SlideShare a Scribd company logo
1 of 54
Universitat de Barcelona
1990-2010: quantum magnetism
Fall 2011
Javier Tejada, Dept. Física Fonamental
Contenidos
Introduction to magnetism
Single Domain Particles
Quantum relaxation: 1990-96
Resonant spin tunneling: 1996-2010
Quantum magnetic deflagration
Superradiance
Content
• Electrostatic interaction + Quantum Mechanics
Overlapping of wave
functions
12
2
r
e
12
2
r
e 0

S
Is different for 1

S
and
Term j
i s
s  In the Hamiltonian
Heisenberg
hamiltonian
Introduction to magnetism
e
The magnetic moment of an atom has
two contributions:
1. The movement of the electrons
around the nucleus. The electric
charges generate magnetic fields
while moving
p
2. Electron, like the other fundamental particles, has an intrinsic propierty named spin,
which generates a magnetic moment even outside the atom:
e
S=1/2 S=-1/2
μspin
Hence, the magnetic moment of the atom is the sum of both contributions
e
p
μtotal = μorbital + μspin
μorbital
e
Introduction to magnetism
Título
Introduction to magnetism
0

S 1

S
2
1
ˆ
ˆ
ˆ s
s
J
eff






e
e
p
Atoms can be found with two or
more interacting electrons.
Considering two of them in an
atom, the energy of the spin
interaction can be calculed:
The system always tends to be at
the lowest energy state::
The overlapping of the wave
functions decays exponentially.
Summation over
nearest neighbours
C
T
J ~
Título
Introduction to magnetism
Existence of metastable
states
Time dependent
phenomena
Magnetic
hysteresis
Slow relaxation towards the free energy
minimum.
Global
thermodynamic
equilibrium.
Non-linear
effects.
• Permanent magnets divide
themselves in magnetic domains to
minimize their magnetic energy.
Título
Single domain particles
)
(nm
a
E
E
an
ex


• There are domain walls between these domains:
Exchange energy
Anisotropy energy
Lattice constant
ex
E
an
E
a
Título
Single domain particles
5
3
10
10 

an
ex
E
E
0
)
exp( 


T
Eex

ct
S
T
T c 


Tipically
The exchange energy is so high that
it is difficult to do any non-uniform
rotation of the magnetization.


R
If the particle has then no domain
walls can be formed. This is a SDP:
The probabilty of the flip
of an individual spin is:
Hence, at low T, the magnetic moment is a
vector of constant modulus:
c
ex T
E 
and
Single domain particles
• Relativistic origin:
– Order of magnitude , with p even.
• Classic description:
– Energetic barrier of height:
p
c
v






U
V
k
U 
Anisotropy
constant
Volume
T
H
U
e
)
(



The rotation of M as a whole needs certain energy called magnetic
anisotropy.
U
Because the spin is a quantum characteristic, it
can pass the barrier by tunnel effect.
The tunnel effect, that reveals the
quantum reality of the magnetism, allows
the chance of finding the magnetic
moment of the particle in two different
states simultaneously.
+
The action of the observer on the
particle will determine its final state!!!
Quantum description:
Easy axis
Single domain particles
Hard axis
Important aspects of SDPs:
• Volume distribution:
• And orientations:
• Their magnetic moments tend to align with the applied magnetic
field.
     
U
f
V
f
R
f 

Single domain particles
• The particles relax toward the equilibrium state:
• Thermal behaviour ( )
– At high temperatures it is easier to “jump” the barrier.
• Quantum behaviour (independent of T)
– Relaxation due to tunnel effect.










0
0 ln
1

t
S
M
M
Magnetic viscosity
T
S 
Single domain particles
Magnetic solids (ferromagnets) show
hysteresis when an external magnetic field is
applied:
MR ~ Memory
H
M
H
H
H
H
Magnetic solids have memory,
and they lose it with time!!!
MR ~ ln t
When removing the applied
field, these materials keep
certain magnetization that
slowly decreases with time.
t ~ 109 years: Paleomagnets
t ~ 10 years: credit cards
Hc Magnet ~ 5000 Oe
Hc Transformer ~ 1 Oe
Hc
Magnets: memory and relaxation
Título
Quantum relaxation: 1990-96
Magnetic viscosity
dependance on T, for low
T, of a TbFe3 thin film
Magnetic viscosity
variation with respect
to the magnetic field.
Título
Quantum relaxation: 1990-96
|M| ~ μB
|M| » μB
Quantum
Classic
Empirically, the magnetic moment is considered in a quantum way if
|M| ≤ 1000μB
Resonant spin tunneling on
mollecular magnets
• Identical to single domain particles
• Quantum objectsObjetos cuánticos
k
ijk
B
j
i M
i
M
M 

2
]
,
[ 
k
B
i
j
j
i
j
i M
M
M
M
M
M
M 



]
,
[
M(H,T) univocally determined by D and E
2
2
x
z
A ES
DS
H 


Título
• Application of an external field: Zeeman term
- Longitudinal component of the field (H easy axis)
Moves the levels.
- Transverse component of the field (H easy axis)
Allows tunnel effect.
• The tunnel effect is possible for certain values of the field;
resonant fields.
S
H 


||
Resonant spin tunneling on
mollecular magnets
The spin energy levels are moved by an applied magnetic field
For multples of the resonant field (HR, 2HR, 3HR, …) the
energy of two levels is the same, producing quantum
superposition, allowing the tunneling. This is known as
magnetic resonance
-Sz
Sz
Sz -Sz
Resonant spin tunneling on
mollecular magnets
Título
Resonant spin tunneling on
mollecular magnets
-10
-9
-8
-7
-6
-5
-4
-3
-2-10 1 2
3
4
5
6
7
8
9
10
B=0
Magnetic field
Resonant spin tunneling on
mollecular magnets
-10
-9
-8
-7
-6
-5
-4
-3-2-10 1 2
3
4
5
6
7
8
9
10
B = 0.5B0
Magnetic field
Resonant spin tunneling on
mollecular magnets
B = B0
-10
-9
-8
-7
-6
-5
-4
-3-2 1 2
3
4
5
6
7
8
9
10
Magnetic field
Resonant spin tunneling on
mollecular magnets
-10
-9
-8
-7
-6
-5
-4
-3-2-10 1
2
3
4
5
6
7
8
9
10
B = 2B0
Magnetic field
Resonant spin tunneling on
mollecular magnets
Título
• After a certain time, the relaxation becomes exponential:
• Peaks on the relaxation rate Γ(H) at the resonances:
     
 
 
t
H
t
M
t
M eq 


 exp
1
Resonant spin tunneling on
mollecular magnets
• TB depends on measuring frequency
 
 
 
0
0
/
1
ln 


V
K
TB 
A.C. measurements
Avalanche ignition produced by SAW:
IDT
LiNbO3
substrate
Conducting
stripes
Coaxial cable
Mn12 crystal
c-axis
Hz
Coaxial cable connected to an Agilent microwave signal generator
Change in magnetic moment registered in a rf-SQUID magnetometer
Surface Acustic Waves (SAW) are low frequency acoustic phonons
(below 1 GHz)
Quantum magnetic deflagration
• The speed of the avalanche
increases with the applied
magnetic field
• At resonant fields the
velocity of the flame front
presents peaks.
• The ignition time shows peaks at
the magnetic fields at which spin
levels become resonant.










f
B
0 T
2k
U(H)
exp
τ
κ
v
This velocity is well fitted:
κ = 0.8·10-5 m2/s
Tf (H = 4600 Oe) = 6.8 K
Tf (H = 9200 Oe) = 10.9 K
Quantum magnetic deflagration
Quantum magnetic deflagration
Quantum magnetic deflagration
Quantum magnetic deflagration
– All spins decay to the fundamental level coherently, with the
emission of photons.
-10
-9
-8
-7
-6
-5
-4
-3-2
-1012
3
4
5
6
7
8
9
10
B = 2B0
Superradiancie
I
t
τ1
Luminescence
Superradiancie
I
t
τSR
This kind of emission (SR) has carachteristical propierties that make it
different from other more common phenomena like luminiscence
L
λ
L ~ λ
Superradiancia
Título
Milestones
1896 Zeeman Effect (1)
1922 Stern–Gerlach Experiment (2)
1925 The spinning electron (3)
1928 Dirac equation (4)
1928 Quantum Magnetism (5)
1932 Isospin (6)
1940 Spin–statistics connection (7)
Título
Milestones
1946 Nuclear Magnetic Resonance (8)
1950s Development of Magnetic devices (9)
1950–1951 NMR for chemical analysis (10)
1951 Einstein–Podolsky–Rosen argument in spin variables (11)
1964 Kondo effect (12)
1971 Supersimmetry (13)
1972 Superfluid helium-3 (14)
Título
Milestones
1973 Magnetic resonance imaging (15)
1976 NMR for protein structure determination (16)
1978 Dilute magnetic semiconductors (17)
1988 Giant magnetoresistance (18)
1990 Functional MRI (19)
1990 Proposal for spin field-effect transistor (20)
1991 Magnetic resonance force microscopy (21)
Título
Milestones
1996 Mesoscopic tunnelling of magnetization (22)
1997 Semiconductor spintronics (23)
© 2008 Nature Publishing Group









c
v
1


Shift on frequency due to relative velocity between emitter and
observer (non relativistic case):
Frequency
seen by the
observer Frequency of
the emitter


c
v



Relative
velocity
Linear Doppler



 

Shift on frequency due to relative rotation between emitter and
observer (circularly polarized light):
Frequency
seen by the
observer
Frequency of
the emitter



Relative rotation
Rotational Doppler



 

Rotational Doppler Effect
EPR Results
EPR Results
I
n


H
FMR 

 
 0
I
n
Hn



 0



I
I
H
H
H
B
n
n

 2
2
1


 




 

B


2

Oe
H 5
.
2
~
measured
particles
1
~
by
produced nm
r



 

Rotational Doppler Effect
    H
n
n
I
L
L
E B
n 



 
1
2
1
T
k
E B
n ~
H
E
n
B
n


~
2
2
/
1
~ 







H
T
k
n
B
B

K
T 2
~
mK
H
B 17
.
0
~


100

n
Occupied states
Rotational Doppler Effect
• Change in frequency observed due to rotation:
• RDE in GPS systems (resonance of an LC circuit)
– Resonant frequency insensitive to magnetic fields
• RDE in Magnetic Resonance systems
– Resonant frequency sensitive to magnetic fields



 




 
Resonance



 
Resonance
Rotational Doppler Effect
• Article:
S. Lendínez, E. M. Chudnovsy, and J. Tejada Phys. Rev. B 82, 174418
(2010)
• Expression for ω’Res are found for ESR, NMR and FMR.



 

Resonance
• Exact expression depends on type of resonance (ESR, NMR or FMR)
• Depends on anisotropy
Rotational Doppler Effect
• Ω ≈ 100 kHz
• ESR and FMR:
• NMR:
• κ ≠ 1 needed
Ω << ωRes << Δω
BUT
Position of maximum can be
determined with accuracy of 100
kHz ≈ Ω
Ω ≈ Δω
• ωRes ≈ GHz
• Δω ≈ MHz
• ωRes ≈ MHz
• Δω ≈ kHz
anisotropy
Gyromagnetic
tensor (shape,...)
Hyperfine
interactions
NMR:
ESR and
FMR:
Rotational Doppler Effect
Magnetic vortices are bi-dimensional magnetic systems whose magnetic equilibrium
configuration is essentially non-uniform (the vortex state): the spin field splits into two
well-differentiated structures, 1) the vortex core consisting of a uniform out-of-plane
spin component whose spatial extension is ∼ 10nm and 2) the curling magnetization
field (in-plane spin component), characterized by a non-zero vorticity value.
We study disk-shaped magnetic vortices.
The application of an in-plane magnetic field yields
the displacement of the vortex core perpendicularly
to the field direction.
The vortex core entirely governs the low
frequency spin dynamics: applying a superposition
of a static magnetic field (∼ 100Oe) and an AC
magnetic field (∼ 10Oe), the vortex shows a
special vibrational mode (called ’slow
translational/gyrotropic mode’), consisting
of the displacement of the vortex core as a whole, following a precessional/
gyrotropic movement around the vortex centre. Its characteristic frequency belongs
to the subGHz range.
Magnetic Vortices
We have studied an array of
permalloy (Fe81 Ni19) disks with
diameter 2R = 1.5 μm and thickness
L = 95 nm under the application of
an in-plane magnetic field up to
1000 Oe in the range of
temperatures 2 − 300 K.
These hysteresis loops correspond
to the single domain
(SD)⇐⇒Vortex transitions. For the
range of temperatures explored,
the vortex linear regime in the
ascending branch should extend
from 300 Oe to 500 Oe at least.
Magnetic Vortices
a) Temperature dependence of
both MZFC(H) and MFC(H).
b) Isothermal magnetic
measurements along the
descending branch of the
hysteresis cycle, Mdes(H), from
the SD state (H = 1KOe)
Magnetic Vortices
The FC curve is the magnetic
equilibria of the system.
a) Normalized magnetization (M(t)
− Meq)/ (M(0) − Meq) vs. ln t
curves measured for two
different applied fields (H = 0
and 300 Oe) at T = 2 K.
b) Thermal dependence of the
magnetic viscosity S(T) for H =
0 and 300 Oe.
Magnetic Vortices
Conclusions
1) The existence of structural defects in the disks could be a
feasable origin of the energy barriers responsible for the magnetic
dynamics of the system. We consider that these defects are
capable of pinning the vortex core,when the applied magnetic is
swept, in an non-equilibrium position.
2) Thermal activation of energy barriers dies out in the limit T →
0. Our observation that magnetic viscosity S(T) tends to a finite
value different from zero as T → 0 indicates that relaxations are
non-thermal in this regime (underbarrier quantum tunneling).
Magnetic Vortices
Theoretical modeling
Rigid model of the shifted vortex ⇒ The vortex core is described as a
zero-dimensional object whose dynamics is ruled by Thiele’s equation.
The Langrangian is given by L = Gy·x − W(r), where r = (x, y) are the
coordinates of the vortex core in the XY plane, G is the modulus of its
gyrovector and W(r) is the total magnetic energy of the system.
We consider the vortex core as a flexible line that goes predominantly
along the z direction, so that r = r(z, t) is a field depending on the
vertical coordinate of the vortex core, z. The whole magnetic energy
(including the elastic and the pinning potential) is described via a
biparametric quartic potential given by
where μ and h are the magnetic moment of the dot, respectively the
modulus
of external magnetic field (applied in the y direction), λ is the elastic
coefficient and κ and β are the parameters of the potential energy.
Magnetic Vortices
In absence of applied magnetic field (h = 0), the obtained expressions for the
crossover temperature Tc and the depinning exponent Seff are
,
respectively, where c is a numerical factor of order unity. Experimentally we
have
and for a measurable tunneling rate Seff cannot exceed 25−30. From all these
we deduce the estimates and
Finally, from these values of the parameters of the pinning potential we can
estimate the width of the energy barrier, which is given by the expression
and the order of magnitude of the heigth of the barrier, which is
Magnetic Vortices
Quantum Nanomagetism (USA, 2011)

More Related Content

What's hot

What's hot (17)

Chapter 3 wave_optics
Chapter 3 wave_opticsChapter 3 wave_optics
Chapter 3 wave_optics
 
Quantum mechanical spin
Quantum mechanical spinQuantum mechanical spin
Quantum mechanical spin
 
Class 12th physics magnetism ppt
Class 12th physics magnetism pptClass 12th physics magnetism ppt
Class 12th physics magnetism ppt
 
Magnetism
MagnetismMagnetism
Magnetism
 
Nmr 1
Nmr 1Nmr 1
Nmr 1
 
Magnetism
MagnetismMagnetism
Magnetism
 
7m dual nature_of_matter__radiation
7m dual nature_of_matter__radiation7m dual nature_of_matter__radiation
7m dual nature_of_matter__radiation
 
Tunneling
TunnelingTunneling
Tunneling
 
Magnetic material
Magnetic materialMagnetic material
Magnetic material
 
Phy b10 1-1
Phy b10 1-1Phy b10 1-1
Phy b10 1-1
 
Mag. prop
Mag. propMag. prop
Mag. prop
 
Wave mechanics
Wave mechanicsWave mechanics
Wave mechanics
 
"Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate""Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate"
 
THE NATURE OF MAGNETIC MATERIAL FORCE & TORQUE ON CLOSED CIRCUIT
THE NATURE OF MAGNETIC MATERIAL FORCE & TORQUE ON CLOSED CIRCUITTHE NATURE OF MAGNETIC MATERIAL FORCE & TORQUE ON CLOSED CIRCUIT
THE NATURE OF MAGNETIC MATERIAL FORCE & TORQUE ON CLOSED CIRCUIT
 
Alfvén Waves and Space Weather
Alfvén Waves and Space WeatherAlfvén Waves and Space Weather
Alfvén Waves and Space Weather
 
Normal mode ppt PHYSICS
Normal mode ppt PHYSICS Normal mode ppt PHYSICS
Normal mode ppt PHYSICS
 
Physics
PhysicsPhysics
Physics
 

Viewers also liked

アリの飼育について
アリの飼育についてアリの飼育について
アリの飼育についてTatsuya Abe
 
Process Engg Calculations by ScienceTech
Process Engg Calculations by ScienceTechProcess Engg Calculations by ScienceTech
Process Engg Calculations by ScienceTechScienceTech .
 
Оценка эффективности менеджеров проектов. Разработка модели профессиональных ...
Оценка эффективности менеджеров проектов. Разработка модели профессиональных ...Оценка эффективности менеджеров проектов. Разработка модели профессиональных ...
Оценка эффективности менеджеров проектов. Разработка модели профессиональных ...Dmitry Maev
 
Normativa de menjador 16-7
Normativa de menjador 16-7 Normativa de menjador 16-7
Normativa de menjador 16-7 terraprims
 
Зачем нам нужна модель ИКТ-компетенций?
Зачем нам нужна модель ИКТ-компетенций?Зачем нам нужна модель ИКТ-компетенций?
Зачем нам нужна модель ИКТ-компетенций?Alexey Butakov
 
Conferencia Elizabeth Sanders
Conferencia Elizabeth SandersConferencia Elizabeth Sanders
Conferencia Elizabeth Sanderslideresacademicos
 
161018 중국의 한국인 - 스마트스터디 이승규 CFO
161018 중국의 한국인 - 스마트스터디 이승규 CFO161018 중국의 한국인 - 스마트스터디 이승규 CFO
161018 중국의 한국인 - 스마트스터디 이승규 CFOStartupAlliance
 
중국 인터넷 기업 Top 10
중국 인터넷 기업 Top 10중국 인터넷 기업 Top 10
중국 인터넷 기업 Top 10Platum
 
UXIlive2016 - Mobile Onboarding / Shai Wolkomir
UXIlive2016 - Mobile Onboarding / Shai Wolkomir UXIlive2016 - Mobile Onboarding / Shai Wolkomir
UXIlive2016 - Mobile Onboarding / Shai Wolkomir Shai Wolkomir
 

Viewers also liked (12)

cv
cvcv
cv
 
Pandya ppt5
 Pandya ppt5 Pandya ppt5
Pandya ppt5
 
アリの飼育について
アリの飼育についてアリの飼育について
アリの飼育について
 
Process Engg Calculations by ScienceTech
Process Engg Calculations by ScienceTechProcess Engg Calculations by ScienceTech
Process Engg Calculations by ScienceTech
 
Оценка эффективности менеджеров проектов. Разработка модели профессиональных ...
Оценка эффективности менеджеров проектов. Разработка модели профессиональных ...Оценка эффективности менеджеров проектов. Разработка модели профессиональных ...
Оценка эффективности менеджеров проектов. Разработка модели профессиональных ...
 
Trends on Mainstreet
Trends on MainstreetTrends on Mainstreet
Trends on Mainstreet
 
Normativa de menjador 16-7
Normativa de menjador 16-7 Normativa de menjador 16-7
Normativa de menjador 16-7
 
Зачем нам нужна модель ИКТ-компетенций?
Зачем нам нужна модель ИКТ-компетенций?Зачем нам нужна модель ИКТ-компетенций?
Зачем нам нужна модель ИКТ-компетенций?
 
Conferencia Elizabeth Sanders
Conferencia Elizabeth SandersConferencia Elizabeth Sanders
Conferencia Elizabeth Sanders
 
161018 중국의 한국인 - 스마트스터디 이승규 CFO
161018 중국의 한국인 - 스마트스터디 이승규 CFO161018 중국의 한국인 - 스마트스터디 이승규 CFO
161018 중국의 한국인 - 스마트스터디 이승규 CFO
 
중국 인터넷 기업 Top 10
중국 인터넷 기업 Top 10중국 인터넷 기업 Top 10
중국 인터넷 기업 Top 10
 
UXIlive2016 - Mobile Onboarding / Shai Wolkomir
UXIlive2016 - Mobile Onboarding / Shai Wolkomir UXIlive2016 - Mobile Onboarding / Shai Wolkomir
UXIlive2016 - Mobile Onboarding / Shai Wolkomir
 

Similar to Quantum Nanomagetism (USA, 2011)

Nmr spectroscopy
Nmr spectroscopyNmr spectroscopy
Nmr spectroscopyZainab&Sons
 
Magnetic Resonance Imaging Final Power point Presentation
Magnetic Resonance Imaging Final Power point PresentationMagnetic Resonance Imaging Final Power point Presentation
Magnetic Resonance Imaging Final Power point Presentationsrajece
 
Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)oriolespinal
 
MRI-Chilkulwar.pptx
MRI-Chilkulwar.pptxMRI-Chilkulwar.pptx
MRI-Chilkulwar.pptxAayushiPaul1
 
NMR - Nuclear magnetic resonance (NMR).pptx
NMR - Nuclear magnetic resonance (NMR).pptxNMR - Nuclear magnetic resonance (NMR).pptx
NMR - Nuclear magnetic resonance (NMR).pptxmuskaangandhi1
 
NMR spectroscopy by roshan bodhe
NMR spectroscopy by roshan bodheNMR spectroscopy by roshan bodhe
NMR spectroscopy by roshan bodheRoshan Bodhe
 
PHY PUC 2 NOTES:- MAGNETISM AND MATTER
PHY PUC 2 NOTES:- MAGNETISM AND MATTERPHY PUC 2 NOTES:- MAGNETISM AND MATTER
PHY PUC 2 NOTES:- MAGNETISM AND MATTERstudy material
 
2415_web_Lec_30_EM_Waves.5234524524045040pptx
2415_web_Lec_30_EM_Waves.5234524524045040pptx2415_web_Lec_30_EM_Waves.5234524524045040pptx
2415_web_Lec_30_EM_Waves.5234524524045040pptxvikknaguem
 
OPTICAL FIBER COMMUNICATION UNIT-1
OPTICAL FIBER COMMUNICATION UNIT-1OPTICAL FIBER COMMUNICATION UNIT-1
OPTICAL FIBER COMMUNICATION UNIT-1Asif Iqbal
 
NMR, principle, chemical shift , valu,13 C, application
NMR, principle, chemical shift , valu,13 C, applicationNMR, principle, chemical shift , valu,13 C, application
NMR, principle, chemical shift , valu,13 C, applicationTripura University
 

Similar to Quantum Nanomagetism (USA, 2011) (20)

Optical Devices-Lecture Notes.pdf
Optical Devices-Lecture Notes.pdfOptical Devices-Lecture Notes.pdf
Optical Devices-Lecture Notes.pdf
 
Nmr spectroscopy
Nmr spectroscopyNmr spectroscopy
Nmr spectroscopy
 
Magnetic Resonance Imaging Final Power point Presentation
Magnetic Resonance Imaging Final Power point PresentationMagnetic Resonance Imaging Final Power point Presentation
Magnetic Resonance Imaging Final Power point Presentation
 
MRI_1.ppt
MRI_1.pptMRI_1.ppt
MRI_1.ppt
 
MRI_1.ppt
MRI_1.pptMRI_1.ppt
MRI_1.ppt
 
MAGNETIC PROPERTIES
MAGNETIC PROPERTIESMAGNETIC PROPERTIES
MAGNETIC PROPERTIES
 
Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)
 
Spectroscopy
SpectroscopySpectroscopy
Spectroscopy
 
MRI-Chilkulwar.pptx
MRI-Chilkulwar.pptxMRI-Chilkulwar.pptx
MRI-Chilkulwar.pptx
 
nmr
nmrnmr
nmr
 
NMR - Nuclear magnetic resonance (NMR).pptx
NMR - Nuclear magnetic resonance (NMR).pptxNMR - Nuclear magnetic resonance (NMR).pptx
NMR - Nuclear magnetic resonance (NMR).pptx
 
NMR spectroscopy by roshan bodhe
NMR spectroscopy by roshan bodheNMR spectroscopy by roshan bodhe
NMR spectroscopy by roshan bodhe
 
PHY PUC 2 NOTES:- MAGNETISM AND MATTER
PHY PUC 2 NOTES:- MAGNETISM AND MATTERPHY PUC 2 NOTES:- MAGNETISM AND MATTER
PHY PUC 2 NOTES:- MAGNETISM AND MATTER
 
Superconductivity
SuperconductivitySuperconductivity
Superconductivity
 
ir spectroscopy
ir spectroscopyir spectroscopy
ir spectroscopy
 
2415_web_Lec_30_EM_Waves.5234524524045040pptx
2415_web_Lec_30_EM_Waves.5234524524045040pptx2415_web_Lec_30_EM_Waves.5234524524045040pptx
2415_web_Lec_30_EM_Waves.5234524524045040pptx
 
OPTICAL FIBER COMMUNICATION UNIT-1
OPTICAL FIBER COMMUNICATION UNIT-1OPTICAL FIBER COMMUNICATION UNIT-1
OPTICAL FIBER COMMUNICATION UNIT-1
 
NMR, principle, chemical shift , valu,13 C, application
NMR, principle, chemical shift , valu,13 C, applicationNMR, principle, chemical shift , valu,13 C, application
NMR, principle, chemical shift , valu,13 C, application
 
Solid State Physics
Solid State PhysicsSolid State Physics
Solid State Physics
 
Nmr
NmrNmr
Nmr
 

More from oriolespinal

V1 cuerpo humano y mecanica cuantica-1
V1 cuerpo humano y mecanica cuantica-1V1 cuerpo humano y mecanica cuantica-1
V1 cuerpo humano y mecanica cuantica-1oriolespinal
 
Art and medicine_columbia_2013
Art and medicine_columbia_2013Art and medicine_columbia_2013
Art and medicine_columbia_2013oriolespinal
 
Cuny conference in_honour_of_myriam
Cuny conference in_honour_of_myriamCuny conference in_honour_of_myriam
Cuny conference in_honour_of_myriamoriolespinal
 
Invited talksjanuary2013
Invited talksjanuary2013Invited talksjanuary2013
Invited talksjanuary2013oriolespinal
 
Cuerpo humano y mecanica cuantica
Cuerpo humano y mecanica cuanticaCuerpo humano y mecanica cuantica
Cuerpo humano y mecanica cuanticaoriolespinal
 
Magnetisme a petita escala
Magnetisme a petita escalaMagnetisme a petita escala
Magnetisme a petita escalaoriolespinal
 
Experimentos a bajas temperaturas...
Experimentos a bajas temperaturas...Experimentos a bajas temperaturas...
Experimentos a bajas temperaturas...oriolespinal
 
1990-2010 - Magnetismo Cuántico
1990-2010 - Magnetismo Cuántico1990-2010 - Magnetismo Cuántico
1990-2010 - Magnetismo Cuánticooriolespinal
 
Quantum Tunneling of Normal-Superconductor Interfaces in a Type-I Superconductor
Quantum Tunneling of Normal-Superconductor Interfaces in a Type-I SuperconductorQuantum Tunneling of Normal-Superconductor Interfaces in a Type-I Superconductor
Quantum Tunneling of Normal-Superconductor Interfaces in a Type-I Superconductororiolespinal
 
Deflagration in Magnetism
Deflagration in MagnetismDeflagration in Magnetism
Deflagration in Magnetismoriolespinal
 

More from oriolespinal (12)

V1 cuerpo humano y mecanica cuantica-1
V1 cuerpo humano y mecanica cuantica-1V1 cuerpo humano y mecanica cuantica-1
V1 cuerpo humano y mecanica cuantica-1
 
Art and medicine_columbia_2013
Art and medicine_columbia_2013Art and medicine_columbia_2013
Art and medicine_columbia_2013
 
Cuny conference in_honour_of_myriam
Cuny conference in_honour_of_myriamCuny conference in_honour_of_myriam
Cuny conference in_honour_of_myriam
 
Zi22 zilk0022
Zi22 zilk0022Zi22 zilk0022
Zi22 zilk0022
 
Zi22 zilk0022
Zi22 zilk0022Zi22 zilk0022
Zi22 zilk0022
 
Invited talksjanuary2013
Invited talksjanuary2013Invited talksjanuary2013
Invited talksjanuary2013
 
Cuerpo humano y mecanica cuantica
Cuerpo humano y mecanica cuanticaCuerpo humano y mecanica cuantica
Cuerpo humano y mecanica cuantica
 
Magnetisme a petita escala
Magnetisme a petita escalaMagnetisme a petita escala
Magnetisme a petita escala
 
Experimentos a bajas temperaturas...
Experimentos a bajas temperaturas...Experimentos a bajas temperaturas...
Experimentos a bajas temperaturas...
 
1990-2010 - Magnetismo Cuántico
1990-2010 - Magnetismo Cuántico1990-2010 - Magnetismo Cuántico
1990-2010 - Magnetismo Cuántico
 
Quantum Tunneling of Normal-Superconductor Interfaces in a Type-I Superconductor
Quantum Tunneling of Normal-Superconductor Interfaces in a Type-I SuperconductorQuantum Tunneling of Normal-Superconductor Interfaces in a Type-I Superconductor
Quantum Tunneling of Normal-Superconductor Interfaces in a Type-I Superconductor
 
Deflagration in Magnetism
Deflagration in MagnetismDeflagration in Magnetism
Deflagration in Magnetism
 

Recently uploaded

Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...RKavithamani
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 

Recently uploaded (20)

Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 

Quantum Nanomagetism (USA, 2011)

  • 1. Universitat de Barcelona 1990-2010: quantum magnetism Fall 2011 Javier Tejada, Dept. Física Fonamental
  • 2. Contenidos Introduction to magnetism Single Domain Particles Quantum relaxation: 1990-96 Resonant spin tunneling: 1996-2010 Quantum magnetic deflagration Superradiance Content
  • 3. • Electrostatic interaction + Quantum Mechanics Overlapping of wave functions 12 2 r e 12 2 r e 0  S Is different for 1  S and Term j i s s  In the Hamiltonian Heisenberg hamiltonian Introduction to magnetism
  • 4. e The magnetic moment of an atom has two contributions: 1. The movement of the electrons around the nucleus. The electric charges generate magnetic fields while moving p 2. Electron, like the other fundamental particles, has an intrinsic propierty named spin, which generates a magnetic moment even outside the atom: e S=1/2 S=-1/2 μspin Hence, the magnetic moment of the atom is the sum of both contributions e p μtotal = μorbital + μspin μorbital e Introduction to magnetism
  • 5. Título Introduction to magnetism 0  S 1  S 2 1 ˆ ˆ ˆ s s J eff       e e p Atoms can be found with two or more interacting electrons. Considering two of them in an atom, the energy of the spin interaction can be calculed: The system always tends to be at the lowest energy state:: The overlapping of the wave functions decays exponentially. Summation over nearest neighbours C T J ~
  • 6. Título Introduction to magnetism Existence of metastable states Time dependent phenomena Magnetic hysteresis Slow relaxation towards the free energy minimum. Global thermodynamic equilibrium. Non-linear effects.
  • 7. • Permanent magnets divide themselves in magnetic domains to minimize their magnetic energy. Título Single domain particles ) (nm a E E an ex   • There are domain walls between these domains: Exchange energy Anisotropy energy Lattice constant ex E an E a
  • 8. Título Single domain particles 5 3 10 10   an ex E E 0 ) exp(    T Eex  ct S T T c    Tipically The exchange energy is so high that it is difficult to do any non-uniform rotation of the magnetization.   R If the particle has then no domain walls can be formed. This is a SDP: The probabilty of the flip of an individual spin is: Hence, at low T, the magnetic moment is a vector of constant modulus: c ex T E  and
  • 9. Single domain particles • Relativistic origin: – Order of magnitude , with p even. • Classic description: – Energetic barrier of height: p c v       U V k U  Anisotropy constant Volume T H U e ) (    The rotation of M as a whole needs certain energy called magnetic anisotropy.
  • 10. U Because the spin is a quantum characteristic, it can pass the barrier by tunnel effect. The tunnel effect, that reveals the quantum reality of the magnetism, allows the chance of finding the magnetic moment of the particle in two different states simultaneously. + The action of the observer on the particle will determine its final state!!! Quantum description: Easy axis Single domain particles Hard axis
  • 11. Important aspects of SDPs: • Volume distribution: • And orientations: • Their magnetic moments tend to align with the applied magnetic field.       U f V f R f   Single domain particles
  • 12. • The particles relax toward the equilibrium state: • Thermal behaviour ( ) – At high temperatures it is easier to “jump” the barrier. • Quantum behaviour (independent of T) – Relaxation due to tunnel effect.           0 0 ln 1  t S M M Magnetic viscosity T S  Single domain particles
  • 13. Magnetic solids (ferromagnets) show hysteresis when an external magnetic field is applied: MR ~ Memory H M H H H H Magnetic solids have memory, and they lose it with time!!! MR ~ ln t When removing the applied field, these materials keep certain magnetization that slowly decreases with time. t ~ 109 years: Paleomagnets t ~ 10 years: credit cards Hc Magnet ~ 5000 Oe Hc Transformer ~ 1 Oe Hc Magnets: memory and relaxation
  • 14. Título Quantum relaxation: 1990-96 Magnetic viscosity dependance on T, for low T, of a TbFe3 thin film Magnetic viscosity variation with respect to the magnetic field.
  • 16. |M| ~ μB |M| » μB Quantum Classic Empirically, the magnetic moment is considered in a quantum way if |M| ≤ 1000μB Resonant spin tunneling on mollecular magnets • Identical to single domain particles • Quantum objectsObjetos cuánticos k ijk B j i M i M M   2 ] , [  k B i j j i j i M M M M M M M     ] , [ M(H,T) univocally determined by D and E 2 2 x z A ES DS H   
  • 17. Título • Application of an external field: Zeeman term - Longitudinal component of the field (H easy axis) Moves the levels. - Transverse component of the field (H easy axis) Allows tunnel effect. • The tunnel effect is possible for certain values of the field; resonant fields. S H    || Resonant spin tunneling on mollecular magnets
  • 18. The spin energy levels are moved by an applied magnetic field For multples of the resonant field (HR, 2HR, 3HR, …) the energy of two levels is the same, producing quantum superposition, allowing the tunneling. This is known as magnetic resonance -Sz Sz Sz -Sz Resonant spin tunneling on mollecular magnets
  • 19. Título Resonant spin tunneling on mollecular magnets
  • 20. -10 -9 -8 -7 -6 -5 -4 -3 -2-10 1 2 3 4 5 6 7 8 9 10 B=0 Magnetic field Resonant spin tunneling on mollecular magnets
  • 21. -10 -9 -8 -7 -6 -5 -4 -3-2-10 1 2 3 4 5 6 7 8 9 10 B = 0.5B0 Magnetic field Resonant spin tunneling on mollecular magnets
  • 22. B = B0 -10 -9 -8 -7 -6 -5 -4 -3-2 1 2 3 4 5 6 7 8 9 10 Magnetic field Resonant spin tunneling on mollecular magnets
  • 23. -10 -9 -8 -7 -6 -5 -4 -3-2-10 1 2 3 4 5 6 7 8 9 10 B = 2B0 Magnetic field Resonant spin tunneling on mollecular magnets
  • 24. Título • After a certain time, the relaxation becomes exponential: • Peaks on the relaxation rate Γ(H) at the resonances:           t H t M t M eq     exp 1 Resonant spin tunneling on mollecular magnets
  • 25. • TB depends on measuring frequency       0 0 / 1 ln    V K TB  A.C. measurements
  • 26. Avalanche ignition produced by SAW: IDT LiNbO3 substrate Conducting stripes Coaxial cable Mn12 crystal c-axis Hz Coaxial cable connected to an Agilent microwave signal generator Change in magnetic moment registered in a rf-SQUID magnetometer Surface Acustic Waves (SAW) are low frequency acoustic phonons (below 1 GHz) Quantum magnetic deflagration
  • 27. • The speed of the avalanche increases with the applied magnetic field • At resonant fields the velocity of the flame front presents peaks. • The ignition time shows peaks at the magnetic fields at which spin levels become resonant.           f B 0 T 2k U(H) exp τ κ v This velocity is well fitted: κ = 0.8·10-5 m2/s Tf (H = 4600 Oe) = 6.8 K Tf (H = 9200 Oe) = 10.9 K Quantum magnetic deflagration
  • 31. – All spins decay to the fundamental level coherently, with the emission of photons. -10 -9 -8 -7 -6 -5 -4 -3-2 -1012 3 4 5 6 7 8 9 10 B = 2B0 Superradiancie
  • 32. I t τ1 Luminescence Superradiancie I t τSR This kind of emission (SR) has carachteristical propierties that make it different from other more common phenomena like luminiscence L λ L ~ λ Superradiancia
  • 33. Título Milestones 1896 Zeeman Effect (1) 1922 Stern–Gerlach Experiment (2) 1925 The spinning electron (3) 1928 Dirac equation (4) 1928 Quantum Magnetism (5) 1932 Isospin (6) 1940 Spin–statistics connection (7)
  • 34. Título Milestones 1946 Nuclear Magnetic Resonance (8) 1950s Development of Magnetic devices (9) 1950–1951 NMR for chemical analysis (10) 1951 Einstein–Podolsky–Rosen argument in spin variables (11) 1964 Kondo effect (12) 1971 Supersimmetry (13) 1972 Superfluid helium-3 (14)
  • 35. Título Milestones 1973 Magnetic resonance imaging (15) 1976 NMR for protein structure determination (16) 1978 Dilute magnetic semiconductors (17) 1988 Giant magnetoresistance (18) 1990 Functional MRI (19) 1990 Proposal for spin field-effect transistor (20) 1991 Magnetic resonance force microscopy (21)
  • 36. Título Milestones 1996 Mesoscopic tunnelling of magnetization (22) 1997 Semiconductor spintronics (23) © 2008 Nature Publishing Group
  • 37.          c v 1   Shift on frequency due to relative velocity between emitter and observer (non relativistic case): Frequency seen by the observer Frequency of the emitter   c v    Relative velocity Linear Doppler
  • 38.       Shift on frequency due to relative rotation between emitter and observer (circularly polarized light): Frequency seen by the observer Frequency of the emitter    Relative rotation Rotational Doppler
  • 42. I n   H FMR      0 I n Hn     0    I I H H H B n n   2 2 1            B   2  Oe H 5 . 2 ~ measured particles 1 ~ by produced nm r       Rotational Doppler Effect
  • 43.     H n n I L L E B n       1 2 1 T k E B n ~ H E n B n   ~ 2 2 / 1 ~         H T k n B B  K T 2 ~ mK H B 17 . 0 ~   100  n Occupied states Rotational Doppler Effect
  • 44. • Change in frequency observed due to rotation: • RDE in GPS systems (resonance of an LC circuit) – Resonant frequency insensitive to magnetic fields • RDE in Magnetic Resonance systems – Resonant frequency sensitive to magnetic fields            Resonance      Resonance Rotational Doppler Effect
  • 45. • Article: S. Lendínez, E. M. Chudnovsy, and J. Tejada Phys. Rev. B 82, 174418 (2010) • Expression for ω’Res are found for ESR, NMR and FMR.       Resonance • Exact expression depends on type of resonance (ESR, NMR or FMR) • Depends on anisotropy Rotational Doppler Effect
  • 46. • Ω ≈ 100 kHz • ESR and FMR: • NMR: • κ ≠ 1 needed Ω << ωRes << Δω BUT Position of maximum can be determined with accuracy of 100 kHz ≈ Ω Ω ≈ Δω • ωRes ≈ GHz • Δω ≈ MHz • ωRes ≈ MHz • Δω ≈ kHz anisotropy Gyromagnetic tensor (shape,...) Hyperfine interactions NMR: ESR and FMR: Rotational Doppler Effect
  • 47. Magnetic vortices are bi-dimensional magnetic systems whose magnetic equilibrium configuration is essentially non-uniform (the vortex state): the spin field splits into two well-differentiated structures, 1) the vortex core consisting of a uniform out-of-plane spin component whose spatial extension is ∼ 10nm and 2) the curling magnetization field (in-plane spin component), characterized by a non-zero vorticity value. We study disk-shaped magnetic vortices. The application of an in-plane magnetic field yields the displacement of the vortex core perpendicularly to the field direction. The vortex core entirely governs the low frequency spin dynamics: applying a superposition of a static magnetic field (∼ 100Oe) and an AC magnetic field (∼ 10Oe), the vortex shows a special vibrational mode (called ’slow translational/gyrotropic mode’), consisting of the displacement of the vortex core as a whole, following a precessional/ gyrotropic movement around the vortex centre. Its characteristic frequency belongs to the subGHz range. Magnetic Vortices
  • 48. We have studied an array of permalloy (Fe81 Ni19) disks with diameter 2R = 1.5 μm and thickness L = 95 nm under the application of an in-plane magnetic field up to 1000 Oe in the range of temperatures 2 − 300 K. These hysteresis loops correspond to the single domain (SD)⇐⇒Vortex transitions. For the range of temperatures explored, the vortex linear regime in the ascending branch should extend from 300 Oe to 500 Oe at least. Magnetic Vortices
  • 49. a) Temperature dependence of both MZFC(H) and MFC(H). b) Isothermal magnetic measurements along the descending branch of the hysteresis cycle, Mdes(H), from the SD state (H = 1KOe) Magnetic Vortices
  • 50. The FC curve is the magnetic equilibria of the system. a) Normalized magnetization (M(t) − Meq)/ (M(0) − Meq) vs. ln t curves measured for two different applied fields (H = 0 and 300 Oe) at T = 2 K. b) Thermal dependence of the magnetic viscosity S(T) for H = 0 and 300 Oe. Magnetic Vortices
  • 51. Conclusions 1) The existence of structural defects in the disks could be a feasable origin of the energy barriers responsible for the magnetic dynamics of the system. We consider that these defects are capable of pinning the vortex core,when the applied magnetic is swept, in an non-equilibrium position. 2) Thermal activation of energy barriers dies out in the limit T → 0. Our observation that magnetic viscosity S(T) tends to a finite value different from zero as T → 0 indicates that relaxations are non-thermal in this regime (underbarrier quantum tunneling). Magnetic Vortices
  • 52. Theoretical modeling Rigid model of the shifted vortex ⇒ The vortex core is described as a zero-dimensional object whose dynamics is ruled by Thiele’s equation. The Langrangian is given by L = Gy·x − W(r), where r = (x, y) are the coordinates of the vortex core in the XY plane, G is the modulus of its gyrovector and W(r) is the total magnetic energy of the system. We consider the vortex core as a flexible line that goes predominantly along the z direction, so that r = r(z, t) is a field depending on the vertical coordinate of the vortex core, z. The whole magnetic energy (including the elastic and the pinning potential) is described via a biparametric quartic potential given by where μ and h are the magnetic moment of the dot, respectively the modulus of external magnetic field (applied in the y direction), λ is the elastic coefficient and κ and β are the parameters of the potential energy. Magnetic Vortices
  • 53. In absence of applied magnetic field (h = 0), the obtained expressions for the crossover temperature Tc and the depinning exponent Seff are , respectively, where c is a numerical factor of order unity. Experimentally we have and for a measurable tunneling rate Seff cannot exceed 25−30. From all these we deduce the estimates and Finally, from these values of the parameters of the pinning potential we can estimate the width of the energy barrier, which is given by the expression and the order of magnitude of the heigth of the barrier, which is Magnetic Vortices