SlideShare a Scribd company logo
1 of 42
BME 595 - Medical Imaging Applications
Part 2: INTRODUCTION TO MRI
Lecture 1
Fundamentals of Magnetic Resonance
Feb. 16, 2005
James D. Christensen, Ph.D.
IU School of Medicine
Department of Radiology
Research II building, E002C
jadchris@iupui.edu
317-274-3815
References
Books covering basics of MR physics:
E. Mark Haacke, et al 1999 Magnetic Resonance Imaging: Physical Principles and
Sequence Design.
C.P. Slichter 1978 (1992) Principles of Magnetic Resonance.
A. Abragam 1961 (1994) Principles of Nuclear Magnetism.
References
Online resources for introductory review of MR physics:
Robert Cox’s book chapters online
http://afni.nimh.nih.gov/afni/edu/
See “Background Information on MRI” section
Mark Cohen’s intro Basic MR Physics slides
http://porkpie.loni.ucla.edu/BMD_HTML/SharedCode/MiscShared.html
Douglas Noll’s Primer on MRI and Functional MRI
http://www.bme.umich.edu/~dnoll/primer2.pdf
Joseph Hornak’s Web Tutorial, The Basics of MRI
http://www.cis.rit.edu/htbooks/mri/mri-main.htm
Timeline of MR Imaging
1920 1930 1940 1950 1960 1970 1980 1990 2000
1924 - Pauli suggests
that nuclear particles
may have angular
momentum (spin).
1937 – Rabi measures
magnetic moment of
nucleus. Coins
“magnetic resonance”.
1946 – Purcell shows
that matter absorbs
energy at a resonant
frequency.
1946 – Bloch demonstrates
that nuclear precession can be
measured in detector coils.
1972 – Damadian
patents idea for large
NMR scanner to
detect malignant
tissue.
1959 – Singer
measures blood flow
using NMR (in
mice).
1973 – Lauterbur
publishes method for
generating images
using NMR gradients.
1973 – Mansfield
independently
publishes gradient
approach to MR.
1975 – Ernst
develops 2D-Fourier
transform for MR.
NMR renamed MRI
MRI scanners
become clinically
prevalent.
1990 – Ogawa and
colleagues create
functional images
using endogenous,
blood-oxygenation
contrast.
1985 – Insurance
reimbursements for
MRI exams begin.
Nobel Prizes for Magnetic Resonance
• 1944: Rabi
Physics (Measured magnetic moment of nucleus)
• 1952: Felix Bloch and Edward Mills Purcell
Physics (Basic science of NMR phenomenon)
• 1991: Richard Ernst
Chemistry (High-resolution pulsed FT-NMR)
• 2002: Kurt Wüthrich
Chemistry (3D molecular structure in solution by NMR)
• 2003: Paul Lauterbur & Peter Mansfield
Physiology or Medicine (MRI technology)
Magnetic Resonance Techniques
Nuclear Spin Phenomenon:
• NMR (Nuclear Magnetic Resonance)
• MRI (Magnetic Resonance Imaging)
• EPI (Echo-Planar Imaging)
• fMRI (Functional MRI)
• MRS (Magnetic Resonance Spectroscopy)
• MRSI (MR Spectroscopic Imaging)
Electron Spin Phenomenon (not covered in this course):
• ESR (Electron Spin Resonance)
or EPR (Electron Paramagnetic Resonance)
• ELDOR (Electron-electron double resonance)
• ENDOR (Electron-nuclear double resonance)
Equipment
Magnet Gradient Coil RF Coil
RF Coil
4T magnet
gradient coil
(inside)
B0
Main Components of a Scanner
• Static Magnetic Field Coils
• Gradient Magnetic Field Coils
• Magnetic shim coils
• Radiofrequency Coil
• Subsystem control computer
• Data transfer and storage computers
• Physiological monitoring, stimulus display, and
behavioral recording hardware
Transmit Receive
rf
coil
rf
coil
main
magnet
main
magnet
gradient
Shimming
Control
Computer
Main Magnet Field Bo
• Purpose is to align H protons in H2O (little
magnets)
[Little magnets lining up with external lines of force]
[Main magnet and some of its lines of force]
Common nuclei with NMR properties
•Criteria:
Must have ODD number of protons or ODD number of neutrons.
Reason?
It is impossible to arrange these nuclei so that a zero net angular
momentum is achieved. Thus, these nuclei will display a magnetic
moment and angular momentum necessary for NMR.
Examples:
1H, 13C, 19F, 23N, and 31P with gyromagnetic ratio of 42.58, 10.71,
40.08, 11.27 and 17.25 MHz/T.
Since hydrogen protons are the most abundant in human body, we use
1H MRI most of the time.
Angular Momentum
J = mw=mvr
m
v
r
J
magnetic moment m = g J
where g is the gyromagnetic ratio,
and it is a constant for a given nucleus
A Single Proton
+
+
+
There is electric charge
on the surface of the
proton, thus creating a
small current loop and
generating magnetic
moment m.
The proton also
has mass which
generates an
angular
momentum
J when it is
spinning.
J
m
Thus proton “magnet” differs from a magnetic bar in that it
also possesses angular momentum caused by spinning.
Protons in a Magnetic Field
Bo
Parallel
(low energy)
Anti-Parallel
(high energy)
Spinning protons in a magnetic field will assume two states.
If the temperature is 0o K, all spins will occupy the lower energy state.
Protons align with field
Outside magnetic field
randomly oriented
• spins tend to align parallel or anti-parallel
to B0
• net magnetization (M) along B0
• spins precess with random phase
• no net magnetization in transverse plane
• only 0.0003% of protons/T align with field
Inside magnetic field
Mz
Mxy = 0
longitudinal
axis
transverse
plane
Longitudinal
magnetization
Transverse
magnetization
M
Net Magnetization
Bo
M
T
B
c
M o

 Larger B0 produces larger net magnetization M, lined up with B0
 Thermal motions try to randomize alignment of proton magnets
 At room temperature, the population ratio is roughly 100,000 to 100,006 per Tesla
of B0
The Boltzman equation describes the population ratio of the two energy states:
N-/N+ = e –E/kT
Energy Difference Between States
Energy Difference Between States
D E  h n
D E = 2 mz Bo
n  g/2p Bo
known as Larmor frequency
g/2p = 42.57 MHz / Tesla for proton
Knowing the energy difference allows us to use
electromagnetic waves with appropriate energy
level to irradiate the spin system so that some spins
at lower energy level can absorb right amount of
energy to “flip” to higher energy level.
Spin System Before Irradiation
Bo
Lower Energy
Higher Energy
Basic Quantum Mechanics Theory of MR
The Effect of Irradiation to the Spin
System
Lower
Higher
Basic Quantum Mechanics Theory of MR
Spin System After Irradiation
Basic Quantum Mechanics Theory of MR
Precession – Quantum Mechanics
Precession of the quantum expectation value of the magnetic moment
operator in the presence of a constant external field applied along the Z axis.
The uncertainty principle says that both energy and time (phase) or
momentum (angular) and position (orientation) cannot be known with
precision simultaneously.
Precession – Classical
= m × Bo torque
 = dJ / dt
J = m/g
dm/dt = g (m × Bo)
m(t) = (mxocos gBot + myosin gBot) x + (myocos gBot - mxosin gBot) y + mzoz
A Mechanical Analogy of Precession
• A gyroscope in the Earth’s gravitational field is like
magnetization in an externally applied magnetic field
Equation of Motion: Block equation
T1 and T2 are time constants describing
relaxation processes caused by interaction with
the local environment
RF Excitation:
On-resonance
Off-resonance
RF Excitation
Excite Radio Frequency (RF) field
• transmission coil: apply magnetic field along B1
(perpendicular to B0)
• oscillating field at Larmor frequency
• frequencies in RF range
• B1 is small: ~1/10,000 T
• tips M to transverse plane – spirals down
• analogy: childrens swingset
• final angle between B0 and B1 is the flip angle
B1
B0
Transverse
magnetization
Signal Detection via RF coil
Signal Detection
Signal is damped due to relaxation
Relaxation via magnetic field
interactions with the local environment
Spin-Lattice (T1) relaxation via
molecular motion
T1 Relaxation efficiency as function
of freq is inversely related to the
density of states
Effect of temperature Effect of viscosity
Spin-Lattice (T1) relaxation
Spin-Spin (T2) Relaxation via Dephasing
Relaxation
Relaxation
T2 Relaxation
Efffective T2 relaxation rate:
1/T2’ = 1/T2 + 1/T2*
Total = dynamic + static
Spin-Echo Pulse Sequence
Spin-Echo Pulse Sequence
Multiple Spin-Echo
HOMEWORK Assignment #1
1) Why does 14N have a magnetic moment, even though its nucleus contains an even number of particles?
2) At 37 deg C in a 3.0 Tesla static magnetic field, what percentage of proton spins are aligned with the field?
3) Derive the spin-lattice (T1) time constant for the magnetization plotted below having boundary conditions:
Mz=M0 at t=0 following a 180 degree pulse; M=0 at t=2.0 sec.

More Related Content

Similar to MRI_1.ppt

Similar to MRI_1.ppt (20)

Nmr spectroscopy
Nmr spectroscopyNmr spectroscopy
Nmr spectroscopy
 
Spectroscopy
SpectroscopySpectroscopy
Spectroscopy
 
NMR ssc.pptx
NMR ssc.pptxNMR ssc.pptx
NMR ssc.pptx
 
Mriphysics shashi (2)
Mriphysics shashi (2)Mriphysics shashi (2)
Mriphysics shashi (2)
 
Lecture12 mri
Lecture12 mriLecture12 mri
Lecture12 mri
 
MRI Scanner, Instrumentation. MDIRT ST. Louis Bamenda, Nchanji Nkeh Keneth
MRI Scanner, Instrumentation. MDIRT ST. Louis Bamenda, Nchanji Nkeh KenethMRI Scanner, Instrumentation. MDIRT ST. Louis Bamenda, Nchanji Nkeh Keneth
MRI Scanner, Instrumentation. MDIRT ST. Louis Bamenda, Nchanji Nkeh Keneth
 
Mri 3
Mri 3Mri 3
Mri 3
 
Nmr 1
Nmr 1Nmr 1
Nmr 1
 
F mri
F mriF mri
F mri
 
Nuclear magnetic resonance by ayush kumawat
Nuclear magnetic resonance by ayush kumawatNuclear magnetic resonance by ayush kumawat
Nuclear magnetic resonance by ayush kumawat
 
MRI physics part 1: Basic principle by GKM
MRI physics part 1: Basic principle by GKMMRI physics part 1: Basic principle by GKM
MRI physics part 1: Basic principle by GKM
 
Nuclear magnetic resonance
Nuclear magnetic resonanceNuclear magnetic resonance
Nuclear magnetic resonance
 
1 H- Nuclear Magnetic Resonance
1 H- Nuclear Magnetic Resonance1 H- Nuclear Magnetic Resonance
1 H- Nuclear Magnetic Resonance
 
BASIC PRINCIPLES OF MRI Galala.pptx
BASIC PRINCIPLES OF MRI Galala.pptxBASIC PRINCIPLES OF MRI Galala.pptx
BASIC PRINCIPLES OF MRI Galala.pptx
 
NMR, principle, chemical shift , valu,13 C, application
NMR, principle, chemical shift , valu,13 C, applicationNMR, principle, chemical shift , valu,13 C, application
NMR, principle, chemical shift , valu,13 C, application
 
08-BAT_Lect_NMR.pdf
08-BAT_Lect_NMR.pdf08-BAT_Lect_NMR.pdf
08-BAT_Lect_NMR.pdf
 
Swi seminar final
Swi seminar finalSwi seminar final
Swi seminar final
 
Mri
MriMri
Mri
 
Mri physics PART-1
Mri physics PART-1Mri physics PART-1
Mri physics PART-1
 
Aftab ahmad
Aftab ahmadAftab ahmad
Aftab ahmad
 

More from KerenEvangelineI

Ultrasound imaging in Medicine field.pptx
Ultrasound imaging in Medicine field.pptxUltrasound imaging in Medicine field.pptx
Ultrasound imaging in Medicine field.pptxKerenEvangelineI
 
Physics of Thermography - Infrared radiation.pptx
Physics of Thermography - Infrared radiation.pptxPhysics of Thermography - Infrared radiation.pptx
Physics of Thermography - Infrared radiation.pptxKerenEvangelineI
 
Medical Thermography and its applications.pptx
Medical Thermography and its applications.pptxMedical Thermography and its applications.pptx
Medical Thermography and its applications.pptxKerenEvangelineI
 
Radio-isotopes in Medical Diagnosis.pptx
Radio-isotopes in Medical Diagnosis.pptxRadio-isotopes in Medical Diagnosis.pptx
Radio-isotopes in Medical Diagnosis.pptxKerenEvangelineI
 
Principles of Magnetic Resonance Imaging.pptx
Principles of Magnetic Resonance Imaging.pptxPrinciples of Magnetic Resonance Imaging.pptx
Principles of Magnetic Resonance Imaging.pptxKerenEvangelineI
 
APPLICATIONS OF DL IN BRAIN SCAN USING MRI.pptx
APPLICATIONS OF DL IN BRAIN SCAN USING MRI.pptxAPPLICATIONS OF DL IN BRAIN SCAN USING MRI.pptx
APPLICATIONS OF DL IN BRAIN SCAN USING MRI.pptxKerenEvangelineI
 
APPLICATIONS OF DEEP LEARNING IN MRI SCAN.pptx
APPLICATIONS OF DEEP LEARNING IN MRI SCAN.pptxAPPLICATIONS OF DEEP LEARNING IN MRI SCAN.pptx
APPLICATIONS OF DEEP LEARNING IN MRI SCAN.pptxKerenEvangelineI
 
CONVOLUTIONAL NEURAL NETWORK COMPONENTS.pptx
CONVOLUTIONAL NEURAL NETWORK COMPONENTS.pptxCONVOLUTIONAL NEURAL NETWORK COMPONENTS.pptx
CONVOLUTIONAL NEURAL NETWORK COMPONENTS.pptxKerenEvangelineI
 
CONVOLUTIONAL NEURAL NETWORK TECHNIQUE.pptx
CONVOLUTIONAL NEURAL NETWORK TECHNIQUE.pptxCONVOLUTIONAL NEURAL NETWORK TECHNIQUE.pptx
CONVOLUTIONAL NEURAL NETWORK TECHNIQUE.pptxKerenEvangelineI
 
Types of Activation functions in DL.pptx
Types of Activation functions in DL.pptxTypes of Activation functions in DL.pptx
Types of Activation functions in DL.pptxKerenEvangelineI
 
Working Principle of Deep Learning Technique.pptx
Working Principle of Deep Learning Technique.pptxWorking Principle of Deep Learning Technique.pptx
Working Principle of Deep Learning Technique.pptxKerenEvangelineI
 
Introduction to Deep Learning Technique.pptx
Introduction to Deep Learning Technique.pptxIntroduction to Deep Learning Technique.pptx
Introduction to Deep Learning Technique.pptxKerenEvangelineI
 
Deep Learning and Recent Applications.pptx
Deep Learning and Recent Applications.pptxDeep Learning and Recent Applications.pptx
Deep Learning and Recent Applications.pptxKerenEvangelineI
 
FEATURE SELECTION AND FEATURE REDUCTION.pptx
FEATURE SELECTION AND FEATURE REDUCTION.pptxFEATURE SELECTION AND FEATURE REDUCTION.pptx
FEATURE SELECTION AND FEATURE REDUCTION.pptxKerenEvangelineI
 
CURVLET TRANSFORM USES IN DAILY LIFE.pptx
CURVLET TRANSFORM USES IN DAILY LIFE.pptxCURVLET TRANSFORM USES IN DAILY LIFE.pptx
CURVLET TRANSFORM USES IN DAILY LIFE.pptxKerenEvangelineI
 
Edge detection Contourlet transform techniques.pptx
Edge detection Contourlet transform techniques.pptxEdge detection Contourlet transform techniques.pptx
Edge detection Contourlet transform techniques.pptxKerenEvangelineI
 
Wavelet feature extraction technique.pptx
Wavelet feature extraction technique.pptxWavelet feature extraction technique.pptx
Wavelet feature extraction technique.pptxKerenEvangelineI
 
Features of Gray level run length matrix.pptx
Features of Gray level run length matrix.pptxFeatures of Gray level run length matrix.pptx
Features of Gray level run length matrix.pptxKerenEvangelineI
 
Features of GLCM extracted using GLCM .pptx
Features of GLCM extracted using GLCM .pptxFeatures of GLCM extracted using GLCM .pptx
Features of GLCM extracted using GLCM .pptxKerenEvangelineI
 
Feature Extraction in image processing- Shape.pptx
Feature Extraction in image processing- Shape.pptxFeature Extraction in image processing- Shape.pptx
Feature Extraction in image processing- Shape.pptxKerenEvangelineI
 

More from KerenEvangelineI (20)

Ultrasound imaging in Medicine field.pptx
Ultrasound imaging in Medicine field.pptxUltrasound imaging in Medicine field.pptx
Ultrasound imaging in Medicine field.pptx
 
Physics of Thermography - Infrared radiation.pptx
Physics of Thermography - Infrared radiation.pptxPhysics of Thermography - Infrared radiation.pptx
Physics of Thermography - Infrared radiation.pptx
 
Medical Thermography and its applications.pptx
Medical Thermography and its applications.pptxMedical Thermography and its applications.pptx
Medical Thermography and its applications.pptx
 
Radio-isotopes in Medical Diagnosis.pptx
Radio-isotopes in Medical Diagnosis.pptxRadio-isotopes in Medical Diagnosis.pptx
Radio-isotopes in Medical Diagnosis.pptx
 
Principles of Magnetic Resonance Imaging.pptx
Principles of Magnetic Resonance Imaging.pptxPrinciples of Magnetic Resonance Imaging.pptx
Principles of Magnetic Resonance Imaging.pptx
 
APPLICATIONS OF DL IN BRAIN SCAN USING MRI.pptx
APPLICATIONS OF DL IN BRAIN SCAN USING MRI.pptxAPPLICATIONS OF DL IN BRAIN SCAN USING MRI.pptx
APPLICATIONS OF DL IN BRAIN SCAN USING MRI.pptx
 
APPLICATIONS OF DEEP LEARNING IN MRI SCAN.pptx
APPLICATIONS OF DEEP LEARNING IN MRI SCAN.pptxAPPLICATIONS OF DEEP LEARNING IN MRI SCAN.pptx
APPLICATIONS OF DEEP LEARNING IN MRI SCAN.pptx
 
CONVOLUTIONAL NEURAL NETWORK COMPONENTS.pptx
CONVOLUTIONAL NEURAL NETWORK COMPONENTS.pptxCONVOLUTIONAL NEURAL NETWORK COMPONENTS.pptx
CONVOLUTIONAL NEURAL NETWORK COMPONENTS.pptx
 
CONVOLUTIONAL NEURAL NETWORK TECHNIQUE.pptx
CONVOLUTIONAL NEURAL NETWORK TECHNIQUE.pptxCONVOLUTIONAL NEURAL NETWORK TECHNIQUE.pptx
CONVOLUTIONAL NEURAL NETWORK TECHNIQUE.pptx
 
Types of Activation functions in DL.pptx
Types of Activation functions in DL.pptxTypes of Activation functions in DL.pptx
Types of Activation functions in DL.pptx
 
Working Principle of Deep Learning Technique.pptx
Working Principle of Deep Learning Technique.pptxWorking Principle of Deep Learning Technique.pptx
Working Principle of Deep Learning Technique.pptx
 
Introduction to Deep Learning Technique.pptx
Introduction to Deep Learning Technique.pptxIntroduction to Deep Learning Technique.pptx
Introduction to Deep Learning Technique.pptx
 
Deep Learning and Recent Applications.pptx
Deep Learning and Recent Applications.pptxDeep Learning and Recent Applications.pptx
Deep Learning and Recent Applications.pptx
 
FEATURE SELECTION AND FEATURE REDUCTION.pptx
FEATURE SELECTION AND FEATURE REDUCTION.pptxFEATURE SELECTION AND FEATURE REDUCTION.pptx
FEATURE SELECTION AND FEATURE REDUCTION.pptx
 
CURVLET TRANSFORM USES IN DAILY LIFE.pptx
CURVLET TRANSFORM USES IN DAILY LIFE.pptxCURVLET TRANSFORM USES IN DAILY LIFE.pptx
CURVLET TRANSFORM USES IN DAILY LIFE.pptx
 
Edge detection Contourlet transform techniques.pptx
Edge detection Contourlet transform techniques.pptxEdge detection Contourlet transform techniques.pptx
Edge detection Contourlet transform techniques.pptx
 
Wavelet feature extraction technique.pptx
Wavelet feature extraction technique.pptxWavelet feature extraction technique.pptx
Wavelet feature extraction technique.pptx
 
Features of Gray level run length matrix.pptx
Features of Gray level run length matrix.pptxFeatures of Gray level run length matrix.pptx
Features of Gray level run length matrix.pptx
 
Features of GLCM extracted using GLCM .pptx
Features of GLCM extracted using GLCM .pptxFeatures of GLCM extracted using GLCM .pptx
Features of GLCM extracted using GLCM .pptx
 
Feature Extraction in image processing- Shape.pptx
Feature Extraction in image processing- Shape.pptxFeature Extraction in image processing- Shape.pptx
Feature Extraction in image processing- Shape.pptx
 

Recently uploaded

How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...M56BOOKSTORE PRODUCT/SERVICE
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 

Recently uploaded (20)

How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 

MRI_1.ppt

  • 1. BME 595 - Medical Imaging Applications Part 2: INTRODUCTION TO MRI Lecture 1 Fundamentals of Magnetic Resonance Feb. 16, 2005 James D. Christensen, Ph.D. IU School of Medicine Department of Radiology Research II building, E002C jadchris@iupui.edu 317-274-3815
  • 2. References Books covering basics of MR physics: E. Mark Haacke, et al 1999 Magnetic Resonance Imaging: Physical Principles and Sequence Design. C.P. Slichter 1978 (1992) Principles of Magnetic Resonance. A. Abragam 1961 (1994) Principles of Nuclear Magnetism.
  • 3. References Online resources for introductory review of MR physics: Robert Cox’s book chapters online http://afni.nimh.nih.gov/afni/edu/ See “Background Information on MRI” section Mark Cohen’s intro Basic MR Physics slides http://porkpie.loni.ucla.edu/BMD_HTML/SharedCode/MiscShared.html Douglas Noll’s Primer on MRI and Functional MRI http://www.bme.umich.edu/~dnoll/primer2.pdf Joseph Hornak’s Web Tutorial, The Basics of MRI http://www.cis.rit.edu/htbooks/mri/mri-main.htm
  • 4. Timeline of MR Imaging 1920 1930 1940 1950 1960 1970 1980 1990 2000 1924 - Pauli suggests that nuclear particles may have angular momentum (spin). 1937 – Rabi measures magnetic moment of nucleus. Coins “magnetic resonance”. 1946 – Purcell shows that matter absorbs energy at a resonant frequency. 1946 – Bloch demonstrates that nuclear precession can be measured in detector coils. 1972 – Damadian patents idea for large NMR scanner to detect malignant tissue. 1959 – Singer measures blood flow using NMR (in mice). 1973 – Lauterbur publishes method for generating images using NMR gradients. 1973 – Mansfield independently publishes gradient approach to MR. 1975 – Ernst develops 2D-Fourier transform for MR. NMR renamed MRI MRI scanners become clinically prevalent. 1990 – Ogawa and colleagues create functional images using endogenous, blood-oxygenation contrast. 1985 – Insurance reimbursements for MRI exams begin.
  • 5. Nobel Prizes for Magnetic Resonance • 1944: Rabi Physics (Measured magnetic moment of nucleus) • 1952: Felix Bloch and Edward Mills Purcell Physics (Basic science of NMR phenomenon) • 1991: Richard Ernst Chemistry (High-resolution pulsed FT-NMR) • 2002: Kurt Wüthrich Chemistry (3D molecular structure in solution by NMR) • 2003: Paul Lauterbur & Peter Mansfield Physiology or Medicine (MRI technology)
  • 6. Magnetic Resonance Techniques Nuclear Spin Phenomenon: • NMR (Nuclear Magnetic Resonance) • MRI (Magnetic Resonance Imaging) • EPI (Echo-Planar Imaging) • fMRI (Functional MRI) • MRS (Magnetic Resonance Spectroscopy) • MRSI (MR Spectroscopic Imaging) Electron Spin Phenomenon (not covered in this course): • ESR (Electron Spin Resonance) or EPR (Electron Paramagnetic Resonance) • ELDOR (Electron-electron double resonance) • ENDOR (Electron-nuclear double resonance)
  • 7. Equipment Magnet Gradient Coil RF Coil RF Coil 4T magnet gradient coil (inside) B0
  • 8. Main Components of a Scanner • Static Magnetic Field Coils • Gradient Magnetic Field Coils • Magnetic shim coils • Radiofrequency Coil • Subsystem control computer • Data transfer and storage computers • Physiological monitoring, stimulus display, and behavioral recording hardware
  • 10. Main Magnet Field Bo • Purpose is to align H protons in H2O (little magnets) [Little magnets lining up with external lines of force] [Main magnet and some of its lines of force]
  • 11. Common nuclei with NMR properties •Criteria: Must have ODD number of protons or ODD number of neutrons. Reason? It is impossible to arrange these nuclei so that a zero net angular momentum is achieved. Thus, these nuclei will display a magnetic moment and angular momentum necessary for NMR. Examples: 1H, 13C, 19F, 23N, and 31P with gyromagnetic ratio of 42.58, 10.71, 40.08, 11.27 and 17.25 MHz/T. Since hydrogen protons are the most abundant in human body, we use 1H MRI most of the time.
  • 12. Angular Momentum J = mw=mvr m v r J magnetic moment m = g J where g is the gyromagnetic ratio, and it is a constant for a given nucleus
  • 13. A Single Proton + + + There is electric charge on the surface of the proton, thus creating a small current loop and generating magnetic moment m. The proton also has mass which generates an angular momentum J when it is spinning. J m Thus proton “magnet” differs from a magnetic bar in that it also possesses angular momentum caused by spinning.
  • 14. Protons in a Magnetic Field Bo Parallel (low energy) Anti-Parallel (high energy) Spinning protons in a magnetic field will assume two states. If the temperature is 0o K, all spins will occupy the lower energy state.
  • 15. Protons align with field Outside magnetic field randomly oriented • spins tend to align parallel or anti-parallel to B0 • net magnetization (M) along B0 • spins precess with random phase • no net magnetization in transverse plane • only 0.0003% of protons/T align with field Inside magnetic field Mz Mxy = 0 longitudinal axis transverse plane Longitudinal magnetization Transverse magnetization M
  • 17.  Larger B0 produces larger net magnetization M, lined up with B0  Thermal motions try to randomize alignment of proton magnets  At room temperature, the population ratio is roughly 100,000 to 100,006 per Tesla of B0 The Boltzman equation describes the population ratio of the two energy states: N-/N+ = e –E/kT
  • 19. Energy Difference Between States D E  h n D E = 2 mz Bo n  g/2p Bo known as Larmor frequency g/2p = 42.57 MHz / Tesla for proton Knowing the energy difference allows us to use electromagnetic waves with appropriate energy level to irradiate the spin system so that some spins at lower energy level can absorb right amount of energy to “flip” to higher energy level.
  • 20. Spin System Before Irradiation Bo Lower Energy Higher Energy Basic Quantum Mechanics Theory of MR
  • 21. The Effect of Irradiation to the Spin System Lower Higher Basic Quantum Mechanics Theory of MR
  • 22. Spin System After Irradiation Basic Quantum Mechanics Theory of MR
  • 23. Precession – Quantum Mechanics Precession of the quantum expectation value of the magnetic moment operator in the presence of a constant external field applied along the Z axis. The uncertainty principle says that both energy and time (phase) or momentum (angular) and position (orientation) cannot be known with precision simultaneously.
  • 24. Precession – Classical = m × Bo torque  = dJ / dt J = m/g dm/dt = g (m × Bo) m(t) = (mxocos gBot + myosin gBot) x + (myocos gBot - mxosin gBot) y + mzoz
  • 25. A Mechanical Analogy of Precession • A gyroscope in the Earth’s gravitational field is like magnetization in an externally applied magnetic field
  • 26. Equation of Motion: Block equation T1 and T2 are time constants describing relaxation processes caused by interaction with the local environment
  • 28. RF Excitation Excite Radio Frequency (RF) field • transmission coil: apply magnetic field along B1 (perpendicular to B0) • oscillating field at Larmor frequency • frequencies in RF range • B1 is small: ~1/10,000 T • tips M to transverse plane – spirals down • analogy: childrens swingset • final angle between B0 and B1 is the flip angle B1 B0 Transverse magnetization
  • 30. Signal Detection Signal is damped due to relaxation
  • 31. Relaxation via magnetic field interactions with the local environment
  • 32. Spin-Lattice (T1) relaxation via molecular motion T1 Relaxation efficiency as function of freq is inversely related to the density of states Effect of temperature Effect of viscosity
  • 34. Spin-Spin (T2) Relaxation via Dephasing
  • 35.
  • 38. T2 Relaxation Efffective T2 relaxation rate: 1/T2’ = 1/T2 + 1/T2* Total = dynamic + static
  • 42. HOMEWORK Assignment #1 1) Why does 14N have a magnetic moment, even though its nucleus contains an even number of particles? 2) At 37 deg C in a 3.0 Tesla static magnetic field, what percentage of proton spins are aligned with the field? 3) Derive the spin-lattice (T1) time constant for the magnetization plotted below having boundary conditions: Mz=M0 at t=0 following a 180 degree pulse; M=0 at t=2.0 sec.