R&D – VNG 19 Sep 2017
 Statistical learning
 Bias – variance Tradeoff
 Overfitting
 Regularization
 Validation
1
2
 Theory of generalization
Vapnik-Chervonenkid
3
ℙ 𝑬𝒊𝒏(𝒈 − 𝑬 𝒐𝒖𝒕(𝒈 > 𝓔 ≤ 𝟒𝒎 𝓗 𝟐𝑵 −
𝟏
𝟖
𝜺 𝟐 𝑵
4
 Central limit theorem
5
 The Gauss Markov Theorem:
 Statistical learning
 Bias – variance Tradeoff
 Overfitting
 Regularization
 Validation
6
7
8
9
10
 Statistical learning
 Bias – variance Tradeoff
 Overfitting
 Regularization
 Validation
11
12
13
14
 Statistical learning
 Bias – variance Tradeoff
 Overfitting
 Regularization
 Validation
15
16
17
SOFT CONSTRAINT
18
Heuristics
- Weight decay
- Different layer get different weight
- Tikhonov regulerizer
19
Practical rule Idea
20
21
 Statistical learning
 Bias – variance Tradeoff
 Overfitting
 Regularization
 Validation
22
23
24
25
OPTIMISTICS BIAS

Overfitting - regularization - Cross validation - Machine learning