SlideShare a Scribd company logo
National Research Data Archive 
MIDAS: development decisions 
and usage peculiarities 
Saulius Maskeliūnas 
Vilnius University Institute of Mathematics and Informatics 
Akademijos str. 4, Vilnius LT-08663, Lithuania 
.
MII 2 
Content 
1. Introductory facts about 
National Research Data Archive (MIDAS) project 
2. Implementation aims and principles of MIDAS 
3. Planned MIDAS outcomes and peculiarities 
4. MIDAS data mining tool (DAMIS) 
5. Conclusions 
6. Demonstration of MIDAS 
7. Demonstration of DAMIS
MII 3 
1. Introductory facts about 
MIDAS project (1) 
• Project Title: National Open Access Research 
Data Archive (LT: Nacionalinis atviros prieigos 
Mokslo Informacijos Duomenų Archyvas, MIDAS) 
• Lead institution: Vilnius University www.vu.lt 
• Project partner: Vilnius University Hospital 
Santariškių Klinikos (Santariškės Clinics) santa.lt 
• Project participants: 13 institutions of 
science and studies, and medical institutions
MII 4 
1. Introductory facts about 
MIDAS project (2) 
• Funded by: EU Structural Funds and 
national budget 
• Project budget: ~ € 4.34M (i.e., almost 15M LTL) 
• Duration: 40 months (start date: January 1, 2012 , 
end date: June 30, 2014  April 30, 2015) 
• Current status: 
– technical infrastructure: not installed yet; 
– software development: beginning of 2nd iteration.
MII 5 
2. Implementation aims 
and principles of MIDAS 
MIDAS implementation purpose 
• to establish the infrastructure that enables 
collection, organizing and storage of empirical 
and research data (with corresponding metadata), 
ensuring free, convenient, interactive search, 
access and analysis of data.
MII 6 
Prospective MIDAS users 
• Researchers, lecturers, professors, students; 
• Science and studies institutions 
[and/or their representatives]; 
• Institutions which present research data 
(e.g., hospitals), 
• Research and development (R&D) enterprises; 
• Public administration institutions 
which use R&D statistical data; 
• other interested physical and judicial persons.
MII 7 
Development principles 
• privacy and security 
(i.e., information confidentiality, 
integrity and non-repudiation) 
• usability 
• accessibility 
(functioning 24 hours per day, 7 days per week) 
• extensibility (i.e., software architecture scaling 
in cases of incorporation of additional hardware)
MII 8 
MIDAS compatibility 
• MIDAS archive will be based on usage of open 
code software, XML format and other open 
metadata, bibliographic, information retrieval 
standards (CERIF, CERIF for Datasets, 
CIF, DICOM, Dublin Core, MARC21, 
ISO/IEC 11179-1:2004, OAI-PMH, etc.). 
• That will ensure compatibility with other 
information systems, data archives and registries 
in Lithuania and internationally 
(e.g., Data Citation Index of Thomson Reuters 
http://thomsonreuters.com/data-citation-index/ ).
MII 9 
Integration with other 
data archives and registers 
• Lithuanian Academic E-Library eLABa www.elaba.lt 
• Lithuanian Data Archive for Social Sciences and 
Humanities LiDA www.lidata.eu/en 
• Lithuanian Networked Digital Library of Theses 
and Dissertations Lit-ETD etd.elaba.lt 
• National Medical Picture Archiving and Information 
Exchange System MedVAIS 
http://www.epractice.eu/en/news/5364871 
• etc.
MII 10 
3. Planned MIDAS 
outcomes and peculiarities 
MIDAS outcomes (1) 
• The infrastructure 
that enables collection, organizing and storage 
of empirical and research data 
(with corresponding metadata), 
ensuring free, convenient, interactive search, 
access and analysis of data;
MII 11 
MIDAS outcomes (2) 
• National united research data archive 
with analytical software tools; 
• Infrastructure for collection and transferring of 
biomedical research data, consisting of DICOM 
(for collecting data from medical equipment), 
ECG (for collecting electrical cardiogram data 
from medical devices), content management, data 
depersonalisation, and data archiving modules; 
• Public interactive e-service 
“Search, Delivery and Analysis of Research Data”.
MII 12 
MIDAS implementation advantages 
• Guaranteed safety and 
effective sharing of research data 
• Increased quality of research outputs 
• Preventing duplication of effort in 
research data collection 
• Increased variety of research outputs
4. Data mining tool DAMIS 
(slides by Olga Kurasova <......................................> )
Functionalities of DAMIS 
• DAMIS is a tool for analysis of the MIDAS data; 
• The following data mining methods are 
implemented: 
• preprocessing (cleaning, filtering, splitting, 
transposing, norming, feature selecting); 
• statistical primitives (min, max, mean, standard 
deviation, median); 
• dimensionality reduction (multidimensional data 
visualization); 
• classification and clustering.
Functionalities of DAMIS 
• DAMIS is a web-based system http://dev.damis.lt 
(user name/password: demo/demo , 1234/1234 ); 
• The web interface does not require any software 
installation; a web browser is enough for its usage; 
• There is a possibility to choose 
high performance computing resources 
(VU MII cluster – VU MIF supercomputer); 
• The usage is based on creation of scientific workflows; 
• The results obtained can be saved in MIDAS and 
in a user computer.
A sample of multidimensional data 
(breast cancer data) 
C 
5 1 1 1 2 1 3 1 1 b 
5 4 4 5 7 10 3 2 1 b 
3 1 1 1 2 2 3 1 1 b 
6 8 8 1 3 4 3 7 1 b 
4 1 1 3 2 1 3 1 1 b 
1 1 1 1 2 10 3 1 1 b 
2 1 2 1 2 1 3 1 1 b 
2 1 1 1 2 1 1 1 5 b 
4 2 1 1 2 1 2 1 1 b 
... ... ... ... ... ... ... ... ... ... ... 
8 10 10 8 7 10 9 7 1 m 
5 3 3 3 2 3 4 4 1 m 
8 7 5 10 7 9 5 5 4 m 
7 4 6 4 6 1 4 3 1 m 
10 7 7 6 4 10 4 1 2 m 
7 3 2 10 5 10 5 4 4 m 
10 5 5 3 6 7 7 10 1 m 
... ... ... ... ... ... ... ... ... ... ... 
4 8 8 5 4 5 10 4 1 m
DAMIS GUI
Data upload
Data preprocessing
Experiments
Statistical primitives
Dimensionality reduction
Data classification and clustering
Matrix view of Iris after 
dimensionality reduction by PCA
Iris graphical representation
MII 26 
5. Conclusions (1) 
• MIDAS will provide virtual services for 
researchers and other participants in research and 
education that can lead to more efficient, 
effective and higher quality research; 
• Users will have the possibilities to: 
– register, find and cite research data, 
– search for and use other infrastructures and 
tools (which provide data archiving services), 
– share or integrate data and tools to other 
science and studies infrastructures;
MII 27 
5. Conclusions (2) 
• National Research Data Archive MIDAS 
will increase research cooperation possibilities, 
because of simpler, 
more convenient, 
unified, 
advanced possibilities of 
research data collection, 
analysis, 
application and 
sharing.
MII 28 
6. Demonstration of MIDAS 
http://midas.insoft.lt:8888/web/ 
User name / password: 
101/101
MII 29 
7. Demonstration of DAMIS 
http://dev.damis.lt 
User name / password: 
demo/demo
Thanks for Your Attention ! 
Questions ?...

More Related Content

What's hot

Data management planning – what it is and how to do it
Data management planning – what it is and how to do itData management planning – what it is and how to do it
Data management planning – what it is and how to do it
ariadnenetwork
 
DataCite and its DOI infrastructure - IASSIST 2013
DataCite and its DOI infrastructure - IASSIST 2013DataCite and its DOI infrastructure - IASSIST 2013
DataCite and its DOI infrastructure - IASSIST 2013
Frauke Ziedorn
 
Storrs HPC Overview - May 2017
Storrs HPC Overview - May 2017Storrs HPC Overview - May 2017
Storrs HPC Overview - May 2017
Ed S
 
PEER End of Project Report
PEER End of Project ReportPEER End of Project Report
PEER End of Project Report
EDINA, University of Edinburgh
 
Delivering biodiversity knowledge in the information age
Delivering biodiversity knowledge in the information ageDelivering biodiversity knowledge in the information age
Delivering biodiversity knowledge in the information age
Vince Smith
 
What is an archaeological research infrastructure and why do we need it? Aims...
What is an archaeological research infrastructure and why do we need it? Aims...What is an archaeological research infrastructure and why do we need it? Aims...
What is an archaeological research infrastructure and why do we need it? Aims...
ariadnenetwork
 
Elab 16 5-13-re3data-scholze-final
Elab 16 5-13-re3data-scholze-finalElab 16 5-13-re3data-scholze-final
Elab 16 5-13-re3data-scholze-final
Karlsruhe Institute of Technology (KIT)
 
Scholze liber 2015-06-25_final
Scholze liber 2015-06-25_finalScholze liber 2015-06-25_final
Scholze liber 2015-06-25_final
Karlsruhe Institute of Technology (KIT)
 
re3data.org presented at 3rd RDA Plenary
re3data.org presented at 3rd RDA Plenary re3data.org presented at 3rd RDA Plenary
re3data.org presented at 3rd RDA Plenary
Paul Vierkant
 
Making Research Data Repositories Visible – The re3data.org Registry
Making Research Data Repositories Visible – The re3data.org RegistryMaking Research Data Repositories Visible – The re3data.org Registry
Making Research Data Repositories Visible – The re3data.org Registry
Heinz Pampel
 
Supporting Research Data Management in UK Universities: the Jisc Managing Res...
Supporting Research Data Management in UK Universities: the Jisc Managing Res...Supporting Research Data Management in UK Universities: the Jisc Managing Res...
Supporting Research Data Management in UK Universities: the Jisc Managing Res...
L Molloy
 
Research Data Services @ Edinburgh: MANTRA & Edinburgh DataShare
Research Data Services @ Edinburgh: MANTRA & Edinburgh DataShareResearch Data Services @ Edinburgh: MANTRA & Edinburgh DataShare
Research Data Services @ Edinburgh: MANTRA & Edinburgh DataShare
Historic Environment Scotland
 
Developing Research Data Management Policy and Services
Developing Research Data Management Policy and ServicesDeveloping Research Data Management Policy and Services
Developing Research Data Management Policy and Services
Robin Rice
 
Six Use Cases for Edinburgh DataShare
Six Use Cases for Edinburgh DataShareSix Use Cases for Edinburgh DataShare
Six Use Cases for Edinburgh DataShare
Robin Rice
 
re3data.org – a Registry of Research Data Repositories
re3data.org – a Registry of Research Data Repositoriesre3data.org – a Registry of Research Data Repositories
re3data.org – a Registry of Research Data Repositories
Heinz Pampel
 
The Future is All Mine
The Future is All MineThe Future is All Mine
The Future is All Mine
openminted_eu
 
Forschungsdaten-Repositorien: Informationsinfrastrukturen für nachnutzbare F...
Forschungsdaten-Repositorien: Informationsinfrastrukturen für nachnutzbare F...Forschungsdaten-Repositorien: Informationsinfrastrukturen für nachnutzbare F...
Forschungsdaten-Repositorien: Informationsinfrastrukturen für nachnutzbare F...
Heinz Pampel
 
University of Edinburgh RDM Training: MANTRA & beyond
University of Edinburgh RDM Training: MANTRA & beyondUniversity of Edinburgh RDM Training: MANTRA & beyond
University of Edinburgh RDM Training: MANTRA & beyond
Robin Rice
 

What's hot (18)

Data management planning – what it is and how to do it
Data management planning – what it is and how to do itData management planning – what it is and how to do it
Data management planning – what it is and how to do it
 
DataCite and its DOI infrastructure - IASSIST 2013
DataCite and its DOI infrastructure - IASSIST 2013DataCite and its DOI infrastructure - IASSIST 2013
DataCite and its DOI infrastructure - IASSIST 2013
 
Storrs HPC Overview - May 2017
Storrs HPC Overview - May 2017Storrs HPC Overview - May 2017
Storrs HPC Overview - May 2017
 
PEER End of Project Report
PEER End of Project ReportPEER End of Project Report
PEER End of Project Report
 
Delivering biodiversity knowledge in the information age
Delivering biodiversity knowledge in the information ageDelivering biodiversity knowledge in the information age
Delivering biodiversity knowledge in the information age
 
What is an archaeological research infrastructure and why do we need it? Aims...
What is an archaeological research infrastructure and why do we need it? Aims...What is an archaeological research infrastructure and why do we need it? Aims...
What is an archaeological research infrastructure and why do we need it? Aims...
 
Elab 16 5-13-re3data-scholze-final
Elab 16 5-13-re3data-scholze-finalElab 16 5-13-re3data-scholze-final
Elab 16 5-13-re3data-scholze-final
 
Scholze liber 2015-06-25_final
Scholze liber 2015-06-25_finalScholze liber 2015-06-25_final
Scholze liber 2015-06-25_final
 
re3data.org presented at 3rd RDA Plenary
re3data.org presented at 3rd RDA Plenary re3data.org presented at 3rd RDA Plenary
re3data.org presented at 3rd RDA Plenary
 
Making Research Data Repositories Visible – The re3data.org Registry
Making Research Data Repositories Visible – The re3data.org RegistryMaking Research Data Repositories Visible – The re3data.org Registry
Making Research Data Repositories Visible – The re3data.org Registry
 
Supporting Research Data Management in UK Universities: the Jisc Managing Res...
Supporting Research Data Management in UK Universities: the Jisc Managing Res...Supporting Research Data Management in UK Universities: the Jisc Managing Res...
Supporting Research Data Management in UK Universities: the Jisc Managing Res...
 
Research Data Services @ Edinburgh: MANTRA & Edinburgh DataShare
Research Data Services @ Edinburgh: MANTRA & Edinburgh DataShareResearch Data Services @ Edinburgh: MANTRA & Edinburgh DataShare
Research Data Services @ Edinburgh: MANTRA & Edinburgh DataShare
 
Developing Research Data Management Policy and Services
Developing Research Data Management Policy and ServicesDeveloping Research Data Management Policy and Services
Developing Research Data Management Policy and Services
 
Six Use Cases for Edinburgh DataShare
Six Use Cases for Edinburgh DataShareSix Use Cases for Edinburgh DataShare
Six Use Cases for Edinburgh DataShare
 
re3data.org – a Registry of Research Data Repositories
re3data.org – a Registry of Research Data Repositoriesre3data.org – a Registry of Research Data Repositories
re3data.org – a Registry of Research Data Repositories
 
The Future is All Mine
The Future is All MineThe Future is All Mine
The Future is All Mine
 
Forschungsdaten-Repositorien: Informationsinfrastrukturen für nachnutzbare F...
Forschungsdaten-Repositorien: Informationsinfrastrukturen für nachnutzbare F...Forschungsdaten-Repositorien: Informationsinfrastrukturen für nachnutzbare F...
Forschungsdaten-Repositorien: Informationsinfrastrukturen für nachnutzbare F...
 
University of Edinburgh RDM Training: MANTRA & beyond
University of Edinburgh RDM Training: MANTRA & beyondUniversity of Edinburgh RDM Training: MANTRA & beyond
University of Edinburgh RDM Training: MANTRA & beyond
 

Viewers also liked

Document management system for Pharmaceutical
Document management system for PharmaceuticalDocument management system for Pharmaceutical
Document management system for Pharmaceutical
baseinfo
 
Document Management System (DMS)
Document Management System (DMS)Document Management System (DMS)
Document Management System (DMS)
Hiran Wickramainghe
 
Good documentation practices
Good documentation practicesGood documentation practices
Good documentation practices
Piyush Satvara
 
Good Documentation Pactise dr. amsavel
Good Documentation Pactise  dr. amsavelGood Documentation Pactise  dr. amsavel
Good Documentation Pactise dr. amsavel
Amsavel Vel
 
Good Documentation Practice
Good Documentation PracticeGood Documentation Practice
Good Documentation Practice
cr7clark
 
Good documentation practice
Good documentation practiceGood documentation practice
Good documentation practice
Pharmaceutical
 

Viewers also liked (6)

Document management system for Pharmaceutical
Document management system for PharmaceuticalDocument management system for Pharmaceutical
Document management system for Pharmaceutical
 
Document Management System (DMS)
Document Management System (DMS)Document Management System (DMS)
Document Management System (DMS)
 
Good documentation practices
Good documentation practicesGood documentation practices
Good documentation practices
 
Good Documentation Pactise dr. amsavel
Good Documentation Pactise  dr. amsavelGood Documentation Pactise  dr. amsavel
Good Documentation Pactise dr. amsavel
 
Good Documentation Practice
Good Documentation PracticeGood Documentation Practice
Good Documentation Practice
 
Good documentation practice
Good documentation practiceGood documentation practice
Good documentation practice
 

Similar to National Research Data Archive MIDAS

Providing support and services for researchers in good data governance
Providing support and services for researchers in good data governanceProviding support and services for researchers in good data governance
Providing support and services for researchers in good data governance
Robin Rice
 
Introduction to Research Data Management
Introduction to Research Data ManagementIntroduction to Research Data Management
Introduction to Research Data Management
EDINA, University of Edinburgh
 
Scottish Digital Library Consortium Meeting: Edinburgh DataShare
Scottish Digital Library Consortium Meeting: Edinburgh DataShareScottish Digital Library Consortium Meeting: Edinburgh DataShare
Scottish Digital Library Consortium Meeting: Edinburgh DataShare
Robin Rice
 
RDM & ELNs @ Edinburgh
RDM & ELNs @ EdinburghRDM & ELNs @ Edinburgh
RDM & ELNs @ Edinburgh
EDINA, University of Edinburgh
 
Rdm slides march 2014
Rdm slides march 2014Rdm slides march 2014
Rdm slides march 2014
Historic Environment Scotland
 
RDM Programme at University of Edinburgh
RDM Programme at University of EdinburghRDM Programme at University of Edinburgh
RDM Programme at University of Edinburgh
Historic Environment Scotland
 
RDM@Edinburgh
RDM@EdinburghRDM@Edinburgh
RDM@Edinburgh
RDM@EdinburghRDM@Edinburgh
Using e-Infrastructures for Biodiversity Conservation
Using e-Infrastructures for Biodiversity ConservationUsing e-Infrastructures for Biodiversity Conservation
Using e-Infrastructures for Biodiversity Conservation
Blue BRIDGE
 
RDM @ UoE
RDM @ UoERDM @ UoE
Europa requisitos y servicios en torno a los datos de investigacion
Europa requisitos y servicios en torno a los datos de investigacionEuropa requisitos y servicios en torno a los datos de investigacion
Europa requisitos y servicios en torno a los datos de investigacion
maredata
 
Research Data Management: Why is it important?
Research Data Management: Why is it  important?Research Data Management: Why is it  important?
Research Data Management: Why is it important?
EDINA, University of Edinburgh
 
Open Science Globally: Some Developments/Dr Simon Hodson
Open Science Globally: Some Developments/Dr Simon HodsonOpen Science Globally: Some Developments/Dr Simon Hodson
Open Science Globally: Some Developments/Dr Simon Hodson
African Open Science Platform
 
Implementing Open Access: Effective Management of Your Research Data
Implementing Open Access: Effective Management of Your Research DataImplementing Open Access: Effective Management of Your Research Data
Implementing Open Access: Effective Management of Your Research Data
Martin Hamilton
 
Introduction to digital curation
Introduction to digital curationIntroduction to digital curation
Introduction to digital curation
Michael Day
 
I o dav data workshop prof wafula final 19.9.17
I o dav data workshop prof wafula final 19.9.17I o dav data workshop prof wafula final 19.9.17
I o dav data workshop prof wafula final 19.9.17
Tom Nyongesa
 
Simon hodson
Simon hodsonSimon hodson
User engagement in research data curation
User engagement in research data curationUser engagement in research data curation
User engagement in research data curation
EDINA, University of Edinburgh
 
Information Systems
Information SystemsInformation Systems
Information Systems
Pasquale Pagano
 
Creating a Data Management Plan for your Grant Application
Creating a Data Management Plan for your Grant ApplicationCreating a Data Management Plan for your Grant Application
Creating a Data Management Plan for your Grant Application
EDINA, University of Edinburgh
 

Similar to National Research Data Archive MIDAS (20)

Providing support and services for researchers in good data governance
Providing support and services for researchers in good data governanceProviding support and services for researchers in good data governance
Providing support and services for researchers in good data governance
 
Introduction to Research Data Management
Introduction to Research Data ManagementIntroduction to Research Data Management
Introduction to Research Data Management
 
Scottish Digital Library Consortium Meeting: Edinburgh DataShare
Scottish Digital Library Consortium Meeting: Edinburgh DataShareScottish Digital Library Consortium Meeting: Edinburgh DataShare
Scottish Digital Library Consortium Meeting: Edinburgh DataShare
 
RDM & ELNs @ Edinburgh
RDM & ELNs @ EdinburghRDM & ELNs @ Edinburgh
RDM & ELNs @ Edinburgh
 
Rdm slides march 2014
Rdm slides march 2014Rdm slides march 2014
Rdm slides march 2014
 
RDM Programme at University of Edinburgh
RDM Programme at University of EdinburghRDM Programme at University of Edinburgh
RDM Programme at University of Edinburgh
 
RDM@Edinburgh
RDM@EdinburghRDM@Edinburgh
RDM@Edinburgh
 
RDM@Edinburgh
RDM@EdinburghRDM@Edinburgh
RDM@Edinburgh
 
Using e-Infrastructures for Biodiversity Conservation
Using e-Infrastructures for Biodiversity ConservationUsing e-Infrastructures for Biodiversity Conservation
Using e-Infrastructures for Biodiversity Conservation
 
RDM @ UoE
RDM @ UoERDM @ UoE
RDM @ UoE
 
Europa requisitos y servicios en torno a los datos de investigacion
Europa requisitos y servicios en torno a los datos de investigacionEuropa requisitos y servicios en torno a los datos de investigacion
Europa requisitos y servicios en torno a los datos de investigacion
 
Research Data Management: Why is it important?
Research Data Management: Why is it  important?Research Data Management: Why is it  important?
Research Data Management: Why is it important?
 
Open Science Globally: Some Developments/Dr Simon Hodson
Open Science Globally: Some Developments/Dr Simon HodsonOpen Science Globally: Some Developments/Dr Simon Hodson
Open Science Globally: Some Developments/Dr Simon Hodson
 
Implementing Open Access: Effective Management of Your Research Data
Implementing Open Access: Effective Management of Your Research DataImplementing Open Access: Effective Management of Your Research Data
Implementing Open Access: Effective Management of Your Research Data
 
Introduction to digital curation
Introduction to digital curationIntroduction to digital curation
Introduction to digital curation
 
I o dav data workshop prof wafula final 19.9.17
I o dav data workshop prof wafula final 19.9.17I o dav data workshop prof wafula final 19.9.17
I o dav data workshop prof wafula final 19.9.17
 
Simon hodson
Simon hodsonSimon hodson
Simon hodson
 
User engagement in research data curation
User engagement in research data curationUser engagement in research data curation
User engagement in research data curation
 
Information Systems
Information SystemsInformation Systems
Information Systems
 
Creating a Data Management Plan for your Grant Application
Creating a Data Management Plan for your Grant ApplicationCreating a Data Management Plan for your Grant Application
Creating a Data Management Plan for your Grant Application
 

More from Saulius Maskeliunas

Loginio programavimo priemonių naudojimo darbui su duomenų bazėse saugoma inf...
Loginio programavimo priemonių naudojimo darbui su duomenų bazėse saugoma inf...Loginio programavimo priemonių naudojimo darbui su duomenų bazėse saugoma inf...
Loginio programavimo priemonių naudojimo darbui su duomenų bazėse saugoma inf...
Saulius Maskeliunas
 
Ontologijų išreiškimo galimybės naudojant temų žemėlapius
Ontologijų išreiškimo galimybės naudojant temų žemėlapiusOntologijų išreiškimo galimybės naudojant temų žemėlapius
Ontologijų išreiškimo galimybės naudojant temų žemėlapius
Saulius Maskeliunas
 
Ontologijų panaudojimas projekto repozitorijui intelektualizuoti
Ontologijų panaudojimas projekto repozitorijui intelektualizuotiOntologijų panaudojimas projekto repozitorijui intelektualizuoti
Ontologijų panaudojimas projekto repozitorijui intelektualizuoti
Saulius Maskeliunas
 
Ontologijų panaudojimas verslo ir informacinėms sistemoms intelektualizuoti
Ontologijų panaudojimas verslo ir informacinėms sistemoms intelektualizuotiOntologijų panaudojimas verslo ir informacinėms sistemoms intelektualizuoti
Ontologijų panaudojimas verslo ir informacinėms sistemoms intelektualizuoti
Saulius Maskeliunas
 
Ontologijų panaudojimas verslo ir informacinėms sistemoms intelektualizuoti
Ontologijų panaudojimas verslo ir informacinėms sistemoms intelektualizuotiOntologijų panaudojimas verslo ir informacinėms sistemoms intelektualizuoti
Ontologijų panaudojimas verslo ir informacinėms sistemoms intelektualizuoti
Saulius Maskeliunas
 
Tiksliname lietuviškuosius terminus: ne žiniatinklis, bet saitynas
Tiksliname lietuviškuosius terminus: ne žiniatinklis, bet saitynasTiksliname lietuviškuosius terminus: ne žiniatinklis, bet saitynas
Tiksliname lietuviškuosius terminus: ne žiniatinklis, bet saitynas
Saulius Maskeliunas
 
Lietuviškų klaviatūrų problemos ir jų sprendimo būdai
Lietuviškų klaviatūrų problemos ir jų sprendimo būdaiLietuviškų klaviatūrų problemos ir jų sprendimo būdai
Lietuviškų klaviatūrų problemos ir jų sprendimo būdai
Saulius Maskeliunas
 
Vietos nustatymu grindžiamų paslaugų sistemų architektūra
Vietos nustatymu grindžiamų paslaugų sistemų architektūraVietos nustatymu grindžiamų paslaugų sistemų architektūra
Vietos nustatymu grindžiamų paslaugų sistemų architektūra
Saulius Maskeliunas
 
Paslaugomis grindžiama architektūra ir pasaulinio tinklo paslaugos
Paslaugomis grindžiama architektūra ir  pasaulinio tinklo paslaugosPaslaugomis grindžiama architektūra ir  pasaulinio tinklo paslaugos
Paslaugomis grindžiama architektūra ir pasaulinio tinklo paslaugos
Saulius Maskeliunas
 
Kauno IV vid. m-los 1979 m. laidos 11c klasė
Kauno IV vid. m-los 1979 m. laidos 11c klasėKauno IV vid. m-los 1979 m. laidos 11c klasė
Kauno IV vid. m-los 1979 m. laidos 11c klasė
Saulius Maskeliunas
 
Key facts on FP7: funding, participants, evaluation, impact
Key facts on FP7: funding, participants, evaluation, impactKey facts on FP7: funding, participants, evaluation, impact
Key facts on FP7: funding, participants, evaluation, impact
Saulius Maskeliunas
 
Sudėtingesnės paieškos internete būdai
Sudėtingesnės paieškos internete būdaiSudėtingesnės paieškos internete būdai
Sudėtingesnės paieškos internete būdai
Saulius Maskeliunas
 
Ontologijos, semantinis saitynas ir semantinė paieška
Ontologijos, semantinis saitynas ir semantinė paieškaOntologijos, semantinis saitynas ir semantinė paieška
Ontologijos, semantinis saitynas ir semantinė paieška
Saulius Maskeliunas
 
Dr. Frederic Andres (NII, Japan) „Collective Intelligence-based Social Projec...
Dr. Frederic Andres (NII, Japan) „Collective Intelligence-based Social Projec...Dr. Frederic Andres (NII, Japan) „Collective Intelligence-based Social Projec...
Dr. Frederic Andres (NII, Japan) „Collective Intelligence-based Social Projec...
Saulius Maskeliunas
 

More from Saulius Maskeliunas (16)

Loginio programavimo priemonių naudojimo darbui su duomenų bazėse saugoma inf...
Loginio programavimo priemonių naudojimo darbui su duomenų bazėse saugoma inf...Loginio programavimo priemonių naudojimo darbui su duomenų bazėse saugoma inf...
Loginio programavimo priemonių naudojimo darbui su duomenų bazėse saugoma inf...
 
Ontologijų išreiškimo galimybės naudojant temų žemėlapius
Ontologijų išreiškimo galimybės naudojant temų žemėlapiusOntologijų išreiškimo galimybės naudojant temų žemėlapius
Ontologijų išreiškimo galimybės naudojant temų žemėlapius
 
Ontologijų panaudojimas projekto repozitorijui intelektualizuoti
Ontologijų panaudojimas projekto repozitorijui intelektualizuotiOntologijų panaudojimas projekto repozitorijui intelektualizuoti
Ontologijų panaudojimas projekto repozitorijui intelektualizuoti
 
Ontologijų panaudojimas verslo ir informacinėms sistemoms intelektualizuoti
Ontologijų panaudojimas verslo ir informacinėms sistemoms intelektualizuotiOntologijų panaudojimas verslo ir informacinėms sistemoms intelektualizuoti
Ontologijų panaudojimas verslo ir informacinėms sistemoms intelektualizuoti
 
Ontologijų panaudojimas verslo ir informacinėms sistemoms intelektualizuoti
Ontologijų panaudojimas verslo ir informacinėms sistemoms intelektualizuotiOntologijų panaudojimas verslo ir informacinėms sistemoms intelektualizuoti
Ontologijų panaudojimas verslo ir informacinėms sistemoms intelektualizuoti
 
Tiksliname lietuviškuosius terminus: ne žiniatinklis, bet saitynas
Tiksliname lietuviškuosius terminus: ne žiniatinklis, bet saitynasTiksliname lietuviškuosius terminus: ne žiniatinklis, bet saitynas
Tiksliname lietuviškuosius terminus: ne žiniatinklis, bet saitynas
 
Lietuviškų klaviatūrų problemos ir jų sprendimo būdai
Lietuviškų klaviatūrų problemos ir jų sprendimo būdaiLietuviškų klaviatūrų problemos ir jų sprendimo būdai
Lietuviškų klaviatūrų problemos ir jų sprendimo būdai
 
Vietos nustatymu grindžiamų paslaugų sistemų architektūra
Vietos nustatymu grindžiamų paslaugų sistemų architektūraVietos nustatymu grindžiamų paslaugų sistemų architektūra
Vietos nustatymu grindžiamų paslaugų sistemų architektūra
 
Paslaugomis grindžiama architektūra ir pasaulinio tinklo paslaugos
Paslaugomis grindžiama architektūra ir  pasaulinio tinklo paslaugosPaslaugomis grindžiama architektūra ir  pasaulinio tinklo paslaugos
Paslaugomis grindžiama architektūra ir pasaulinio tinklo paslaugos
 
Kauno IV vid. m-los 1979 m. laidos 11c klasė
Kauno IV vid. m-los 1979 m. laidos 11c klasėKauno IV vid. m-los 1979 m. laidos 11c klasė
Kauno IV vid. m-los 1979 m. laidos 11c klasė
 
Key facts on FP7: funding, participants, evaluation, impact
Key facts on FP7: funding, participants, evaluation, impactKey facts on FP7: funding, participants, evaluation, impact
Key facts on FP7: funding, participants, evaluation, impact
 
Laimė yra kelionė
Laimė yra kelionėLaimė yra kelionė
Laimė yra kelionė
 
Sudėtingesnės paieškos internete būdai
Sudėtingesnės paieškos internete būdaiSudėtingesnės paieškos internete būdai
Sudėtingesnės paieškos internete būdai
 
Ontologijos, semantinis saitynas ir semantinė paieška
Ontologijos, semantinis saitynas ir semantinė paieškaOntologijos, semantinis saitynas ir semantinė paieška
Ontologijos, semantinis saitynas ir semantinė paieška
 
Dr. Frederic Andres (NII, Japan) „Collective Intelligence-based Social Projec...
Dr. Frederic Andres (NII, Japan) „Collective Intelligence-based Social Projec...Dr. Frederic Andres (NII, Japan) „Collective Intelligence-based Social Projec...
Dr. Frederic Andres (NII, Japan) „Collective Intelligence-based Social Projec...
 
Patarimai geresniam gyvenimui
Patarimai geresniam gyvenimuiPatarimai geresniam gyvenimui
Patarimai geresniam gyvenimui
 

Recently uploaded

Christine's Product Research Presentation.pptx
Christine's Product Research Presentation.pptxChristine's Product Research Presentation.pptx
Christine's Product Research Presentation.pptx
christinelarrosa
 
AppSec PNW: Android and iOS Application Security with MobSF
AppSec PNW: Android and iOS Application Security with MobSFAppSec PNW: Android and iOS Application Security with MobSF
AppSec PNW: Android and iOS Application Security with MobSF
Ajin Abraham
 
PRODUCT LISTING OPTIMIZATION PRESENTATION.pptx
PRODUCT LISTING OPTIMIZATION PRESENTATION.pptxPRODUCT LISTING OPTIMIZATION PRESENTATION.pptx
PRODUCT LISTING OPTIMIZATION PRESENTATION.pptx
christinelarrosa
 
LF Energy Webinar: Carbon Data Specifications: Mechanisms to Improve Data Acc...
LF Energy Webinar: Carbon Data Specifications: Mechanisms to Improve Data Acc...LF Energy Webinar: Carbon Data Specifications: Mechanisms to Improve Data Acc...
LF Energy Webinar: Carbon Data Specifications: Mechanisms to Improve Data Acc...
DanBrown980551
 
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
Jason Yip
 
Northern Engraving | Nameplate Manufacturing Process - 2024
Northern Engraving | Nameplate Manufacturing Process - 2024Northern Engraving | Nameplate Manufacturing Process - 2024
Northern Engraving | Nameplate Manufacturing Process - 2024
Northern Engraving
 
Northern Engraving | Modern Metal Trim, Nameplates and Appliance Panels
Northern Engraving | Modern Metal Trim, Nameplates and Appliance PanelsNorthern Engraving | Modern Metal Trim, Nameplates and Appliance Panels
Northern Engraving | Modern Metal Trim, Nameplates and Appliance Panels
Northern Engraving
 
Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...
Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...
Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...
Pitangent Analytics & Technology Solutions Pvt. Ltd
 
What is an RPA CoE? Session 2 – CoE Roles
What is an RPA CoE?  Session 2 – CoE RolesWhat is an RPA CoE?  Session 2 – CoE Roles
What is an RPA CoE? Session 2 – CoE Roles
DianaGray10
 
"$10 thousand per minute of downtime: architecture, queues, streaming and fin...
"$10 thousand per minute of downtime: architecture, queues, streaming and fin..."$10 thousand per minute of downtime: architecture, queues, streaming and fin...
"$10 thousand per minute of downtime: architecture, queues, streaming and fin...
Fwdays
 
"Scaling RAG Applications to serve millions of users", Kevin Goedecke
"Scaling RAG Applications to serve millions of users",  Kevin Goedecke"Scaling RAG Applications to serve millions of users",  Kevin Goedecke
"Scaling RAG Applications to serve millions of users", Kevin Goedecke
Fwdays
 
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge GraphGraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
Neo4j
 
Astute Business Solutions | Oracle Cloud Partner |
Astute Business Solutions | Oracle Cloud Partner |Astute Business Solutions | Oracle Cloud Partner |
Astute Business Solutions | Oracle Cloud Partner |
AstuteBusiness
 
Day 2 - Intro to UiPath Studio Fundamentals
Day 2 - Intro to UiPath Studio FundamentalsDay 2 - Intro to UiPath Studio Fundamentals
Day 2 - Intro to UiPath Studio Fundamentals
UiPathCommunity
 
JavaLand 2024: Application Development Green Masterplan
JavaLand 2024: Application Development Green MasterplanJavaLand 2024: Application Development Green Masterplan
JavaLand 2024: Application Development Green Masterplan
Miro Wengner
 
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdfHow to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
Chart Kalyan
 
QA or the Highway - Component Testing: Bridging the gap between frontend appl...
QA or the Highway - Component Testing: Bridging the gap between frontend appl...QA or the Highway - Component Testing: Bridging the gap between frontend appl...
QA or the Highway - Component Testing: Bridging the gap between frontend appl...
zjhamm304
 
Harnessing the Power of NLP and Knowledge Graphs for Opioid Research
Harnessing the Power of NLP and Knowledge Graphs for Opioid ResearchHarnessing the Power of NLP and Knowledge Graphs for Opioid Research
Harnessing the Power of NLP and Knowledge Graphs for Opioid Research
Neo4j
 
From Natural Language to Structured Solr Queries using LLMs
From Natural Language to Structured Solr Queries using LLMsFrom Natural Language to Structured Solr Queries using LLMs
From Natural Language to Structured Solr Queries using LLMs
Sease
 
Apps Break Data
Apps Break DataApps Break Data
Apps Break Data
Ivo Velitchkov
 

Recently uploaded (20)

Christine's Product Research Presentation.pptx
Christine's Product Research Presentation.pptxChristine's Product Research Presentation.pptx
Christine's Product Research Presentation.pptx
 
AppSec PNW: Android and iOS Application Security with MobSF
AppSec PNW: Android and iOS Application Security with MobSFAppSec PNW: Android and iOS Application Security with MobSF
AppSec PNW: Android and iOS Application Security with MobSF
 
PRODUCT LISTING OPTIMIZATION PRESENTATION.pptx
PRODUCT LISTING OPTIMIZATION PRESENTATION.pptxPRODUCT LISTING OPTIMIZATION PRESENTATION.pptx
PRODUCT LISTING OPTIMIZATION PRESENTATION.pptx
 
LF Energy Webinar: Carbon Data Specifications: Mechanisms to Improve Data Acc...
LF Energy Webinar: Carbon Data Specifications: Mechanisms to Improve Data Acc...LF Energy Webinar: Carbon Data Specifications: Mechanisms to Improve Data Acc...
LF Energy Webinar: Carbon Data Specifications: Mechanisms to Improve Data Acc...
 
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
 
Northern Engraving | Nameplate Manufacturing Process - 2024
Northern Engraving | Nameplate Manufacturing Process - 2024Northern Engraving | Nameplate Manufacturing Process - 2024
Northern Engraving | Nameplate Manufacturing Process - 2024
 
Northern Engraving | Modern Metal Trim, Nameplates and Appliance Panels
Northern Engraving | Modern Metal Trim, Nameplates and Appliance PanelsNorthern Engraving | Modern Metal Trim, Nameplates and Appliance Panels
Northern Engraving | Modern Metal Trim, Nameplates and Appliance Panels
 
Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...
Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...
Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...
 
What is an RPA CoE? Session 2 – CoE Roles
What is an RPA CoE?  Session 2 – CoE RolesWhat is an RPA CoE?  Session 2 – CoE Roles
What is an RPA CoE? Session 2 – CoE Roles
 
"$10 thousand per minute of downtime: architecture, queues, streaming and fin...
"$10 thousand per minute of downtime: architecture, queues, streaming and fin..."$10 thousand per minute of downtime: architecture, queues, streaming and fin...
"$10 thousand per minute of downtime: architecture, queues, streaming and fin...
 
"Scaling RAG Applications to serve millions of users", Kevin Goedecke
"Scaling RAG Applications to serve millions of users",  Kevin Goedecke"Scaling RAG Applications to serve millions of users",  Kevin Goedecke
"Scaling RAG Applications to serve millions of users", Kevin Goedecke
 
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge GraphGraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
 
Astute Business Solutions | Oracle Cloud Partner |
Astute Business Solutions | Oracle Cloud Partner |Astute Business Solutions | Oracle Cloud Partner |
Astute Business Solutions | Oracle Cloud Partner |
 
Day 2 - Intro to UiPath Studio Fundamentals
Day 2 - Intro to UiPath Studio FundamentalsDay 2 - Intro to UiPath Studio Fundamentals
Day 2 - Intro to UiPath Studio Fundamentals
 
JavaLand 2024: Application Development Green Masterplan
JavaLand 2024: Application Development Green MasterplanJavaLand 2024: Application Development Green Masterplan
JavaLand 2024: Application Development Green Masterplan
 
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdfHow to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
 
QA or the Highway - Component Testing: Bridging the gap between frontend appl...
QA or the Highway - Component Testing: Bridging the gap between frontend appl...QA or the Highway - Component Testing: Bridging the gap between frontend appl...
QA or the Highway - Component Testing: Bridging the gap between frontend appl...
 
Harnessing the Power of NLP and Knowledge Graphs for Opioid Research
Harnessing the Power of NLP and Knowledge Graphs for Opioid ResearchHarnessing the Power of NLP and Knowledge Graphs for Opioid Research
Harnessing the Power of NLP and Knowledge Graphs for Opioid Research
 
From Natural Language to Structured Solr Queries using LLMs
From Natural Language to Structured Solr Queries using LLMsFrom Natural Language to Structured Solr Queries using LLMs
From Natural Language to Structured Solr Queries using LLMs
 
Apps Break Data
Apps Break DataApps Break Data
Apps Break Data
 

National Research Data Archive MIDAS

  • 1. National Research Data Archive MIDAS: development decisions and usage peculiarities Saulius Maskeliūnas Vilnius University Institute of Mathematics and Informatics Akademijos str. 4, Vilnius LT-08663, Lithuania .
  • 2. MII 2 Content 1. Introductory facts about National Research Data Archive (MIDAS) project 2. Implementation aims and principles of MIDAS 3. Planned MIDAS outcomes and peculiarities 4. MIDAS data mining tool (DAMIS) 5. Conclusions 6. Demonstration of MIDAS 7. Demonstration of DAMIS
  • 3. MII 3 1. Introductory facts about MIDAS project (1) • Project Title: National Open Access Research Data Archive (LT: Nacionalinis atviros prieigos Mokslo Informacijos Duomenų Archyvas, MIDAS) • Lead institution: Vilnius University www.vu.lt • Project partner: Vilnius University Hospital Santariškių Klinikos (Santariškės Clinics) santa.lt • Project participants: 13 institutions of science and studies, and medical institutions
  • 4. MII 4 1. Introductory facts about MIDAS project (2) • Funded by: EU Structural Funds and national budget • Project budget: ~ € 4.34M (i.e., almost 15M LTL) • Duration: 40 months (start date: January 1, 2012 , end date: June 30, 2014  April 30, 2015) • Current status: – technical infrastructure: not installed yet; – software development: beginning of 2nd iteration.
  • 5. MII 5 2. Implementation aims and principles of MIDAS MIDAS implementation purpose • to establish the infrastructure that enables collection, organizing and storage of empirical and research data (with corresponding metadata), ensuring free, convenient, interactive search, access and analysis of data.
  • 6. MII 6 Prospective MIDAS users • Researchers, lecturers, professors, students; • Science and studies institutions [and/or their representatives]; • Institutions which present research data (e.g., hospitals), • Research and development (R&D) enterprises; • Public administration institutions which use R&D statistical data; • other interested physical and judicial persons.
  • 7. MII 7 Development principles • privacy and security (i.e., information confidentiality, integrity and non-repudiation) • usability • accessibility (functioning 24 hours per day, 7 days per week) • extensibility (i.e., software architecture scaling in cases of incorporation of additional hardware)
  • 8. MII 8 MIDAS compatibility • MIDAS archive will be based on usage of open code software, XML format and other open metadata, bibliographic, information retrieval standards (CERIF, CERIF for Datasets, CIF, DICOM, Dublin Core, MARC21, ISO/IEC 11179-1:2004, OAI-PMH, etc.). • That will ensure compatibility with other information systems, data archives and registries in Lithuania and internationally (e.g., Data Citation Index of Thomson Reuters http://thomsonreuters.com/data-citation-index/ ).
  • 9. MII 9 Integration with other data archives and registers • Lithuanian Academic E-Library eLABa www.elaba.lt • Lithuanian Data Archive for Social Sciences and Humanities LiDA www.lidata.eu/en • Lithuanian Networked Digital Library of Theses and Dissertations Lit-ETD etd.elaba.lt • National Medical Picture Archiving and Information Exchange System MedVAIS http://www.epractice.eu/en/news/5364871 • etc.
  • 10. MII 10 3. Planned MIDAS outcomes and peculiarities MIDAS outcomes (1) • The infrastructure that enables collection, organizing and storage of empirical and research data (with corresponding metadata), ensuring free, convenient, interactive search, access and analysis of data;
  • 11. MII 11 MIDAS outcomes (2) • National united research data archive with analytical software tools; • Infrastructure for collection and transferring of biomedical research data, consisting of DICOM (for collecting data from medical equipment), ECG (for collecting electrical cardiogram data from medical devices), content management, data depersonalisation, and data archiving modules; • Public interactive e-service “Search, Delivery and Analysis of Research Data”.
  • 12. MII 12 MIDAS implementation advantages • Guaranteed safety and effective sharing of research data • Increased quality of research outputs • Preventing duplication of effort in research data collection • Increased variety of research outputs
  • 13. 4. Data mining tool DAMIS (slides by Olga Kurasova <......................................> )
  • 14. Functionalities of DAMIS • DAMIS is a tool for analysis of the MIDAS data; • The following data mining methods are implemented: • preprocessing (cleaning, filtering, splitting, transposing, norming, feature selecting); • statistical primitives (min, max, mean, standard deviation, median); • dimensionality reduction (multidimensional data visualization); • classification and clustering.
  • 15. Functionalities of DAMIS • DAMIS is a web-based system http://dev.damis.lt (user name/password: demo/demo , 1234/1234 ); • The web interface does not require any software installation; a web browser is enough for its usage; • There is a possibility to choose high performance computing resources (VU MII cluster – VU MIF supercomputer); • The usage is based on creation of scientific workflows; • The results obtained can be saved in MIDAS and in a user computer.
  • 16. A sample of multidimensional data (breast cancer data) C 5 1 1 1 2 1 3 1 1 b 5 4 4 5 7 10 3 2 1 b 3 1 1 1 2 2 3 1 1 b 6 8 8 1 3 4 3 7 1 b 4 1 1 3 2 1 3 1 1 b 1 1 1 1 2 10 3 1 1 b 2 1 2 1 2 1 3 1 1 b 2 1 1 1 2 1 1 1 5 b 4 2 1 1 2 1 2 1 1 b ... ... ... ... ... ... ... ... ... ... ... 8 10 10 8 7 10 9 7 1 m 5 3 3 3 2 3 4 4 1 m 8 7 5 10 7 9 5 5 4 m 7 4 6 4 6 1 4 3 1 m 10 7 7 6 4 10 4 1 2 m 7 3 2 10 5 10 5 4 4 m 10 5 5 3 6 7 7 10 1 m ... ... ... ... ... ... ... ... ... ... ... 4 8 8 5 4 5 10 4 1 m
  • 24. Matrix view of Iris after dimensionality reduction by PCA
  • 26. MII 26 5. Conclusions (1) • MIDAS will provide virtual services for researchers and other participants in research and education that can lead to more efficient, effective and higher quality research; • Users will have the possibilities to: – register, find and cite research data, – search for and use other infrastructures and tools (which provide data archiving services), – share or integrate data and tools to other science and studies infrastructures;
  • 27. MII 27 5. Conclusions (2) • National Research Data Archive MIDAS will increase research cooperation possibilities, because of simpler, more convenient, unified, advanced possibilities of research data collection, analysis, application and sharing.
  • 28. MII 28 6. Demonstration of MIDAS http://midas.insoft.lt:8888/web/ User name / password: 101/101
  • 29. MII 29 7. Demonstration of DAMIS http://dev.damis.lt User name / password: demo/demo
  • 30. Thanks for Your Attention ! Questions ?...