SlideShare a Scribd company logo
<Insert Picture Here>




MySQL Cluster Product Overview
Wagner Bianchi – contato@wagnerbianchi.com
Disclaimer


 The preceding is intended to outline our general
 product direction. It is intended for information
 purposes only, and may not be incorporated into any
 contract. It is not a commitment to deliver any
 material, code, or functionality, and should not be
 relied upon in making purchasing decisions. The
 development, 2 release, and timing of any features or
 functionality described for Oracle’s products remains
 at the sole discretion of Oracle.




                                                         2
Industry Leaders Rely on MySQL




 Web & Enterprise                OEM & ISVs



                     Cloud


                                              3
Agenda


• MySQL Cluster Product Overview
  –   O que é o MySQL Cluster?
  –   Componentes do MySQL Cluster
  –   MySQL Cluster Manager ™
  –   Casos de Utilização
  –   Benchmarks


• MySQL Cluster 7.2




                                     4
O que é o MySQL Cluster?




                           5
Mapping HA Architectures to Availability




                                           6
Multi-Data Center Scalability
Geographic Replication

                                • Replicate complete
                                  clusters across data
                                  centers
                                  – DR & data locality
                                  – Fully active/active
       Geographic                 – No passive resources
       Replication
                                • Split individual clusters
                                  across data centers
                                  – Synchronous replication
                                    & auto-failover between
                                    sites
                                  – Delivered as part of
                                    MySQL Cluster 7.2 DMR


                                                           7
Mapping Applications to HA Technology
                                                                               Shared-Nothing,
                                        Database          Clustered /
           Applica ons                                                         Geo-Replicated
                                       Replica on         Virtualized
                                                                                   Cluster
        E-Commerce / Trading                     (1)
        Session Management                       (1)
   User Authen ca on / Accoun ng                (1)
         Feeds, Blogs, Wikis

                OLTP                             (1)
         Data Warehouse/BI

        Content Management

                CRM

            Collabora on

         Packaged So ware
       Network Infrastructure

  Core Telco Apps (HLR/HSS/SDP…)

1: Replication used in combination with cluster or virtualization – based HA




                                                                                                 8
MySQL Cluster


• O MySQL Cluster é formado por 3 componentes:
  – Management Node: permite a realização de tarefas
    administrativas como monitoramento dos nós, backup dos
    nós de dados do cluster e outras – seu binário é o ndb_mgmd;

  – Data ou Storage Node: responsável por processar e
    armazenar dados dos bancos de dados localizados no cluster
    – seu binário é o ndbd ou ndbmtd;

  – API ou SQL Node: este é o nó que recebe as conexões das
    aplicações e enviam e requisitam dados armazenados nos
    Data Nodes – seu binário é o mysqld;




                                                                   9
MySQL Cluster - Auto-Partitioning


      Table T1                      Data Node 1




                     P1
                                    Data Node 2

                     P2

                     P3             Data Node 3


                     P4

                                    Data Node 4




                                                  10
MySQL Cluster - Auto-Partitioning


      Table T1                      Data Node 1

                                    F1



                     P1
                                    Data Node 2

                     P2

                     P3             Data Node 3


                     P4

                                    Data Node 4




                                                  11
MySQL Cluster - Auto-Partitioning


      Table T1                      Data Node 1

                                    F1



                     P1
                                    Data Node 2

                                              F1
                     P2

                     P3             Data Node 3


                     P4

                                    Data Node 4




                                                   12
MySQL Cluster - Auto-Partitioning

     Table T1                       Data Node 1

                                    F1



                    P1
                                    Data Node 2

                                    F3        F1
                    P2

                    P3              Data Node 3


                    P4

                                    Data Node 4




                                                   13
MySQL Cluster - Auto-Partitioning

     Table T1                       Data Node 1

                                    F1        F3



                    P1
                                    Data Node 2

                                    F3        F1
                    P2

                    P3              Data Node 3


                    P4

                                    Data Node 4




                                                   14
MySQL Cluster - Auto-Partitioning

     Table T1                       Data Node 1

                                    F1        F3



                    P1
                                    Data Node 2

                                    F3        F1
                    P2

                    P3              Data Node 3

                                    F2
                    P4

                                    Data Node 4




                                                   15
MySQL Cluster - Auto-Partitioning

     Table T1                       Data Node 1

                                    F1        F3



                    P1
                                    Data Node 2

                                    F3        F1
                    P2

                    P3              Data Node 3

                                    F2
                    P4

                                    Data Node 4

                                              F2




                                                   16
MySQL Cluster - Auto-Partitioning

     Table T1                       Data Node 1

                                    F1        F3



                    P1
                                    Data Node 2

                                    F3        F1
                    P2

                    P3              Data Node 3

                                    F2
                    P4

                                    Data Node 4

                                    F4        F2




                                                   17
MySQL Cluster - Auto-Partitioning

     Table T1                       Data Node 1

                                    F1        F3



                    P1
                                    Data Node 2

                                    F3        F1
                    P2

                    P3              Data Node 3

                                    F2        F4
                    P4

                                    Data Node 4

                                    F4        F2




                                                   18
MySQL Cluster - Auto-Partitioning

     Table T1                       Data Node 1

                                    F1        F3



                    P1                        Node Group 1
                                    Data Node 2

                                    F3        F1
                    P2

                    P3              Data Node 3

                                    F2        F4
                    P4

                                    Data Node 4

                                    F4        F2




                                                       19
MySQL Cluster - Auto-Partitioning

     Table T1                       Data Node 1

                                    F1        F3



                    P1                        Node Group 1
                                    Data Node 2

                                    F3        F1
                    P2

                    P3              Data Node 3

                                    F2        F4
                    P4
                                              Node Group 2
                                    Data Node 4

                                    F4        F2




                                                       20
MySQL Cluster - Auto-Partitioning

     Table T1                       Data Node 1

                                    F1        F3



                    P1                        Node Group 1
                                    Data Node 2

                                    F3        F1
                    P2

                    P3              Data Node 3

                                    F2        F4
                    P4
                                              Node Group 2
                                    Data Node 4

                                    F4        F2




                                                       21
MySQL Cluster - Auto-Partitioning

     Table T1                       Data Node 1

                                    F1        F3



                    P1                        Node Group 1
                                    Data Node 2

                                    F3        F1
                    P2

                    P3              Data Node 3

                                    F2        F4
                    P4
                                              Node Group 2
                                    Data Node 4

                                    F4        F2




                                                       22
MySQL Cluster - Auto-Partitioning

     Table T1

                                    Scalability   a
                    P1              Performanc
                                         e
                    P2
                                        HA        a
                    P3              Ease of use

                    P4              SQL/Joins     a
                                       ACID       a
                                    Transaction
                                         s



                                                      23
MySQL Cluster




                24
MySQL Cluster


• Recomenda-se que:
  – todos os componentes sejam pelo menos duplicados, tendo
    uma instalação com no mínimo 6 nodes dentro do cluster;
  – o cluster seja colocado em uma sub-rede que possibilite
    trafegar dados somente do cluster para que não haja perda
    de pacotes;
  – todas as máquinas que figuram SQL e Storage node tenham
    as mesmas configurações para evitar bottlenecks;
  – todos os binários de todos os componentes sejam da mesma
    versão e release do produto;




                                                                25
Comparison
                                  MySQL                                      Oracle VM               Solaris              MySQL
   HA Technology                                           WSFC*
                                 Replication                                 Template                Cluster              Cluster
                                  All supported by       Windows Server        Oracle Linux         Oracle Solaris      All supported by
    Platform Support              MySQL Server **            2008                                                      MySQL Cluster ****
                                     All (InnoDB             InnoDB               InnoDB              All (InnoDB        NDB (MySQL
Supported Storage Engine           recommended)                                                     recommended)           Cluster)

     Auto IP Failover                    No                    Yes                 Yes                     Yes                Yes

 Auto Database Failover                  No                    Yes                 Yes                     Yes                Yes

      Auto Data                          No               N/A – Shared         N/A – Shared         N/A – Shared              Yes
                                                            Storage              Storage              Storage
   Resynchronization
      Failover Time                 User / Script           5 seconds +         5 seconds +          5 seconds +       1 Second or Less
                                    Dependent            InnoDB Recovery     InnoDB Recovery      InnoDB Recovery
                                                              Time***             Time***              Time***
                                Asynchronous / Semi-      N/A – Shared         N/A – Shared         N/A – Shared         Synchronous
    Replication Mode                Synchronous             Storage              Storage              Storage
                                No, distributed across         Yes                 Yes                     Yes           No, distributed
     Shared Storage                     nodes                                                                            across nodes
                                  Master & Multiple      Active / Passive    Active / Passive      Active / Passive      255 + Multiple
      No. of Nodes                    Slaves             Master + Multiple   Master + Multiple     Master + Multiple        Slaves
                                                              Slaves              Slaves                Slaves

 Availability Design Level             99.9%                 99.95%               99.99%                  99.99%           99.999%


                                     * Windows Server 2008R2 Failover Clustering
                          ** http://www.mysql.com/support/supportedplatforms/database.html
                 *** InnoDB recovery time dependent on cache and database size, database activity, etc.
                          **** http://www.mysql.com/support/supportedplatforms/cluster.html


                                                                                                                                       26
MySQL Cluster Manager ™


                          •   Funciona através do
                              MySQL Enterprise
                              Monitor;

                          •   Permite fazer start,
                              restart e stop de
                              Storage Nodes
                              através de Interface
                              Gráfica;

                          •   Live Demo:
                              http://bit.ly/rqjQRp



                                                     27
MySQL Cluster Manager ™

           MySQL Cluster nodes automatically restarted
                    after configuration change




                                                         28
Benchmarks – Scale-Out




    Aumento de servidores faz que haja aumento na escala,
    aumentando a capacidade de resolução de requisições!


                                                            29
MySQL Cluster Architecture




                                        REST         LDAP
                            Application Nodes                              Scalability
                                                                           Performanc
                                                                                e
             Node Group 1                   Node Group 2
                                                                               HA
                      F1                                    F2             Ease of use
             Node 1




Cluster                                     Node 3               Cluster
 Mgr                                                              Mgr
                      F3                                    F4
                                                                           SQL/Joins     a
                      F3                                    F4                ACID       a
             Node 2




                                            Node 4




                      F1                                    F2             Transaction
                                 Data                                           s
                                Nodes



                                                                                         30
MySQL Cluster Architecture




                                        REST         LDAP
                            Application Nodes                              Scalability
                                                                           Performanc
                                                                                e
             Node Group 1                   Node Group 2
                                                                               HA        a
                      F1                                    F2             Ease of use
             Node 1




Cluster                                     Node 3               Cluster
 Mgr                                                              Mgr
                      F3                                    F4
                                                                           SQL/Joins     a
                      F3                                    F4                ACID       a
             Node 2




                                            Node 4




                      F1                                    F2             Transaction
                                 Data                                           s
                                Nodes



                                                                                         31
Wagner Bianchi




É especialista em MySQL e outros servidores de bancos de dados
relacionais como Oracle e SQL Server. Formado em Gerenciamento de
Bancos de Dados, com MBA em Administração de Empresas pela
Fundação Getúlio Vargas e Pós-Graduando em Bancos de Dados pela
Universidade Gama Filho do Distrito Federal, possui várias
certificações, entre elas a SCMA, SCMDEV, SCMDBA e SCMCDBA.
Atualmente é Consultor Sênior em bancos de dados pela
WAGNERBIANCHI.COM.




                                                                    32

More Related Content

What's hot

Netezza vs teradata
Netezza vs teradataNetezza vs teradata
Netezza vs teradata
Asis Mohanty
 
KIISE:SIGDB Workshop presentation.
KIISE:SIGDB Workshop presentation.KIISE:SIGDB Workshop presentation.
KIISE:SIGDB Workshop presentation.
Kyong-Ha Lee
 
Optimal Execution Of MapReduce Jobs In Cloud - Voices 2015
Optimal Execution Of MapReduce Jobs In Cloud - Voices 2015Optimal Execution Of MapReduce Jobs In Cloud - Voices 2015
Optimal Execution Of MapReduce Jobs In Cloud - Voices 2015
Deanna Kosaraju
 
Hadoop
HadoopHadoop
Hadoop
Saeed Iqbal
 
Parallel Data Processing with MapReduce: A Survey
Parallel Data Processing with MapReduce: A SurveyParallel Data Processing with MapReduce: A Survey
Parallel Data Processing with MapReduce: A Survey
Kyong-Ha Lee
 
My First 100 days with a Cassandra Cluster
My First 100 days with a Cassandra ClusterMy First 100 days with a Cassandra Cluster
My First 100 days with a Cassandra Cluster
Gustavo Rene Antunez
 
Sep 2012 HUG: Giraffa File System to Grow Hadoop Bigger
Sep 2012 HUG: Giraffa File System to Grow Hadoop Bigger Sep 2012 HUG: Giraffa File System to Grow Hadoop Bigger
Sep 2012 HUG: Giraffa File System to Grow Hadoop Bigger
Yahoo Developer Network
 
PostgreSQL 13 New Features
PostgreSQL 13 New FeaturesPostgreSQL 13 New Features
PostgreSQL 13 New Features
José Lin
 

What's hot (8)

Netezza vs teradata
Netezza vs teradataNetezza vs teradata
Netezza vs teradata
 
KIISE:SIGDB Workshop presentation.
KIISE:SIGDB Workshop presentation.KIISE:SIGDB Workshop presentation.
KIISE:SIGDB Workshop presentation.
 
Optimal Execution Of MapReduce Jobs In Cloud - Voices 2015
Optimal Execution Of MapReduce Jobs In Cloud - Voices 2015Optimal Execution Of MapReduce Jobs In Cloud - Voices 2015
Optimal Execution Of MapReduce Jobs In Cloud - Voices 2015
 
Hadoop
HadoopHadoop
Hadoop
 
Parallel Data Processing with MapReduce: A Survey
Parallel Data Processing with MapReduce: A SurveyParallel Data Processing with MapReduce: A Survey
Parallel Data Processing with MapReduce: A Survey
 
My First 100 days with a Cassandra Cluster
My First 100 days with a Cassandra ClusterMy First 100 days with a Cassandra Cluster
My First 100 days with a Cassandra Cluster
 
Sep 2012 HUG: Giraffa File System to Grow Hadoop Bigger
Sep 2012 HUG: Giraffa File System to Grow Hadoop Bigger Sep 2012 HUG: Giraffa File System to Grow Hadoop Bigger
Sep 2012 HUG: Giraffa File System to Grow Hadoop Bigger
 
PostgreSQL 13 New Features
PostgreSQL 13 New FeaturesPostgreSQL 13 New Features
PostgreSQL 13 New Features
 

Viewers also liked

How It Works
How It WorksHow It Works
How It Works
nuResume
 
Presentaci2n De Teed
Presentaci2n De TeedPresentaci2n De Teed
Presentaci2n De Teed
osvaldoroman69
 
Module 6 Powerpont Educ W200
Module 6 Powerpont Educ W200Module 6 Powerpont Educ W200
Module 6 Powerpont Educ W200
guestee4c892
 
Meleane Vitae and Wayne Smethurst
Meleane  Vitae and Wayne SmethurstMeleane  Vitae and Wayne Smethurst
Meleane Vitae and Wayne Smethurst
Gihan Lahoud
 
Restaurant
RestaurantRestaurant
Pictures And Music
Pictures And  MusicPictures And  Music
Pictures And Music
Bless_India
 
Cqrs, Event Sourcing
Cqrs, Event SourcingCqrs, Event Sourcing
Cqrs, Event Sourcing
Ashic Mahtab
 
Rome for Beginners
Rome for BeginnersRome for Beginners
Rome for Beginners
hotmanila
 
Global Warming
Global WarmingGlobal Warming
Global Warming
gennesy
 
The Buckboard
The BuckboardThe Buckboard
The Buckboard
Justin Sanchez
 
Ch.2
Ch.2Ch.2
Ch.2
jespi
 
ISO 9712 - Vantaggi o svantaggi?
ISO 9712 - Vantaggi o svantaggi?ISO 9712 - Vantaggi o svantaggi?
ISO 9712 - Vantaggi o svantaggi?
Olijohn
 
9c21f702517c42b94bbbab1c2dc84adb
9c21f702517c42b94bbbab1c2dc84adb9c21f702517c42b94bbbab1c2dc84adb
9c21f702517c42b94bbbab1c2dc84adb
guest29574b
 
Mining of massive datasets
Mining of massive datasetsMining of massive datasets
Mining of massive datasets
Ashic Mahtab
 
In Memory of Laura Weber
In Memory of Laura WeberIn Memory of Laura Weber
In Memory of Laura Weber
Lisa McKenna
 
V1mobile futures enable presentation v1
V1mobile futures enable presentation v1V1mobile futures enable presentation v1
V1mobile futures enable presentation v1
Gihan Lahoud
 
A Better You - Personal & Professional Skills
A Better You - Personal & Professional SkillsA Better You - Personal & Professional Skills
A Better You - Personal & Professional Skills
Nahla Elbanhawy
 
Marketing Over Coffee
Marketing Over CoffeeMarketing Over Coffee
Marketing Over Coffee
themshow
 

Viewers also liked (20)

How It Works
How It WorksHow It Works
How It Works
 
Presentaci2n De Teed
Presentaci2n De TeedPresentaci2n De Teed
Presentaci2n De Teed
 
Module 6 Powerpont Educ W200
Module 6 Powerpont Educ W200Module 6 Powerpont Educ W200
Module 6 Powerpont Educ W200
 
Meleane Vitae and Wayne Smethurst
Meleane  Vitae and Wayne SmethurstMeleane  Vitae and Wayne Smethurst
Meleane Vitae and Wayne Smethurst
 
Restaurant
RestaurantRestaurant
Restaurant
 
Pictures And Music
Pictures And  MusicPictures And  Music
Pictures And Music
 
Activity
 Activity Activity
Activity
 
Cqrs, Event Sourcing
Cqrs, Event SourcingCqrs, Event Sourcing
Cqrs, Event Sourcing
 
Homophones
HomophonesHomophones
Homophones
 
Rome for Beginners
Rome for BeginnersRome for Beginners
Rome for Beginners
 
Global Warming
Global WarmingGlobal Warming
Global Warming
 
The Buckboard
The BuckboardThe Buckboard
The Buckboard
 
Ch.2
Ch.2Ch.2
Ch.2
 
ISO 9712 - Vantaggi o svantaggi?
ISO 9712 - Vantaggi o svantaggi?ISO 9712 - Vantaggi o svantaggi?
ISO 9712 - Vantaggi o svantaggi?
 
9c21f702517c42b94bbbab1c2dc84adb
9c21f702517c42b94bbbab1c2dc84adb9c21f702517c42b94bbbab1c2dc84adb
9c21f702517c42b94bbbab1c2dc84adb
 
Mining of massive datasets
Mining of massive datasetsMining of massive datasets
Mining of massive datasets
 
In Memory of Laura Weber
In Memory of Laura WeberIn Memory of Laura Weber
In Memory of Laura Weber
 
V1mobile futures enable presentation v1
V1mobile futures enable presentation v1V1mobile futures enable presentation v1
V1mobile futures enable presentation v1
 
A Better You - Personal & Professional Skills
A Better You - Personal & Professional SkillsA Better You - Personal & Professional Skills
A Better You - Personal & Professional Skills
 
Marketing Over Coffee
Marketing Over CoffeeMarketing Over Coffee
Marketing Over Coffee
 

Similar to MySQL Cluster Product Overview

Mysql cluster introduction
Mysql cluster introductionMysql cluster introduction
Mysql cluster introduction
Andrew Morgan
 
My sql cluster_taipei_event
My sql cluster_taipei_eventMy sql cluster_taipei_event
My sql cluster_taipei_event
Ivan Tu
 
Solving performance problems in MySQL without denormalization
Solving performance problems in MySQL without denormalizationSolving performance problems in MySQL without denormalization
Solving performance problems in MySQL without denormalization
dmcfarlane
 
Akiban Technologies: Renormalize
Akiban Technologies: RenormalizeAkiban Technologies: Renormalize
Akiban Technologies: Renormalize
Ariel Weil
 
Akiban Technologies: Renormalize
Akiban Technologies: RenormalizeAkiban Technologies: Renormalize
Akiban Technologies: Renormalize
Ariel Weil
 
MySQL Cluster performance best practices
MySQL Cluster performance best practicesMySQL Cluster performance best practices
MySQL Cluster performance best practices
Mat Keep
 
MySQL Cluster overview + development slides (2014)
MySQL Cluster overview + development slides (2014) MySQL Cluster overview + development slides (2014)
MySQL Cluster overview + development slides (2014)
Frazer Clement
 
Managing Exadata in the Real World
Managing Exadata in the Real WorldManaging Exadata in the Real World
Managing Exadata in the Real World
Enkitec
 
My sql tutorial-oscon-2012
My sql tutorial-oscon-2012My sql tutorial-oscon-2012
My sql tutorial-oscon-2012
John David Duncan
 
Introduction to Apache Accumulo
Introduction to Apache AccumuloIntroduction to Apache Accumulo
Introduction to Apache Accumulo
Jared Winick
 
Performance Issues on Hadoop Clusters
Performance Issues on Hadoop ClustersPerformance Issues on Hadoop Clusters
Performance Issues on Hadoop Clusters
Xiao Qin
 
20141011 my sql clusterv01pptx
20141011 my sql clusterv01pptx20141011 my sql clusterv01pptx
20141011 my sql clusterv01pptx
Ivan Ma
 
My SQL Portal Database (Cluster)
My SQL Portal Database (Cluster)My SQL Portal Database (Cluster)
My SQL Portal Database (Cluster)
Nicholas Adu Gyamfi
 
3.5 SDN CloudStack Developer Day
3.5  SDN CloudStack Developer Day3.5  SDN CloudStack Developer Day
3.5 SDN CloudStack Developer Day
Kimihiko Kitase
 
MySQL Cluster Scaling to a Billion Queries
MySQL Cluster Scaling to a Billion QueriesMySQL Cluster Scaling to a Billion Queries
MySQL Cluster Scaling to a Billion Queries
Bernd Ocklin
 
Severalnines Self-Training: MySQL® Cluster - Part II
Severalnines Self-Training: MySQL® Cluster - Part IISeveralnines Self-Training: MySQL® Cluster - Part II
Severalnines Self-Training: MySQL® Cluster - Part II
Severalnines
 
MYSQL
MYSQLMYSQL
MYSQL
gilashikwa
 
Conference slides: MySQL Cluster Performance Tuning
Conference slides: MySQL Cluster Performance TuningConference slides: MySQL Cluster Performance Tuning
Conference slides: MySQL Cluster Performance Tuning
Severalnines
 
Introduction to MySQL Cluster
Introduction to MySQL ClusterIntroduction to MySQL Cluster
Introduction to MySQL Cluster
Abel Flórez
 
Laserdata i skyen - Geomatikkdagene 2013
Laserdata i skyen - Geomatikkdagene 2013Laserdata i skyen - Geomatikkdagene 2013
Laserdata i skyen - Geomatikkdagene 2013
Geodata AS
 

Similar to MySQL Cluster Product Overview (20)

Mysql cluster introduction
Mysql cluster introductionMysql cluster introduction
Mysql cluster introduction
 
My sql cluster_taipei_event
My sql cluster_taipei_eventMy sql cluster_taipei_event
My sql cluster_taipei_event
 
Solving performance problems in MySQL without denormalization
Solving performance problems in MySQL without denormalizationSolving performance problems in MySQL without denormalization
Solving performance problems in MySQL without denormalization
 
Akiban Technologies: Renormalize
Akiban Technologies: RenormalizeAkiban Technologies: Renormalize
Akiban Technologies: Renormalize
 
Akiban Technologies: Renormalize
Akiban Technologies: RenormalizeAkiban Technologies: Renormalize
Akiban Technologies: Renormalize
 
MySQL Cluster performance best practices
MySQL Cluster performance best practicesMySQL Cluster performance best practices
MySQL Cluster performance best practices
 
MySQL Cluster overview + development slides (2014)
MySQL Cluster overview + development slides (2014) MySQL Cluster overview + development slides (2014)
MySQL Cluster overview + development slides (2014)
 
Managing Exadata in the Real World
Managing Exadata in the Real WorldManaging Exadata in the Real World
Managing Exadata in the Real World
 
My sql tutorial-oscon-2012
My sql tutorial-oscon-2012My sql tutorial-oscon-2012
My sql tutorial-oscon-2012
 
Introduction to Apache Accumulo
Introduction to Apache AccumuloIntroduction to Apache Accumulo
Introduction to Apache Accumulo
 
Performance Issues on Hadoop Clusters
Performance Issues on Hadoop ClustersPerformance Issues on Hadoop Clusters
Performance Issues on Hadoop Clusters
 
20141011 my sql clusterv01pptx
20141011 my sql clusterv01pptx20141011 my sql clusterv01pptx
20141011 my sql clusterv01pptx
 
My SQL Portal Database (Cluster)
My SQL Portal Database (Cluster)My SQL Portal Database (Cluster)
My SQL Portal Database (Cluster)
 
3.5 SDN CloudStack Developer Day
3.5  SDN CloudStack Developer Day3.5  SDN CloudStack Developer Day
3.5 SDN CloudStack Developer Day
 
MySQL Cluster Scaling to a Billion Queries
MySQL Cluster Scaling to a Billion QueriesMySQL Cluster Scaling to a Billion Queries
MySQL Cluster Scaling to a Billion Queries
 
Severalnines Self-Training: MySQL® Cluster - Part II
Severalnines Self-Training: MySQL® Cluster - Part IISeveralnines Self-Training: MySQL® Cluster - Part II
Severalnines Self-Training: MySQL® Cluster - Part II
 
MYSQL
MYSQLMYSQL
MYSQL
 
Conference slides: MySQL Cluster Performance Tuning
Conference slides: MySQL Cluster Performance TuningConference slides: MySQL Cluster Performance Tuning
Conference slides: MySQL Cluster Performance Tuning
 
Introduction to MySQL Cluster
Introduction to MySQL ClusterIntroduction to MySQL Cluster
Introduction to MySQL Cluster
 
Laserdata i skyen - Geomatikkdagene 2013
Laserdata i skyen - Geomatikkdagene 2013Laserdata i skyen - Geomatikkdagene 2013
Laserdata i skyen - Geomatikkdagene 2013
 

More from Wagner Bianchi

Migrations from PLSQL and Transact-SQL - m18
Migrations from PLSQL and Transact-SQL - m18Migrations from PLSQL and Transact-SQL - m18
Migrations from PLSQL and Transact-SQL - m18
Wagner Bianchi
 
Maxscale switchover, failover, and auto rejoin
Maxscale switchover, failover, and auto rejoinMaxscale switchover, failover, and auto rejoin
Maxscale switchover, failover, and auto rejoin
Wagner Bianchi
 
Meetup São Paulo, Maxscale Implementação e Casos de Uso
Meetup São Paulo, Maxscale Implementação e Casos de UsoMeetup São Paulo, Maxscale Implementação e Casos de Uso
Meetup São Paulo, Maxscale Implementação e Casos de Uso
Wagner Bianchi
 
Escalando o ambiente com MariaDB Cluster (Portuguese Edition)
Escalando o ambiente com MariaDB Cluster (Portuguese Edition)Escalando o ambiente com MariaDB Cluster (Portuguese Edition)
Escalando o ambiente com MariaDB Cluster (Portuguese Edition)
Wagner Bianchi
 
NY Meetup: Scaling MariaDB with Maxscale
NY Meetup: Scaling MariaDB with MaxscaleNY Meetup: Scaling MariaDB with Maxscale
NY Meetup: Scaling MariaDB with Maxscale
Wagner Bianchi
 
Webinar: MariaDB Provides the Solution to Ease Multi-Source Replication
Webinar: MariaDB Provides the Solution to Ease Multi-Source ReplicationWebinar: MariaDB Provides the Solution to Ease Multi-Source Replication
Webinar: MariaDB Provides the Solution to Ease Multi-Source Replication
Wagner Bianchi
 
MySQL Multi-Source Replication for PL2016
MySQL Multi-Source Replication for PL2016MySQL Multi-Source Replication for PL2016
MySQL Multi-Source Replication for PL2016
Wagner Bianchi
 
MySQL 5.7 Multi-Source Replication
MySQL 5.7 Multi-Source ReplicationMySQL 5.7 Multi-Source Replication
MySQL 5.7 Multi-Source Replication
Wagner Bianchi
 
UNIFAL - MySQL 5.6 - Replicação
UNIFAL - MySQL 5.6 - ReplicaçãoUNIFAL - MySQL 5.6 - Replicação
UNIFAL - MySQL 5.6 - Replicação
Wagner Bianchi
 
UNIFAL - MySQL Logs - 5.0/5.6
UNIFAL - MySQL Logs - 5.0/5.6UNIFAL - MySQL Logs - 5.0/5.6
UNIFAL - MySQL Logs - 5.0/5.6
Wagner Bianchi
 
UNIFAL - MySQL Transações - 5.0/5.6
UNIFAL - MySQL Transações - 5.0/5.6UNIFAL - MySQL Transações - 5.0/5.6
UNIFAL - MySQL Transações - 5.0/5.6
Wagner Bianchi
 
UNIFAL - MySQL Storage Engine - 5.0/5.6
UNIFAL - MySQL Storage Engine - 5.0/5.6UNIFAL - MySQL Storage Engine - 5.0/5.6
UNIFAL - MySQL Storage Engine - 5.0/5.6
Wagner Bianchi
 
UNIFAL - MySQL Views - 5.0/5.6
UNIFAL - MySQL Views - 5.0/5.6UNIFAL - MySQL Views - 5.0/5.6
UNIFAL - MySQL Views - 5.0/5.6
Wagner Bianchi
 
UNIFAL - MySQL Triggers - 5.0/5.6
UNIFAL - MySQL Triggers - 5.0/5.6UNIFAL - MySQL Triggers - 5.0/5.6
UNIFAL - MySQL Triggers - 5.0/5.6
Wagner Bianchi
 
UNIFAL - MySQL Stored Routines - 5.0/5.6
UNIFAL - MySQL Stored Routines - 5.0/5.6UNIFAL - MySQL Stored Routines - 5.0/5.6
UNIFAL - MySQL Stored Routines - 5.0/5.6
Wagner Bianchi
 
UNIFAL - MySQL Linguagem SQL Básico - 5.0/5.6
UNIFAL - MySQL Linguagem SQL Básico - 5.0/5.6UNIFAL - MySQL Linguagem SQL Básico - 5.0/5.6
UNIFAL - MySQL Linguagem SQL Básico - 5.0/5.6
Wagner Bianchi
 
UNIFAL - MySQL & Vagrant (iniciando os trabalhos)
UNIFAL - MySQL & Vagrant (iniciando os trabalhos)UNIFAL - MySQL & Vagrant (iniciando os trabalhos)
UNIFAL - MySQL & Vagrant (iniciando os trabalhos)
Wagner Bianchi
 
Wagner Bianchi, GUOB 2014 MySQL Cluster 7.3
Wagner Bianchi, GUOB 2014 MySQL Cluster 7.3Wagner Bianchi, GUOB 2014 MySQL Cluster 7.3
Wagner Bianchi, GUOB 2014 MySQL Cluster 7.3
Wagner Bianchi
 
Introdução ao MySQL 5.6
Introdução ao MySQL 5.6Introdução ao MySQL 5.6
Introdução ao MySQL 5.6
Wagner Bianchi
 
Mysql for IBMers
Mysql for IBMersMysql for IBMers
Mysql for IBMers
Wagner Bianchi
 

More from Wagner Bianchi (20)

Migrations from PLSQL and Transact-SQL - m18
Migrations from PLSQL and Transact-SQL - m18Migrations from PLSQL and Transact-SQL - m18
Migrations from PLSQL and Transact-SQL - m18
 
Maxscale switchover, failover, and auto rejoin
Maxscale switchover, failover, and auto rejoinMaxscale switchover, failover, and auto rejoin
Maxscale switchover, failover, and auto rejoin
 
Meetup São Paulo, Maxscale Implementação e Casos de Uso
Meetup São Paulo, Maxscale Implementação e Casos de UsoMeetup São Paulo, Maxscale Implementação e Casos de Uso
Meetup São Paulo, Maxscale Implementação e Casos de Uso
 
Escalando o ambiente com MariaDB Cluster (Portuguese Edition)
Escalando o ambiente com MariaDB Cluster (Portuguese Edition)Escalando o ambiente com MariaDB Cluster (Portuguese Edition)
Escalando o ambiente com MariaDB Cluster (Portuguese Edition)
 
NY Meetup: Scaling MariaDB with Maxscale
NY Meetup: Scaling MariaDB with MaxscaleNY Meetup: Scaling MariaDB with Maxscale
NY Meetup: Scaling MariaDB with Maxscale
 
Webinar: MariaDB Provides the Solution to Ease Multi-Source Replication
Webinar: MariaDB Provides the Solution to Ease Multi-Source ReplicationWebinar: MariaDB Provides the Solution to Ease Multi-Source Replication
Webinar: MariaDB Provides the Solution to Ease Multi-Source Replication
 
MySQL Multi-Source Replication for PL2016
MySQL Multi-Source Replication for PL2016MySQL Multi-Source Replication for PL2016
MySQL Multi-Source Replication for PL2016
 
MySQL 5.7 Multi-Source Replication
MySQL 5.7 Multi-Source ReplicationMySQL 5.7 Multi-Source Replication
MySQL 5.7 Multi-Source Replication
 
UNIFAL - MySQL 5.6 - Replicação
UNIFAL - MySQL 5.6 - ReplicaçãoUNIFAL - MySQL 5.6 - Replicação
UNIFAL - MySQL 5.6 - Replicação
 
UNIFAL - MySQL Logs - 5.0/5.6
UNIFAL - MySQL Logs - 5.0/5.6UNIFAL - MySQL Logs - 5.0/5.6
UNIFAL - MySQL Logs - 5.0/5.6
 
UNIFAL - MySQL Transações - 5.0/5.6
UNIFAL - MySQL Transações - 5.0/5.6UNIFAL - MySQL Transações - 5.0/5.6
UNIFAL - MySQL Transações - 5.0/5.6
 
UNIFAL - MySQL Storage Engine - 5.0/5.6
UNIFAL - MySQL Storage Engine - 5.0/5.6UNIFAL - MySQL Storage Engine - 5.0/5.6
UNIFAL - MySQL Storage Engine - 5.0/5.6
 
UNIFAL - MySQL Views - 5.0/5.6
UNIFAL - MySQL Views - 5.0/5.6UNIFAL - MySQL Views - 5.0/5.6
UNIFAL - MySQL Views - 5.0/5.6
 
UNIFAL - MySQL Triggers - 5.0/5.6
UNIFAL - MySQL Triggers - 5.0/5.6UNIFAL - MySQL Triggers - 5.0/5.6
UNIFAL - MySQL Triggers - 5.0/5.6
 
UNIFAL - MySQL Stored Routines - 5.0/5.6
UNIFAL - MySQL Stored Routines - 5.0/5.6UNIFAL - MySQL Stored Routines - 5.0/5.6
UNIFAL - MySQL Stored Routines - 5.0/5.6
 
UNIFAL - MySQL Linguagem SQL Básico - 5.0/5.6
UNIFAL - MySQL Linguagem SQL Básico - 5.0/5.6UNIFAL - MySQL Linguagem SQL Básico - 5.0/5.6
UNIFAL - MySQL Linguagem SQL Básico - 5.0/5.6
 
UNIFAL - MySQL & Vagrant (iniciando os trabalhos)
UNIFAL - MySQL & Vagrant (iniciando os trabalhos)UNIFAL - MySQL & Vagrant (iniciando os trabalhos)
UNIFAL - MySQL & Vagrant (iniciando os trabalhos)
 
Wagner Bianchi, GUOB 2014 MySQL Cluster 7.3
Wagner Bianchi, GUOB 2014 MySQL Cluster 7.3Wagner Bianchi, GUOB 2014 MySQL Cluster 7.3
Wagner Bianchi, GUOB 2014 MySQL Cluster 7.3
 
Introdução ao MySQL 5.6
Introdução ao MySQL 5.6Introdução ao MySQL 5.6
Introdução ao MySQL 5.6
 
Mysql for IBMers
Mysql for IBMersMysql for IBMers
Mysql for IBMers
 

Recently uploaded

Data Integration Basics: Merging & Joining Data
Data Integration Basics: Merging & Joining DataData Integration Basics: Merging & Joining Data
Data Integration Basics: Merging & Joining Data
Safe Software
 
leewayhertz.com-AI agents for healthcare Applications benefits and implementa...
leewayhertz.com-AI agents for healthcare Applications benefits and implementa...leewayhertz.com-AI agents for healthcare Applications benefits and implementa...
leewayhertz.com-AI agents for healthcare Applications benefits and implementa...
alexjohnson7307
 
High Profile Girls Call ServiCe Hyderabad 0000000000 Tanisha Best High Class ...
High Profile Girls Call ServiCe Hyderabad 0000000000 Tanisha Best High Class ...High Profile Girls Call ServiCe Hyderabad 0000000000 Tanisha Best High Class ...
High Profile Girls Call ServiCe Hyderabad 0000000000 Tanisha Best High Class ...
aslasdfmkhan4750
 
TrustArc Webinar - 2024 Data Privacy Trends: A Mid-Year Check-In
TrustArc Webinar - 2024 Data Privacy Trends: A Mid-Year Check-InTrustArc Webinar - 2024 Data Privacy Trends: A Mid-Year Check-In
TrustArc Webinar - 2024 Data Privacy Trends: A Mid-Year Check-In
TrustArc
 
Three New Criminal Laws in India 1 July 2024
Three New Criminal Laws in India 1 July 2024Three New Criminal Laws in India 1 July 2024
Three New Criminal Laws in India 1 July 2024
aakash malhotra
 
Google I/O Extended Harare Merged Slides
Google I/O Extended Harare Merged SlidesGoogle I/O Extended Harare Merged Slides
Google I/O Extended Harare Merged Slides
Google Developer Group - Harare
 
Using LLM Agents with Llama 3, LangGraph and Milvus
Using LLM Agents with Llama 3, LangGraph and MilvusUsing LLM Agents with Llama 3, LangGraph and Milvus
Using LLM Agents with Llama 3, LangGraph and Milvus
Zilliz
 
How Social Media Hackers Help You to See Your Wife's Message.pdf
How Social Media Hackers Help You to See Your Wife's Message.pdfHow Social Media Hackers Help You to See Your Wife's Message.pdf
How Social Media Hackers Help You to See Your Wife's Message.pdf
HackersList
 
Opencast Summit 2024 — Opencast @ University of Münster
Opencast Summit 2024 — Opencast @ University of MünsterOpencast Summit 2024 — Opencast @ University of Münster
Opencast Summit 2024 — Opencast @ University of Münster
Matthias Neugebauer
 
Tirana Tech Meetup - Agentic RAG with Milvus, Llama3 and Ollama
Tirana Tech Meetup - Agentic RAG with Milvus, Llama3 and OllamaTirana Tech Meetup - Agentic RAG with Milvus, Llama3 and Ollama
Tirana Tech Meetup - Agentic RAG with Milvus, Llama3 and Ollama
Zilliz
 
Calgary MuleSoft Meetup APM and IDP .pptx
Calgary MuleSoft Meetup APM and IDP .pptxCalgary MuleSoft Meetup APM and IDP .pptx
Calgary MuleSoft Meetup APM and IDP .pptx
ishalveerrandhawa1
 
How RPA Help in the Transportation and Logistics Industry.pptx
How RPA Help in the Transportation and Logistics Industry.pptxHow RPA Help in the Transportation and Logistics Industry.pptx
How RPA Help in the Transportation and Logistics Industry.pptx
SynapseIndia
 
EuroPython 2024 - Streamlining Testing in a Large Python Codebase
EuroPython 2024 - Streamlining Testing in a Large Python CodebaseEuroPython 2024 - Streamlining Testing in a Large Python Codebase
EuroPython 2024 - Streamlining Testing in a Large Python Codebase
Jimmy Lai
 
IPLOOK Remote-Sensing Satellite Solution
IPLOOK Remote-Sensing Satellite SolutionIPLOOK Remote-Sensing Satellite Solution
IPLOOK Remote-Sensing Satellite Solution
IPLOOK Networks
 
WhatsApp Image 2024-03-27 at 08.19.52_bfd93109.pdf
WhatsApp Image 2024-03-27 at 08.19.52_bfd93109.pdfWhatsApp Image 2024-03-27 at 08.19.52_bfd93109.pdf
WhatsApp Image 2024-03-27 at 08.19.52_bfd93109.pdf
ArgaBisma
 
Active Inference is a veryyyyyyyyyyyyyyyyyyyyyyyy
Active Inference is a veryyyyyyyyyyyyyyyyyyyyyyyyActive Inference is a veryyyyyyyyyyyyyyyyyyyyyyyy
Active Inference is a veryyyyyyyyyyyyyyyyyyyyyyyy
RaminGhanbari2
 
WPRiders Company Presentation Slide Deck
WPRiders Company Presentation Slide DeckWPRiders Company Presentation Slide Deck
WPRiders Company Presentation Slide Deck
Lidia A.
 
CiscoIconsLibrary cours de réseau VLAN.ppt
CiscoIconsLibrary cours de réseau VLAN.pptCiscoIconsLibrary cours de réseau VLAN.ppt
CiscoIconsLibrary cours de réseau VLAN.ppt
moinahousna
 
Evolution of iPaaS - simplify IT workloads to provide a unified view of data...
Evolution of iPaaS - simplify IT workloads to provide a unified view of  data...Evolution of iPaaS - simplify IT workloads to provide a unified view of  data...
Evolution of iPaaS - simplify IT workloads to provide a unified view of data...
Torry Harris
 
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
sunilverma7884
 

Recently uploaded (20)

Data Integration Basics: Merging & Joining Data
Data Integration Basics: Merging & Joining DataData Integration Basics: Merging & Joining Data
Data Integration Basics: Merging & Joining Data
 
leewayhertz.com-AI agents for healthcare Applications benefits and implementa...
leewayhertz.com-AI agents for healthcare Applications benefits and implementa...leewayhertz.com-AI agents for healthcare Applications benefits and implementa...
leewayhertz.com-AI agents for healthcare Applications benefits and implementa...
 
High Profile Girls Call ServiCe Hyderabad 0000000000 Tanisha Best High Class ...
High Profile Girls Call ServiCe Hyderabad 0000000000 Tanisha Best High Class ...High Profile Girls Call ServiCe Hyderabad 0000000000 Tanisha Best High Class ...
High Profile Girls Call ServiCe Hyderabad 0000000000 Tanisha Best High Class ...
 
TrustArc Webinar - 2024 Data Privacy Trends: A Mid-Year Check-In
TrustArc Webinar - 2024 Data Privacy Trends: A Mid-Year Check-InTrustArc Webinar - 2024 Data Privacy Trends: A Mid-Year Check-In
TrustArc Webinar - 2024 Data Privacy Trends: A Mid-Year Check-In
 
Three New Criminal Laws in India 1 July 2024
Three New Criminal Laws in India 1 July 2024Three New Criminal Laws in India 1 July 2024
Three New Criminal Laws in India 1 July 2024
 
Google I/O Extended Harare Merged Slides
Google I/O Extended Harare Merged SlidesGoogle I/O Extended Harare Merged Slides
Google I/O Extended Harare Merged Slides
 
Using LLM Agents with Llama 3, LangGraph and Milvus
Using LLM Agents with Llama 3, LangGraph and MilvusUsing LLM Agents with Llama 3, LangGraph and Milvus
Using LLM Agents with Llama 3, LangGraph and Milvus
 
How Social Media Hackers Help You to See Your Wife's Message.pdf
How Social Media Hackers Help You to See Your Wife's Message.pdfHow Social Media Hackers Help You to See Your Wife's Message.pdf
How Social Media Hackers Help You to See Your Wife's Message.pdf
 
Opencast Summit 2024 — Opencast @ University of Münster
Opencast Summit 2024 — Opencast @ University of MünsterOpencast Summit 2024 — Opencast @ University of Münster
Opencast Summit 2024 — Opencast @ University of Münster
 
Tirana Tech Meetup - Agentic RAG with Milvus, Llama3 and Ollama
Tirana Tech Meetup - Agentic RAG with Milvus, Llama3 and OllamaTirana Tech Meetup - Agentic RAG with Milvus, Llama3 and Ollama
Tirana Tech Meetup - Agentic RAG with Milvus, Llama3 and Ollama
 
Calgary MuleSoft Meetup APM and IDP .pptx
Calgary MuleSoft Meetup APM and IDP .pptxCalgary MuleSoft Meetup APM and IDP .pptx
Calgary MuleSoft Meetup APM and IDP .pptx
 
How RPA Help in the Transportation and Logistics Industry.pptx
How RPA Help in the Transportation and Logistics Industry.pptxHow RPA Help in the Transportation and Logistics Industry.pptx
How RPA Help in the Transportation and Logistics Industry.pptx
 
EuroPython 2024 - Streamlining Testing in a Large Python Codebase
EuroPython 2024 - Streamlining Testing in a Large Python CodebaseEuroPython 2024 - Streamlining Testing in a Large Python Codebase
EuroPython 2024 - Streamlining Testing in a Large Python Codebase
 
IPLOOK Remote-Sensing Satellite Solution
IPLOOK Remote-Sensing Satellite SolutionIPLOOK Remote-Sensing Satellite Solution
IPLOOK Remote-Sensing Satellite Solution
 
WhatsApp Image 2024-03-27 at 08.19.52_bfd93109.pdf
WhatsApp Image 2024-03-27 at 08.19.52_bfd93109.pdfWhatsApp Image 2024-03-27 at 08.19.52_bfd93109.pdf
WhatsApp Image 2024-03-27 at 08.19.52_bfd93109.pdf
 
Active Inference is a veryyyyyyyyyyyyyyyyyyyyyyyy
Active Inference is a veryyyyyyyyyyyyyyyyyyyyyyyyActive Inference is a veryyyyyyyyyyyyyyyyyyyyyyyy
Active Inference is a veryyyyyyyyyyyyyyyyyyyyyyyy
 
WPRiders Company Presentation Slide Deck
WPRiders Company Presentation Slide DeckWPRiders Company Presentation Slide Deck
WPRiders Company Presentation Slide Deck
 
CiscoIconsLibrary cours de réseau VLAN.ppt
CiscoIconsLibrary cours de réseau VLAN.pptCiscoIconsLibrary cours de réseau VLAN.ppt
CiscoIconsLibrary cours de réseau VLAN.ppt
 
Evolution of iPaaS - simplify IT workloads to provide a unified view of data...
Evolution of iPaaS - simplify IT workloads to provide a unified view of  data...Evolution of iPaaS - simplify IT workloads to provide a unified view of  data...
Evolution of iPaaS - simplify IT workloads to provide a unified view of data...
 
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
 

MySQL Cluster Product Overview

  • 1. <Insert Picture Here> MySQL Cluster Product Overview Wagner Bianchi – contato@wagnerbianchi.com
  • 2. Disclaimer The preceding is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, 2 release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle. 2
  • 3. Industry Leaders Rely on MySQL Web & Enterprise OEM & ISVs Cloud 3
  • 4. Agenda • MySQL Cluster Product Overview – O que é o MySQL Cluster? – Componentes do MySQL Cluster – MySQL Cluster Manager ™ – Casos de Utilização – Benchmarks • MySQL Cluster 7.2 4
  • 5. O que é o MySQL Cluster? 5
  • 6. Mapping HA Architectures to Availability 6
  • 7. Multi-Data Center Scalability Geographic Replication • Replicate complete clusters across data centers – DR & data locality – Fully active/active Geographic – No passive resources Replication • Split individual clusters across data centers – Synchronous replication & auto-failover between sites – Delivered as part of MySQL Cluster 7.2 DMR 7
  • 8. Mapping Applications to HA Technology Shared-Nothing, Database Clustered / Applica ons Geo-Replicated Replica on Virtualized Cluster E-Commerce / Trading (1) Session Management (1) User Authen ca on / Accoun ng (1) Feeds, Blogs, Wikis OLTP (1) Data Warehouse/BI Content Management CRM Collabora on Packaged So ware Network Infrastructure Core Telco Apps (HLR/HSS/SDP…) 1: Replication used in combination with cluster or virtualization – based HA 8
  • 9. MySQL Cluster • O MySQL Cluster é formado por 3 componentes: – Management Node: permite a realização de tarefas administrativas como monitoramento dos nós, backup dos nós de dados do cluster e outras – seu binário é o ndb_mgmd; – Data ou Storage Node: responsável por processar e armazenar dados dos bancos de dados localizados no cluster – seu binário é o ndbd ou ndbmtd; – API ou SQL Node: este é o nó que recebe as conexões das aplicações e enviam e requisitam dados armazenados nos Data Nodes – seu binário é o mysqld; 9
  • 10. MySQL Cluster - Auto-Partitioning Table T1 Data Node 1 P1 Data Node 2 P2 P3 Data Node 3 P4 Data Node 4 10
  • 11. MySQL Cluster - Auto-Partitioning Table T1 Data Node 1 F1 P1 Data Node 2 P2 P3 Data Node 3 P4 Data Node 4 11
  • 12. MySQL Cluster - Auto-Partitioning Table T1 Data Node 1 F1 P1 Data Node 2 F1 P2 P3 Data Node 3 P4 Data Node 4 12
  • 13. MySQL Cluster - Auto-Partitioning Table T1 Data Node 1 F1 P1 Data Node 2 F3 F1 P2 P3 Data Node 3 P4 Data Node 4 13
  • 14. MySQL Cluster - Auto-Partitioning Table T1 Data Node 1 F1 F3 P1 Data Node 2 F3 F1 P2 P3 Data Node 3 P4 Data Node 4 14
  • 15. MySQL Cluster - Auto-Partitioning Table T1 Data Node 1 F1 F3 P1 Data Node 2 F3 F1 P2 P3 Data Node 3 F2 P4 Data Node 4 15
  • 16. MySQL Cluster - Auto-Partitioning Table T1 Data Node 1 F1 F3 P1 Data Node 2 F3 F1 P2 P3 Data Node 3 F2 P4 Data Node 4 F2 16
  • 17. MySQL Cluster - Auto-Partitioning Table T1 Data Node 1 F1 F3 P1 Data Node 2 F3 F1 P2 P3 Data Node 3 F2 P4 Data Node 4 F4 F2 17
  • 18. MySQL Cluster - Auto-Partitioning Table T1 Data Node 1 F1 F3 P1 Data Node 2 F3 F1 P2 P3 Data Node 3 F2 F4 P4 Data Node 4 F4 F2 18
  • 19. MySQL Cluster - Auto-Partitioning Table T1 Data Node 1 F1 F3 P1 Node Group 1 Data Node 2 F3 F1 P2 P3 Data Node 3 F2 F4 P4 Data Node 4 F4 F2 19
  • 20. MySQL Cluster - Auto-Partitioning Table T1 Data Node 1 F1 F3 P1 Node Group 1 Data Node 2 F3 F1 P2 P3 Data Node 3 F2 F4 P4 Node Group 2 Data Node 4 F4 F2 20
  • 21. MySQL Cluster - Auto-Partitioning Table T1 Data Node 1 F1 F3 P1 Node Group 1 Data Node 2 F3 F1 P2 P3 Data Node 3 F2 F4 P4 Node Group 2 Data Node 4 F4 F2 21
  • 22. MySQL Cluster - Auto-Partitioning Table T1 Data Node 1 F1 F3 P1 Node Group 1 Data Node 2 F3 F1 P2 P3 Data Node 3 F2 F4 P4 Node Group 2 Data Node 4 F4 F2 22
  • 23. MySQL Cluster - Auto-Partitioning Table T1 Scalability a P1 Performanc e P2 HA a P3 Ease of use P4 SQL/Joins a ACID a Transaction s 23
  • 25. MySQL Cluster • Recomenda-se que: – todos os componentes sejam pelo menos duplicados, tendo uma instalação com no mínimo 6 nodes dentro do cluster; – o cluster seja colocado em uma sub-rede que possibilite trafegar dados somente do cluster para que não haja perda de pacotes; – todas as máquinas que figuram SQL e Storage node tenham as mesmas configurações para evitar bottlenecks; – todos os binários de todos os componentes sejam da mesma versão e release do produto; 25
  • 26. Comparison MySQL Oracle VM Solaris MySQL HA Technology WSFC* Replication Template Cluster Cluster All supported by Windows Server Oracle Linux Oracle Solaris All supported by Platform Support MySQL Server ** 2008 MySQL Cluster **** All (InnoDB InnoDB InnoDB All (InnoDB NDB (MySQL Supported Storage Engine recommended) recommended) Cluster) Auto IP Failover No Yes Yes Yes Yes Auto Database Failover No Yes Yes Yes Yes Auto Data No N/A – Shared N/A – Shared N/A – Shared Yes Storage Storage Storage Resynchronization Failover Time User / Script 5 seconds + 5 seconds + 5 seconds + 1 Second or Less Dependent InnoDB Recovery InnoDB Recovery InnoDB Recovery Time*** Time*** Time*** Asynchronous / Semi- N/A – Shared N/A – Shared N/A – Shared Synchronous Replication Mode Synchronous Storage Storage Storage No, distributed across Yes Yes Yes No, distributed Shared Storage nodes across nodes Master & Multiple Active / Passive Active / Passive Active / Passive 255 + Multiple No. of Nodes Slaves Master + Multiple Master + Multiple Master + Multiple Slaves Slaves Slaves Slaves Availability Design Level 99.9% 99.95% 99.99% 99.99% 99.999% * Windows Server 2008R2 Failover Clustering ** http://www.mysql.com/support/supportedplatforms/database.html *** InnoDB recovery time dependent on cache and database size, database activity, etc. **** http://www.mysql.com/support/supportedplatforms/cluster.html 26
  • 27. MySQL Cluster Manager ™ • Funciona através do MySQL Enterprise Monitor; • Permite fazer start, restart e stop de Storage Nodes através de Interface Gráfica; • Live Demo: http://bit.ly/rqjQRp 27
  • 28. MySQL Cluster Manager ™ MySQL Cluster nodes automatically restarted after configuration change 28
  • 29. Benchmarks – Scale-Out Aumento de servidores faz que haja aumento na escala, aumentando a capacidade de resolução de requisições! 29
  • 30. MySQL Cluster Architecture REST LDAP Application Nodes Scalability Performanc e Node Group 1 Node Group 2 HA F1 F2 Ease of use Node 1 Cluster Node 3 Cluster Mgr Mgr F3 F4 SQL/Joins a F3 F4 ACID a Node 2 Node 4 F1 F2 Transaction Data s Nodes 30
  • 31. MySQL Cluster Architecture REST LDAP Application Nodes Scalability Performanc e Node Group 1 Node Group 2 HA a F1 F2 Ease of use Node 1 Cluster Node 3 Cluster Mgr Mgr F3 F4 SQL/Joins a F3 F4 ACID a Node 2 Node 4 F1 F2 Transaction Data s Nodes 31
  • 32. Wagner Bianchi É especialista em MySQL e outros servidores de bancos de dados relacionais como Oracle e SQL Server. Formado em Gerenciamento de Bancos de Dados, com MBA em Administração de Empresas pela Fundação Getúlio Vargas e Pós-Graduando em Bancos de Dados pela Universidade Gama Filho do Distrito Federal, possui várias certificações, entre elas a SCMA, SCMDEV, SCMDBA e SCMCDBA. Atualmente é Consultor Sênior em bancos de dados pela WAGNERBIANCHI.COM. 32

Editor's Notes

  1. To reflect apps have different uptime requirements, there are multiple archs that can be used to deliver HAGroup into 3 main categories:Database Replication (typically implemented across loosely coupled clusters of servers);Tightly Coupled Clusters &amp; Virtualized Systems;Shared-Nothing, Geographically-Replicated Clusters. each of these architectures offers progressively higher levels of uptime, but this needs to be balanced against potentially greater levels of cost and complexity each will incur.  Simply deploying a high availability architecture is not a guarantee of actually delivering HA. A poorly implemented shared-nothing cluster could easily deliver lower levels of availability than a simple data replication solution.
  2. Through geo-replication, had the ability to replicate entire cluster across data centers – for DR and data localityActive/active, so both clusters can accept writes, then replication mechanisms detect and handle conflicts, so no passive resourcesWithin the 7.2DMR, also have the ability to split a single cluster across data centers
  3. By understanding the availability requirements of each application, it is possible to map the database deployment model to the appropriate HA architecture.  This slide maps common application types to architectures, based on best practices observed from the MySQL user base. Of course, each organization is unique, and so while the mapping may not be appropriate for every use-case, it does serve as a reference point to begin investigating those HA architectures which can potentially best serve your own requirements.Look at replication – this is used with many apps, very often in conjunction with a complimentary HA tech – in this case repl often used for salabilityRepl on its own good for feeds/blogs/wikis, content mgmt, collab type appsMiddle tier = mainstreamShard nothing – fin apps, high volume OLTP, core telecoms or military apps
  4. This is a quick comparison of the different approaches to MySQL HA - See range of certified and supported HA solutions extend from 99.9% to 99.999% availabilityCompare platform support, failover capability, data syncronisation, design level for uptimeDetailed version of this chart in a whitepaper will provide link at in the end