital et le Supply chain, vers un nouveau paradigme
Le Digital et le Supply chain, vers un nouveau paradigme
 
Journee d'info 29.03.2014
Journee d'info 29.03.2014Journee d'info 29.03.2014
Journee d'info 29.03.2014
 

Similar to P210 13d

Ch2 Heat transfer - conduction
Ch2 Heat transfer - conductionCh2 Heat transfer - conduction
Ch2 Heat transfer - conduction
eky047
 
Conduction equation cartesian, Cylindrical, spherical (7).pptx
Conduction equation  cartesian, Cylindrical, spherical (7).pptxConduction equation  cartesian, Cylindrical, spherical (7).pptx
Conduction equation cartesian, Cylindrical, spherical (7).pptx
YaredAssefa10
 
Heat transfer & heat exchangers
Heat transfer & heat exchangersHeat transfer & heat exchangers
Heat transfer & heat exchangers
Mohamed Alsalihi
 

Similar to P210 13d (20)

Physics Chapter 13- Heat
Physics Chapter 13- HeatPhysics Chapter 13- Heat
Physics Chapter 13- Heat
 
Chemical engineering iiit rgukt Nuzvid a159050802436.pdf
Chemical engineering iiit rgukt Nuzvid a159050802436.pdfChemical engineering iiit rgukt Nuzvid a159050802436.pdf
Chemical engineering iiit rgukt Nuzvid a159050802436.pdf
 
Thermal conductivity
Thermal conductivityThermal conductivity
Thermal conductivity
 
Convention and radtiation
Convention and radtiationConvention and radtiation
Convention and radtiation
 
MET 214 Module 2
MET 214 Module 2MET 214 Module 2
MET 214 Module 2
 
Tectonics lecture 04
Tectonics lecture 04Tectonics lecture 04
Tectonics lecture 04
 
Ch2 Heat transfer - conduction
Ch2 Heat transfer - conductionCh2 Heat transfer - conduction
Ch2 Heat transfer - conduction
 
Heat Transfer 123.ppt
Heat Transfer 123.pptHeat Transfer 123.ppt
Heat Transfer 123.ppt
 
Heat Transfer_1.ppt
Heat Transfer_1.pptHeat Transfer_1.ppt
Heat Transfer_1.ppt
 
Heat Transfer_1.ppt
Heat Transfer_1.pptHeat Transfer_1.ppt
Heat Transfer_1.ppt
 
Heat Transfer_1.ppt
Heat Transfer_1.pptHeat Transfer_1.ppt
Heat Transfer_1.ppt
 
Heat Transfer_1xx.ppt engineering by tin
Heat Transfer_1xx.ppt engineering by tinHeat Transfer_1xx.ppt engineering by tin
Heat Transfer_1xx.ppt engineering by tin
 
Heat Transfer_1.ppt
Heat Transfer_1.pptHeat Transfer_1.ppt
Heat Transfer_1.ppt
 
Lec03
Lec03Lec03
Lec03
 
Heat transfer chapter one and two
Heat transfer chapter one and twoHeat transfer chapter one and two
Heat transfer chapter one and two
 
Conduction equation cartesian, Cylindrical, spherical (7).pptx
Conduction equation  cartesian, Cylindrical, spherical (7).pptxConduction equation  cartesian, Cylindrical, spherical (7).pptx
Conduction equation cartesian, Cylindrical, spherical (7).pptx
 
Lecture 1
Lecture 1Lecture 1
Lecture 1
 
Heat transfer & heat exchangers
Heat transfer & heat exchangersHeat transfer & heat exchangers
Heat transfer & heat exchangers
 
Heat transfer
Heat transferHeat transfer
Heat transfer
 
Heat transfer modes
Heat transfer modesHeat transfer modes
Heat transfer modes
 

More from Arvenz Gavino (20)

Kuya modesto3
Kuya modesto3Kuya modesto3
Kuya modesto3
 
L
LL
L
 
Kuya rafael3
Kuya rafael3Kuya rafael3
Kuya rafael3
 
Kuya rafael2
Kuya rafael2Kuya rafael2
Kuya rafael2
 
Kuya modesto3
Kuya modesto3Kuya modesto3
Kuya modesto3
 
Kuya modesto2
Kuya modesto2Kuya modesto2
Kuya modesto2
 
Kuya modesto1
Kuya modesto1Kuya modesto1
Kuya modesto1
 
Kuya rafael
Kuya rafaelKuya rafael
Kuya rafael
 
Y
YY
Y
 
My visit in manila is one thing unforgettable
My visit in manila is one thing unforgettableMy visit in manila is one thing unforgettable
My visit in manila is one thing unforgettable
 
Music has a magic that is unexplainable
Music has a magic that is unexplainableMusic has a magic that is unexplainable
Music has a magic that is unexplainable
 
Legend
LegendLegend
Legend
 
Human1
Human1Human1
Human1
 
The mx
The mxThe mx
The mx
 
Heat transfer
Heat transferHeat transfer
Heat transfer
 
Doc
DocDoc
Doc
 
Lec 7 elements_of_the_state
Lec 7 elements_of_the_stateLec 7 elements_of_the_state
Lec 7 elements_of_the_state
 
Lec 6 philippines2
Lec 6 philippines2Lec 6 philippines2
Lec 6 philippines2
 
Lec 7 elements_of_the_state
Lec 7 elements_of_the_stateLec 7 elements_of_the_state
Lec 7 elements_of_the_state
 
Lec 7 filipino_values
Lec 7 filipino_valuesLec 7 filipino_values
Lec 7 filipino_values
 

P210 13d

  • 2. Transfer Mechanisms  Heat can be transferred in three ways.  Transfer can include more than one way.  Conduction  Convection  Radiation • Energy flow • Fluid flow • Energy radiating from direct carrying energy from an object thermal contact into surroundings
  • 3. Direct Contact  Items in direct contact transfer heat.  Molecules in hot regions have greater kinetic energy. • Elastic collisions with cool molecules • Kinetic energy transfer at boundary
  • 4. Thermal Conductivity  Heat flow within an object is Material Thermal Cond. due to transfer by Air 0.026 W/m-K conduction. Stryrofoam 0.029 W/m-K Wood 0.11 W/m-K  Thermal conductivity (κ) Water 0.61 W/m-K measures the ability for heat to move in a material. Glass 0.8 W/m-K • Measured in W / m-K Concrete 1.0 W/m-K • High number means high Steel 46 W/m-K rate of transfer Aluminum 240 W/m-K Copper 400 W/m-K
  • 5. Heat Flow Rate  The rate of heat flow depends on the temperature gradient. A • Change in temperature with H distance T + ∆T T  Depends on surface area A for contact. ∆x ∆Q ∆T H= = −κA ∆t ∆x
  • 6. Conductors and Insulators  Thermal conductors have high values of k. • Metals with conducting electrons • Greater than 10 W/m-K  Still air is an excellent thermal insulator. • Materials that trap air are good: wood, styrofoam  Vacuum would be the best.
  • 7. Swimming Hole  A lake with a flat bottom and  Convert area to m2. steep sides has a surface  1.5 km2 = 1.5 x 106 m2 area 1.5 km2 and is 8.0 m deep. The surface is at 30  Use the equation for heat °C and the bottom is at 4 °C. flow.  H = -kA(∆T/∆x)  What is the rate of heat  -(0.61 W/m-K)(1.5 x 106 m2) conduction through the lake? (26 K) / (8.0 m)  H = -3.0 x 106 W.
  • 8. Two Layers  If there are two layers in thermal contact, the rate of T3 T2 T1 heat flow must be the same H H for both. • Energy doesn’t accumulate in the layer. ∆x2 ∆x1 T3 − T2 T −T H = −κ 2 A = −κ1 A 2 1 ∆x 2 ∆x1
  • 9. Thermal Resistance  For an arbitrary set of layers the intermediate temperature T3 T2 T1 is unknown. H H • Define thermal resistance ∆x R= R2 R1 κA • For multiple layers R adds ∆T H= R R = R1 + R2
  • 10. R-Factor  In the US, thermal resistance Material R-factor is measured per unit area. Glass (1/8”) 1 • R = ∆x / k Brick (3½”) 0.6 – 1 • Units are ft2 °F hr / BTU Plywood (1/2”) 0.6 • 1 BTU = 1055 J Fiberglass insulation (1”) 4 next