SlideShare a Scribd company logo
1 of 26
WHAT ARE NEURAL STEM CELLS?
Multipotent cells with the
ability to self-renew and
proliferate in order to give rise
to progenycells
HISTORY OF NEURAL STEM CELLS
THE NEURON DOCTRINE – each
neuron is an individual entity that
forms the basic unit of neural circuitry.
This was presented by Santiago
Ramón y Cajal in 1894.
“Intheadult…thenervepathsaresomething
fixed,ended,and immutable.Everythingmay
die,nothingmayberegenerated.”
The first evidence of
adult brain neurogenesis
came from JOSEPH
ALTMAN in the 1960s
from his studies in rats.
INITIAL WORK ISOLATION
Initial works in 1958 (Messier and Leblond) and 1961 (Smart) employed
the use of tritiated thymidine for labeling brain cells of mice 
radioactivity in the subventricular zone (SVZ) of the brain, the
hippocampus, cerebral cortex and fornix .
In 1989, DR SALLY
TEMPLE was able to
isolate neural stem cells
from rodent brain and
culture them in vitro.
THE ROAD MAP – HISTORICAL PERSPECTIVE
EXPERIMENT BY YEAR FINDINGS
LeBlond and Smart 1961 Tritiated thymidine labeling of cells- Discovered
neuroglial cells in mouse brain
Altman and Das 1965, 1967 Neurogenesis in adult brain of rats and guinea pigs,
respectively
Kaplan and Hinds 1977 Adult-born neurons in dentate gyrus and olfactory bulb
coupling tritiated thymidine and electron microscopy
Goldman and Nottebohm 1983 Neurogenesis in song birds (canaries)
Rakic 1985 Neurogenesis in monkeys happened only in early age and
not in adults
Reynolds and Weiss 1992 Used certain growth factors
Eriksson et al. 1998 Neurogenesis in adult human hippocampus in cancer
patients
Kornack and Rakic 1999 Re-examined neurogenesis in macaque monkey and
confirmed neurogenesis in the DG
Sorrells et al. 2018 Neurogenesis occurs only in the young, and not in adults
Boldrini et al. 2018 Neurogenesis occurs in adults, including old individuals
ROSTRAL MIGRATORY STREAM
Experiment by Altman in rats showed radially-oriented
streaks of cells in apparent migration. They were most
prominent around the rostra1 wall of the anterior horn
of the lateral ventricle and connected the lateral and
olfactory ventricles. This L-shaped structure, which
first moves vertically and then horizontally,
penetrates the laminated olfactory bulb
and is known as Rostral Migratory Stream.
Smart in his experiment had established that the
subependymal layer extended in mice from the anterior
wall of the lateral ventricle rostrally into the olfactory
bulb.
RMS
MARKERS
Some researchers theorize that the SGZ is a conducive
environment for the proliferation of NSCs into granule
cells, from which they migrate to the granule cell layer.
Quiescent radial glia-like type I neural
progenitor cells (QNPs)
Type II Intermediate neural progenitor cells (INPs)
Type III Intermediate neural progenitor
cells (INPs)
Immature neurons
Mature granule neurons that integrate into
the hippocampal circuitry
SOXBLBP
2, NESTIN,
Ki67, NESTIN
Lose expression of neural stem
cell markers and gain expression
of neuronal markers
DCX, PSA-NCAM
NeuN, β-III TUBB,
CALBINDIN
MARKERS OF NEURAL STEM CELLS
Exclusively found in
vertebrates
Belongs to the family of
Intermediate Filament proteins
Role : Self renewal of neural
stem cells
NESTIN
Green Fluorescent Protein is an excellent marker of
neural stem cells, so when the Nes/GFP screening was
done, it was seen that the Nes –/– individuals had
very low expression of GFP indicative of the fact that
absence of Nestin caused neural stem cells to
differentiate
SOX2
 Transcription factor
 Role: Important for maintenance of neural stem cells
Sox2 helps in hippocampal development as well. When Sox2
was deleted in mice and postnatal observations were done. This
was observed :
The defective hippocampal development was seen to mimic the
mutation of Shh or of its receptor Smo.
The absence of Shh causes an arrest of postnatal hippocampal
development which closely resembles that of Sox2 knockout
mouse, strongly suggesting that Sox2 controls hippocampal
development via regulation of Shh.
β- CATENIN
Role: Determines neural stem cell
state
Wnt signaling is a conserved cell
signaling system that is thought to
play multiple roles in NSC self-
renewal, neurogenesis, embryonic
patterning, and homeostatic tissue
regeneration in the developing and
adult brain.
CELL PROLIFERATION CELL DIFFERENTIATION
OTHER NEURAL STEM
CELL MARKERS
GFAP – marks astrocytes
NeuN, βIII-tubulin – mark neurons
GalC – marks oligodendrocytes
DIFFERENTIATION
MARKERS
Musashi-1, Musashi-2, Pax3, Pax6,
Hes1, Hes5, CD133, CD15, Vimentin
CONTROVERSY
Sorrells et al. found a sharp
drop in neurogenesis as the
human brain ages
Boldrini et al. find persistent
adult neurogenesis in humans
into the eighth decade of life
SORRELLS
Maps of Ki-67+ (green) cells in the DG from samples of individuals that
were between 22 gestational weeks and 35 years of age; GCL in blue.
Ki-67+SOX1+ and Ki-
67+SOX2+ cells
(arrows) are distributed
across the hilus and GCL
and the number of
double-positive cells
decreases between 22
gestational weeks and 1
year of age.
DCX+PSA-NCAM+ cells in the
DG from birth to the age of 77
showing that the number of
young neurons declines in the
human DG
BOLDRINI
(A and B) Co-expression of
Sox2 and nestin in QNPs.
(E) GFAP+ cells with apical
process (white arrow) nestin+
INP (yellow arrow).
(F) Nestin/Ki-67+ INP.
(M) Sox2+ cell decline in anterior-mid DG with aging.
(N and O) Nestin+ and Ki-67+ cells do not decline with older age in anterior, mid, or
posterior DG.
(A) PSA-NCAM and DCX expression in an
immature neuron between subgranular zone
(SGZ) and granule cell layer (GCL), two
PSA-NCAM+/DCX cells, and 4’,6-
diamidino-2-phenylindole (DAPI)+ nuclei.
(G–H) Stable DCX+
immature neurons,
NeuN+ mature granule
neurons
ISSUES RAISED
Post Mortem Delay -
PMD.
Boldrini’s study sample
size age group
DCX as a marker?
Sorrells used patients who had
epilepsy
Use of 10% formalin
Gerd
Kempermann
There have been studies conducted after this controversy as
well (in 2019) that lean towards Boldrini’s conclusion that
neurogenesis does persist through an older age in healthy
individuals as well as in patients suffering from mild
cognitive impairments (MCI) and Alzheimer’s Disease.
Tobin et al. observe
persistent hippocampal
neurogenesis in aging
brains with no cognitive
impairments, mild
cognitive impairments,
and Alzheimer’s disease.
Elena P. Moreno-Jiménez et
al. observe persistence of
adult hippocampal neurons
during both physiological and
pathological aging in humans
REFERENCES
1. Smart, I., & Leblond, C. P. (1961). Evidence for division and transformations of neuroglia cells in the
mouse brain, as derived from radioautography after injection of thymidine-H3. The Journal of Comparative
Neurology, 116(3), 349–367. doi:10.1002/cne.901160307
2. Temple, S. (1989). Division and differentiation of isolated CNS blast cells in microculture. Nature,
340(6233), 471–473. doi:10.1038/340471a0
3. Park, D., Xiang, A. P., Mao, F. F., Zhang, L., Di, C. G., Liu, X. M., Shao, Y., Ma, B. F., Lee, J. H., Ha, K. S.,
Walton, N., & Lahn, B. T. (2010). Nestin is required for the proper self-renewal of neural stem cells. Stem
cells (Dayton, Ohio), 28(12), 2162–2171. https://doi.org/10.1002/stem.541
4. Gilyarov, A. V. (2008). Nestin in central nervous system cells. Neuroscience and Behavioral Physiology,
38(2), 165–169. doi:10.1007/s11055-008-0025-z
5. Neradil, J., & Veselska, R. (2015). Nestin as a marker of cancer stem cells. Cancer Science, 106(7), 803–
811. doi:10.1111/cas.12691
6. Thiel, G. (2013). How Sox2 maintains neural stem cell identity. Biochemical Journal, 450(3), e1–
e2. doi:10.1042/bj20130176
7. Favaro, R., Valotta, M., Ferri, A. L. M., Latorre, E., Mariani, J., Giachino, C., Lancini, C., Tosetti, V.,
Ottolenghi, S., Taylor, V., Nicolis, S. K. (2009). Hippocampal development and neural stem cell maintenance
require Sox2-dependent regulation of Shh. Nature Neuroscience, 12(10), 1248–1256. doi:10.1038/nn.2397
8. Okano, H., Kawahara, H., Toriya, M., Nakao, K., Shibata, S., & Imai, T. (2005). Function of RNA-binding
protein Musashi-1 in stem cells. Experimental Cell Research, 306(2), 349–
356. doi:10.1016/j.yexcr.2005.02.021
9. Kaneko, Y., Sakakibara, S., Imai, T., Suzuki, A., Nakamura, Y., Sawamoto, K., Ogawa, Y., Toyama, Y.,
Miyata, T., Okano, H. (2000). Musashi1: An Evolutionally Conserved Marker for CNS Progenitor Cells
Including Neural Stem Cells. Developmental Neuroscience, 22(1-2), 139–153. doi:10.1159/000017435
10. Mizrak, D., Brittan, M., & Alison, M. (2007). CD133: molecule of the moment. The Journal of Pathology,
214(1), 3–9. doi:10.1002/path.2283
11. Pfenninger, C. V., Roschupkina, T., Hertwig, F., Kottwitz, D., Englund, E., Bengzon, J., Jacobsen, S. E., Nuber, U. A.
(2007). CD133 Is Not Present on Neurogenic Astrocytes in the Adult Subventricular Zone, but on Embryonic Neural Stem Cells,
Ependymal Cells, and Glioblastoma Cells. Cancer Research, 67(12), 5727–5736. doi:10.1158/0008-5472.can-07-0183
12. Sun, Y., Kong, W., Falk, A., Hu, J., Zhou, L., Pollard, S., & Smith, A. (2009). CD133 (Prominin) Negative Human Neural Stem
Cells Are Clonogenic and Tripotent. PLoS ONE, 4(5), e5498. doi:10.1371/journal.pone.0005498
13. Kageyama, R., Shimojo, H., & Ohtsuka, T. (2018). Dynamic control of neural stem cells by bHLH factors. Neuroscience
Research. doi:10.1016/j.neures.2018.09.005
14. Kim, E. J., Ables, J. L., Dickel, L. K., Eisch, A. J., & Johnson, J. E. (2011). Ascl1 (Mash1) Defines Cells with Long-Term
Neurogenic Potential in Subgranular and Subventricular Zones in Adult Mouse Brain. PLoS ONE, 6(3),
e18472. doi:10.1371/journal.pone.0018472
15. Bengoa-Vergniory, N., & Kypta, R. M. (2015). Canonical and noncanonical Wnt signaling in neural stem/progenitor cells.
Cellular and Molecular Life Sciences, 72(21), 4157–4172. doi:10.1007/s00018-015-2028-6
16. Israsena, N., Hu, M., Fu, W., Kan, L., & Kessler, J. A. (2004). The presence of FGF2 signaling determines whether β-catenin
exerts effects on proliferation or neuronal differentiation of neural stem cells. Developmental Biology, 268(1), 220–
231. doi:10.1016/j.ydbio.2003.12.024
17. Ohtsuka, T., Sakamoto, M., Guillemot, F., & Kageyama, R. (2001). Roles of the Basic Helix-Loop-Helix GenesHes1andHes5in
Expansion of Neural Stem Cells of the Developing Brain. Journal of Biological Chemistry, 276(32), 30467–
30474. doi:10.1074/jbc.m102420200
18. Cao, S., Du, J., Lv, Y., Lin, H., Mao, Z., Xu, M., Xu, M., Liu, M., Liu, Y. (2017). PAX3 inhibits β-Tubulin-III expression and
neuronal differentiation of neural stem cell. Biochemical and Biophysical Research Communications, 485(2), 307-
311. doi:10.1016/j.bbrc.2017.02.086
19. Liu, Y., Zhu, H., Liu, M., Du, J., Qian, Y., Wang, Y., Ding, F., Gu, X. (2011). Downregulation of Pax3 expression correlates with
acquired GFAP expression during NSC differentiation towards astrocytes. FEBS Letters, 585(7), 1014–
1020. doi:10.1016/j.febslet.2011.02.034
20. Gómez-López, S., Wiskow, O., Favaro, R., Nicolis, S. K., Price, D. J., Pollard, S. M., & Smith, A. (2011). Sox2 and Pax6 maintain
the proliferative and developmental potential of gliogenic neural stem cells In vitro. Glia, 59(11), 1588–
1599. doi:10.1002/glia.21201
21. Lauder, J. M., & Krebs, H. (1978). Serotonin as a Differentiation Signal in Early Neurogenesis.
Developmental Neuroscience, 1(1), 15–30. doi:10.1159/000112549
22. Gusel'nikova VV, Korzhevskiy DE. NeuN As a Neuronal Nuclear Antigen and Neuron Differentiation
Marker. Acta Naturae. 2015 Apr-Jun;7(2):42-7. PMID: 26085943; PMCID: PMC4463411
23. Yang Z, Wang KK. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to
neurobiomarker. Trends Neurosci. 2015 Jun;38(6):364-74
24. Tang, Y., Yu, P., & Cheng, L. (2017). Current progress in the derivation and therapeutic application of
neural stem cells. Cell Death and Disease, 8(10), e3108. doi:10.1038/cddis.2017.504
25. Gage, F. H., & Temple, S. (2013). Neural Stem Cells: Generating and Regenerating the Brain. Neuron,
80(3), 588–601. doi:10.1016/j.neuron.2013.10.037
26. Altman, J., & Das, G. D. (1965). Autoradiographic and histological evidence of postnatal hippocampal
neurogenesis in rats. The Journal of Comparative Neurology, 124(3), 319–
335. doi:10.1002/cne.901240303
27. ALTMAN, J., & DAS, G. D. (1967). Postnatal Neurogenesis in the Guinea-pig. Nature, 214(5093),
1098–1101. doi:10.1038/2141098a0
28. Altman, J. (1969). Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell
proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis
in the olfactory bulb. The Journal of Comparative Neurology, 137(4), 433–
457. doi:10.1002/cne.901370404
29. Morest, D. K. (1970). The pattern of neurogenesis in the retina of the rat. Zeitschrift F�r Anatomie
Und Entwicklungsgeschichte, 131(1), 45–67. doi:10.1007/bf00518815
30. Kaplan, M., & Hinds, J. (1977). Neurogenesis in the adult rat: electron microscopic analysis of light
radioautographs. Science, 197(4308), 1092–1094. doi:10.1126/science.887941
31. Graziadei, P. P. C., & Graziadei, G. A. M. (1979). Neurogenesis and neuron regeneration in the olfactory system of mammals. I.
Morphological aspects of differentiation and structural organization of the olfactory sensory neurons. Journal of Neurocytology,
8(1), 1–18. doi:10.1007/bf01206454
32. Goldman, S. A., & Nottebohm, F. (1983). Neuronal production, migration, and differentiation in a vocal control nucleus of the
adult female canary brain. Proceedings of the National Academy of Sciences, 80(8), 2390–2394. doi:10.1073/pnas.80.8.2390
33. Rakic, P. (1985). Limits of neurogenesis in primates. Science, 227(4690), 1054–1056. doi:10.1126/science.3975601
34. Reynolds, B., & Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central
nervous system. Science, 255(5052), 1707–1710. doi:10.1126/science.1553558
35. Kornack, D. R., & Rakic, P. (1999). Continuation of neurogenesis in the hippocampus of the adult macaque monkey.
Proceedings of the National Academy of Sciences, 96(10), 5768–5773. doi:10.1073/pnas.96.10.5768
36. Eriksson, P. S., Perfilieva, E., Björk-Eriksson, T., Alborn, A.-M., Nordborg, C., Peterson, D. A., & Gage, F. H.
(1998). Neurogenesis in the adult human hippocampus. Nature Medicine, 4(11), 1313–1317. doi:10.1038/3305
37. Kempermann, G., Gage, F. H., Aigner, L., Song, H., Curtis, M. A., Thuret, S., Kuhn, H. G., Jessberger, P. W., Frankland, P. W.,
Cameron, H. A., Gould, E., Hen, R., Abrous, D. N., Toni, N., Schinder, A. F., Zhao, X., Lucassen, P. J., Frisén, J. (2018). Human
Adult Neurogenesis: Evidence and Remaining Questions. Cell Stem Cell, 23(1), 25–30. doi:10.1016/j.stem.2018.04.004
38. Sorrells, S. F., Paredes, M. F., Cebrian-Silla, A., Sandoval, K., Qi, D., Kelley, K. W., James, D., Mayer, S., Chang, J., Auguste, K.
I., Chang, E. F., Gutierrez. A. J., Kreigstein, A. R., Mathern, G. W., Oldham, M. C., Huang, E. J., Garcia-Verdugo, J. M., Yang,
Z., Alvarez-Buylla, A. (2018). Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults.
Nature, 555(7696), 377–381. doi:10.1038/nature25975
39. Boldrini, M., Fulmore, C. A., Tartt, A. N., Simeon, L. R., Pavlova, I., Poposka, V., Rosoklija, G. B., Stankov, A., Arango, V.,
Dwork, A. J., Hen, R., Mann, J. J. (2018). Human Hippocampal Neurogenesis Persists throughout Aging. Cell Stem Cell, 22(4),
589–599.e5. doi:10.1016/j.stem.2018.03.015
40. Germain, J., Bruel-Jungerman, E., Grannec, G., Denis, C., Lepousez, G., Giros, B., Francis, F., Nosten-Bertrand, M.
(2013). Doublecortin Knockout Mice Show Normal Hippocampal-Dependent Memory Despite CA3 Lamination Defects. PLoS
ONE, 8(9), e74992. doi:10.1371/journal.pone.0074992
41. Moreno-Jiménez, E. P., Flor-García, M., Terreros-Roncal, J., Rábano, A., Cafini, F., Pallas-Bazarra, N., Ávila, J., Llorens-
Martín, M. (2019). Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients
with Alzheimer’s disease. Nature Medicine, 25(4), 554–560. doi:10.1038/s41591-019-0375-9
42. Tobin, M. K., Musaraca, K., Disouky, A., Shetti, A., Bheri, A., Honer, W. G., Kim, N., Dawe, R. J., Bennett, D. A., Arfanakis, K.,
Lazarov, O. (2019). Human Hippocampal Neurogenesis Persists in Aged Adults and Alzheimer’s Disease Patients. Cell Stem
Cell, 24(6), 974–982.e3. doi:10.1016/j.stem.2019.05.003
NEURAL STEM CELLS AND NEUROGENESIS

More Related Content

What's hot

Transgenic animals, mice and fish
Transgenic animals, mice and fishTransgenic animals, mice and fish
Transgenic animals, mice and fishKAUSHAL SAHU
 
Environmental regulation of animal development
Environmental regulation of animal developmentEnvironmental regulation of animal development
Environmental regulation of animal developmentMerlyn Denesia
 
Parthenogenesis
ParthenogenesisParthenogenesis
ParthenogenesisZaid Wani
 
PRODUCTION AND MAINTENANCE OF EMBRYONIC STEM CELLS
PRODUCTION AND MAINTENANCE OF EMBRYONIC STEM CELLSPRODUCTION AND MAINTENANCE OF EMBRYONIC STEM CELLS
PRODUCTION AND MAINTENANCE OF EMBRYONIC STEM CELLSANKUR SHARMA
 
3D cell culture engineering
3D cell culture engineering3D cell culture engineering
3D cell culture engineeringN Poorin
 
Organ culture- animal tissue culture
Organ culture- animal tissue cultureOrgan culture- animal tissue culture
Organ culture- animal tissue culturekathantrivedi3
 
Stem Cells in the Treatment of Alzheimer's Disease
Stem Cells in the Treatment of Alzheimer's DiseaseStem Cells in the Treatment of Alzheimer's Disease
Stem Cells in the Treatment of Alzheimer's DiseaseNatasha Delgado
 
Cell counting and viability
Cell counting and viabilityCell counting and viability
Cell counting and viabilityASHIKH SEETHY
 
Animal cell culture & its technique & cyropreservation: A review
Animal cell culture & its technique & cyropreservation: A reviewAnimal cell culture & its technique & cyropreservation: A review
Animal cell culture & its technique & cyropreservation: A reviewankit sharma
 
Cell synchronization
Cell synchronizationCell synchronization
Cell synchronizationKAUSHAL SAHU
 
CELLULAR REPROGRAMMING: Current Technology, Perspectives and Generation of iP...
CELLULAR REPROGRAMMING: Current Technology, Perspectives and Generation of iP...CELLULAR REPROGRAMMING: Current Technology, Perspectives and Generation of iP...
CELLULAR REPROGRAMMING: Current Technology, Perspectives and Generation of iP...Munna Yadav
 
Nervous system injury and regeneration
Nervous system injury and regenerationNervous system injury and regeneration
Nervous system injury and regenerationMunira Shahbuddin
 
Stem cell Therapy in Neurological diseases
Stem cell Therapy in Neurological diseases Stem cell Therapy in Neurological diseases
Stem cell Therapy in Neurological diseases Ibad khan
 
Neural Differentiation
Neural DifferentiationNeural Differentiation
Neural DifferentiationAmir Motmaen
 
What are stem cells? An introduction to different types of stem cells.
What are stem cells? An introduction to different types of stem cells.What are stem cells? An introduction to different types of stem cells.
What are stem cells? An introduction to different types of stem cells.Thermo Fisher Scientific
 
Stem cells and he cure of major diseases by Stem cells.
Stem cells and he cure of major diseases by Stem cells.Stem cells and he cure of major diseases by Stem cells.
Stem cells and he cure of major diseases by Stem cells.Zeeshan Awan
 
Morphogens, induction and cytoplasmic determinants
Morphogens, induction and cytoplasmic determinantsMorphogens, induction and cytoplasmic determinants
Morphogens, induction and cytoplasmic determinantsSakshi Saxena
 

What's hot (20)

Transgenic animals, mice and fish
Transgenic animals, mice and fishTransgenic animals, mice and fish
Transgenic animals, mice and fish
 
Environmental regulation of animal development
Environmental regulation of animal developmentEnvironmental regulation of animal development
Environmental regulation of animal development
 
Stem cells & Neurodegenerative diseases And Some clinical CNS
Stem cells & Neurodegenerative diseases And Some clinical CNSStem cells & Neurodegenerative diseases And Some clinical CNS
Stem cells & Neurodegenerative diseases And Some clinical CNS
 
Parthenogenesis
ParthenogenesisParthenogenesis
Parthenogenesis
 
PRODUCTION AND MAINTENANCE OF EMBRYONIC STEM CELLS
PRODUCTION AND MAINTENANCE OF EMBRYONIC STEM CELLSPRODUCTION AND MAINTENANCE OF EMBRYONIC STEM CELLS
PRODUCTION AND MAINTENANCE OF EMBRYONIC STEM CELLS
 
3D cell culture engineering
3D cell culture engineering3D cell culture engineering
3D cell culture engineering
 
Organ culture- animal tissue culture
Organ culture- animal tissue cultureOrgan culture- animal tissue culture
Organ culture- animal tissue culture
 
Stem Cells in the Treatment of Alzheimer's Disease
Stem Cells in the Treatment of Alzheimer's DiseaseStem Cells in the Treatment of Alzheimer's Disease
Stem Cells in the Treatment of Alzheimer's Disease
 
Cell counting and viability
Cell counting and viabilityCell counting and viability
Cell counting and viability
 
Animal cell culture & its technique & cyropreservation: A review
Animal cell culture & its technique & cyropreservation: A reviewAnimal cell culture & its technique & cyropreservation: A review
Animal cell culture & its technique & cyropreservation: A review
 
Cell synchronization
Cell synchronizationCell synchronization
Cell synchronization
 
CELLULAR REPROGRAMMING: Current Technology, Perspectives and Generation of iP...
CELLULAR REPROGRAMMING: Current Technology, Perspectives and Generation of iP...CELLULAR REPROGRAMMING: Current Technology, Perspectives and Generation of iP...
CELLULAR REPROGRAMMING: Current Technology, Perspectives and Generation of iP...
 
Nervous system injury and regeneration
Nervous system injury and regenerationNervous system injury and regeneration
Nervous system injury and regeneration
 
Stem cell Therapy in Neurological diseases
Stem cell Therapy in Neurological diseases Stem cell Therapy in Neurological diseases
Stem cell Therapy in Neurological diseases
 
Neural Differentiation
Neural DifferentiationNeural Differentiation
Neural Differentiation
 
organogenesis ,vulva formation in Caenorhabditis elegans
 organogenesis ,vulva formation in Caenorhabditis elegans  organogenesis ,vulva formation in Caenorhabditis elegans
organogenesis ,vulva formation in Caenorhabditis elegans
 
What are stem cells? An introduction to different types of stem cells.
What are stem cells? An introduction to different types of stem cells.What are stem cells? An introduction to different types of stem cells.
What are stem cells? An introduction to different types of stem cells.
 
Stem cell therapy
Stem cell therapyStem cell therapy
Stem cell therapy
 
Stem cells and he cure of major diseases by Stem cells.
Stem cells and he cure of major diseases by Stem cells.Stem cells and he cure of major diseases by Stem cells.
Stem cells and he cure of major diseases by Stem cells.
 
Morphogens, induction and cytoplasmic determinants
Morphogens, induction and cytoplasmic determinantsMorphogens, induction and cytoplasmic determinants
Morphogens, induction and cytoplasmic determinants
 

Similar to NEURAL STEM CELLS AND NEUROGENESIS

Pten Deletion in Adult Neural Stem/Progenitor Cells Enhances Constitutive Neu...
Pten Deletion in Adult Neural Stem/Progenitor Cells Enhances Constitutive Neu...Pten Deletion in Adult Neural Stem/Progenitor Cells Enhances Constitutive Neu...
Pten Deletion in Adult Neural Stem/Progenitor Cells Enhances Constitutive Neu...johnohab
 
Neuroscience in the 21st century
Neuroscience in the 21st centuryNeuroscience in the 21st century
Neuroscience in the 21st centurySpringer
 
Glial cells - Neurobiology and Clinical Aspects
Glial cells - Neurobiology and Clinical AspectsGlial cells - Neurobiology and Clinical Aspects
Glial cells - Neurobiology and Clinical AspectsRahul Kumar
 
B978-0-444-63956-1.00002-3.pdf
B978-0-444-63956-1.00002-3.pdfB978-0-444-63956-1.00002-3.pdf
B978-0-444-63956-1.00002-3.pdfsuresh163251
 
Cereb. cortex 2009-knafo-586-92
Cereb. cortex 2009-knafo-586-92Cereb. cortex 2009-knafo-586-92
Cereb. cortex 2009-knafo-586-92shiraknafo
 
Bibliography and abbreviations (in spanish)
Bibliography and abbreviations (in spanish)Bibliography and abbreviations (in spanish)
Bibliography and abbreviations (in spanish)MiriamJimnezMoreno
 
SfN 2015 - Anil Sharma - Genetic tools to study sensory motor circuits FINAL
SfN 2015 - Anil Sharma - Genetic tools to study sensory motor circuits FINALSfN 2015 - Anil Sharma - Genetic tools to study sensory motor circuits FINAL
SfN 2015 - Anil Sharma - Genetic tools to study sensory motor circuits FINALAnil Sharma
 
Stem cell therapy in neurological disorder
Stem cell therapy in neurological disorder  Stem cell therapy in neurological disorder
Stem cell therapy in neurological disorder NeurologyKota
 
Stem cell primordial_food_excerpt
Stem cell primordial_food_excerptStem cell primordial_food_excerpt
Stem cell primordial_food_excerptbestwebsite2008
 
Stem cell primordial_food_excerpt
Stem cell primordial_food_excerptStem cell primordial_food_excerpt
Stem cell primordial_food_excerptbestwebsite2008
 
An update of wallace´s zoogeographic regions of the world
An update of wallace´s zoogeographic regions of the worldAn update of wallace´s zoogeographic regions of the world
An update of wallace´s zoogeographic regions of the worldCarlos Sáenz
 
Abhishek Das_20131056_BIO334_Adult Neurogenesis_Revised
Abhishek Das_20131056_BIO334_Adult Neurogenesis_RevisedAbhishek Das_20131056_BIO334_Adult Neurogenesis_Revised
Abhishek Das_20131056_BIO334_Adult Neurogenesis_RevisedAbhishek Das
 
Adult Neurogenesis and it's Role in Alzheimer's
Adult Neurogenesis and it's Role in Alzheimer'sAdult Neurogenesis and it's Role in Alzheimer's
Adult Neurogenesis and it's Role in Alzheimer'sAbhishek Das
 
Neural crest cell migration-Cell tracing techniques.
Neural crest cell migration-Cell tracing techniques.Neural crest cell migration-Cell tracing techniques.
Neural crest cell migration-Cell tracing techniques.sanjeev jain
 
Neural Stem Cell Differentiation
Neural  Stem  Cell  DifferentiationNeural  Stem  Cell  Differentiation
Neural Stem Cell Differentiationuvperson
 
Lecture1: Molecular Neuroscience Across Species
Lecture1: Molecular Neuroscience Across SpeciesLecture1: Molecular Neuroscience Across Species
Lecture1: Molecular Neuroscience Across SpeciesKathleen Allyson Harrison
 

Similar to NEURAL STEM CELLS AND NEUROGENESIS (20)

Pten Deletion in Adult Neural Stem/Progenitor Cells Enhances Constitutive Neu...
Pten Deletion in Adult Neural Stem/Progenitor Cells Enhances Constitutive Neu...Pten Deletion in Adult Neural Stem/Progenitor Cells Enhances Constitutive Neu...
Pten Deletion in Adult Neural Stem/Progenitor Cells Enhances Constitutive Neu...
 
Neuroscience in the 21st century
Neuroscience in the 21st centuryNeuroscience in the 21st century
Neuroscience in the 21st century
 
Glial cells - Neurobiology and Clinical Aspects
Glial cells - Neurobiology and Clinical AspectsGlial cells - Neurobiology and Clinical Aspects
Glial cells - Neurobiology and Clinical Aspects
 
B978-0-444-63956-1.00002-3.pdf
B978-0-444-63956-1.00002-3.pdfB978-0-444-63956-1.00002-3.pdf
B978-0-444-63956-1.00002-3.pdf
 
Cereb. cortex 2009-knafo-586-92
Cereb. cortex 2009-knafo-586-92Cereb. cortex 2009-knafo-586-92
Cereb. cortex 2009-knafo-586-92
 
Bibliography and abbreviations (in spanish)
Bibliography and abbreviations (in spanish)Bibliography and abbreviations (in spanish)
Bibliography and abbreviations (in spanish)
 
SfN 2015 - Anil Sharma - Genetic tools to study sensory motor circuits FINAL
SfN 2015 - Anil Sharma - Genetic tools to study sensory motor circuits FINALSfN 2015 - Anil Sharma - Genetic tools to study sensory motor circuits FINAL
SfN 2015 - Anil Sharma - Genetic tools to study sensory motor circuits FINAL
 
PNAS-2015-Sun-9484-9
PNAS-2015-Sun-9484-9PNAS-2015-Sun-9484-9
PNAS-2015-Sun-9484-9
 
Stem cell therapy in neurological disorder
Stem cell therapy in neurological disorder  Stem cell therapy in neurological disorder
Stem cell therapy in neurological disorder
 
Stem cell primordial_food_excerpt
Stem cell primordial_food_excerptStem cell primordial_food_excerpt
Stem cell primordial_food_excerpt
 
Stem cell primordial_food_excerpt
Stem cell primordial_food_excerptStem cell primordial_food_excerpt
Stem cell primordial_food_excerpt
 
PNAS-2013-Nikolakopoulou-8714-9
PNAS-2013-Nikolakopoulou-8714-9PNAS-2013-Nikolakopoulou-8714-9
PNAS-2013-Nikolakopoulou-8714-9
 
An update of wallace´s zoogeographic regions of the world
An update of wallace´s zoogeographic regions of the worldAn update of wallace´s zoogeographic regions of the world
An update of wallace´s zoogeographic regions of the world
 
Abhishek Das_20131056_BIO334_Adult Neurogenesis_Revised
Abhishek Das_20131056_BIO334_Adult Neurogenesis_RevisedAbhishek Das_20131056_BIO334_Adult Neurogenesis_Revised
Abhishek Das_20131056_BIO334_Adult Neurogenesis_Revised
 
Adult Neurogenesis and it's Role in Alzheimer's
Adult Neurogenesis and it's Role in Alzheimer'sAdult Neurogenesis and it's Role in Alzheimer's
Adult Neurogenesis and it's Role in Alzheimer's
 
Merkel cells
Merkel cellsMerkel cells
Merkel cells
 
Neural crest cell migration-Cell tracing techniques.
Neural crest cell migration-Cell tracing techniques.Neural crest cell migration-Cell tracing techniques.
Neural crest cell migration-Cell tracing techniques.
 
Aple ms rapid proof
Aple ms rapid proofAple ms rapid proof
Aple ms rapid proof
 
Neural Stem Cell Differentiation
Neural  Stem  Cell  DifferentiationNeural  Stem  Cell  Differentiation
Neural Stem Cell Differentiation
 
Lecture1: Molecular Neuroscience Across Species
Lecture1: Molecular Neuroscience Across SpeciesLecture1: Molecular Neuroscience Across Species
Lecture1: Molecular Neuroscience Across Species
 

Recently uploaded

CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIACURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIADr. TATHAGAT KHOBRAGADE
 
Cyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptxCyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptxCherry
 
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...Monika Rani
 
Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.Cherry
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsSérgio Sacani
 
Terpineol and it's characterization pptx
Terpineol and it's characterization pptxTerpineol and it's characterization pptx
Terpineol and it's characterization pptxMuhammadRazzaq31
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bSérgio Sacani
 
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot GirlsKanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot GirlsDeepika Singh
 
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRLGwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRLkantirani197
 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Cherry
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceAlex Henderson
 
Genome organization in virus,bacteria and eukaryotes.pptx
Genome organization in virus,bacteria and eukaryotes.pptxGenome organization in virus,bacteria and eukaryotes.pptx
Genome organization in virus,bacteria and eukaryotes.pptxCherry
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.Cherry
 
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body Areesha Ahmad
 
Cot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNACot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNACherry
 
Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspectsmuralinath2
 
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptxTHE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptxANSARKHAN96
 
Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptxCherry
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Cherry
 

Recently uploaded (20)

CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIACURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
 
Cyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptxCyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptx
 
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
 
Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
Terpineol and it's characterization pptx
Terpineol and it's characterization pptxTerpineol and it's characterization pptx
Terpineol and it's characterization pptx
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot GirlsKanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
 
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRLGwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
 
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICEPATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical Science
 
Genome organization in virus,bacteria and eukaryotes.pptx
Genome organization in virus,bacteria and eukaryotes.pptxGenome organization in virus,bacteria and eukaryotes.pptx
Genome organization in virus,bacteria and eukaryotes.pptx
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.
 
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
 
Cot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNACot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNA
 
Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspects
 
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptxTHE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
 
Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptx
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
 

NEURAL STEM CELLS AND NEUROGENESIS

  • 1.
  • 2. WHAT ARE NEURAL STEM CELLS? Multipotent cells with the ability to self-renew and proliferate in order to give rise to progenycells
  • 3.
  • 4. HISTORY OF NEURAL STEM CELLS THE NEURON DOCTRINE – each neuron is an individual entity that forms the basic unit of neural circuitry. This was presented by Santiago Ramón y Cajal in 1894. “Intheadult…thenervepathsaresomething fixed,ended,and immutable.Everythingmay die,nothingmayberegenerated.” The first evidence of adult brain neurogenesis came from JOSEPH ALTMAN in the 1960s from his studies in rats.
  • 5. INITIAL WORK ISOLATION Initial works in 1958 (Messier and Leblond) and 1961 (Smart) employed the use of tritiated thymidine for labeling brain cells of mice  radioactivity in the subventricular zone (SVZ) of the brain, the hippocampus, cerebral cortex and fornix . In 1989, DR SALLY TEMPLE was able to isolate neural stem cells from rodent brain and culture them in vitro.
  • 6. THE ROAD MAP – HISTORICAL PERSPECTIVE EXPERIMENT BY YEAR FINDINGS LeBlond and Smart 1961 Tritiated thymidine labeling of cells- Discovered neuroglial cells in mouse brain Altman and Das 1965, 1967 Neurogenesis in adult brain of rats and guinea pigs, respectively Kaplan and Hinds 1977 Adult-born neurons in dentate gyrus and olfactory bulb coupling tritiated thymidine and electron microscopy Goldman and Nottebohm 1983 Neurogenesis in song birds (canaries) Rakic 1985 Neurogenesis in monkeys happened only in early age and not in adults Reynolds and Weiss 1992 Used certain growth factors Eriksson et al. 1998 Neurogenesis in adult human hippocampus in cancer patients Kornack and Rakic 1999 Re-examined neurogenesis in macaque monkey and confirmed neurogenesis in the DG Sorrells et al. 2018 Neurogenesis occurs only in the young, and not in adults Boldrini et al. 2018 Neurogenesis occurs in adults, including old individuals
  • 7. ROSTRAL MIGRATORY STREAM Experiment by Altman in rats showed radially-oriented streaks of cells in apparent migration. They were most prominent around the rostra1 wall of the anterior horn of the lateral ventricle and connected the lateral and olfactory ventricles. This L-shaped structure, which first moves vertically and then horizontally, penetrates the laminated olfactory bulb and is known as Rostral Migratory Stream. Smart in his experiment had established that the subependymal layer extended in mice from the anterior wall of the lateral ventricle rostrally into the olfactory bulb. RMS
  • 8. MARKERS Some researchers theorize that the SGZ is a conducive environment for the proliferation of NSCs into granule cells, from which they migrate to the granule cell layer. Quiescent radial glia-like type I neural progenitor cells (QNPs) Type II Intermediate neural progenitor cells (INPs) Type III Intermediate neural progenitor cells (INPs) Immature neurons Mature granule neurons that integrate into the hippocampal circuitry SOXBLBP 2, NESTIN, Ki67, NESTIN Lose expression of neural stem cell markers and gain expression of neuronal markers DCX, PSA-NCAM NeuN, β-III TUBB, CALBINDIN
  • 9. MARKERS OF NEURAL STEM CELLS Exclusively found in vertebrates Belongs to the family of Intermediate Filament proteins Role : Self renewal of neural stem cells NESTIN Green Fluorescent Protein is an excellent marker of neural stem cells, so when the Nes/GFP screening was done, it was seen that the Nes –/– individuals had very low expression of GFP indicative of the fact that absence of Nestin caused neural stem cells to differentiate
  • 10. SOX2  Transcription factor  Role: Important for maintenance of neural stem cells Sox2 helps in hippocampal development as well. When Sox2 was deleted in mice and postnatal observations were done. This was observed :
  • 11. The defective hippocampal development was seen to mimic the mutation of Shh or of its receptor Smo. The absence of Shh causes an arrest of postnatal hippocampal development which closely resembles that of Sox2 knockout mouse, strongly suggesting that Sox2 controls hippocampal development via regulation of Shh.
  • 12. β- CATENIN Role: Determines neural stem cell state Wnt signaling is a conserved cell signaling system that is thought to play multiple roles in NSC self- renewal, neurogenesis, embryonic patterning, and homeostatic tissue regeneration in the developing and adult brain. CELL PROLIFERATION CELL DIFFERENTIATION
  • 13. OTHER NEURAL STEM CELL MARKERS GFAP – marks astrocytes NeuN, βIII-tubulin – mark neurons GalC – marks oligodendrocytes DIFFERENTIATION MARKERS Musashi-1, Musashi-2, Pax3, Pax6, Hes1, Hes5, CD133, CD15, Vimentin
  • 14. CONTROVERSY Sorrells et al. found a sharp drop in neurogenesis as the human brain ages Boldrini et al. find persistent adult neurogenesis in humans into the eighth decade of life
  • 15. SORRELLS Maps of Ki-67+ (green) cells in the DG from samples of individuals that were between 22 gestational weeks and 35 years of age; GCL in blue. Ki-67+SOX1+ and Ki- 67+SOX2+ cells (arrows) are distributed across the hilus and GCL and the number of double-positive cells decreases between 22 gestational weeks and 1 year of age.
  • 16. DCX+PSA-NCAM+ cells in the DG from birth to the age of 77 showing that the number of young neurons declines in the human DG
  • 17. BOLDRINI (A and B) Co-expression of Sox2 and nestin in QNPs. (E) GFAP+ cells with apical process (white arrow) nestin+ INP (yellow arrow). (F) Nestin/Ki-67+ INP.
  • 18. (M) Sox2+ cell decline in anterior-mid DG with aging. (N and O) Nestin+ and Ki-67+ cells do not decline with older age in anterior, mid, or posterior DG.
  • 19. (A) PSA-NCAM and DCX expression in an immature neuron between subgranular zone (SGZ) and granule cell layer (GCL), two PSA-NCAM+/DCX cells, and 4’,6- diamidino-2-phenylindole (DAPI)+ nuclei. (G–H) Stable DCX+ immature neurons, NeuN+ mature granule neurons
  • 20. ISSUES RAISED Post Mortem Delay - PMD. Boldrini’s study sample size age group DCX as a marker? Sorrells used patients who had epilepsy Use of 10% formalin Gerd Kempermann
  • 21. There have been studies conducted after this controversy as well (in 2019) that lean towards Boldrini’s conclusion that neurogenesis does persist through an older age in healthy individuals as well as in patients suffering from mild cognitive impairments (MCI) and Alzheimer’s Disease. Tobin et al. observe persistent hippocampal neurogenesis in aging brains with no cognitive impairments, mild cognitive impairments, and Alzheimer’s disease. Elena P. Moreno-Jiménez et al. observe persistence of adult hippocampal neurons during both physiological and pathological aging in humans
  • 22. REFERENCES 1. Smart, I., & Leblond, C. P. (1961). Evidence for division and transformations of neuroglia cells in the mouse brain, as derived from radioautography after injection of thymidine-H3. The Journal of Comparative Neurology, 116(3), 349–367. doi:10.1002/cne.901160307 2. Temple, S. (1989). Division and differentiation of isolated CNS blast cells in microculture. Nature, 340(6233), 471–473. doi:10.1038/340471a0 3. Park, D., Xiang, A. P., Mao, F. F., Zhang, L., Di, C. G., Liu, X. M., Shao, Y., Ma, B. F., Lee, J. H., Ha, K. S., Walton, N., & Lahn, B. T. (2010). Nestin is required for the proper self-renewal of neural stem cells. Stem cells (Dayton, Ohio), 28(12), 2162–2171. https://doi.org/10.1002/stem.541 4. Gilyarov, A. V. (2008). Nestin in central nervous system cells. Neuroscience and Behavioral Physiology, 38(2), 165–169. doi:10.1007/s11055-008-0025-z 5. Neradil, J., & Veselska, R. (2015). Nestin as a marker of cancer stem cells. Cancer Science, 106(7), 803– 811. doi:10.1111/cas.12691 6. Thiel, G. (2013). How Sox2 maintains neural stem cell identity. Biochemical Journal, 450(3), e1– e2. doi:10.1042/bj20130176 7. Favaro, R., Valotta, M., Ferri, A. L. M., Latorre, E., Mariani, J., Giachino, C., Lancini, C., Tosetti, V., Ottolenghi, S., Taylor, V., Nicolis, S. K. (2009). Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nature Neuroscience, 12(10), 1248–1256. doi:10.1038/nn.2397 8. Okano, H., Kawahara, H., Toriya, M., Nakao, K., Shibata, S., & Imai, T. (2005). Function of RNA-binding protein Musashi-1 in stem cells. Experimental Cell Research, 306(2), 349– 356. doi:10.1016/j.yexcr.2005.02.021 9. Kaneko, Y., Sakakibara, S., Imai, T., Suzuki, A., Nakamura, Y., Sawamoto, K., Ogawa, Y., Toyama, Y., Miyata, T., Okano, H. (2000). Musashi1: An Evolutionally Conserved Marker for CNS Progenitor Cells Including Neural Stem Cells. Developmental Neuroscience, 22(1-2), 139–153. doi:10.1159/000017435 10. Mizrak, D., Brittan, M., & Alison, M. (2007). CD133: molecule of the moment. The Journal of Pathology, 214(1), 3–9. doi:10.1002/path.2283
  • 23. 11. Pfenninger, C. V., Roschupkina, T., Hertwig, F., Kottwitz, D., Englund, E., Bengzon, J., Jacobsen, S. E., Nuber, U. A. (2007). CD133 Is Not Present on Neurogenic Astrocytes in the Adult Subventricular Zone, but on Embryonic Neural Stem Cells, Ependymal Cells, and Glioblastoma Cells. Cancer Research, 67(12), 5727–5736. doi:10.1158/0008-5472.can-07-0183 12. Sun, Y., Kong, W., Falk, A., Hu, J., Zhou, L., Pollard, S., & Smith, A. (2009). CD133 (Prominin) Negative Human Neural Stem Cells Are Clonogenic and Tripotent. PLoS ONE, 4(5), e5498. doi:10.1371/journal.pone.0005498 13. Kageyama, R., Shimojo, H., & Ohtsuka, T. (2018). Dynamic control of neural stem cells by bHLH factors. Neuroscience Research. doi:10.1016/j.neures.2018.09.005 14. Kim, E. J., Ables, J. L., Dickel, L. K., Eisch, A. J., & Johnson, J. E. (2011). Ascl1 (Mash1) Defines Cells with Long-Term Neurogenic Potential in Subgranular and Subventricular Zones in Adult Mouse Brain. PLoS ONE, 6(3), e18472. doi:10.1371/journal.pone.0018472 15. Bengoa-Vergniory, N., & Kypta, R. M. (2015). Canonical and noncanonical Wnt signaling in neural stem/progenitor cells. Cellular and Molecular Life Sciences, 72(21), 4157–4172. doi:10.1007/s00018-015-2028-6 16. Israsena, N., Hu, M., Fu, W., Kan, L., & Kessler, J. A. (2004). The presence of FGF2 signaling determines whether β-catenin exerts effects on proliferation or neuronal differentiation of neural stem cells. Developmental Biology, 268(1), 220– 231. doi:10.1016/j.ydbio.2003.12.024 17. Ohtsuka, T., Sakamoto, M., Guillemot, F., & Kageyama, R. (2001). Roles of the Basic Helix-Loop-Helix GenesHes1andHes5in Expansion of Neural Stem Cells of the Developing Brain. Journal of Biological Chemistry, 276(32), 30467– 30474. doi:10.1074/jbc.m102420200 18. Cao, S., Du, J., Lv, Y., Lin, H., Mao, Z., Xu, M., Xu, M., Liu, M., Liu, Y. (2017). PAX3 inhibits β-Tubulin-III expression and neuronal differentiation of neural stem cell. Biochemical and Biophysical Research Communications, 485(2), 307- 311. doi:10.1016/j.bbrc.2017.02.086 19. Liu, Y., Zhu, H., Liu, M., Du, J., Qian, Y., Wang, Y., Ding, F., Gu, X. (2011). Downregulation of Pax3 expression correlates with acquired GFAP expression during NSC differentiation towards astrocytes. FEBS Letters, 585(7), 1014– 1020. doi:10.1016/j.febslet.2011.02.034 20. Gómez-López, S., Wiskow, O., Favaro, R., Nicolis, S. K., Price, D. J., Pollard, S. M., & Smith, A. (2011). Sox2 and Pax6 maintain the proliferative and developmental potential of gliogenic neural stem cells In vitro. Glia, 59(11), 1588– 1599. doi:10.1002/glia.21201
  • 24. 21. Lauder, J. M., & Krebs, H. (1978). Serotonin as a Differentiation Signal in Early Neurogenesis. Developmental Neuroscience, 1(1), 15–30. doi:10.1159/000112549 22. Gusel'nikova VV, Korzhevskiy DE. NeuN As a Neuronal Nuclear Antigen and Neuron Differentiation Marker. Acta Naturae. 2015 Apr-Jun;7(2):42-7. PMID: 26085943; PMCID: PMC4463411 23. Yang Z, Wang KK. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 2015 Jun;38(6):364-74 24. Tang, Y., Yu, P., & Cheng, L. (2017). Current progress in the derivation and therapeutic application of neural stem cells. Cell Death and Disease, 8(10), e3108. doi:10.1038/cddis.2017.504 25. Gage, F. H., & Temple, S. (2013). Neural Stem Cells: Generating and Regenerating the Brain. Neuron, 80(3), 588–601. doi:10.1016/j.neuron.2013.10.037 26. Altman, J., & Das, G. D. (1965). Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. The Journal of Comparative Neurology, 124(3), 319– 335. doi:10.1002/cne.901240303 27. ALTMAN, J., & DAS, G. D. (1967). Postnatal Neurogenesis in the Guinea-pig. Nature, 214(5093), 1098–1101. doi:10.1038/2141098a0 28. Altman, J. (1969). Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. The Journal of Comparative Neurology, 137(4), 433– 457. doi:10.1002/cne.901370404 29. Morest, D. K. (1970). The pattern of neurogenesis in the retina of the rat. Zeitschrift F�r Anatomie Und Entwicklungsgeschichte, 131(1), 45–67. doi:10.1007/bf00518815 30. Kaplan, M., & Hinds, J. (1977). Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science, 197(4308), 1092–1094. doi:10.1126/science.887941
  • 25. 31. Graziadei, P. P. C., & Graziadei, G. A. M. (1979). Neurogenesis and neuron regeneration in the olfactory system of mammals. I. Morphological aspects of differentiation and structural organization of the olfactory sensory neurons. Journal of Neurocytology, 8(1), 1–18. doi:10.1007/bf01206454 32. Goldman, S. A., & Nottebohm, F. (1983). Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proceedings of the National Academy of Sciences, 80(8), 2390–2394. doi:10.1073/pnas.80.8.2390 33. Rakic, P. (1985). Limits of neurogenesis in primates. Science, 227(4690), 1054–1056. doi:10.1126/science.3975601 34. Reynolds, B., & Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 255(5052), 1707–1710. doi:10.1126/science.1553558 35. Kornack, D. R., & Rakic, P. (1999). Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proceedings of the National Academy of Sciences, 96(10), 5768–5773. doi:10.1073/pnas.96.10.5768 36. Eriksson, P. S., Perfilieva, E., Björk-Eriksson, T., Alborn, A.-M., Nordborg, C., Peterson, D. A., & Gage, F. H. (1998). Neurogenesis in the adult human hippocampus. Nature Medicine, 4(11), 1313–1317. doi:10.1038/3305 37. Kempermann, G., Gage, F. H., Aigner, L., Song, H., Curtis, M. A., Thuret, S., Kuhn, H. G., Jessberger, P. W., Frankland, P. W., Cameron, H. A., Gould, E., Hen, R., Abrous, D. N., Toni, N., Schinder, A. F., Zhao, X., Lucassen, P. J., Frisén, J. (2018). Human Adult Neurogenesis: Evidence and Remaining Questions. Cell Stem Cell, 23(1), 25–30. doi:10.1016/j.stem.2018.04.004 38. Sorrells, S. F., Paredes, M. F., Cebrian-Silla, A., Sandoval, K., Qi, D., Kelley, K. W., James, D., Mayer, S., Chang, J., Auguste, K. I., Chang, E. F., Gutierrez. A. J., Kreigstein, A. R., Mathern, G. W., Oldham, M. C., Huang, E. J., Garcia-Verdugo, J. M., Yang, Z., Alvarez-Buylla, A. (2018). Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature, 555(7696), 377–381. doi:10.1038/nature25975 39. Boldrini, M., Fulmore, C. A., Tartt, A. N., Simeon, L. R., Pavlova, I., Poposka, V., Rosoklija, G. B., Stankov, A., Arango, V., Dwork, A. J., Hen, R., Mann, J. J. (2018). Human Hippocampal Neurogenesis Persists throughout Aging. Cell Stem Cell, 22(4), 589–599.e5. doi:10.1016/j.stem.2018.03.015 40. Germain, J., Bruel-Jungerman, E., Grannec, G., Denis, C., Lepousez, G., Giros, B., Francis, F., Nosten-Bertrand, M. (2013). Doublecortin Knockout Mice Show Normal Hippocampal-Dependent Memory Despite CA3 Lamination Defects. PLoS ONE, 8(9), e74992. doi:10.1371/journal.pone.0074992 41. Moreno-Jiménez, E. P., Flor-García, M., Terreros-Roncal, J., Rábano, A., Cafini, F., Pallas-Bazarra, N., Ávila, J., Llorens- Martín, M. (2019). Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nature Medicine, 25(4), 554–560. doi:10.1038/s41591-019-0375-9 42. Tobin, M. K., Musaraca, K., Disouky, A., Shetti, A., Bheri, A., Honer, W. G., Kim, N., Dawe, R. J., Bennett, D. A., Arfanakis, K., Lazarov, O. (2019). Human Hippocampal Neurogenesis Persists in Aged Adults and Alzheimer’s Disease Patients. Cell Stem Cell, 24(6), 974–982.e3. doi:10.1016/j.stem.2019.05.003