( - lity) + ( - addi)
Equa + tion
Equation
( - een+a)
+ ( - gon + tic)
Qua + dratic
Quadratic
( - ny+c)
+ ( - Educa)
Func + tion
Function
Activity
The table of values below
describes a quadratic function. Find
the equation of the quadratic
function by following the given
procedure. Use these three ordered
pairs (-3,-29),(-1,-5) and
(1,3) from the table of values.
X -3 -1 1 2 3
Y -29 -5 3 1 -5
a)Substitute one by one the
three (3) ordered pairs (x,y) in
𝒚 = 𝒂𝒙 𝟐
+ 𝒃𝒙 + 𝒄.
b) What are the three (3)
equations you came up with?
________, _________, __________
c)Solve for the values of a, b,
and c.
c)Write the equation of the quadratic
function 𝒚 = 𝒂𝒙 𝟐
+ 𝒃𝒙 + 𝒄
X -3 -1 1 2 3
Y -29 -5 3 1 -5
a)Substitute one by one the
three (3) ordered pairs (x,y)
in 𝒚 = 𝒂𝒙 𝟐
+ 𝒃𝒙 + 𝒄.
−𝟐𝟗 = 𝒂(−𝟑) 𝟐 + 𝒃(−𝟑) + 𝒄
(-3,-29)
−𝟐𝟗 = 𝟗𝒂 − 𝟑𝒃 + 𝒄
Equation 1
−𝟓 = 𝒂(−𝟏) 𝟐 + 𝒃(−𝟏) + 𝒄
(-1,-5)
−𝟓 = 𝒂 − 𝒃 + 𝒄
Equation 2
(1,3)
𝟑 = 𝒂 𝟏 𝟐 + 𝒃 𝟏 + 𝒄
𝟑 = 𝐚 + 𝐛 + 𝒄
Equation 3
b.)What are the three (3)
equations you came up
with?
Equation 1
−𝟐𝟗 = 𝟗𝒂 − 𝟑𝒃 + 𝒄
Equation 2
−𝟓 = 𝒂 − 𝒃 + 𝒄
Equation 3
𝟑 = 𝒂 + 𝒃 + 𝒄
c.) Solve for the values
of a, b, and c.
𝑬𝒒. 𝟏 − 𝟐𝟗 = 𝟗𝒂 − 𝟑𝒃 + 𝒄
𝑬𝒒. 𝟐 (−𝟓 = 𝒂 − 𝒃 + 𝒄)
−𝟐𝟗 = 𝟗𝒂 − 𝟑𝒃 + 𝒄
+𝟏𝟓 = −𝟑𝒂 + 𝟑𝒃 − 𝟑𝒄
−𝟏𝟒 = 𝟔𝒂 − 𝟐𝒄
Equation 4
−3 −3
Equation 5
𝑬𝒒. 𝟐 − 𝟓 = 𝒂 − 𝒃 + 𝒄
𝑬𝒒. 𝟑 +𝟑 = 𝒂 + 𝒃 + 𝒄
−𝟐 = 𝟐𝐚 + 𝟐𝒄
Eq. 4 −𝟏𝟒 = 𝟔𝒂 − 𝟐𝒄
Eq. 5 + −𝟐 = 𝟐𝐚 + 𝟐𝒄
−𝟏𝟔 = 𝟖𝐚
𝒂 = −𝟐
−𝟏𝟔
𝟖
=
𝟖𝒂
𝟖
−𝟏𝟒 = −𝟏𝟐 − 𝟐𝒄
Eq. 4 −𝟏𝟒 = 𝟔𝒂 − 𝟐𝒄
−𝟏𝟒 = 𝟔(−𝟐) − 𝟐𝒄
𝒄 = 𝟏
−𝟏𝟒 + 𝟏𝟐 = −𝟐𝒄
−𝟐
−𝟐
=
−𝟐𝒄
−𝟐𝒄
−𝟓 + 𝟐 − 𝟏 = − 𝒃
Eq. 2 −𝟓 = 𝒂 − 𝒃 + 𝒄
−𝟓 = −𝟐 − 𝒃 + 𝟏
𝒃 = 𝟒
−𝟒 = − 𝒃
−𝟒
−𝟏
=
−𝒃
−𝟏
d) Write the
equation of
the quadratic
function
𝒚 = 𝒂𝒙 𝟐
+ 𝒃𝒙 + 𝒄.
𝒚 = −𝟐𝒙 𝟐
+ 𝟒𝒙 + 𝟏
Finding the
Equation
Get the system of
three linear equations
in a, b, and c.
𝑺𝒕𝒆𝒑
(1,4)
𝑺𝒕𝒆𝒑
𝒚 = 𝒂𝒙 𝟐
+ 𝒃𝒙 + 𝒄
𝟒 = 𝒂(𝟏) 𝟐+ 𝒃(𝟏) + 𝒄
Equation 1
𝟒 = 𝒂 + 𝒃 + 𝒄
(-1,10)
𝑺𝒕𝒆𝒑
𝒚 = 𝒂𝒙 𝟐
+ 𝒃𝒙 + 𝒄
𝟏𝟎 = 𝒂(−𝟏) 𝟐 + 𝒃(−𝟏) + 𝒄
Equation 2
𝟏𝟎 = 𝒂 − 𝒃 + 𝒄
(2,4)
𝑺𝒕𝒆𝒑
𝒚 = 𝒂𝒙 𝟐
+ 𝒃𝒙 + 𝒄
𝟒 = 𝒂(𝟐) 𝟐 + 𝒃(𝟐) + 𝒄
Equation 3
𝟒 = 𝟒𝒂 + 𝟐𝒃 + 𝒄
Get the system of two
linear equations with
two variables.
𝑺𝒕𝒆𝒑
𝑺𝒕𝒆𝒑
Eq. 1 4 = 𝑎 + 𝑏 + 𝑐
Eq. 2 𝟏𝟎 = 𝒂 − 𝒃 + 𝒄
Equation 4
𝟏𝟒 = 𝟐𝒂 + 𝟐𝒄
𝑺𝒕𝒆𝒑
Eq. 2 ( 𝟏𝟎 = 𝒂 − 𝒃 + 𝒄)
𝟐𝟎 = 𝟐𝒂 − 𝟐𝒃 + 𝟐𝒄
Equation 5
+ 𝟒 = 𝟒𝒂 + 𝟐𝒃 + 𝒄
22
𝟐𝟒 = 𝟔𝒂 + 𝟑𝒄
𝟏𝟒 = 𝟐𝒂 + 𝟐𝒄
𝟐𝟒 = 𝟔𝒂 + 𝟑𝒄
Equation 4
Equation 5
Eq. 4 (14 = 2𝑎 + 2𝑐)
𝟒𝟐 = 𝟔𝒂 + 𝟔𝒄
33
𝟏𝟖 = 𝟑𝒄
−𝟐𝟒 = −𝟔𝒂 − 𝟑𝒄
𝟏𝟖
𝟑
=
𝟑𝒄
𝟑
c = 6
𝑺𝒕𝒆𝒑
Finding the
value of
a, b, and c .
𝑺𝒕𝒆𝒑
Eq. 4 14 = 2𝑎 + 2𝑐
𝟏𝟒 = 𝟐𝒂 + 𝟐(𝟔)
𝟏𝟒 − 𝟏𝟐 = 𝟐𝒂
𝟏𝟒 = 𝟐𝒂 + 𝟏𝟐
𝟐
𝟐
=
𝟐𝒂
𝟐
a = 1
𝑺𝒕𝒆𝒑
Eq. 1 𝟒 = 𝒂 + 𝒃 + 𝒄
𝟒 = 𝟏 + 𝒃 + 𝟔
−𝟑 = 𝒃
𝟒 − 𝟏 − 𝟔 = 𝒃
b = -3
𝑺𝒕𝒆𝒑
Substitute the value of
a, b, and c in
𝒚 = 𝒂𝒙 𝟐
+ 𝒃𝒙 + 𝒄
𝑺𝒕𝒆𝒑
𝒚 = 𝒂𝒙 𝟐 + 𝒃𝒙 + 𝒄
𝑺𝒕𝒆𝒑
𝒚 = 𝟏 𝒙 𝟐
(−𝟑)𝒙 + (𝟔)
Write your final answer
in standard form of
Quadratic Function.
𝑺𝒕𝒆𝒑
𝒚 = 𝒙 𝟐
− 𝟑𝒙 + 𝟔
𝑭𝒊𝒏𝒂𝒍 𝑨𝒏𝒔𝒘𝒆𝒓
Remember
You can use any ordered pairs from the
given table of values. Using different ordered
pairs, you will got different system of linear
equation but you will arrive in the same answer
for your quadratic function.
Seatwork
Matching Type
Solve the column A and
match it to its equivalent
answer in column B, then
match the column B to its
equivalent procedures of
finding the equation of
quadratic function in
column C.
Assignment
Perform the five steps to find
the equation of the quadratic
function represented by the table
of values below.
Write your answer in one
whole sheet of paper together with
your solution
X -3 -2 -1 0 1 2 3
y 2 1 2 5 10 17 26
Prepared by:
Ma. Antonette P. de Castro
Bachelor of Secondary Education
Mathematics Major

My finale MAD. Antonette

  • 2.
    ( - lity)+ ( - addi) Equa + tion Equation
  • 3.
    ( - een+a) +( - gon + tic) Qua + dratic Quadratic
  • 4.
    ( - ny+c) +( - Educa) Func + tion Function
  • 6.
  • 7.
    The table ofvalues below describes a quadratic function. Find the equation of the quadratic function by following the given procedure. Use these three ordered pairs (-3,-29),(-1,-5) and (1,3) from the table of values. X -3 -1 1 2 3 Y -29 -5 3 1 -5
  • 8.
    a)Substitute one byone the three (3) ordered pairs (x,y) in 𝒚 = 𝒂𝒙 𝟐 + 𝒃𝒙 + 𝒄. b) What are the three (3) equations you came up with? ________, _________, __________ c)Solve for the values of a, b, and c. c)Write the equation of the quadratic function 𝒚 = 𝒂𝒙 𝟐 + 𝒃𝒙 + 𝒄 X -3 -1 1 2 3 Y -29 -5 3 1 -5
  • 9.
    a)Substitute one byone the three (3) ordered pairs (x,y) in 𝒚 = 𝒂𝒙 𝟐 + 𝒃𝒙 + 𝒄. −𝟐𝟗 = 𝒂(−𝟑) 𝟐 + 𝒃(−𝟑) + 𝒄 (-3,-29) −𝟐𝟗 = 𝟗𝒂 − 𝟑𝒃 + 𝒄 Equation 1
  • 10.
    −𝟓 = 𝒂(−𝟏)𝟐 + 𝒃(−𝟏) + 𝒄 (-1,-5) −𝟓 = 𝒂 − 𝒃 + 𝒄 Equation 2 (1,3) 𝟑 = 𝒂 𝟏 𝟐 + 𝒃 𝟏 + 𝒄 𝟑 = 𝐚 + 𝐛 + 𝒄 Equation 3
  • 11.
    b.)What are thethree (3) equations you came up with? Equation 1 −𝟐𝟗 = 𝟗𝒂 − 𝟑𝒃 + 𝒄 Equation 2 −𝟓 = 𝒂 − 𝒃 + 𝒄 Equation 3 𝟑 = 𝒂 + 𝒃 + 𝒄
  • 12.
    c.) Solve forthe values of a, b, and c. 𝑬𝒒. 𝟏 − 𝟐𝟗 = 𝟗𝒂 − 𝟑𝒃 + 𝒄 𝑬𝒒. 𝟐 (−𝟓 = 𝒂 − 𝒃 + 𝒄) −𝟐𝟗 = 𝟗𝒂 − 𝟑𝒃 + 𝒄 +𝟏𝟓 = −𝟑𝒂 + 𝟑𝒃 − 𝟑𝒄 −𝟏𝟒 = 𝟔𝒂 − 𝟐𝒄 Equation 4 −3 −3
  • 13.
    Equation 5 𝑬𝒒. 𝟐− 𝟓 = 𝒂 − 𝒃 + 𝒄 𝑬𝒒. 𝟑 +𝟑 = 𝒂 + 𝒃 + 𝒄 −𝟐 = 𝟐𝐚 + 𝟐𝒄 Eq. 4 −𝟏𝟒 = 𝟔𝒂 − 𝟐𝒄 Eq. 5 + −𝟐 = 𝟐𝐚 + 𝟐𝒄 −𝟏𝟔 = 𝟖𝐚 𝒂 = −𝟐 −𝟏𝟔 𝟖 = 𝟖𝒂 𝟖
  • 14.
    −𝟏𝟒 = −𝟏𝟐− 𝟐𝒄 Eq. 4 −𝟏𝟒 = 𝟔𝒂 − 𝟐𝒄 −𝟏𝟒 = 𝟔(−𝟐) − 𝟐𝒄 𝒄 = 𝟏 −𝟏𝟒 + 𝟏𝟐 = −𝟐𝒄 −𝟐 −𝟐 = −𝟐𝒄 −𝟐𝒄
  • 15.
    −𝟓 + 𝟐− 𝟏 = − 𝒃 Eq. 2 −𝟓 = 𝒂 − 𝒃 + 𝒄 −𝟓 = −𝟐 − 𝒃 + 𝟏 𝒃 = 𝟒 −𝟒 = − 𝒃 −𝟒 −𝟏 = −𝒃 −𝟏
  • 16.
    d) Write the equationof the quadratic function 𝒚 = 𝒂𝒙 𝟐 + 𝒃𝒙 + 𝒄. 𝒚 = −𝟐𝒙 𝟐 + 𝟒𝒙 + 𝟏
  • 17.
  • 18.
    Get the systemof three linear equations in a, b, and c. 𝑺𝒕𝒆𝒑
  • 19.
    (1,4) 𝑺𝒕𝒆𝒑 𝒚 = 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 𝟒 = 𝒂(𝟏) 𝟐+ 𝒃(𝟏) + 𝒄 Equation 1 𝟒 = 𝒂 + 𝒃 + 𝒄
  • 20.
    (-1,10) 𝑺𝒕𝒆𝒑 𝒚 = 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 𝟏𝟎 = 𝒂(−𝟏) 𝟐 + 𝒃(−𝟏) + 𝒄 Equation 2 𝟏𝟎 = 𝒂 − 𝒃 + 𝒄
  • 21.
    (2,4) 𝑺𝒕𝒆𝒑 𝒚 = 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 𝟒 = 𝒂(𝟐) 𝟐 + 𝒃(𝟐) + 𝒄 Equation 3 𝟒 = 𝟒𝒂 + 𝟐𝒃 + 𝒄
  • 22.
    Get the systemof two linear equations with two variables. 𝑺𝒕𝒆𝒑
  • 23.
    𝑺𝒕𝒆𝒑 Eq. 1 4= 𝑎 + 𝑏 + 𝑐 Eq. 2 𝟏𝟎 = 𝒂 − 𝒃 + 𝒄 Equation 4 𝟏𝟒 = 𝟐𝒂 + 𝟐𝒄
  • 24.
    𝑺𝒕𝒆𝒑 Eq. 2 (𝟏𝟎 = 𝒂 − 𝒃 + 𝒄) 𝟐𝟎 = 𝟐𝒂 − 𝟐𝒃 + 𝟐𝒄 Equation 5 + 𝟒 = 𝟒𝒂 + 𝟐𝒃 + 𝒄 22 𝟐𝟒 = 𝟔𝒂 + 𝟑𝒄
  • 25.
    𝟏𝟒 = 𝟐𝒂+ 𝟐𝒄 𝟐𝟒 = 𝟔𝒂 + 𝟑𝒄 Equation 4 Equation 5
  • 26.
    Eq. 4 (14= 2𝑎 + 2𝑐) 𝟒𝟐 = 𝟔𝒂 + 𝟔𝒄 33 𝟏𝟖 = 𝟑𝒄 −𝟐𝟒 = −𝟔𝒂 − 𝟑𝒄 𝟏𝟖 𝟑 = 𝟑𝒄 𝟑 c = 6 𝑺𝒕𝒆𝒑
  • 27.
    Finding the value of a,b, and c . 𝑺𝒕𝒆𝒑
  • 28.
    Eq. 4 14= 2𝑎 + 2𝑐 𝟏𝟒 = 𝟐𝒂 + 𝟐(𝟔) 𝟏𝟒 − 𝟏𝟐 = 𝟐𝒂 𝟏𝟒 = 𝟐𝒂 + 𝟏𝟐 𝟐 𝟐 = 𝟐𝒂 𝟐 a = 1 𝑺𝒕𝒆𝒑
  • 29.
    Eq. 1 𝟒= 𝒂 + 𝒃 + 𝒄 𝟒 = 𝟏 + 𝒃 + 𝟔 −𝟑 = 𝒃 𝟒 − 𝟏 − 𝟔 = 𝒃 b = -3 𝑺𝒕𝒆𝒑
  • 30.
    Substitute the valueof a, b, and c in 𝒚 = 𝒂𝒙 𝟐 + 𝒃𝒙 + 𝒄 𝑺𝒕𝒆𝒑
  • 31.
    𝒚 = 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 𝑺𝒕𝒆𝒑 𝒚 = 𝟏 𝒙 𝟐 (−𝟑)𝒙 + (𝟔)
  • 32.
    Write your finalanswer in standard form of Quadratic Function. 𝑺𝒕𝒆𝒑
  • 33.
    𝒚 = 𝒙𝟐 − 𝟑𝒙 + 𝟔 𝑭𝒊𝒏𝒂𝒍 𝑨𝒏𝒔𝒘𝒆𝒓
  • 34.
    Remember You can useany ordered pairs from the given table of values. Using different ordered pairs, you will got different system of linear equation but you will arrive in the same answer for your quadratic function.
  • 35.
  • 36.
    Matching Type Solve thecolumn A and match it to its equivalent answer in column B, then match the column B to its equivalent procedures of finding the equation of quadratic function in column C.
  • 38.
  • 39.
    Perform the fivesteps to find the equation of the quadratic function represented by the table of values below. Write your answer in one whole sheet of paper together with your solution X -3 -2 -1 0 1 2 3 y 2 1 2 5 10 17 26
  • 41.
    Prepared by: Ma. AntonetteP. de Castro Bachelor of Secondary Education Mathematics Major