SlideShare a Scribd company logo
MODULE 8
PROCESSES OF FLUIDS
ISOBARIC PROCESS (P = C): An Isobaric Process is an internally reversible Constant Pressure process.
CLOSED SYSTEM
OPEN SYSTEM
2 1
2 1
2 1
For any substance
Q U W 1
W P dV
At P C
W P(V -V ) 2
U m(U -U ) 3
from
h U PV
dh dU PdV VdP
dP 0 at P C
dU PdV dQ
dQ dh
Q h
Q m(h h ) 4
=  + →
= 
=
= →
 = →
= +
= + +
= =
+ =
=
= 
= − →

8
T
T
ln
mC
S
T
dT
mC
T
dh
T
dQ
S
dT
mC
dh
dQ
Gas
Ideal
For
7
S
S
T
dh
T
dQ
S
substance
any
For
CHANGE
ENTROPY
6
)
T
T
(
mC
h
Q
3
)
T
T
(
mC
U
5
)
T
T
(
mR
)
V
V
(
P
W
1
T
V
T
V
Gas
Ideal
For
1
2
p
2
1
p
p
1
2
1
2
p
1
2
v
1
2
1
2
2
2
1
1
→
=

=
=
=

=
=
→
−
=
=
=

→
−
=

=
→
−
=

→
−
=
−
=
→
=





Q h KE PE W 9
W Q h KE PE
W - VdP - KE - PE 10
dP 0 at P C and Q h; - V dP 0
W - KE - PE 11
If KE 0 and PE 0
W 0 12
=  +  +  + →
= −  −  − 
=   →
= = =   =
=   →
 =  =
= →


ISOMETRIC PROCESS (V = C): An Isometric Process is an internally reversible “Constant Volume” process.
CLOSED SYSTEM
OPEN SYSTEM
3
)
U
-
m(U
Q
U
Q
dU
dQ
0
dV
PdV
dU
dQ
2
0
W
0
dV
C
V
At
dV
P
W
1
W
U
Q
substance
any
For
1
2 →
=

=
=
=
+
=
→
=
=
=
•
=
→
+

=

6
T
T
ln
mC
S
T
dT
mC
T
dQ
S
CHANGE
ENTROPY
5
)
T
T
(
mCv
U
Q
4
T
P
T
P
Gas
Ideal
For
1
2
v
v
1
2
2
2
1
1
→
=

=
=

→
−
=

=
→
=
 
1 2
Q h KE PE W 7
W Q h KE PE
W VdP KE PE 8
V dP V(P P ) 9
If KE 0 and PE 0
W V dP 10
=  +  +  + →
= −  −  − 
= − −  −  →
−  = − →
 =  =
= −  →



ISOTHERMAL PROCESS (T = C or PV = C): An Isothermal Process is an internally reversible “Constant Temperature”
Process
CLOSED SYSTEM
4
0
U
T
T
But
)
T
T
(
mC
U
C
V
P
V
P
V
C
P
or
C
PV
Gas
Ideal
For
2
1
1
2
v
2
2
1
1
→
=

=
−
=

=
=
=
=
3
)
U
-
m(U
U
2
dV
P
W
1
W
U
Q
substance
any
For
1
2 →
=

→

=
→
+

=

10
Q
W
e
therefor
0,
U
gas
ideal
For
9
T
Q
S
S
T
Q
C
T
At
Tds
dQ
From
8
S
-
S
S
substance
any
For
CHANGE
ENTROPY
1
2
→
=
=

→
=


=
=
=
→
=

7
P
P
ln
mRT
W
P
P
V
V
6
V
V
ln
mRT
W
5
V
V
ln
V
P
W
V
dV
C
PdV
W
2
1
1
2
1
1
2
1
2
1
1
2
1
1
→
=
=
→
=
→
=
=
=  
OPEN SYSTEM
ISENTROPIC PROCESS (S = C): An Isentropic Process is an internally “reversible adiabatic” process in which the entropy
remains constant where S = C (for any substance) or PVk
= C (for an ideal or perfect gas)
1 1
1 1 1
2 2
2
1
1
2
1 1
1
and applying laws of logarithm
P P
VdP PV ln mRT ln 6
P P
V
VdP mRT ln 7
V
If KE 0 and PE 0
P
W VdP PV ln 8
P
W Q 9
− = = →
− = →
 =  =
= − = − →
= →



2 1
p 2 1
1 2
1 1 2 2
2
1 1
1
Q h KE PE W 1
W= Q h KE PE
W - VdP- KE- PE 2
h m(h h ) 3
For ideal gas
h mC (T -T )
but T T
h 0 4
W= Q KE PE
From
C
PV C or V
P
PV P V C
dP
VdP C
P
P
VdP PV ln 5
P
=  +  +  + →
−  −  − 
=   →
 = − →
 =
=
 = →
−  − 
= =
= =
− = −
− = − →

 

1
V
P
V
P
or
V
V
V
V
P
P
antilog
taking
V
V
ln
V
V
ln
k
V
V
ln
k
P
P
ln
V
dV
k
P
dP
n
integratio
by
V
dV
k
P
dP
PdV
VdP
k
k
2
2
k
1
1
k
2
k
1
k
2
1
1
2
k
2
1
2
1
1
2
1
2
2
1
2
1
→
=
=








=








=
=
−
=
−
=
−
=
−
=


hence
,
k
dU
dh
C
C
but
3
PdV
VdP
dU
dh
2
VdP
dh
0
dQ
VdP
dQ
dh
1
PdV
dU
adiabatic
for
,
0
dQ
PdV
dU
dQ
From
v
p
=
=
→
−
=
→
=
=
+
=
→
−
=
=
+
=
CLOSED SYSTEM
0
S
CHANGE
ENTROPY
5
1
P
P
k
1
V
P
1
P
P
k
1
1
mRT
k
1
)
T
T
(
mR
PdV
W
P
P
T
T
From
4
k
1
)
T
T
(
mR
k
1
V
P
V
P
PdV
W
3
)
T
-
(T
-mC
U
-
W
Gas
Ideal
For
2
U
W
1
0
Q
W
U
Q
substance
any
For
k
1
k
1
2
1
1
k
1
k
1
2
1
2
k
1
k
1
2
1
2
1
2
1
1
2
2
1
2
v
=

→










−








−
=










−








−
=
−
−
=
=








=
→
−
−
=
−
−
=
=
→
=

=
→

−
=
→
=
+

=
−
−
−


OPEN SYSTEM
( )
8
mRT
V
P
7
mRT
V
P
6
PdV
k
VdP
5
k
1
V
P
V
P
k
VdP
4
k
1
V
P
V
P
PdV
egration
int
By
2
2
2
1
1
1
2
1
2
1
1
1
2
2
2
1
1
1
2
2
2
1
→
=
→
=
→
=
−
→
−
−
=
−
→
−
−
=




3
P
C
V
and
V
C
P
C
PV
From
2
V
V
P
P
T
T
T
V
P
T
V
P
and
V
P
V
P
C
T
PV
and
C
PV
g
sin
U
k
1
k
1
k
k
1
k
2
1
k
1
k
1
2
1
2
2
2
2
1
1
1
k
2
2
k
1
1
k
→
=
=
=
→








=








=
=
=
=
=
−
−
p 2 1
2 2 1 1 2 1 2
1
Q h KE PE W
W Q h KE PE
W VdP KE PE
Q 0 1
W h KE PE 2
VdP h 3
For Ideal Gas
h mC (T -T ) 4
If KE 0 and PE 0
W - VdP - h
VdP k PdV
k(P V PV ) kmR(T T ) P
kmRT1
VdP
1 k 1 k 1 k P
=  +  +  +
= −  −  − 
= − −  − 
= →
= − −  −  →
− = − →
 = →
 =  =
= = 
− =
 
− −
− = = = 
− − − 



 

k 1 k 1
k k
1 1 2
1
kPV P
1 1 5
1 k P
− −
   
 
   
− = − →
  
   
−
  
   
   
17
K
KJ
T
T
ln
mC
S
T
dT
mC
T
dQ
S
CHANGE
ENTROPY
16
1
P
P
n
1
V
P
1
P
P
n
1
1
mRT
n
1
)
T
T
(
mR
PdV
W
P
P
T
T
From
15
n
1
)
T
T
(
mR
n
1
V
P
V
P
PdV
W
14
)
T
-
(T
-mC
U
13
)
T
T
(
mC
Q
12
U
Q
W
U
Q
1
2
n
n
n
1
n
1
2
1
1
n
1
n
1
2
1
2
n
1
n
1
2
1
2
1
2
1
1
2
2
1
2
v
1
2
n
→
=

=
=

→










−








−
=










−








−
=
−
−
=
=








=
→
−
−
=
−
−
=
=
→
=

→
−
=
→

=
+

=
 


−
−
−
POLYTROPIC PROCESS (PVn
= C): A Polytropic Process is an internally reversible process of an ideal or perfect gas in
which PVn
= C, where n stands for any constants.
CLOSED SYSTEM
( )
8
mRT
V
P
7
mRT
V
P
6
PdV
n
VdP
5
n
1
V
P
V
P
n
VdP
4
n
1
V
P
V
P
PdV
egration
int
By
2
2
2
1
1
1
2
1
2
1
1
1
2
2
2
1
1
1
2
2
2
1
→
=
→
=
→
=
−
→
−
−
=
−
→
−
−
=




3
P
C
V
and
V
C
P
C
PV
From
2
V
V
P
P
T
T
1
T
V
P
T
V
P
and
V
P
V
P
C
T
PV
and
C
PV
g
sin
U
n
1
n
1
n
n
1
n
2
1
n
1
n
1
2
1
2
2
2
2
1
1
1
n
2
2
n
1
1
n
→
=
=
=
→








=








=
→
=
=
=
=
−
−
heat
specific
Polytropic
n
1
n
k
C
C
11
)
T
-
(T
mC
Q
m
g
Considerin
10
)
T
T
(
C
Q
dT
C
dQ
n
1
n
k
C
C
:
let
dT
n
1
n
k
C
n
1
n
k
dT
C
dQ
n
1
1
k
n
1
dT
C
n
1
1
k
1
dT
C
dQ
v
n
1
2
n
1
2
n
n
v
n
v
v
v
v
→






−
−
=
→
=
→
−
=
=






−
−
=






−
−
=






−
−
=






−
−
+
−
=






−
−
+
=






−
−
+
=
−
−
+
=
=
−
=
−
+
=
+
=
→
−
=
−
−
=
−

−

=

=
→
+

=

n
1
1
k
CvdT
CvdT
dQ
n
1
dT
C
dT
kC
dT
C
dQ
kC
C
C
C
R
n
1
RdT
dT
C
dQ
dW
dU
dQ
10
n
1
RdT
dW
n
1
)
T
T
(
R
n
1
P
P
Pd
W
9
W
U
Q
From
v
v
v
v
p
v
p
v
1
2
1
1
2
2
OPEN SYSTEM
ISOENTHALPIC PROCESS or THROTTLING PROCESS (h = C): An Iso-enthalpic Process is a steady state, steady flow,
process in which W = 0, KE = 0, PE = 0, and Q = 0, where the enthalpy h remains constant.
h1 = h2 or h = C
IRREVERSIBLE OR PADDLE WORK
m
U
Q
W
WP



=
=

=











−








−
=










−








−
=
−
−
=
−
−
=
−
→
−
=
→
=


−

=


+

=

+
=
→

−

−

−
=
→

−

−
−
=
→
+

+

+

=
−
−
VdP
-
W
0
PE
and
0
KE
If
1
P
P
n
1
V
nP
1
P
P
n
1
nmRT
n
1
)
T
T
(
nmR
n
1
)
V
P
V
P
(
n
VdP
22
)
T
T
(
mC
Q
1
2
)
T
-
(T
mC
h
U
h
)
PV
(
)
PV
(
U
h
PV
U
h
20
PE
KE
h
Q
W
19
PE
KE
VdP
W
18
W
PE
KE
h
Q
n
1
n
1
2
1
1
n
1
n
1
2
1
1
2
1
1
2
2
1
2
n
1
2
p
work
Paddle
or
le
Irreversib
Wp
:
Where
W
W
U
Q P
−
−
+

=
3
3
1
1
3
2
2
2 2
1 1 2 2
2
2
1 1
2 2
2
2 2 1 1
m
V 6 L x 0.006 m
1000L
P 100 KPa
V 2 L 0.002 m
PV C
PV P V C
C
P
V
PV
P 900 KPa
V
P V PV
W PdV
1 n
W 1.2 KJ
W 1.2 KJ work is done on the system
= =
=
= =
=
= =
=
= =
−
= =
−
= −
= →

SAMPLE PROBLEMS PURE SUBSTANCE & PROCESSES
1. If 6 L of a gas at a pressure of 100 KPa are compressed reversibly according to PV2
= C until the volume becomes 2 L,
Find the final pressure and the work.
P
V
dV
2
1
 
−
= dP
V
Area
C
PV2
=
2. An ideal gas with R = 2.077 KJ/kg-K and a constant k= 1.659 undergoes a constant pressure process during which 527.5
KJ are added to 2.27 kg of the gas. The initial temperature is 38C. Find the S in KJ/K.
Given:
R = 2.077 KJ/kg-K; k = 1.659
Q = 527.5 KJ; m = 2.27 kg
T1 = 38 + 273 = 311 K
Process: P = C
Q = mCp(T2 – T1) ;
p
Rk
C 5.72KJ / kg K
k 1
= = −
−
K
352
T
mCp
Q
T 1
2 
=
+
=
K
/
KJ
6
.
1
T
T
ln
mCp
S
1
2
=
=

3. A perfect gas has a molecular weight of 26 kg/kgm and a value of k = 1.26. Calculate the heat rejected when 1 kg of the
gas is contained in a rigid vessel at 300 KPa and 315C, and is then cooled until the pressure falls to 150 KPa. (- 361 KJ)
KJ
-91.5
61.5
-
-30
W
-
Q
U
KJ
5
.
61
)
14
.
0
55
.
0
(
150
W
)
V
-
P(V
dV
P
W
C
P
at
PdV
W
W
U
Q
1
2
=
=
=

=
−
=
=
=
=
=
+

=


(rejected)
KJ
2
.
361
Q
)
588
294
(
23
.
1
(
1
)
T
T
(
mC
Q
294
300
)
588
(
150
T
T
P
T
P
C
V
At
588
273
315
T
23
.
1
1
k
R
C
32
.
0
26
3143
.
8
R
1
2
v
2
2
2
1
1
1
v
=
−
=
−
=
=
=
=
=
=
+
=
=
−
=
=
=
4. A closed gaseous system undergoes a reversible process in which 30 KJ of heat are rejected and the volume changes
from 0.14 m3
to 0.55 m3
. The pressure is constant at 150 KPa. Determine the change in internal energy of the system and
the work done.
5. An ideal gas has a mass of 1.5 kg and occupies 2.5 m3 while at a temperature of 300K and a pressure of 200 KPa.
Determine the ideal gas constant for the gas.
Given:
m = 1.5 kg
V = 2.5 m3
T = 300K
P = 200 KPa
6. A cylinder fitted with a frictionless piston contains 5 kg of superheated water vapor at 1000 KPa and 250C. The system
is now cooled at constant pressure until the water reaches a quality of 50%. Calculate the work done and the heat
transferred.
From
h = u + PV
dh = du + PdV + VdP
but
dQ = du + PdV
dh = dQ + VdP
K
kg
KJ
11
.
1
)
300
(
5
.
1
)
5
.
2
(
200
mT
PV
R
mRT
PV

−
=
=
=
=
2 1
for a cons tan t pressure process, P C
dP 0; therefore
dh dQ; and by int egration
dh h and dQ Q
Q h m(h - h ) 5(1768.57 - 2942)
Q -5867.2 KJ
Q 5867.2 KJ (Heat is rejected)
=
=
=
=  =
=  = =
=
=
 
2
2 1
1
2 1
Q = ΔU + W
KJ
W = PdV at P = C; W = P(υ - υ ) in KJ
kg
W = m P(υ - υ ) = -676.43 KJ
W = 676.43 KJ (Work is done on the system)

From table or software at 1000 KPa and 250C
h1 = 2942 KJ/kg: 1 = 0.233 m3
/kg
At P = 1000 KPa and quality x = 0.50
h2 = 1768.57 KJ/kg; 2 = 0.097714 m3
/kg
7. A throttling calorimeter is connected to the de-superheated steam line supplying steam to the auxiliary feed pump of a
ship. The line pressure measures 2.5 MPa (2500 KPa). The calorimeter pressure is 110 KPa and the temperature is
150C. Determine the line steam quality.
From Superheated table, at 110 KPa and 150C, h2 = 2775.6 KJ/kg
From Saturated liquid and saturated vapor table
hf1 = 962.11 KJ/kg; hfg = 1841.0 KJ/kg
h1 = hf1 + x1(hfg1)
h1 = h2
1 f1
1
fg1
1
h -h 2775.6-962.11
x 0.985
h 1841.0
x 98.5 %
= = =
=
Thank You

More Related Content

What's hot

Gas power-09
Gas power-09Gas power-09
Gas power-09
UthsoNandy
 
004 ideal gas_law
004 ideal gas_law004 ideal gas_law
004 ideal gas_lawphysics101
 
Thermodynamics (2013 new edition) copy
Thermodynamics (2013 new edition)   copyThermodynamics (2013 new edition)   copy
Thermodynamics (2013 new edition) copyYuri Melliza
 
Fan and blowers (mech 326)
Fan and blowers (mech 326)Fan and blowers (mech 326)
Fan and blowers (mech 326)
Yuri Melliza
 
First law of thermodynamics
First law of thermodynamicsFirst law of thermodynamics
First law of thermodynamics
ramesh11220
 
Performing Iterations in EES
Performing Iterations in EESPerforming Iterations in EES
Performing Iterations in EES
Naveed Rehman
 
Second Law of Thermodynamics
Second Law of ThermodynamicsSecond Law of Thermodynamics
Second Law of Thermodynamics
Yujung Dong
 
MET 211 Steam tables practice_examples
MET 211 Steam tables practice_examplesMET 211 Steam tables practice_examples
MET 211 Steam tables practice_examplesIbrahim AboKhalil
 
Chapter 2 thermodynamics 1
Chapter 2 thermodynamics 1Chapter 2 thermodynamics 1
Chapter 2 thermodynamics 1
Aaba Tambe
 
Module 4 (first law of thermodynamics) 2021 2022
Module 4 (first law of thermodynamics) 2021 2022Module 4 (first law of thermodynamics) 2021 2022
Module 4 (first law of thermodynamics) 2021 2022
Yuri Melliza
 
chapter 4 first law of thermodynamics thermodynamics 1
chapter 4  first law of thermodynamics thermodynamics 1chapter 4  first law of thermodynamics thermodynamics 1
chapter 4 first law of thermodynamics thermodynamics 1
abfisho
 
Engineering Thermodynamics-second law of thermodynamics
Engineering Thermodynamics-second law of thermodynamics Engineering Thermodynamics-second law of thermodynamics
Engineering Thermodynamics-second law of thermodynamics
Mani Vannan M
 
Ch 3 energy transfer by work, heat and mass
Ch 3 energy transfer by work, heat and massCh 3 energy transfer by work, heat and mass
Ch 3 energy transfer by work, heat and massabfisho
 
Gas turbine 1
Gas turbine  1Gas turbine  1
Gas turbine 1
Nihal Senanayake
 
Heat Conduction Laboratory
Heat Conduction Laboratory Heat Conduction Laboratory
Heat Conduction Laboratory Hail Munassar
 
Thermodynamics Hw #1
Thermodynamics Hw #1Thermodynamics Hw #1
Thermodynamics Hw #1
littlepine13
 
[W f stoecker]_refrigeration_and_a_ir_conditioning_(book_zz.org)
[W f stoecker]_refrigeration_and_a_ir_conditioning_(book_zz.org)[W f stoecker]_refrigeration_and_a_ir_conditioning_(book_zz.org)
[W f stoecker]_refrigeration_and_a_ir_conditioning_(book_zz.org)
Mike Mentzos
 
Second law of thermodynamics
Second law of thermodynamicsSecond law of thermodynamics
Second law of thermodynamics
Dr. Rohit Singh Lather, Ph.D.
 

What's hot (20)

Gas power-09
Gas power-09Gas power-09
Gas power-09
 
004 ideal gas_law
004 ideal gas_law004 ideal gas_law
004 ideal gas_law
 
Thermodynamics (2013 new edition) copy
Thermodynamics (2013 new edition)   copyThermodynamics (2013 new edition)   copy
Thermodynamics (2013 new edition) copy
 
Fan and blowers (mech 326)
Fan and blowers (mech 326)Fan and blowers (mech 326)
Fan and blowers (mech 326)
 
First law of thermodynamics
First law of thermodynamicsFirst law of thermodynamics
First law of thermodynamics
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
Performing Iterations in EES
Performing Iterations in EESPerforming Iterations in EES
Performing Iterations in EES
 
Second Law of Thermodynamics
Second Law of ThermodynamicsSecond Law of Thermodynamics
Second Law of Thermodynamics
 
MET 211 Steam tables practice_examples
MET 211 Steam tables practice_examplesMET 211 Steam tables practice_examples
MET 211 Steam tables practice_examples
 
Chapter 2 thermodynamics 1
Chapter 2 thermodynamics 1Chapter 2 thermodynamics 1
Chapter 2 thermodynamics 1
 
Module 4 (first law of thermodynamics) 2021 2022
Module 4 (first law of thermodynamics) 2021 2022Module 4 (first law of thermodynamics) 2021 2022
Module 4 (first law of thermodynamics) 2021 2022
 
chapter 4 first law of thermodynamics thermodynamics 1
chapter 4  first law of thermodynamics thermodynamics 1chapter 4  first law of thermodynamics thermodynamics 1
chapter 4 first law of thermodynamics thermodynamics 1
 
Engineering Thermodynamics-second law of thermodynamics
Engineering Thermodynamics-second law of thermodynamics Engineering Thermodynamics-second law of thermodynamics
Engineering Thermodynamics-second law of thermodynamics
 
Ch 3 energy transfer by work, heat and mass
Ch 3 energy transfer by work, heat and massCh 3 energy transfer by work, heat and mass
Ch 3 energy transfer by work, heat and mass
 
Gas turbine 1
Gas turbine  1Gas turbine  1
Gas turbine 1
 
Heat Conduction Laboratory
Heat Conduction Laboratory Heat Conduction Laboratory
Heat Conduction Laboratory
 
Thermodynamics Hw #1
Thermodynamics Hw #1Thermodynamics Hw #1
Thermodynamics Hw #1
 
005 first law
005 first law005 first law
005 first law
 
[W f stoecker]_refrigeration_and_a_ir_conditioning_(book_zz.org)
[W f stoecker]_refrigeration_and_a_ir_conditioning_(book_zz.org)[W f stoecker]_refrigeration_and_a_ir_conditioning_(book_zz.org)
[W f stoecker]_refrigeration_and_a_ir_conditioning_(book_zz.org)
 
Second law of thermodynamics
Second law of thermodynamicsSecond law of thermodynamics
Second law of thermodynamics
 

Similar to Module 7 (processes of fluids)

Chapter 5 (ideal gas & gas mixture)
Chapter 5 (ideal gas & gas mixture)Chapter 5 (ideal gas & gas mixture)
Chapter 5 (ideal gas & gas mixture)
Yuri Melliza
 
2. fluids 2
2. fluids 22. fluids 2
2. fluids 2
secrurie2
 
Lecture 16 thermal processes.
Lecture 16   thermal processes.Lecture 16   thermal processes.
Lecture 16 thermal processes.
Albania Energy Association
 
chap5airstandardcycle2010-130703012738-02.pdf
chap5airstandardcycle2010-130703012738-02.pdfchap5airstandardcycle2010-130703012738-02.pdf
chap5airstandardcycle2010-130703012738-02.pdf
21M220KARTHIKEYANC
 
Thermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard CycleThermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard CycleMuhammad Surahman
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
GOBINATHS18
 
laws of thermodynamics_ Lecture 6to9
laws of thermodynamics_ Lecture 6to9laws of thermodynamics_ Lecture 6to9
laws of thermodynamics_ Lecture 6to9
P.L. Dhar
 
Thermodynamics - Unit - II
Thermodynamics - Unit - II Thermodynamics - Unit - II
Thermodynamics - Unit - II
sureshkcet
 
process.ppt
process.pptprocess.ppt
process.ppt
LLOYDARENAS1
 
Thermodynamics II
Thermodynamics IIThermodynamics II
2. Fluids 2.ppt
2. Fluids 2.ppt2. Fluids 2.ppt
2. Fluids 2.ppt
BlahBeleh
 
volumetric properties.ppt
volumetric properties.pptvolumetric properties.ppt
volumetric properties.ppt
IyerVasundhara
 
Selectionmec6 (1)
Selectionmec6 (1)Selectionmec6 (1)
Selectionmec6 (1)
Clayton Farias
 
Ch07a entropy
Ch07a entropyCh07a entropy
Ch07a entropy
fisehaye tium
 
Revision on thermodynamics
Revision on thermodynamicsRevision on thermodynamics
Revision on thermodynamicscairo university
 
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...
dineshprabhu41
 
Thermodynamic_Properties.pdf
Thermodynamic_Properties.pdfThermodynamic_Properties.pdf
Thermodynamic_Properties.pdf
AnyumizaInnocent
 
Unit 1 thermodynamic process
Unit  1 thermodynamic processUnit  1 thermodynamic process
Unit 1 thermodynamic process
MuthuG12
 
Chemical Thermodynamics - power point new.pptx
Chemical Thermodynamics - power point new.pptxChemical Thermodynamics - power point new.pptx
Chemical Thermodynamics - power point new.pptx
Will
 

Similar to Module 7 (processes of fluids) (20)

Chapter 5 (ideal gas & gas mixture)
Chapter 5 (ideal gas & gas mixture)Chapter 5 (ideal gas & gas mixture)
Chapter 5 (ideal gas & gas mixture)
 
2. fluids 2
2. fluids 22. fluids 2
2. fluids 2
 
Lecture 16 thermal processes.
Lecture 16   thermal processes.Lecture 16   thermal processes.
Lecture 16 thermal processes.
 
chap5airstandardcycle2010-130703012738-02.pdf
chap5airstandardcycle2010-130703012738-02.pdfchap5airstandardcycle2010-130703012738-02.pdf
chap5airstandardcycle2010-130703012738-02.pdf
 
Thermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard CycleThermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard Cycle
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
laws of thermodynamics_ Lecture 6to9
laws of thermodynamics_ Lecture 6to9laws of thermodynamics_ Lecture 6to9
laws of thermodynamics_ Lecture 6to9
 
Thermodynamics - Unit - II
Thermodynamics - Unit - II Thermodynamics - Unit - II
Thermodynamics - Unit - II
 
process.ppt
process.pptprocess.ppt
process.ppt
 
Thermodynamics II
Thermodynamics IIThermodynamics II
Thermodynamics II
 
2. Fluids 2.ppt
2. Fluids 2.ppt2. Fluids 2.ppt
2. Fluids 2.ppt
 
volumetric properties.ppt
volumetric properties.pptvolumetric properties.ppt
volumetric properties.ppt
 
Selectionmec6 (1)
Selectionmec6 (1)Selectionmec6 (1)
Selectionmec6 (1)
 
Ch07a entropy
Ch07a entropyCh07a entropy
Ch07a entropy
 
Revision on thermodynamics
Revision on thermodynamicsRevision on thermodynamics
Revision on thermodynamics
 
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...
 
Thermodynamic_Properties.pdf
Thermodynamic_Properties.pdfThermodynamic_Properties.pdf
Thermodynamic_Properties.pdf
 
Unit 1 thermodynamic process
Unit  1 thermodynamic processUnit  1 thermodynamic process
Unit 1 thermodynamic process
 
Chemical Thermodynamics - power point new.pptx
Chemical Thermodynamics - power point new.pptxChemical Thermodynamics - power point new.pptx
Chemical Thermodynamics - power point new.pptx
 
Lecture27
Lecture27Lecture27
Lecture27
 

More from Yuri Melliza

Airconditioning system (ppt)
Airconditioning system (ppt)Airconditioning system (ppt)
Airconditioning system (ppt)
Yuri Melliza
 
Fundamentals of heat transfer lecture notes
Fundamentals of heat transfer lecture notesFundamentals of heat transfer lecture notes
Fundamentals of heat transfer lecture notes
Yuri Melliza
 
Module 10 (air standard cycle)
Module 10 (air standard cycle)Module 10 (air standard cycle)
Module 10 (air standard cycle)
Yuri Melliza
 
Module 9 (second law & carnot cycle)
Module 9 (second law & carnot cycle)Module 9 (second law & carnot cycle)
Module 9 (second law & carnot cycle)
Yuri Melliza
 
Module 8 (fuels and combustion)
Module 8 (fuels and combustion)Module 8 (fuels and combustion)
Module 8 (fuels and combustion)
Yuri Melliza
 
Module 2 (forms of energy) 2021 2022
Module 2 (forms of energy) 2021   2022Module 2 (forms of energy) 2021   2022
Module 2 (forms of energy) 2021 2022
Yuri Melliza
 
Module 1 (terms and definition & properties of fluids)2021 2022
Module 1 (terms and definition & properties of fluids)2021 2022Module 1 (terms and definition & properties of fluids)2021 2022
Module 1 (terms and definition & properties of fluids)2021 2022
Yuri Melliza
 
Me 312 module 1
Me 312 module 1Me 312 module 1
Me 312 module 1
Yuri Melliza
 
Fuels and Combustion
Fuels and CombustionFuels and Combustion
Fuels and Combustion
Yuri Melliza
 
Fluid mechanics ( 2019 2020)
Fluid mechanics ( 2019 2020)Fluid mechanics ( 2019 2020)
Fluid mechanics ( 2019 2020)
Yuri Melliza
 
AIR STANDARD CYCLE
AIR STANDARD CYCLEAIR STANDARD CYCLE
AIR STANDARD CYCLE
Yuri Melliza
 
Me 12 quiz no. 3
Me 12 quiz no. 3Me 12 quiz no. 3
Me 12 quiz no. 3
Yuri Melliza
 
Chapter 6 Gas Mixture
Chapter 6 Gas MixtureChapter 6 Gas Mixture
Chapter 6 Gas Mixture
Yuri Melliza
 
Chapter 4 (propertiesof pure substance)
Chapter 4 (propertiesof pure substance)Chapter 4 (propertiesof pure substance)
Chapter 4 (propertiesof pure substance)
Yuri Melliza
 
Chapter 3 (law of conservation of mass & and 1st law)
Chapter 3 (law of conservation of mass & and 1st law)Chapter 3 (law of conservation of mass & and 1st law)
Chapter 3 (law of conservation of mass & and 1st law)
Yuri Melliza
 
Chapter 2
Chapter 2 Chapter 2
Chapter 2
Yuri Melliza
 
Chapter 1(terms and definition)
Chapter 1(terms and definition)Chapter 1(terms and definition)
Chapter 1(terms and definition)
Yuri Melliza
 
ME 12 F1 Assignment 2 & 3
ME 12 F1 Assignment 2 & 3ME 12 F1 Assignment 2 & 3
ME 12 F1 Assignment 2 & 3
Yuri Melliza
 
ME 12 Assignment No. 1
ME 12 Assignment No. 1ME 12 Assignment No. 1
ME 12 Assignment No. 1
Yuri Melliza
 
ME 12 FI QUIZ NO. 2
ME 12 FI QUIZ NO. 2ME 12 FI QUIZ NO. 2
ME 12 FI QUIZ NO. 2
Yuri Melliza
 

More from Yuri Melliza (20)

Airconditioning system (ppt)
Airconditioning system (ppt)Airconditioning system (ppt)
Airconditioning system (ppt)
 
Fundamentals of heat transfer lecture notes
Fundamentals of heat transfer lecture notesFundamentals of heat transfer lecture notes
Fundamentals of heat transfer lecture notes
 
Module 10 (air standard cycle)
Module 10 (air standard cycle)Module 10 (air standard cycle)
Module 10 (air standard cycle)
 
Module 9 (second law & carnot cycle)
Module 9 (second law & carnot cycle)Module 9 (second law & carnot cycle)
Module 9 (second law & carnot cycle)
 
Module 8 (fuels and combustion)
Module 8 (fuels and combustion)Module 8 (fuels and combustion)
Module 8 (fuels and combustion)
 
Module 2 (forms of energy) 2021 2022
Module 2 (forms of energy) 2021   2022Module 2 (forms of energy) 2021   2022
Module 2 (forms of energy) 2021 2022
 
Module 1 (terms and definition & properties of fluids)2021 2022
Module 1 (terms and definition & properties of fluids)2021 2022Module 1 (terms and definition & properties of fluids)2021 2022
Module 1 (terms and definition & properties of fluids)2021 2022
 
Me 312 module 1
Me 312 module 1Me 312 module 1
Me 312 module 1
 
Fuels and Combustion
Fuels and CombustionFuels and Combustion
Fuels and Combustion
 
Fluid mechanics ( 2019 2020)
Fluid mechanics ( 2019 2020)Fluid mechanics ( 2019 2020)
Fluid mechanics ( 2019 2020)
 
AIR STANDARD CYCLE
AIR STANDARD CYCLEAIR STANDARD CYCLE
AIR STANDARD CYCLE
 
Me 12 quiz no. 3
Me 12 quiz no. 3Me 12 quiz no. 3
Me 12 quiz no. 3
 
Chapter 6 Gas Mixture
Chapter 6 Gas MixtureChapter 6 Gas Mixture
Chapter 6 Gas Mixture
 
Chapter 4 (propertiesof pure substance)
Chapter 4 (propertiesof pure substance)Chapter 4 (propertiesof pure substance)
Chapter 4 (propertiesof pure substance)
 
Chapter 3 (law of conservation of mass & and 1st law)
Chapter 3 (law of conservation of mass & and 1st law)Chapter 3 (law of conservation of mass & and 1st law)
Chapter 3 (law of conservation of mass & and 1st law)
 
Chapter 2
Chapter 2 Chapter 2
Chapter 2
 
Chapter 1(terms and definition)
Chapter 1(terms and definition)Chapter 1(terms and definition)
Chapter 1(terms and definition)
 
ME 12 F1 Assignment 2 & 3
ME 12 F1 Assignment 2 & 3ME 12 F1 Assignment 2 & 3
ME 12 F1 Assignment 2 & 3
 
ME 12 Assignment No. 1
ME 12 Assignment No. 1ME 12 Assignment No. 1
ME 12 Assignment No. 1
 
ME 12 FI QUIZ NO. 2
ME 12 FI QUIZ NO. 2ME 12 FI QUIZ NO. 2
ME 12 FI QUIZ NO. 2
 

Recently uploaded

Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
Democratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek AryaDemocratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek Arya
abh.arya
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
FluxPrime1
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
PrashantGoswami42
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
Pipe Restoration Solutions
 

Recently uploaded (20)

Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
Democratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek AryaDemocratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek Arya
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
 

Module 7 (processes of fluids)

  • 1. MODULE 8 PROCESSES OF FLUIDS ISOBARIC PROCESS (P = C): An Isobaric Process is an internally reversible Constant Pressure process. CLOSED SYSTEM OPEN SYSTEM 2 1 2 1 2 1 For any substance Q U W 1 W P dV At P C W P(V -V ) 2 U m(U -U ) 3 from h U PV dh dU PdV VdP dP 0 at P C dU PdV dQ dQ dh Q h Q m(h h ) 4 =  + → =  = = →  = → = + = + + = = + = = =  = − →  8 T T ln mC S T dT mC T dh T dQ S dT mC dh dQ Gas Ideal For 7 S S T dh T dQ S substance any For CHANGE ENTROPY 6 ) T T ( mC h Q 3 ) T T ( mC U 5 ) T T ( mR ) V V ( P W 1 T V T V Gas Ideal For 1 2 p 2 1 p p 1 2 1 2 p 1 2 v 1 2 1 2 2 2 1 1 → =  = = =  = = → − = = =  → − =  = → − =  → − = − = → =      Q h KE PE W 9 W Q h KE PE W - VdP - KE - PE 10 dP 0 at P C and Q h; - V dP 0 W - KE - PE 11 If KE 0 and PE 0 W 0 12 =  +  +  + → = −  −  −  =   → = = =   = =   →  =  = = →  
  • 2. ISOMETRIC PROCESS (V = C): An Isometric Process is an internally reversible “Constant Volume” process. CLOSED SYSTEM OPEN SYSTEM 3 ) U - m(U Q U Q dU dQ 0 dV PdV dU dQ 2 0 W 0 dV C V At dV P W 1 W U Q substance any For 1 2 → =  = = = + = → = = = • = → +  =  6 T T ln mC S T dT mC T dQ S CHANGE ENTROPY 5 ) T T ( mCv U Q 4 T P T P Gas Ideal For 1 2 v v 1 2 2 2 1 1 → =  = =  → − =  = → =   1 2 Q h KE PE W 7 W Q h KE PE W VdP KE PE 8 V dP V(P P ) 9 If KE 0 and PE 0 W V dP 10 =  +  +  + → = −  −  −  = − −  −  → −  = − →  =  = = −  →   
  • 3. ISOTHERMAL PROCESS (T = C or PV = C): An Isothermal Process is an internally reversible “Constant Temperature” Process CLOSED SYSTEM 4 0 U T T But ) T T ( mC U C V P V P V C P or C PV Gas Ideal For 2 1 1 2 v 2 2 1 1 → =  = − =  = = = = 3 ) U - m(U U 2 dV P W 1 W U Q substance any For 1 2 → =  →  = → +  =  10 Q W e therefor 0, U gas ideal For 9 T Q S S T Q C T At Tds dQ From 8 S - S S substance any For CHANGE ENTROPY 1 2 → = =  → =   = = = → =  7 P P ln mRT W P P V V 6 V V ln mRT W 5 V V ln V P W V dV C PdV W 2 1 1 2 1 1 2 1 2 1 1 2 1 1 → = = → = → = = =  
  • 4. OPEN SYSTEM ISENTROPIC PROCESS (S = C): An Isentropic Process is an internally “reversible adiabatic” process in which the entropy remains constant where S = C (for any substance) or PVk = C (for an ideal or perfect gas) 1 1 1 1 1 2 2 2 1 1 2 1 1 1 and applying laws of logarithm P P VdP PV ln mRT ln 6 P P V VdP mRT ln 7 V If KE 0 and PE 0 P W VdP PV ln 8 P W Q 9 − = = → − = →  =  = = − = − → = →    2 1 p 2 1 1 2 1 1 2 2 2 1 1 1 Q h KE PE W 1 W= Q h KE PE W - VdP- KE- PE 2 h m(h h ) 3 For ideal gas h mC (T -T ) but T T h 0 4 W= Q KE PE From C PV C or V P PV P V C dP VdP C P P VdP PV ln 5 P =  +  +  + → −  −  −  =   →  = − →  = =  = → −  −  = = = = − = − − = − →     1 V P V P or V V V V P P antilog taking V V ln V V ln k V V ln k P P ln V dV k P dP n integratio by V dV k P dP PdV VdP k k 2 2 k 1 1 k 2 k 1 k 2 1 1 2 k 2 1 2 1 1 2 1 2 2 1 2 1 → = =         =         = = − = − = − = − =   hence , k dU dh C C but 3 PdV VdP dU dh 2 VdP dh 0 dQ VdP dQ dh 1 PdV dU adiabatic for , 0 dQ PdV dU dQ From v p = = → − = → = = + = → − = = + =
  • 5. CLOSED SYSTEM 0 S CHANGE ENTROPY 5 1 P P k 1 V P 1 P P k 1 1 mRT k 1 ) T T ( mR PdV W P P T T From 4 k 1 ) T T ( mR k 1 V P V P PdV W 3 ) T - (T -mC U - W Gas Ideal For 2 U W 1 0 Q W U Q substance any For k 1 k 1 2 1 1 k 1 k 1 2 1 2 k 1 k 1 2 1 2 1 2 1 1 2 2 1 2 v =  →           −         − =           −         − = − − = =         = → − − = − − = = → =  = →  − = → = +  = − − −   OPEN SYSTEM ( ) 8 mRT V P 7 mRT V P 6 PdV k VdP 5 k 1 V P V P k VdP 4 k 1 V P V P PdV egration int By 2 2 2 1 1 1 2 1 2 1 1 1 2 2 2 1 1 1 2 2 2 1 → = → = → = − → − − = − → − − =     3 P C V and V C P C PV From 2 V V P P T T T V P T V P and V P V P C T PV and C PV g sin U k 1 k 1 k k 1 k 2 1 k 1 k 1 2 1 2 2 2 2 1 1 1 k 2 2 k 1 1 k → = = = →         =         = = = = = − − p 2 1 2 2 1 1 2 1 2 1 Q h KE PE W W Q h KE PE W VdP KE PE Q 0 1 W h KE PE 2 VdP h 3 For Ideal Gas h mC (T -T ) 4 If KE 0 and PE 0 W - VdP - h VdP k PdV k(P V PV ) kmR(T T ) P kmRT1 VdP 1 k 1 k 1 k P =  +  +  + = −  −  −  = − −  −  = → = − −  −  → − = − →  = →  =  = = =  − =   − − − = = =  − − −        k 1 k 1 k k 1 1 2 1 kPV P 1 1 5 1 k P − −           − = − →        −           
  • 6. 17 K KJ T T ln mC S T dT mC T dQ S CHANGE ENTROPY 16 1 P P n 1 V P 1 P P n 1 1 mRT n 1 ) T T ( mR PdV W P P T T From 15 n 1 ) T T ( mR n 1 V P V P PdV W 14 ) T - (T -mC U 13 ) T T ( mC Q 12 U Q W U Q 1 2 n n n 1 n 1 2 1 1 n 1 n 1 2 1 2 n 1 n 1 2 1 2 1 2 1 1 2 2 1 2 v 1 2 n → =  = =  →           −         − =           −         − = − − = =         = → − − = − − = = → =  → − = →  = +  =     − − − POLYTROPIC PROCESS (PVn = C): A Polytropic Process is an internally reversible process of an ideal or perfect gas in which PVn = C, where n stands for any constants. CLOSED SYSTEM ( ) 8 mRT V P 7 mRT V P 6 PdV n VdP 5 n 1 V P V P n VdP 4 n 1 V P V P PdV egration int By 2 2 2 1 1 1 2 1 2 1 1 1 2 2 2 1 1 1 2 2 2 1 → = → = → = − → − − = − → − − =     3 P C V and V C P C PV From 2 V V P P T T 1 T V P T V P and V P V P C T PV and C PV g sin U n 1 n 1 n n 1 n 2 1 n 1 n 1 2 1 2 2 2 2 1 1 1 n 2 2 n 1 1 n → = = = →         =         = → = = = = − − heat specific Polytropic n 1 n k C C 11 ) T - (T mC Q m g Considerin 10 ) T T ( C Q dT C dQ n 1 n k C C : let dT n 1 n k C n 1 n k dT C dQ n 1 1 k n 1 dT C n 1 1 k 1 dT C dQ v n 1 2 n 1 2 n n v n v v v v →       − − = → = → − = =       − − =       − − =       − − =       − − + − =       − − + =       − − + = − − + = = − = − + = + = → − = − − = −  −  =  = → +  =  n 1 1 k CvdT CvdT dQ n 1 dT C dT kC dT C dQ kC C C C R n 1 RdT dT C dQ dW dU dQ 10 n 1 RdT dW n 1 ) T T ( R n 1 P P Pd W 9 W U Q From v v v v p v p v 1 2 1 1 2 2
  • 7. OPEN SYSTEM ISOENTHALPIC PROCESS or THROTTLING PROCESS (h = C): An Iso-enthalpic Process is a steady state, steady flow, process in which W = 0, KE = 0, PE = 0, and Q = 0, where the enthalpy h remains constant. h1 = h2 or h = C IRREVERSIBLE OR PADDLE WORK m U Q W WP    = =  =            −         − =           −         − = − − = − − = − → − = → =   −  =   +  =  + = →  −  −  − = →  −  − − = → +  +  +  = − − VdP - W 0 PE and 0 KE If 1 P P n 1 V nP 1 P P n 1 nmRT n 1 ) T T ( nmR n 1 ) V P V P ( n VdP 22 ) T T ( mC Q 1 2 ) T - (T mC h U h ) PV ( ) PV ( U h PV U h 20 PE KE h Q W 19 PE KE VdP W 18 W PE KE h Q n 1 n 1 2 1 1 n 1 n 1 2 1 1 2 1 1 2 2 1 2 n 1 2 p work Paddle or le Irreversib Wp : Where W W U Q P − − +  =
  • 8. 3 3 1 1 3 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 1 1 m V 6 L x 0.006 m 1000L P 100 KPa V 2 L 0.002 m PV C PV P V C C P V PV P 900 KPa V P V PV W PdV 1 n W 1.2 KJ W 1.2 KJ work is done on the system = = = = = = = = = = = − = = − = − = →  SAMPLE PROBLEMS PURE SUBSTANCE & PROCESSES 1. If 6 L of a gas at a pressure of 100 KPa are compressed reversibly according to PV2 = C until the volume becomes 2 L, Find the final pressure and the work. P V dV 2 1   − = dP V Area C PV2 = 2. An ideal gas with R = 2.077 KJ/kg-K and a constant k= 1.659 undergoes a constant pressure process during which 527.5 KJ are added to 2.27 kg of the gas. The initial temperature is 38C. Find the S in KJ/K. Given: R = 2.077 KJ/kg-K; k = 1.659 Q = 527.5 KJ; m = 2.27 kg T1 = 38 + 273 = 311 K Process: P = C Q = mCp(T2 – T1) ; p Rk C 5.72KJ / kg K k 1 = = − − K 352 T mCp Q T 1 2  = + = K / KJ 6 . 1 T T ln mCp S 1 2 = =  3. A perfect gas has a molecular weight of 26 kg/kgm and a value of k = 1.26. Calculate the heat rejected when 1 kg of the gas is contained in a rigid vessel at 300 KPa and 315C, and is then cooled until the pressure falls to 150 KPa. (- 361 KJ)
  • 9. KJ -91.5 61.5 - -30 W - Q U KJ 5 . 61 ) 14 . 0 55 . 0 ( 150 W ) V - P(V dV P W C P at PdV W W U Q 1 2 = = =  = − = = = = = +  =   (rejected) KJ 2 . 361 Q ) 588 294 ( 23 . 1 ( 1 ) T T ( mC Q 294 300 ) 588 ( 150 T T P T P C V At 588 273 315 T 23 . 1 1 k R C 32 . 0 26 3143 . 8 R 1 2 v 2 2 2 1 1 1 v = − = − = = = = = = + = = − = = = 4. A closed gaseous system undergoes a reversible process in which 30 KJ of heat are rejected and the volume changes from 0.14 m3 to 0.55 m3 . The pressure is constant at 150 KPa. Determine the change in internal energy of the system and the work done. 5. An ideal gas has a mass of 1.5 kg and occupies 2.5 m3 while at a temperature of 300K and a pressure of 200 KPa. Determine the ideal gas constant for the gas. Given: m = 1.5 kg V = 2.5 m3 T = 300K P = 200 KPa 6. A cylinder fitted with a frictionless piston contains 5 kg of superheated water vapor at 1000 KPa and 250C. The system is now cooled at constant pressure until the water reaches a quality of 50%. Calculate the work done and the heat transferred. From h = u + PV dh = du + PdV + VdP but dQ = du + PdV dh = dQ + VdP K kg KJ 11 . 1 ) 300 ( 5 . 1 ) 5 . 2 ( 200 mT PV R mRT PV  − = = = = 2 1 for a cons tan t pressure process, P C dP 0; therefore dh dQ; and by int egration dh h and dQ Q Q h m(h - h ) 5(1768.57 - 2942) Q -5867.2 KJ Q 5867.2 KJ (Heat is rejected) = = = =  = =  = = = =  
  • 10. 2 2 1 1 2 1 Q = ΔU + W KJ W = PdV at P = C; W = P(υ - υ ) in KJ kg W = m P(υ - υ ) = -676.43 KJ W = 676.43 KJ (Work is done on the system)  From table or software at 1000 KPa and 250C h1 = 2942 KJ/kg: 1 = 0.233 m3 /kg At P = 1000 KPa and quality x = 0.50 h2 = 1768.57 KJ/kg; 2 = 0.097714 m3 /kg 7. A throttling calorimeter is connected to the de-superheated steam line supplying steam to the auxiliary feed pump of a ship. The line pressure measures 2.5 MPa (2500 KPa). The calorimeter pressure is 110 KPa and the temperature is 150C. Determine the line steam quality. From Superheated table, at 110 KPa and 150C, h2 = 2775.6 KJ/kg From Saturated liquid and saturated vapor table hf1 = 962.11 KJ/kg; hfg = 1841.0 KJ/kg h1 = hf1 + x1(hfg1) h1 = h2 1 f1 1 fg1 1 h -h 2775.6-962.11 x 0.985 h 1841.0 x 98.5 % = = = = Thank You