SlideShare a Scribd company logo
1 of 28
Download to read offline
Studymate Solutions to CBSE Board Examination 2011-2012

       Series : SMA/1                                                         Code No. 65/1/1
                                                          Candidates must write the Code on
Roll No.                                                  the title page of the answer-book.


  Please check that this question paper contains 8 printed pages.

  Code number given on the right hand side of the question paper should be written on the title
   page of the answer-book by the candidate.

  Please check that this question paper contains 29 questions.

  Please write down the Serial Number of the questions before attempting it.

  15 minutes time has been allotted to read this question paper. The question paper will be distributed
   at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the student will read the question paper only and
   will not write any answer on the answer script during this period.




                                    MATHEMATICS

[Time allowed : 3 hours]                                                      [Maximum marks : 100]


General Instructuions:
(i)     All questions are compulsory.
(ii)    Questions numbered 1 to 10 are very short-answer questions and carry 1 mark each.
(iii) Questions numbered 11 to 22 are short-answer questions and carry 4 marks each.
(iv) Questions numbered 23 to 29 are also short-answer questions and carry 6 marks each.
(v)     Use of calculators is not allowed.




                                                  -(1)-
STUDYmate

                                                                         SECTION-A
                                                  Question numbers 1 to 10 carry 1 mark each.
1.     If a line has direction ratios 2, –1, –2, then what are its direction cosines?
Ans. d.r.’s = <2, –1, –2>
                                                  2 1 2
                d.c.’s =                          , ,
                                                  3 3 3

                                                        
2.   Find ‘’ when the projection of a      4 k on b  2  6   3k is 4 units.
                                          i j                i     j    
                             
                          a.b
Ans. Projection of a on b = 
                             b
            2  6  12
       4=
             4  36  9
           2  18
       4=
              7
       28 – 18 = 2
       5=

                                                                          
3.     Find the sum of the vectors a    2   k , b  2  4   5k and c    6   7 k .
                                       i     j            i     j             i     j     

Ans. a  b  c  0  4   k
               i     j 

                              3
                                  1
4.     Evaluate:               x dx
                              2
       3
           1                                                                3
        x dx  log | x |
                                                  3
Ans.                                              2   = log 3 – log 2 = log  
       2                                                                    2


5.     Evaluate  (1  x) xdx

             x  ( x)                dx
                              3
Ans.                              2



                      3                   5
                  x       2           x       2

       =          3
                                     5
                                                  C
                      2                   2


                 2 32 2 52
       =           x  x C
                 3    5


              5 3 8
6.     If  = 2 0 1 , write the minor of the element a23.
              1 2 3
                                                  5 3
Ans. Minor of a23 =                                     = 10 – 3 = 7.
                                                  1 2




                                                                                  -(2)-
STUDYmate

          2 3  1 3   4 6 
7.    If                   , write the value of x.
          5 7  2 4   9 x 
      2 3  1 3   4           6
Ans.                           
      5 7  2 4   9           x
      2  6 6  12   4          6
     5  14 15  28    9       x
                                    
       4 6   4 6 
       9 13   9 x 
                     
          x = 13


                       cos  sin              sin   cos  
8.    Simplify: cos                   sin   cos  sin  
                        sin  cos                          
        cos2         cos  sin   sin 2    cos  sin 
Ans. =   cos  sin                                    
                        cos2   sin  cos     sin 2  
        1 0 
      =     
        0 1 


                                         1            1
9.    Write the principal value of cos1    2sin 1   
                                         2            2
        –1 
             1     –1 
                         1
Ans. cos   – 2 sin   
            2         2
          –1 
                               
      cos  cos  + 2 sin        sin 
                          –1

                3                 6
              
          2
       3       6
         2
          
       3 3 3


10.   Let * be a ‘binary’ operation on N given by a * b = LCM (a, b) for all a, b  N. Find 5 * 7.
Ans. a * b = LCM of (a, b), a, b  N
      5 * 7 = LCM of (5, 7) = 35


                                                SECTION-B
                      Question numbers 11 to 22 carry 4 marks each.
               y            x       dy
11.   If (cos x) = (cos y) , find      .
                                    dx
                                                        OR
                                        dy sin 2 (a  y )
      If sin y = x sin (a + y), prove that 
                                        dx      sin a
                  y         x
Ans. Given (cos x) = (cos y) , taking logarithms on the two sides, we have
                        y                  x
             log (cos x) = log (cos y)

                                                        -(3)-
STUDYmate

      or     y log (cos x) = x log (cos y)
      Differentiating both sides w.r.t. x, we get
                  1                             dy      1                 dy
              y          ( sin x)  log(cos x) dx  x  cos y  ( sin y ) dx  log(cos y ).1
                  cos x                                       
                             dy             dy
            log (cos x)          + x tan y     = log (cos y) + y tan x
                             dx             dx
                                        dy
              log(cos x)  x tan y  = log (cos y) + y tan x
                                        dx
              dy log(cos y )  y tan x
                  
              dx log(cos x)  x tan y
                                                           OR
Ans. sin y = x sin (a + y)
                sin y
                         =x
             sin( a  y )
             sin( a  y )cos y  sin y cos( a  y ) dx
                                                  
                          sin 2 ( a  y )            dy
             sin( a  y  y )                dx
                                        
                sin 2 (a  y )               dy
                sin a      dx
                        
             sin (a  y ) dy
                 2


             sin 2 (a  y ) dy
                          
                 sin a       dx


12.   How many times must a man toss a fair coin, so that the probability of having at least one head is more
      than 80%?
Ans. Let the man throws the coin ‘n’ times.
                                                                    1
      Probability of getting a head in a single throw, p 
                                                                    2
                                                              1
      Probability of not getting a head in a single throw, q 
                                                              2
      Given: Probability that the man gets atleast one head is more than 80%.
      i.e.   P(atleast 1 Head) > 80%
                                              80
      i.e.   1 – P (no head) 
                                             100
                                 n 0        0
                      1               1    8
      i.e.   1  n C0                   
                      2                2  10
                             n
                1   4
      i.e.   1   
                2   5
                         n
              1     1
      i.e.      
              2     5
                     n
             1   1
      i.e.     
             2   5
              n
      i.e.   2 >5

                                                            -(4)-
STUDYmate

      i.e.        n = 3 or more.
                 The man must throw the coin atleast 3 times.


13.  Find the Vector and Cartesian equations of the line passing through the point (1, 2, –4) and perpendicular
                      x  8 y  19 z  10          x  15 y  29 z  5
     to the two lines                      and                         .
                        3     16       7             3        8      5
Ans. Any line through (1, 2, –4) can be written as
       x 1 y  2 z  4
                                                           ...(i)
         a        b       c
      (i) is at right angles to given lines with d.n. < 3, –16, 7 > and < 3, 8, –5 >
      if          3a – 16b + 7c = 0                              ...(ii)
      and         3a + 8b – 5c = 0                               ...(iii)
      By cross-multiplication, we have
                a          b        c
                              
            80  56 21  15 24  48
             a    b      c
      or             
            24 36 72
            a b c
      or                                                       ...(iv)
            2 3 6
      From (i) and (iv), we find that required line is
       x 1 y  2 z  4
                     
         2       3       6
      In vector form, this line can be written as
       
           i    j          i    j    
                                            
       r    2   4k   2  3   6k ( d.n. of the line are < 2, 3, 6 > and line passes through < 1, 2, –4 >)
                       



                                                                     
14.  If a, b, c are three vectors such that a  5, b  12, c  13 , and a  b  c  0 , find the value of
        
      a.b  b.c  c.a .
          
Ans. a  b  c  0
                     
            (a  b  c) · (a  b  c)  0·0
                2
     i.e.     abc 0
                                      
     i.e. | a |2  | b |2  | c |2 2(a · b  b·c  c·a )  0
                                       
     i.e. 5 + 12 + 13 + 2( a · b  b·c  c·a )  0
              2       2      2

                           
     i.e. 338  2(a · b  b·c  c·a)  0
                
     i.e.    a · b  b·c  c·a  169


15.   Solve the following differential equation:
           dy
       2 x2    2 xy  y 2  0
           dx
           dy
Ans. 2 x 2     2 xy  y 2
           dx
                                                         -(5)-
STUDYmate

               dy 2 xy  y 2
                 
               dx    2x2
               dy 2 xy y 2
                     
               dx 2 x 2 2 x 2
              dy y 1  y 2 
                  
              dx x 2  x 2 
                                                                          ...(i)
                              
                          dy          dv
       Put y = vx and         vx         in (i) we get,
                          dx          dx
                      dv          1
              v  x  v  v2
                      dx          2
                  dv        dx
             2 2   2
                  v          x
                v  2 1
                          
             2             log | x |  C
                2  1 
              2
                    log | x |  C
               v
              2 x
                     log | x |  C
                y
                             2x
              log | x |        C ; (y  0)
                              y


16.    Find the particular solution of the following differential equation;
       dy
           1  x 2  y 2  x 2 y 2 , given that y = 1 when x = 0
       dx
       dy
Ans.       1  x2  y 2  x2 y 2
       dx
       dy
            (1  x 2 )  y 2 (1  x  )  (1  x 2 )(1  y 2 )
       dx
           dy
        1  y 2   (1  x )dx
                            2



                   x3
       tan 1 y  x  C
                   3
       Now, when x = 0, y = 1
                                03                      
              tan 1 1  0       C        C
                                3                       4
                             1                 x3 
             Solution is tan y  x              
                                                3 4


17.    Evaluate :  sin x sin 2 x sin 3x dx
                                                                  OR
                                2
       Evaluate :     (1  x)(1  x2 ) dx
Ans. Now, sin x sin 2x sin 3x


                                                                  -(6)-
STUDYmate

               1
      =          {2sin 3x sin x} sin 2x
               2
               1
      =          {cos (2x) – cos (4x)} sin 2x
               2
               1
      =          {2 sin 2x cos 2x – 2 cos 4x sin 2x}
               4
               1
      =          {sin 4 x – (sin 6x – sin 2x)}
               4
               sin x sin 2 x sin 3xdx
               1
               4
      =           (sin 4 x  sin 6 x  sin 2 x)dx

               1   cos 4 x  cos6 x  cos 2 x 
               4  4
      =                                      C
                                6        2 
                   cos 4 x cos6 x cos 2 x
      =                                C
                     16      24     8
                                                                     OR
                  2          A    Bx  C
Ans. Let                                                                   ...(i)
           (1  x)(1  x ) 1  x 1  x 2
                        2

                                                           2
      Multiplying both sides by (1 – x) (1 + x ), we have
                     2
      2 = A (1 + x ) + (Bx + C) (1 – x)
           2
      2 = x (A – B) + x (B – C) + (A + C)                                    ...(ii)
      Equating coefficients on the two sides of (ii), we get
               A – B = 0, B – C = 0, A + C = 2
              A=B=C=1
                      2            1    x 1
                                    
               (1  x)(1  x 2 ) 1  x x 2  1
                         2                             1       x 1
               (1  x)(1  x   2
                                     )
                                         dx   =    1  x dx   x
                                                                2
                                                                  1
                                                                     dx

                                                 log |1  x | 1 2 x              1
                                              =                2      dx   2      dx
                                                     1       2 x 1          x 1
                                                               1           2       –1
                                              = –log |x – 1| + log (1 + x ) + tan x + C.
                                                               2

                                                   3
18.   Find the point on the curve y = x – 11x + 5 at which the equation of tangent is y = x – 11.
                                                                     OR
      Using differentials, find the approximate value of                       49.5
                                 3
Ans. Given curve is y = x – 11x + 5                                          ...(i)
      Given line is y = x – 11                                               ...(ii)
      Slope of line (ii) = 1                                                           ( (ii) is of the form y = mx + b)
                    dy      2
      From (i),         = 3x – 11
                                1
                    dx
      Since, slope of tangent = 1



                                                                     -(7)-
STUDYmate

              dy                    2
                 = 1, i.e., when 3x – 11 = 1
              dx
                                                                            
                                                                                2            2        2
            x = 2                                                        ( 3x – 11 = 1  3x = 12  x = 4)
      When x = 2, then
                       3
      from (i), y = 2 – 11 × 2 + 5 = –9
      When x = –2, then
                                3
      from (i), y = (–2) – 11 (–2) + 5 = 19
      Thus, we find that at the points (2, –9) and (–2, 19), the slope of tangent is 1.
                                                               OR
                                                       1
Ans. Let      f ( x)  x so that f ( x )                 .
                                                   2 x
      Now f ( x  x)  f ( x)  xf ( x)

                                         x
               x  x  x 
                                        2 x
      Taking x = 49 and x = 0.5, we obtain
                                         0.5     0.5
             49.5  49                      7      7  0.036
                                        2 49     14
               49.5  7.036

                  –1   2
19.   If y = (tan x) , show that ( x 2  1)2 y2  2 x( x 2  1) y1  2 .
                           –1       2
Ans. Given y = (tan x) we get
              dy                  1
                  2(tan 1 x)
              dx               1  x2
                   2              –1
      or     (1 + x ) y1 = 2 tan x
      Again differentiating w.r.t. x we get
                                             2
      (1  x 2 ) y2  y1 (0  2 x) 
                                          1  x2
             ( x 2  1)2 y2  2 x( x 2  1) y1  2


20.   Using properties of determinants, prove that
      bc      qr          yz   a            p   x
      ca      r p         zx 2b            q   y
      ab      pq         x y            c   r   z
           bc             qr           yz
Ans. LHS = c  a           r p          zx
           ab             pq          x y
      Interchanging rows and columns, we get,
      bc      ca         ab
      qr      r p        pq
       yz     zx         x y
      Operating C3  C3 – C1 – C2, we have

                                                               -(8)-
STUDYmate

       bc    ca           ab bc          c  a 2c
       qr    r p          pq  qr        r  p 2r                                                        1
                                                                    (Take out –2 from C3 i.e., operate C3      C)
       yz    zx           x y       yz   zx   2 z                                                       2 3

                bc          ca c
      =      2 q  r        r p r                                 Now, Operate C1  C1 – C3 and C2  C2 – C3
                   yz           zx   z
                b          a c
      =      2 q          p r , operate C1  C2
                   y       x z
              a b            c
      =      2p q            r
               x       y     z
              a        p     x
      =      2b        q     y (by interchanging rows and columns again)
               c       r     z


                         cos x   x            
21.   Prove that tan 1               , x   , 
                         1  sin x  4 2       2 2
                                                    OR
                        8          3          36 
      Prove that sin 1    sin 1    cos1  
                         17        5          85 
                                      x        x
                     sin   x    2sin    cos   
       cos x              2           4 2       4 2
Ans.           
     1  sin x                                x
                   1  cos   x        2cos 2   
                           2                   4 2
                    x
               sin   
                   4 2   tan    x 
                                        
                    x         4 2
               cos   
                    4 2
                     cos x   x
            tan 1               . Hence proved
                     1  sin x  4 2
                                                    OR
                 1 8             1 3
Ans. Let x = sin      and y = sin
                   17                5
               8             3
      sin x =    and sin y =
              17             5
            cos x =        1  sin 2 x and cos y = 1  sin 2 y
                    15               4
             cos x =    and cos y =
                    17               5
      Now, cos (x + y) = cos x cos y – sin x sin y
             15 4 8 3
      =          
             17 5 17 5


                                                            -(9)-
STUDYmate

             36
      =
             85
                          36  –1
            x + y = cos
                          85
                    8       3         36
            sin 1  sin 1  cos 1    Hence Proved
                   17       5         85


                                                                                             x2
22.   Let A    {3} and B    {1} . Consider the function f : A  B defined by f ( x)       . Show that
                                                                                             x3
                                            –1
      f is one-one and onto and hence find f .
              x2
Ans. f ( x) 
              x 3
      Let    x1 , x2  A
      Let       f ( x1 )  f ( x2 )
                x1  2 x2  2
      i.e.            
                x1  3 x2  3
      i.e.   (x1 – 2) (x2 – 3) = (x1 – 3) (x2 – 2)
      i.e.   x1x2 – 3x1 – 2x2 + 6 = x1x2 – 2x1 – 3x2 + 6
      i.e.   –x1 = – x2
      i.e.   x1 = x2
            f is one - one.                                    ... (i)
                  x2
      Also y 
                  x3
      i.e.   y (x – 3) = (x – 2)
             xy – 3y = x – 2
             x (y – 1) = 3y – 2
                    3y  2
             x
                     y 1
            f is onto, y  1, y  B                            ... (ii)
      from (i) and (ii), f is bijective
            it is invertible.
                                                     x2
      For inverse : Interchanging x and y in y =         , we get
                                                     x3
                    3x  2     –1     3x  2
            y=            or f (x) =
                     x 1              x 1


                                                 SECTION-C
                           Question numbers 23 to 29 carry 6 marks each.
23.   Find the equation of the plane determined by the points A (3, –1, 2), B (5, 2, 4) and C (–1, –1, 6) and
      hence find the distance between the plane and the point P (6, 5, 9).
Ans. Equation of plane in three point form is


                                                       -(10)-
STUDYmate

               x3      y 1    z2
               53      2 1    42 0
              1  3 1  1 6  2
              x  3 y 1 z  2
      i.e.,     2     3    2 0
               4       0       4
      i.e.    (x – 3) (12) – (y + 1) (8 + 8) + (z – 2) (12) = 0
      i.e.,   3(x – 3) – 4 (y + 1) + 3 (z – 2) = 0
      i.e.,   3x – 4y + 3z – 19 = 0 is the equation of the required plane.
                    18  20  27  19
      and     d=
                        9  16  9
                     6    34
              d=        
                     34   34
                    3 34
              d=         .
                     17


24.   Of the students in a college, it is known that 60% reside in hostel and 40% are day scholars (no residing
      in hostel). Previous year results report that 30% of all students who reside in hostel attain ‘A’ grade and
      20% of day scholars attain ‘A’ grade in their annual examination. At the end of the year, one student is
      chosen at random from the college and he has an ‘A’ grade, what is the probability that the student is a
      hostlier?
Ans. Let      E1 : ‘A student is residing in hostel’
      and     E2 : ‘A student is a day scholar’
      then E1 and E2 are mutually exclusive and exhaustive. Moreover,
                      60 3                                                 40 2
              P(E1) =                 and                      P(E2) =      
                     100 5                                                100 5
      Let E : Student attains ‘A’ grade;
                      30     3                                               20   2
      then P(E/E1) =                 and                       P(E/E2) =       
                     100 10                                                 100 10
      Required probability = P (E1/E)
                      P(E/E1 )P(E1 )
      =                                                                                   [By Baye’s Theorem]
              P(E/E1 )P(E1 )+P(E/E 2 )P(E 2 )
                  3 3
                   
                 10 5     9   9
      =                    
               3 3 2 2 9  4 13
                  
              10 5 10 5


25.   A manufacturer produces nuts and bolts. It takes 1 hour of work on machine A and 3 hours on machine
      B to produce a package of nuts. It takes 3 hours on machine A and 1 hour on machine B to produce a
      package of bolts. He earns a profit of ` 17.50 per package on nuts and ` 7 per package of bolts. How
      many packages of each should be produced each day so as to maximize his profits if he operates his
      machines for at the most 12 hours a day? Form the above as a linear programming problem and solve it
      graphically.


                                                       -(11)-
STUDYmate

Ans. Let the manufacturer produces x Packages of nuts and y Packages of bolts each day. We construct the
     following table:
       Item     Number of packages Total Time on machine A Total Time on machine B                   Profits
       Nuts             x                   1x hrs                  3 x hrs                          17.50 x
       Bolts                  y                      3 y hrs                         1 y hr          7y
       Total                                       x  3 y hrs                     3 x  y hrs     17.50 x  7 y
      We have to maximize profit, i.e.,
                                    35
            P = 17.50x + 7y =          x  7y          ...(i)
                                     2
                                                                              Y
      subject to the constraints
            x + 3y  12                                ...(ii)                D(0,12)

            3x + y  12                                ...(iii)
            x, y  0                                   ...(iv)
      First of all, we locate the region represented by (2),
      (3) and (4). For this, we consider the line x + 3y =
      12, which passes through A (12, 0) and B (0, 4) and
      the line 3x + y = 12, which passes through the points B(0,4)                      E(3,3)
      C (4, 0) and D (0, 12). The two lines meet at E (3, 3).                                         A(12,0)
                                                                                                                   X
      The feasible region is shown shaded in the figure.        O                         C(4,0)
      Note that O (0, 0) lies in this region.
      The corner points, which are to be examined for optimum solution are C (4, 0), E (3, 3) and B (0, 4).
                         35
      At C (4, 0) P =        4  7  0  70
                          2
                         35
      At E (3, 3) P =        3  7  3  73.5
                          2
                         35
      At B (0, 4) P =        0  7  4  28
                          2
      Hence the profit is maximum equal to ` 73.50 when 3 packages of each of nuts and bolts are manufactured.


                    /4
                                                   
26.   Prove that    (    tan x  cot x )dx  2.
                                                   2
                    0

                                                                OR
                   3
      Evaluate :  (2 x 2  5 x) dx as a limit of a sum.
                   1

                sin x     cos x        
Ans. Let I =  
                cos x  sin x           dx
                                        
                                       
             sin x  cos x
     =       sin x cos x dx
     Now let (sin x – cos x) = t                                     ...(i)
      (cos x + sin x)dx = dt
                          2         2                       2
      Squaring (i), sin x + cos x – 2 sin x cos x = t
              1 t2
                    sin x cos x
               2
                                                            -(12)-
STUDYmate

      When x = 0, t = 0 – 1 = –1
                              1    1
      When x =             ,t=        0
                         4      2    2
                             0
                                      dt
                 I=      2
                             1      1 t2
                                 2  sin 1 t  
                                                          0
                  =                                     1

                  =              2 sin (0)  sin 1  1 
                                   
                                             1
                                                           
                                      
                  =              2 0     
                                     2 
                                     
                  =              2
                                     2
                                                                                        OR
              3

Ans. I =  (2 x  5 x) dx
               2

              1

                                  b  a 3 1
      a = 1, b = 3  h =               
                                    n     n
                             nh = 2
                                2
      Now, f(x) = 2x + 5x
                                                  2
                 f(a) = f(1) = 2(1) + 5(1) = 7
                                                                               2
                  f(a + h) = f(1 + h) = 2(1 + h) + 5(1 + h)
                                                                           2
                                                      = 2(1 + h + 2h) + 5 + 5h
                                                               2
                                                      = 2h + 9h + 7
                                                                       2
      f(a + 2h) = f(1 + 2h) = 2(1 + 2h) + 5(1 + 2h)
                                                                   2
                                             = 2(1 + 4h + 4h) + 5 + 10h
                                                      2
                                             = 8h + 18h + 7
                  ... ... ... ...
                  ... ... ... ...

                                                                                                     
                                                                                        2
       f a  n 1 h  f 1  n 1 h = 2 1  n 1 h                                            5 1 n 1 h

                                                                   = 2 1   n  1 h 2  2h( n  1)   5  5h  n  1
                                                                                    2

                                                                                                     
                                                                               2 2
                                                                   = 2(n – 1) h + 9h (n – 1) + 7
                  b
      Since  f ( x)dx = hLt0 h  f (a )  f (a  h)  f (a  2h)  ...  f a  n  1 h 
                                                                                                                
                  a

                  I = hLt0 h  7  {7  9h  2h }  {7  18h  8h }  ...  {7  9h( n  1)  2(n  1) h }
                                               2                 2                                    2 2
                                                                                                       

                     
                           
                                                                                    2
                  = hLt0 h 7 n  9h(1  2  ...  n  1)  2h 2 12  22  ...  n  1 
                                                                                        
                                                                                                               
                                   n(n  1)        (n)(n  1)(2n  1) 
                  = hLt0 h 7n  9h           2h 2                    
                     
                                      2                    6          
                                  9hn(hn  h) hn(hn  h)(2hn  1) 
                  = hLt0 h 7 hn                                 
                     
                                      2               3           


                                                                                        -(13)-
STUDYmate

                      9  2(2  0) 2(2  0)(4  0) 
            = 7  2                              
                           2              3        
                       16 
            = 14  18  
                        3
               42  54  16 
            =               
                    3       
              112
            =
                3


27.   Using the method of integration, find the area of the region bounded by the lines 3x – 2y + 1 = 0, 2x + 3y
      – 21 = 0 and x – 5y + 9 = 0.

                                                  3x  1               x 0  13
Ans. L1:    3x – 2y + 1 = 0                   y=                      y 0.5 0
                                                    2
                                                  21  2 x             x 0 10.5
      L2:   2x + 3y – 21 = 0                  y=                      y 7 0
                                                     3
                                                    x9                x 0 9
      L3:   x – 5y + 9 = 0                    y=                      y 1.8 0
                                                     5

                                                 L2


                                                                   C
                                                                       (3, 5)
                                                               A
                                                                        B (6,3)
                                                               (1,2)
                                      L3
                                     (–9, 0)                             (10.5, 0)


                                         L1


      Point of Intersection:
                    3x  1 21  2 x
      L1 and L2 :         
                      2        3
                         9x + 3 = 42 – 4x
                         13x = 39
                         x=3
                         y=5
                    3x  1 x  9
      L2 and L3 :         
                      2       5
                         15x + 5 = 2x + 18
                         13x = 19
                         x=1
                         y=2
                    21  2 x x  9
      L2 and L3 :           
                       3       5
                                                      -(14)-
STUDYmate

                             105 – 10x = 3x + 27
                             78 = 13x
                             x=6
                             y=3
           A = (1, 2) ; B = (6, 3) ; C = (3, 5)
                                          3             6                 6

      Thus, required area: A =               ydx   ydx   ydx
                                          1 ( Line1)    3 ( Line 2)       1 ( Line 3)
               3                      6                               6
             1                1                  1
      =
             21 (3x  1)dx  3  (21  2 x)dx  5  ( x  9)dx
                                3                  1
                             3                                                          6
             1  3x 2   1            2 6    1  x2      
      =
             2 2  x   3  21x  x  3  5  2  9 x 
                                      
                       1                               1
             1  27      3  1                            1           1     
      =
             2 2  3  2  1  3 126  36  63  9  5 18  54  2  9 
                                                                           
                               1  125 
                                      25
             1        1
      =      2
               14    36  
                      3
                                         
                               5 2 
                                        
                      25         25 38  25 13
      =      7  12       19              sq. units.
                       2         2       2   2


28.   Show that the height of a closed right circular cylinder of given surface and maximum volume, is equal
      to the diameter of its base.
Ans. Let r be the radius of the circular base, h the height and S, the total surface area of a right circular
                           2
     cylinder, then S = 2r + 2rh is given to be a constant.
      Let V be the volume of the cylinder with the above dimensions, then

                         2  S  2r                    r                                                                       S  2r 2
                                     2

            V = r h = r                               2 (S  2r )
                  2                                                  2                                          2
                                                                                                     [ S = 2r + 2rh,  h =              ]
                            2r                                                                                                  2r
                  Sr                   S                                                                        S  2r 2              S
           V=        r 3 ,0  r                                                         ...(i)     [ h =             > 0,  r <      ]
                   2                  2                                                                          2r                  2
      Differentiating (i), twice w.r.t. r, we get
             dV S
                    3r 2
             dr 2
             d 2V
      and           6r
             dr 2
            dV                                             S 
      Now      exists at all points in                  0,    
            dr                                         
                                                           2  and
                                                               
             dV      S                   S
                 0   3r 2  0  r2 =
             dr      2                   6
                   S                                                                                                                   S
           r=                                                                                                           [ 0 < r <       ]
                   6                                                                                                                  2
             d 2V                             S
      Also,  2                     6          0
             dr  r    S/(6  )               6

                                                                               S
           V has a local maximum value at r =
                                                                               6

                                                                                 -(15)-
STUDYmate

                                   S                                         S       S 
      Since V is continuous in  0,     and has only one extremum at              0,
                                                                                           , therefore, V is
                               
                                   2 
                                                                              6      2 
                                                                                           
                                     S
      absolutely maximum for r =        .
                                     6
                                                   S 
                                           S  2  
                   S             S  2r2
                                                   6   2S 6
      When r =        , then h =         
                   6              2r             S       6 S
                                             2
                                                  6
                       S
      =     i.e., h = 2   = 2 radius = diameter.
                                               .
                       6
      So, volume is maximum when the height is equal to the diameter.


29.   Using matrices, solve the following system of linear equations:
            x – y + 2z = 7
            3x + 4y – 5z = – 5
            2x – y + 3z = 12
                                                    OR
      Using elementary operations, find the inverse of the following matrix.
            1 1 2 
                    
            1 2 3
            3 1 1
                    
Ans. The given system can be written as AX = B,
                 1 1 2 
                        
      where A   3 4 5
                 2 1 3 
                        
                 x
            X   y
                 
                z
                 
                7
      and   B   5
                 
                12 
                 
                   1 1 2
      Here | A |  3 4 5
                   2 1 3
            = 1 (12 – 5) – (– 1) (9 + 10) + 2(–3 – 8)
            = 7 + 19 – 22 = 4  0
              –1
           A exists
      Therefore, the given system is consistent and has a unique solution given by

                 1  1             
            X = A B=      (adj. A)  B
                    | A |          


                                                    -(16)-
STUDYmate

                                     t
                   7 19 11  7 
                1             
              = 4  1 1 1   5
                   3 11
                          7  12 
                               
                  7   1 3  7 
               1
                19 1 11   5
                             
               4
                  11 1 7  12 
                            
                  49  5  36 
               1
                133  5  132 
                                 
               4
                  77  5  84 
                                
            x       8   2
            y   1  4   1 
            4   
           z
                   12   3 
                        
         x = 2 , y = 1, z = 3
                                         OR
Ans. A = IA
      1 1 2  1 0 0 
      1 2 3  0 1 0 A
                    
      3 1 1  0 0 1 
                    
     R1   R2
      1 2 3 0 1 0
      1 1 2   1 0 0  A
                         
      3 1 1  0 0 1 
                         
     R2  R2 + R1 ; R3  R3 – 3R1
     1 2 3          0 1 0
     0 3 5         1 1 0  A
                            
     0 5 8
                     0 3 1 
                              
     R3  R3 + 2R2
     1 2 3     0 1 0
     0 3 5     1 1 0  A
                       
     0 1 2
                2 1 1 
                         
     R2  R3
     1 2 3   0 1 0 
     0 1 2    2 1 1  A
                      
     0 3 5   1 1 0 
                      
     R1  R1 – 2R2
     R3  R3 – 3R2
     1 0 1  4 3 2 
      0 1 2    2 1 1  A
                       
      0 1 1  5 4 3
                       
     R3  – R3


                                         -(17)-
STUDYmate

    1 0 1  4 3 2 
    0 1 2    2 1 1  A
                     
    0 0 1   5 4 3 
                     
    R1  R1 + R3
    R2  R2 – 2R3
     1 0 0   1 1 1 
     0 1 0    8 7 5 A
                      
     0 0 1   5 4 3 
                      
                    1 1 1 
     A
            1
                   8 7 5
                           
                    5 4 3 
                           

                                ×·×·×·×·×




                                   -(18)-
STUDYmate


        Studymate Solutions to CBSE Board Examination 2011-2012

      Series : SMA/1                                                            Code No. 65/1/2
                              UNCOMMON QUESTIONS ONLY
                                                    SECTION-A
                              Question numbers 1 to 10 carry 1 mark each.
9.   Find the sum of the following vectors:
                              
     a  i  2 ˆ, b  2i  3 ˆ, c  2i  3k
         ˆ     j       ˆ     j       ˆ      ˆ
                                                 ˆ
Ans.    a  b  c  (i  2 ˆ)  (2i  3 ˆ)  (2i  3k )
                       ˆ     j      ˆ     j    ˆ
                           ˆ     j    ˆ
                         5i  5 ˆ  3k


            5 3 8
10. If   2 0 1 , write the cofactor of the element a32.
            1 2 3
                     5 8
Ans. M 32  (1)3 2      (5  16)  11
                     2 1


                                                     SECTION-B
                          Question numbers 11 to 22 carry 4 marks each.
19.    Using properties of determinants, prove the following
        1      1    1
        a      b    c  (a  b)(b  c)(c  a )(a  b  c)
        a 3 b3     c3
         1         1     1
Ans.   a         b     c
             a 3 b3      c3
       Applying         C1  C1 – C3                                  (Given)
                        C2  C2 – C3

            0              0        1
         ac            bc       c
             a 3  c3    b3  c 3   c3
                      0                        0                1
       =             ac                      bc               c
            (a  c)( a 2  ac  c 2 ) (b  c) (b 2  bc  c 2 ) c3




                                                             -(19)-
STUDYmate


                                        0                  0       1
      =   (a  c) (b  c)               1                  1       c
                            (a 2  ac  c 2 ) (b 2  bc  c 2 ) c3
                            2        2       2
      = ( a  c ) (b  c ) (b  bc  c )  ( a  ac  c
                                                        2
                                                                       Expanding along R1
                                2           2
      = (a – c) (b – c) {(b – a ) + (bc – ac)}
                                2           2
      = (a – c) (b – c) {(b – a ) + c(b – a)}
      = (a – c) (b – c) (b – a) {(b + a) + c}
      = (a – b) (b – c) (c – a) (a + b + c)
      = RHS. Hence proved


20.   If y = 3 cos (log x) + 4 sin (log x), show that
             d2y      dy
                x2
                 2
                   x  y0
              dx      dx
Ans. Given y = 3 cos (log x) + 4 sin (log x)                            … (i)
      Differentiating w.r.t. x, we get
      dy                   1                  1
         = – 3 sin (log x)    + 4 cos (log x)
      dx                   x                  x
      Multiplying by x, we get
      xy1 = – 3 sin (log x) + 4 cos (log x)                             … (ii)
      Again differentiating w.r.t. x, we obtain
                                  1                 1
      xy2 + y1 . 1 = – 3 cos (log x)– 4 sin (log x)
                                  x                 x
      Multiplying throughout by x, we have
                2
               x y2 + xy1 = – (3 cos (log x) + 4 sin (log x))
                2
      or       x y2 + xy1 = – y                                         (using (i))
                2
      or       x y2 + xy1 + y = 0


21.   Find the equation of the line passing through the point (–1, 3, –2) and perpendicular to the lines
            x y z           x  2 y 1 z  1
                and                   
            1 2 3             3      2     5
Ans. Let the equation of line passing through (–1, 3, –2) be
                x  (1) y  3 z  (2)
                                                                      ... (i) where (a, b, c) are dr’s of the line
                   a       b       c
      Since, the required line is  to the lines:
      x y z        x  2 y 1 z  1
          and             
      1 2 3         3     2    5
         a + 2b + 3c = 0 and – 3a + 2b + 5c = 0                                 (using a1a2 + b1b2 + c1c2 = 0)
                      a             b                c
      Solving,                                 
                     2 3        3 1                 1 2
                     2 5        5 3                3 2
                a   b   c
                    
                4 14 8
                                                               -(20)-
STUDYmate

              a b c
      or             
              2 7 4
            a = 2, b = –7, c = 4
      Putting the values of a, b and c in equation (i) we get
                 x 1           y 3 z  2
                                   
                  2            7   4
                 x 1           y 3 z  2
      or                                                                   [Note: Using  is not compulsory]
                   2             7    4


22.   Find the particular solution of the following differential equation
           dy
      ( x  1)  2e  y  1; y  0 when x = 0
           dx
Ans. Given differential equation is
                            dy
                 ( x  1)       2e  y  1                       ...(i)
                            dx
                      dy   dx
                    y
                                
             2e  1 x  1
              e y dy     dx
                           ,
             2e    y
                        x 1
      Integrating, we obtain
                     e y dy      dx
                    2e   y
                             
                                x 1
                                     C

                 e y dy        dx
                –               C
                 2e   y
                               x 1
                         y
            – log |2 – e | = log | x + 1| + C
                                        y
             log (x + 1) (2 – e ) = –C
                                    y       –c
            |(x + 1) (2 – e ) | = e
                                    y         –c
            (x + 1) (2 – e ) = ± e = A (say)
                                    y
            (x + 1) (2 – e ) = A                                 ... (ii)
      Also, when x = 0, y = 0,
                            0
      (0 + 1) (2 – e ) = A
            1(2 – 1) = A
            A=1
      Substituting this value of A in (ii), we obtain, the required particular solution as
                            y
      (x + 1) (2 – e ) = 1.


                                                   SECTION-C
                                Question numbers 23 to 29 carry 6 marks each.
28.   A girl throws a die. If she gets a 5 or 6, she tosses a coin three times and notes the number of heads. If she
      gets 1, 2, 3 or 4, she tosses a coin two times and notes the number of heads obtained. If she obtained
      exactly two heads, what is the probability that she threw 1, 2, 3 or 4 with the die?
Ans. Let     E1 : ‘1, 2, 3, or 4 is shown on die’, and

                                                         -(21)-
STUDYmate

             E2 : ‘5 or 6 is shown on die’,
      then E1 and E2 are mutually exclusive and exhaustive. Moreover,
                      4 2
             P(E1 )    
                      6 3
                      2 1
      and P(E 2 )  
                      6 3
      Let E : ‘exactly one head shows up’,
               E                                                                          2 1
      then   P    P (exactly one head shows up when coin is tossed twice) = P({HT, TH}) = 
                E1                                                                        4 2
                E 
      and    P       P (exactly one head shows up when coin is tossed thrice)
                E2 
             = P ({HTT, THT, TTH})
                 3
             =
                 8
                                  E1 
       Required probability = P  
                                 E
                          E
                        P   P(E1 )
                          E1 
                 E              E                            (using Bayes Theorem)
               P   P(E1 )  P   P(E 2 )
                  E1            E2 
                 1 2    1
                  
                 2 3         8    8
                      3      
               1 2 3 1 1 1 8  3 11
                     
               2 3 8 3 3 8


29.   Using the method of integration, find the area of the region bounded by the following lines:
      3x – y – 3 = 0, 2x + y – 12 = 0, x – 2y – 1 = 0
Ans. 3x – y – 3 = 0                                              ... (i)
      2x + y – 12 = 0                                            ... (ii)
      x – 2y – 1 = 0                                             ... (iii)
      Solving (i) and (ii) 5x – 15 = 0 i.e. x = 3 i.e. y = 9 – 3 = 6
            Point of intersection (3, 6)
      Solving (ii) and (iii)
             2 x  y  12  0
             2x  4 y  2  0
                    
              5 y  10  0
               y2
            x=5
            Point of intersection (5, 2)




                                                        -(22)-
STUDYmate

Solving (iii) and (i)
       3x  y  3  0                                                       y
       3x  6 y  3  0
         
                               y  0 and x  1                                          B(3, 6)
         5y  0
     Point of intersection is (1, 0)
                                                                                             (ii )
Required area                                                                    (i)

      = Area of region ABCA                                                                           C(5, 2)
      = area of region ABCDA – Area of ACDA                                                (iii)

         3             5             5                                                                          x
                                                                        0       A(1, 0) E(3,0)       D(5,0)
         y(i ) dx   y(ii ) dx   y(iii ) dx
         1             3             1
         3                     5                       5
                                                         ( x  1)
         (3x  3) dx   (2 x  12)dx                        dx
         1                     3                       1
                                                             2
                           3                                       5
         3x 2                                        x2 x 
                                             
                                                   5
              3 x    x 2  12 x                  
         2               1
                                                   3
                                                       4 2 1
          27      3                                          25 5   1 1  
             9     3     ( 25  60)  ( 9  36)          
          2       2                                          4 2   4 2  
         24                 24 4 
         6  [35  27]    
        2                   4 2
      = 10 sq. units

                                                       ×·×·×·×·×




                                                               -(23)-
STUDYmate


        Studymate Solutions to CBSE Board Examination 2011-2012

      Series : SMA/1                                                Code No. 65/1/3
                          UNCOMMON QUESTIONS ONLY
                                                    SECTION-A
                         Question numbers 1 to 10 carry 1 mark each.
9.   Find the sum of the following vectors:
                              
               ˆ        j ˆ                     ˆ
     a  i  3k , b  2 ˆ  k , c  2i  3 ˆ  2k
         ˆ                           ˆ     j
       
Ans. a  b  c  3i  ˆ  2k
                    ˆ j       ˆ



              1 2 3
10.    If   2 0 1 , write the minor of the element a22.
              5 3 8
               1 3
Ans. M 22          1  8  3  5  8  15  7
               5 8



                                                    SECTION-B
                        Question numbers 11 to 22 carry 4 marks each.
19.    Using properties of determinants, prove the following
       1 a 1           1
        1 1 b          1  ab  bc  ca  abc
         1       1     1 c
Ans. Taking out factors a, b, c common from R1, R2 and R3, we get
                    1      1    1
                      1
                    a      a    a
                      1  1      1
       L.H.S. = abc        1
                      b  b      b
                      1    1  1
                                1
                      c    c  c
       Applying R1  R1 + R2 + R3, we have
                      1 1 1   1 1 1   1 1 1
                 1       1    1  
                      a b c   a b c   a b c
                       1       1         1
         abc                   1
                       b       b         b
                       1         1     1
                                         1
                       c         c     c




                                                       -(24)-
STUDYmate



                         1    1       1
             1 1 1 1 1              1
       abc  1            1
             a b c b b              b
                         1    1     1
                                      1
                         c    c     c
      Now applying C2  C2 – C1, C3  C3 – C1, we get

                                      1    0 0
               1 1 1                1
        abc 1                       1 0
               a b c                b
                                      1
                                           0 1
                                      c
             1 1 1
       abc 1    [1(1  0)]
             a b c

             1 1 1
       abc 1      abc  bc  ca  ab  R.H.S.
             a b c


                                    2          d2y     dy
      If y = sin x, show that (1  x )               x  0.
                 –1
20.                                               2
                                               dx      dx
                             –1
Ans. We have y = sin x. Then
               dy      1
                  
               dx   (1  x 2 )

      or                  dy
                1  x2       1
                          dx
               d        2  dy 
      So           1  x ).   0
               dx          dx 

                1  x 2 ).
                             d 2 y dy d
                                    .
                             dx2 dx dx
                                               1 x )   0
                                                     2



                  d 2 y dy          2 x
        1  x 2 ).          .              0
                  dx 2 dx 2         1  x2
                          d2y       dy       x
      or        1  x 2 ). 2 –         .          0
                          dx        dx     1  x2
                           d2y     dy
      Hence (1  x 2 )        2
                                 x 0
                           dx      dx

21.   Find the particular solution of the following differential equation
              dy
              xy   ( x  2)( y  2); y  1 when x = 1
              dx
Ans. Given differential equation is
                     dy
              xy         ( x  2) ( y  2)                             ...(i)
                     dx


                                                               -(25)-
STUDYmate

               y       x2
      or          dy      dx,
              y2       x
      integrating, we obtain
                 y          x2
              y  2 dy   x dx  C
                      2                2
      or      1  y  2  dy   1  x  dx  C
                                       
      or     y – 2 log | y + 2| = x + 2 log | x| + C                  ...(ii)
      But, (1, –1) lies on this curve, therefore,
             –1 – 2 log|–1 + 2| = 1 + 2 log 1 + C
            –1 – 2 log 1 = 1 + 2 log 1 + C
            C = –2                                                   ( log 1 = 0)
      Hence, from (ii), we find the required curve as
             y – 2 log |y + 2| = x + 2 log |x| – 2
      or     y = x + 2 log | x (y + 2)| – 2.


22.   Find the equation of a line passing through the point P (2, –1, 3) and perpendicular to the lines
                                             
           ˆ j ˆ                  j ˆ                        ˆ                  ˆ
      r  (i  ˆ  k )  (2i  2 ˆ  k ) and r  (2i  ˆ  3k )  (i  2 ˆ  2k ).
                            ˆ                       ˆ j              ˆ     j
Ans. Let, the equation be
       x  x1 y  y1 z  z1
                     
         a        b       c
      It passes through (2, –1, 3)
             x  2 y 1 z  3
                                                                   ... (i)
                a      b        c
                       
                            ˆ j ˆ                  j ˆ
      Also (i) is  to r  (i  ˆ  k )  (2i  2 ˆ  k )
                                             ˆ
           2a – 2b + c = 0                                           ... (ii)
                       
                             ˆ j      ˆ       ˆ     j    ˆ
      Also (i) is  to r  (2i  ˆ  3k )  µ(i  2 ˆ  2k )

            a + 2b + 2c = 0                                          ... (iii)
      Solving (ii) and (iii)
        a       b      c
                   
      4  2 4  1 4  2
       a b c
              
      6 3 6
            a b c
               
            2 1 2
           Taking a = 2, b = 1, c = –2
      Required equation lie is

      x  2 y 1 z  3    
                              ˆ j      ˆ        ˆ j      ˆ
                       or r  (2i  ˆ  3k )  (2i  ˆ  2k )
        2     1   2




                                                             -(26)-
STUDYmate

                                                  SECTION-C
                        Question numbers 23 to 29 carry 6 marks each.
28.   Bag I contains 3 red and 4 black balls and Bag II contains 4 red and 5 black balls. Two balls are transferred
      at random from Bag I to Bag II and then a ball is drawn from Bag II. The ball so drawn is found to be red
      in colour. Find the probability that the transferred balls were both black.
Ans. Bag I contains 3 red, 4 black balls
      Bag II contains 4 red, 5 black balls
      2 balls transferred from Bag I to Bag II
      Case 1 :     Event A = Both black balls transferred
      Case 2 :     Event B = One black balls and One red ball transferred
      Case 3 :     Event C = Both red balls transferred.
                        4               3
                          C2 2            C  4C1 4           3
                                                                C   1
            P ( A)    7
                             , P ( B)  1 7
                                                  , P (C )  7 2 
                          C2 7               C2   7             C2 7
      Let event E = 1 ball drawn from bag II is red.
                         4
            P( E / A)                                           (Since bag II contains 4R, 7B balls now)
                        11
                         5
            P( E / B)                                            (Bag II contains 5R, 6B balls now)
                        11
                         6
      and P( E / C )                                             (Bag II contains 6R, 5B balls now)
                        11
      Required Probability = P (A/E)
                                                    P( A) P( E / A)
                              
                                  P( A) P( E / A)  P( B) P( E / B)  P(C ) P( E / C )
                                         2 4
                                          
                                        7 11
                                2 4 4 5 1 6
                                      
                                7 11 7 77 7 11
                                    8       8   4
                                            
                                8  20  6 34 17


29.   Using the method of integration, find the area of the region bounded by the following lines
      5x – 2y – 10 = 0, x + y – 9 = 0, 2x – 5y – 4 = 0.
Ans. 5x – 2y – 10 = 0                                             ... (i)                y
      x+y–9=0                                                     ... (ii)
      2x – 5y – 4 = 0.                                            ... (iii)
      Solving (i) and (ii)                                                                           B(4, 5)

             5 x  2 y  10  0                                                                                (ii )

               x y 9 0                                                                      (i)
                                                                                                                         C(7, 2)
                   
                                                                                                          (iii)
              7 x  28  0
                                                                                                                                   x
      x = 4 ; y = 5; Point of intersection is (4, 5)                                0        A(2, 0) E(4,0)            D(7,0)




                                                         -(27)-
STUDYmate

    Solving (i) and (iii)
            10 x  4 y  20  0
            10 x  25 y  20  0
                         
                    21 y  0
    i.e.,   y = 0; x = 2, therefore, Point of intersection is (2, 0)
    Solving (ii) and (iii)
            2 x  2 y  18  0
            2x  5 y  4  0
              
             7 y  14  0
    i.e.,   y = 2; x = 7, therefore, Point of intersection is (7, 2)
    Required Area = Area of Region ABCA
            = Area of Region ABCDA – Area of Region ACDA
                4           7             7
              y(i ) dx   y(ii ) dx   y(iii ) dx
                2           4             2
                4                    7                  7
                5 x  10                         2x  4 
                        dx   (9  x) dx            dx
              2
                     2          4              2
                                                      5 
                                4                 7            7
              5x2              x2     x2 4x 
                  5x    9x      
              4        2       2 
                                       4  5  5 
                                                   2

               80     20              49       16    49 28   4 8  
               20     10     63     36            
               4      4                2        2    5  5   5 5 
                                   21 4 
             [5]  [38.5  28]    
                                   5 5
            = 43.5 – 28 – 5
            = 10.5
                21
                  sq. units
                2

                                                        ×·×·×·×·×




                                                            -(28)-

More Related Content

What's hot

F4 05 The Straight Line
F4 05 The Straight LineF4 05 The Straight Line
F4 05 The Straight Lineguestcc333c
 
UPSEE - Mathematics -2005 Unsolved Paper
UPSEE - Mathematics -2005 Unsolved PaperUPSEE - Mathematics -2005 Unsolved Paper
UPSEE - Mathematics -2005 Unsolved PaperVasista Vinuthan
 
UPSEE - Mathematics -2000 Unsolved Paper
UPSEE - Mathematics -2000 Unsolved PaperUPSEE - Mathematics -2000 Unsolved Paper
UPSEE - Mathematics -2000 Unsolved PaperVasista Vinuthan
 
Module 8 Statistics
Module 8 StatisticsModule 8 Statistics
Module 8 Statisticsguestcc333c
 
Module 12 Matrices
Module 12   MatricesModule 12   Matrices
Module 12 Matricesguestcc333c
 
P2 Matrices Modul
P2 Matrices ModulP2 Matrices Modul
P2 Matrices Modulguestcc333c
 
Circle & solid geometry f3
Circle & solid geometry f3Circle & solid geometry f3
Circle & solid geometry f3normalamahadi
 
Integrated Math 2 Section 3-7
Integrated Math 2 Section 3-7Integrated Math 2 Section 3-7
Integrated Math 2 Section 3-7Jimbo Lamb
 
Spm add math 2009 paper 1extra222
Spm add math 2009 paper 1extra222Spm add math 2009 paper 1extra222
Spm add math 2009 paper 1extra222Saripah Ahmad Mozac
 
X2 T01 03 argand diagram
X2 T01 03 argand diagramX2 T01 03 argand diagram
X2 T01 03 argand diagramNigel Simmons
 
P2 Matrices Test
P2 Matrices TestP2 Matrices Test
P2 Matrices Testguestcc333c
 

What's hot (20)

CEER 2012 Math Lecture
CEER 2012 Math LectureCEER 2012 Math Lecture
CEER 2012 Math Lecture
 
F4 05 The Straight Line
F4 05 The Straight LineF4 05 The Straight Line
F4 05 The Straight Line
 
P2 Probability
P2 ProbabilityP2 Probability
P2 Probability
 
UPSEE - Mathematics -2005 Unsolved Paper
UPSEE - Mathematics -2005 Unsolved PaperUPSEE - Mathematics -2005 Unsolved Paper
UPSEE - Mathematics -2005 Unsolved Paper
 
AMU - Mathematics - 2001
AMU - Mathematics  - 2001AMU - Mathematics  - 2001
AMU - Mathematics - 2001
 
Review exercise 15 (algebra)
Review exercise 15 (algebra)Review exercise 15 (algebra)
Review exercise 15 (algebra)
 
Review exercise 15 (algebra)
Review exercise 15 (algebra)Review exercise 15 (algebra)
Review exercise 15 (algebra)
 
Add Maths 2
Add Maths 2Add Maths 2
Add Maths 2
 
UPSEE - Mathematics -2000 Unsolved Paper
UPSEE - Mathematics -2000 Unsolved PaperUPSEE - Mathematics -2000 Unsolved Paper
UPSEE - Mathematics -2000 Unsolved Paper
 
Module 8 Statistics
Module 8 StatisticsModule 8 Statistics
Module 8 Statistics
 
Module 12 Matrices
Module 12   MatricesModule 12   Matrices
Module 12 Matrices
 
P2 Matrices Modul
P2 Matrices ModulP2 Matrices Modul
P2 Matrices Modul
 
Circle & solid geometry f3
Circle & solid geometry f3Circle & solid geometry f3
Circle & solid geometry f3
 
AMU - Mathematics - 2002
AMU - Mathematics  - 2002AMU - Mathematics  - 2002
AMU - Mathematics - 2002
 
Integrated Math 2 Section 3-7
Integrated Math 2 Section 3-7Integrated Math 2 Section 3-7
Integrated Math 2 Section 3-7
 
Spm add math 2009 paper 1extra222
Spm add math 2009 paper 1extra222Spm add math 2009 paper 1extra222
Spm add math 2009 paper 1extra222
 
Chapter 07
Chapter 07Chapter 07
Chapter 07
 
AMU - Mathematics - 1998
AMU - Mathematics  - 1998AMU - Mathematics  - 1998
AMU - Mathematics - 1998
 
X2 T01 03 argand diagram
X2 T01 03 argand diagramX2 T01 03 argand diagram
X2 T01 03 argand diagram
 
P2 Matrices Test
P2 Matrices TestP2 Matrices Test
P2 Matrices Test
 

Viewers also liked

Viewers also liked (12)

Maths CBSE 2011-12
Maths CBSE 2011-12Maths CBSE 2011-12
Maths CBSE 2011-12
 
2013 cbse mathematics board paper
2013 cbse mathematics board paper2013 cbse mathematics board paper
2013 cbse mathematics board paper
 
Exam approaches and case studies
Exam approaches and case studiesExam approaches and case studies
Exam approaches and case studies
 
Bio sol cbse_2011-12
Bio sol cbse_2011-12Bio sol cbse_2011-12
Bio sol cbse_2011-12
 
2015 Mathematics Class XII
2015 Mathematics Class XII2015 Mathematics Class XII
2015 Mathematics Class XII
 
CBSE XII MATHEMATICS QUESTION PAPER
CBSE XII MATHEMATICS QUESTION PAPERCBSE XII MATHEMATICS QUESTION PAPER
CBSE XII MATHEMATICS QUESTION PAPER
 
class 12 2014 maths solution set 1
class 12 2014 maths solution set 1class 12 2014 maths solution set 1
class 12 2014 maths solution set 1
 
12 cbse-maths-2014-solution set 1
12 cbse-maths-2014-solution set 1 12 cbse-maths-2014-solution set 1
12 cbse-maths-2014-solution set 1
 
Mathematics xii 2014 sample paper
Mathematics xii 2014 sample paperMathematics xii 2014 sample paper
Mathematics xii 2014 sample paper
 
Chemistry cbse solution_2011-12
Chemistry cbse solution_2011-12Chemistry cbse solution_2011-12
Chemistry cbse solution_2011-12
 
Physics CBSE solution 2012
Physics CBSE solution 2012Physics CBSE solution 2012
Physics CBSE solution 2012
 
Class XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solutionClass XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solution
 

Similar to Maths CBSE 2012

Math 17 midterm exam review jamie
Math 17 midterm exam review jamieMath 17 midterm exam review jamie
Math 17 midterm exam review jamielittrpgaddict
 
Monfort Emath Paper2_printed
Monfort Emath Paper2_printedMonfort Emath Paper2_printed
Monfort Emath Paper2_printedFelicia Shirui
 
Mathematics pmr 2013
Mathematics pmr 2013Mathematics pmr 2013
Mathematics pmr 2013farouk85
 
Int Math 2 Section 2-2 1011
Int Math 2 Section 2-2 1011Int Math 2 Section 2-2 1011
Int Math 2 Section 2-2 1011Jimbo Lamb
 
February 8
February 8February 8
February 8khyps13
 
Multiplication on radicals.pptx
Multiplication on radicals.pptxMultiplication on radicals.pptx
Multiplication on radicals.pptxERLINDABAYANI2
 
Lesson 27: Integration by Substitution (worksheet)
Lesson 27: Integration by Substitution (worksheet)Lesson 27: Integration by Substitution (worksheet)
Lesson 27: Integration by Substitution (worksheet)Matthew Leingang
 
Q paper I puc-2014(MATHEMATICS)
Q paper I puc-2014(MATHEMATICS)Q paper I puc-2014(MATHEMATICS)
Q paper I puc-2014(MATHEMATICS)Bagalkot
 
Dunman High Answers_tobechecked_
Dunman High Answers_tobechecked_Dunman High Answers_tobechecked_
Dunman High Answers_tobechecked_Felicia Shirui
 
UPSEE - Mathematics -2003 Unsolved Paper
UPSEE - Mathematics -2003 Unsolved PaperUPSEE - Mathematics -2003 Unsolved Paper
UPSEE - Mathematics -2003 Unsolved PaperVasista Vinuthan
 
Chapter 7 solution of equations
Chapter 7 solution of equationsChapter 7 solution of equations
Chapter 7 solution of equationspaufong
 
UPSEE - Mathematics -1999 Unsolved Paper
UPSEE - Mathematics -1999 Unsolved PaperUPSEE - Mathematics -1999 Unsolved Paper
UPSEE - Mathematics -1999 Unsolved PaperVasista Vinuthan
 
2.5 dividing integers ws day 2
2.5 dividing integers   ws day 22.5 dividing integers   ws day 2
2.5 dividing integers ws day 2bweldon
 
Up1 math t 2012
Up1 math t 2012Up1 math t 2012
Up1 math t 2012masyati
 

Similar to Maths CBSE 2012 (20)

Math 17 midterm exam review jamie
Math 17 midterm exam review jamieMath 17 midterm exam review jamie
Math 17 midterm exam review jamie
 
Algebra practice paper
Algebra practice paperAlgebra practice paper
Algebra practice paper
 
Monfort Emath Paper2_printed
Monfort Emath Paper2_printedMonfort Emath Paper2_printed
Monfort Emath Paper2_printed
 
Bcs 012 0613
Bcs 012 0613Bcs 012 0613
Bcs 012 0613
 
Mathematics pmr 2013
Mathematics pmr 2013Mathematics pmr 2013
Mathematics pmr 2013
 
Int Math 2 Section 2-2 1011
Int Math 2 Section 2-2 1011Int Math 2 Section 2-2 1011
Int Math 2 Section 2-2 1011
 
February 8
February 8February 8
February 8
 
Multiplication on radicals.pptx
Multiplication on radicals.pptxMultiplication on radicals.pptx
Multiplication on radicals.pptx
 
Lesson 27: Integration by Substitution (worksheet)
Lesson 27: Integration by Substitution (worksheet)Lesson 27: Integration by Substitution (worksheet)
Lesson 27: Integration by Substitution (worksheet)
 
Preparation mid
Preparation midPreparation mid
Preparation mid
 
Q paper I puc-2014(MATHEMATICS)
Q paper I puc-2014(MATHEMATICS)Q paper I puc-2014(MATHEMATICS)
Q paper I puc-2014(MATHEMATICS)
 
Maths model%20 qp
Maths model%20 qpMaths model%20 qp
Maths model%20 qp
 
Dunman High Answers_tobechecked_
Dunman High Answers_tobechecked_Dunman High Answers_tobechecked_
Dunman High Answers_tobechecked_
 
Cs 60
Cs 60Cs 60
Cs 60
 
UPSEE - Mathematics -2003 Unsolved Paper
UPSEE - Mathematics -2003 Unsolved PaperUPSEE - Mathematics -2003 Unsolved Paper
UPSEE - Mathematics -2003 Unsolved Paper
 
Chapter 7 solution of equations
Chapter 7 solution of equationsChapter 7 solution of equations
Chapter 7 solution of equations
 
UPSEE - Mathematics -1999 Unsolved Paper
UPSEE - Mathematics -1999 Unsolved PaperUPSEE - Mathematics -1999 Unsolved Paper
UPSEE - Mathematics -1999 Unsolved Paper
 
2.5 dividing integers ws day 2
2.5 dividing integers   ws day 22.5 dividing integers   ws day 2
2.5 dividing integers ws day 2
 
Up1 math t 2012
Up1 math t 2012Up1 math t 2012
Up1 math t 2012
 
Q2
Q2Q2
Q2
 

More from studymate

07 image filtering of colored noise based on kalman filter
07 image filtering of colored noise based on kalman filter07 image filtering of colored noise based on kalman filter
07 image filtering of colored noise based on kalman filterstudymate
 
Eco cbse_2012-13_12th_30-03-13
Eco cbse_2012-13_12th_30-03-13Eco cbse_2012-13_12th_30-03-13
Eco cbse_2012-13_12th_30-03-13studymate
 
6 eco cbse_2012-13_12th_30-03-13
6 eco cbse_2012-13_12th_30-03-136 eco cbse_2012-13_12th_30-03-13
6 eco cbse_2012-13_12th_30-03-13studymate
 
CBSE Accountancy Solution
CBSE Accountancy SolutionCBSE Accountancy Solution
CBSE Accountancy Solutionstudymate
 
Biology CBSE
Biology CBSEBiology CBSE
Biology CBSEstudymate
 
3 chem cbse_2012-13_12th_11-03-13
3 chem cbse_2012-13_12th_11-03-133 chem cbse_2012-13_12th_11-03-13
3 chem cbse_2012-13_12th_11-03-13studymate
 
2 phy cbse_2012-13_12th_05-03-12
2 phy cbse_2012-13_12th_05-03-122 phy cbse_2012-13_12th_05-03-12
2 phy cbse_2012-13_12th_05-03-12studymate
 
Economics cbse board_solution_2011-12 (1)
Economics cbse board_solution_2011-12 (1)Economics cbse board_solution_2011-12 (1)
Economics cbse board_solution_2011-12 (1)studymate
 
4 acc cbse_2011-12_12th_15-03-12
4 acc cbse_2011-12_12th_15-03-124 acc cbse_2011-12_12th_15-03-12
4 acc cbse_2011-12_12th_15-03-12studymate
 
English cbse 2011-12_solutions
English cbse 2011-12_solutionsEnglish cbse 2011-12_solutions
English cbse 2011-12_solutionsstudymate
 

More from studymate (10)

07 image filtering of colored noise based on kalman filter
07 image filtering of colored noise based on kalman filter07 image filtering of colored noise based on kalman filter
07 image filtering of colored noise based on kalman filter
 
Eco cbse_2012-13_12th_30-03-13
Eco cbse_2012-13_12th_30-03-13Eco cbse_2012-13_12th_30-03-13
Eco cbse_2012-13_12th_30-03-13
 
6 eco cbse_2012-13_12th_30-03-13
6 eco cbse_2012-13_12th_30-03-136 eco cbse_2012-13_12th_30-03-13
6 eco cbse_2012-13_12th_30-03-13
 
CBSE Accountancy Solution
CBSE Accountancy SolutionCBSE Accountancy Solution
CBSE Accountancy Solution
 
Biology CBSE
Biology CBSEBiology CBSE
Biology CBSE
 
3 chem cbse_2012-13_12th_11-03-13
3 chem cbse_2012-13_12th_11-03-133 chem cbse_2012-13_12th_11-03-13
3 chem cbse_2012-13_12th_11-03-13
 
2 phy cbse_2012-13_12th_05-03-12
2 phy cbse_2012-13_12th_05-03-122 phy cbse_2012-13_12th_05-03-12
2 phy cbse_2012-13_12th_05-03-12
 
Economics cbse board_solution_2011-12 (1)
Economics cbse board_solution_2011-12 (1)Economics cbse board_solution_2011-12 (1)
Economics cbse board_solution_2011-12 (1)
 
4 acc cbse_2011-12_12th_15-03-12
4 acc cbse_2011-12_12th_15-03-124 acc cbse_2011-12_12th_15-03-12
4 acc cbse_2011-12_12th_15-03-12
 
English cbse 2011-12_solutions
English cbse 2011-12_solutionsEnglish cbse 2011-12_solutions
English cbse 2011-12_solutions
 

Recently uploaded

Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersChitralekhaTherkar
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 

Recently uploaded (20)

Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of Powders
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 

Maths CBSE 2012

  • 1. Studymate Solutions to CBSE Board Examination 2011-2012 Series : SMA/1 Code No. 65/1/1 Candidates must write the Code on Roll No. the title page of the answer-book.  Please check that this question paper contains 8 printed pages.  Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.  Please check that this question paper contains 29 questions.  Please write down the Serial Number of the questions before attempting it.  15 minutes time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the student will read the question paper only and will not write any answer on the answer script during this period. MATHEMATICS [Time allowed : 3 hours] [Maximum marks : 100] General Instructuions: (i) All questions are compulsory. (ii) Questions numbered 1 to 10 are very short-answer questions and carry 1 mark each. (iii) Questions numbered 11 to 22 are short-answer questions and carry 4 marks each. (iv) Questions numbered 23 to 29 are also short-answer questions and carry 6 marks each. (v) Use of calculators is not allowed. -(1)-
  • 2. STUDYmate SECTION-A Question numbers 1 to 10 carry 1 mark each. 1. If a line has direction ratios 2, –1, –2, then what are its direction cosines? Ans. d.r.’s = <2, –1, –2> 2 1 2  d.c.’s = , , 3 3 3   2. Find ‘’ when the projection of a      4 k on b  2  6   3k is 4 units. i j  i j     a.b Ans. Projection of a on b =  b 2  6  12 4= 4  36  9 2  18 4= 7 28 – 18 = 2 5=    3. Find the sum of the vectors a    2   k , b  2  4   5k and c    6   7 k . i j  i j  i j  Ans. a  b  c  0  4   k    i j  3 1 4. Evaluate:  x dx 2 3 1 3  x dx  log | x | 3 Ans. 2 = log 3 – log 2 = log   2 2 5. Evaluate  (1  x) xdx  x  ( x)  dx 3 Ans. 2 3 5 x 2 x 2 = 3  5 C 2 2 2 32 2 52 = x  x C 3 5 5 3 8 6. If  = 2 0 1 , write the minor of the element a23. 1 2 3 5 3 Ans. Minor of a23 = = 10 – 3 = 7. 1 2 -(2)-
  • 3. STUDYmate  2 3  1 3   4 6  7. If     , write the value of x.  5 7  2 4   9 x   2 3  1 3   4 6 Ans.      5 7  2 4   9 x  2  6 6  12   4 6 5  14 15  28    9 x      4 6   4 6   9 13   9 x       x = 13  cos  sin    sin   cos   8. Simplify: cos     sin   cos  sin     sin  cos      cos2  cos  sin   sin 2   cos  sin  Ans. =   cos  sin     cos2   sin  cos  sin 2   1 0  =   0 1  1  1 9. Write the principal value of cos1    2sin 1    2  2 –1  1 –1  1 Ans. cos   – 2 sin     2  2 –1     cos  cos  + 2 sin  sin  –1  3  6    2 3 6   2   3 3 3 10. Let * be a ‘binary’ operation on N given by a * b = LCM (a, b) for all a, b  N. Find 5 * 7. Ans. a * b = LCM of (a, b), a, b  N 5 * 7 = LCM of (5, 7) = 35 SECTION-B Question numbers 11 to 22 carry 4 marks each. y x dy 11. If (cos x) = (cos y) , find . dx OR dy sin 2 (a  y ) If sin y = x sin (a + y), prove that  dx sin a y x Ans. Given (cos x) = (cos y) , taking logarithms on the two sides, we have y x log (cos x) = log (cos y) -(3)-
  • 4. STUDYmate or y log (cos x) = x log (cos y) Differentiating both sides w.r.t. x, we get  1  dy  1  dy y  ( sin x)  log(cos x) dx  x  cos y  ( sin y ) dx  log(cos y ).1  cos x    dy dy  log (cos x) + x tan y = log (cos y) + y tan x dx dx dy   log(cos x)  x tan y  = log (cos y) + y tan x dx dy log(cos y )  y tan x   dx log(cos x)  x tan y OR Ans. sin y = x sin (a + y) sin y  =x sin( a  y ) sin( a  y )cos y  sin y cos( a  y ) dx   sin 2 ( a  y ) dy sin( a  y  y ) dx   sin 2 (a  y ) dy sin a dx   sin (a  y ) dy 2 sin 2 (a  y ) dy   sin a dx 12. How many times must a man toss a fair coin, so that the probability of having at least one head is more than 80%? Ans. Let the man throws the coin ‘n’ times. 1 Probability of getting a head in a single throw, p  2 1 Probability of not getting a head in a single throw, q  2 Given: Probability that the man gets atleast one head is more than 80%. i.e. P(atleast 1 Head) > 80% 80 i.e. 1 – P (no head)  100 n 0 0 1 1 8 i.e. 1  n C0      2  2  10 n 1 4 i.e. 1    2 5 n 1 1 i.e.     2 5 n 1 1 i.e.    2 5 n i.e. 2 >5 -(4)-
  • 5. STUDYmate i.e. n = 3 or more.  The man must throw the coin atleast 3 times. 13. Find the Vector and Cartesian equations of the line passing through the point (1, 2, –4) and perpendicular x  8 y  19 z  10 x  15 y  29 z  5 to the two lines   and   . 3 16 7 3 8 5 Ans. Any line through (1, 2, –4) can be written as x 1 y  2 z  4   ...(i) a b c (i) is at right angles to given lines with d.n. < 3, –16, 7 > and < 3, 8, –5 > if 3a – 16b + 7c = 0 ...(ii) and 3a + 8b – 5c = 0 ...(iii) By cross-multiplication, we have a b c   80  56 21  15 24  48 a b c or   24 36 72 a b c or   ...(iv) 2 3 6 From (i) and (iv), we find that required line is x 1 y  2 z  4   2 3 6 In vector form, this line can be written as  i  j  i j   r    2   4k   2  3   6k ( d.n. of the line are < 2, 3, 6 > and line passes through < 1, 2, –4 >)           14. If a, b, c are three vectors such that a  5, b  12, c  13 , and a  b  c  0 , find the value of    a.b  b.c  c.a .     Ans. a  b  c  0          (a  b  c) · (a  b  c)  0·0   2 i.e. abc 0        i.e. | a |2  | b |2  | c |2 2(a · b  b·c  c·a )  0     i.e. 5 + 12 + 13 + 2( a · b  b·c  c·a )  0 2 2 2     i.e. 338  2(a · b  b·c  c·a)  0     i.e. a · b  b·c  c·a  169 15. Solve the following differential equation: dy 2 x2  2 xy  y 2  0 dx dy Ans. 2 x 2  2 xy  y 2 dx -(5)-
  • 6. STUDYmate dy 2 xy  y 2   dx 2x2 dy 2 xy y 2    dx 2 x 2 2 x 2 dy y 1  y 2     dx x 2  x 2  ...(i)   dy dv Put y = vx and vx in (i) we get, dx dx dv 1 v  x  v  v2 dx 2 dv dx  2 2   2 v x  v 2 1   2    log | x |  C  2  1  2    log | x |  C v 2 x    log | x |  C y 2x  log | x |   C ; (y  0) y 16. Find the particular solution of the following differential equation; dy  1  x 2  y 2  x 2 y 2 , given that y = 1 when x = 0 dx dy Ans.  1  x2  y 2  x2 y 2 dx dy  (1  x 2 )  y 2 (1  x  )  (1  x 2 )(1  y 2 ) dx dy  1  y 2   (1  x )dx 2 x3 tan 1 y  x  C 3 Now, when x = 0, y = 1 03   tan 1 1  0  C  C 3 4 1 x3   Solution is tan y  x   3 4 17. Evaluate :  sin x sin 2 x sin 3x dx OR 2 Evaluate :  (1  x)(1  x2 ) dx Ans. Now, sin x sin 2x sin 3x -(6)-
  • 7. STUDYmate 1 = {2sin 3x sin x} sin 2x 2 1 = {cos (2x) – cos (4x)} sin 2x 2 1 = {2 sin 2x cos 2x – 2 cos 4x sin 2x} 4 1 = {sin 4 x – (sin 6x – sin 2x)} 4   sin x sin 2 x sin 3xdx 1 4 = (sin 4 x  sin 6 x  sin 2 x)dx 1   cos 4 x  cos6 x  cos 2 x  4  4 =    C 6 2  cos 4 x cos6 x cos 2 x =    C 16 24 8 OR 2 A Bx  C Ans. Let   ...(i) (1  x)(1  x ) 1  x 1  x 2 2 2 Multiplying both sides by (1 – x) (1 + x ), we have 2 2 = A (1 + x ) + (Bx + C) (1 – x) 2 2 = x (A – B) + x (B – C) + (A + C) ...(ii) Equating coefficients on the two sides of (ii), we get A – B = 0, B – C = 0, A + C = 2  A=B=C=1 2 1 x 1    (1  x)(1  x 2 ) 1  x x 2  1 2 1 x 1   (1  x)(1  x 2 ) dx =  1  x dx   x 2 1 dx log |1  x | 1 2 x 1 =   2 dx   2 dx 1 2 x 1 x 1 1 2 –1 = –log |x – 1| + log (1 + x ) + tan x + C. 2 3 18. Find the point on the curve y = x – 11x + 5 at which the equation of tangent is y = x – 11. OR Using differentials, find the approximate value of 49.5 3 Ans. Given curve is y = x – 11x + 5 ...(i) Given line is y = x – 11 ...(ii) Slope of line (ii) = 1 ( (ii) is of the form y = mx + b) dy 2 From (i), = 3x – 11 1 dx Since, slope of tangent = 1 -(7)-
  • 8. STUDYmate dy 2  = 1, i.e., when 3x – 11 = 1 dx  2 2 2  x = 2 ( 3x – 11 = 1  3x = 12  x = 4) When x = 2, then 3 from (i), y = 2 – 11 × 2 + 5 = –9 When x = –2, then 3 from (i), y = (–2) – 11 (–2) + 5 = 19 Thus, we find that at the points (2, –9) and (–2, 19), the slope of tangent is 1. OR 1 Ans. Let f ( x)  x so that f ( x )  . 2 x Now f ( x  x)  f ( x)  xf ( x) x  x  x  x  2 x Taking x = 49 and x = 0.5, we obtain 0.5 0.5 49.5  49  7  7  0.036 2 49 14  49.5  7.036 –1 2 19. If y = (tan x) , show that ( x 2  1)2 y2  2 x( x 2  1) y1  2 . –1 2 Ans. Given y = (tan x) we get dy 1  2(tan 1 x) dx 1  x2 2 –1 or (1 + x ) y1 = 2 tan x Again differentiating w.r.t. x we get 2 (1  x 2 ) y2  y1 (0  2 x)  1  x2  ( x 2  1)2 y2  2 x( x 2  1) y1  2 20. Using properties of determinants, prove that bc qr yz a p x ca r p zx 2b q y ab pq x y c r z bc qr yz Ans. LHS = c  a r p zx ab pq x y Interchanging rows and columns, we get, bc ca ab qr r p pq yz zx x y Operating C3  C3 – C1 – C2, we have -(8)-
  • 9. STUDYmate bc ca ab bc c  a 2c qr r p pq  qr r  p 2r 1 (Take out –2 from C3 i.e., operate C3  C) yz zx x y yz zx 2 z 2 3 bc ca c = 2 q  r r p r Now, Operate C1  C1 – C3 and C2  C2 – C3 yz zx z b a c = 2 q p r , operate C1  C2 y x z a b c = 2p q r x y z a p x = 2b q y (by interchanging rows and columns again) c r z  cos x   x    21. Prove that tan 1     , x   ,   1  sin x  4 2  2 2 OR 8 3  36  Prove that sin 1    sin 1    cos1    17  5  85     x  x sin   x  2sin    cos    cos x  2    4 2  4 2 Ans.  1  sin x    x 1  cos   x  2cos 2    2   4 2  x sin      4 2   tan    x     x 4 2 cos     4 2  cos x   x  tan 1     . Hence proved  1  sin x  4 2 OR 1 8 1 3 Ans. Let x = sin and y = sin 17 5 8 3 sin x = and sin y = 17 5  cos x = 1  sin 2 x and cos y = 1  sin 2 y 15 4 cos x = and cos y = 17 5 Now, cos (x + y) = cos x cos y – sin x sin y 15 4 8 3 =    17 5 17 5 -(9)-
  • 10. STUDYmate 36 = 85 36 –1  x + y = cos 85 8 3 36  sin 1  sin 1  cos 1 Hence Proved 17 5 85  x2 22. Let A    {3} and B    {1} . Consider the function f : A  B defined by f ( x)    . Show that  x3 –1 f is one-one and onto and hence find f . x2 Ans. f ( x)  x 3 Let x1 , x2  A Let f ( x1 )  f ( x2 ) x1  2 x2  2 i.e.  x1  3 x2  3 i.e. (x1 – 2) (x2 – 3) = (x1 – 3) (x2 – 2) i.e. x1x2 – 3x1 – 2x2 + 6 = x1x2 – 2x1 – 3x2 + 6 i.e. –x1 = – x2 i.e. x1 = x2  f is one - one. ... (i) x2 Also y  x3 i.e. y (x – 3) = (x – 2) xy – 3y = x – 2 x (y – 1) = 3y – 2 3y  2 x y 1  f is onto, y  1, y  B ... (ii) from (i) and (ii), f is bijective  it is invertible. x2 For inverse : Interchanging x and y in y = , we get x3 3x  2 –1 3x  2  y= or f (x) = x 1 x 1 SECTION-C Question numbers 23 to 29 carry 6 marks each. 23. Find the equation of the plane determined by the points A (3, –1, 2), B (5, 2, 4) and C (–1, –1, 6) and hence find the distance between the plane and the point P (6, 5, 9). Ans. Equation of plane in three point form is -(10)-
  • 11. STUDYmate x3 y 1 z2 53 2 1 42 0 1  3 1  1 6  2 x  3 y 1 z  2 i.e., 2 3 2 0 4 0 4 i.e. (x – 3) (12) – (y + 1) (8 + 8) + (z – 2) (12) = 0 i.e., 3(x – 3) – 4 (y + 1) + 3 (z – 2) = 0 i.e., 3x – 4y + 3z – 19 = 0 is the equation of the required plane. 18  20  27  19 and d= 9  16  9 6 34 d=  34 34 3 34 d= . 17 24. Of the students in a college, it is known that 60% reside in hostel and 40% are day scholars (no residing in hostel). Previous year results report that 30% of all students who reside in hostel attain ‘A’ grade and 20% of day scholars attain ‘A’ grade in their annual examination. At the end of the year, one student is chosen at random from the college and he has an ‘A’ grade, what is the probability that the student is a hostlier? Ans. Let E1 : ‘A student is residing in hostel’ and E2 : ‘A student is a day scholar’ then E1 and E2 are mutually exclusive and exhaustive. Moreover, 60 3 40 2 P(E1) =  and P(E2) =  100 5 100 5 Let E : Student attains ‘A’ grade; 30 3 20 2 then P(E/E1) =  and P(E/E2) =  100 10 100 10 Required probability = P (E1/E) P(E/E1 )P(E1 ) = [By Baye’s Theorem] P(E/E1 )P(E1 )+P(E/E 2 )P(E 2 ) 3 3  10 5 9 9 =   3 3 2 2 9  4 13    10 5 10 5 25. A manufacturer produces nuts and bolts. It takes 1 hour of work on machine A and 3 hours on machine B to produce a package of nuts. It takes 3 hours on machine A and 1 hour on machine B to produce a package of bolts. He earns a profit of ` 17.50 per package on nuts and ` 7 per package of bolts. How many packages of each should be produced each day so as to maximize his profits if he operates his machines for at the most 12 hours a day? Form the above as a linear programming problem and solve it graphically. -(11)-
  • 12. STUDYmate Ans. Let the manufacturer produces x Packages of nuts and y Packages of bolts each day. We construct the following table: Item Number of packages Total Time on machine A Total Time on machine B Profits Nuts x 1x hrs 3 x hrs 17.50 x Bolts y 3 y hrs 1 y hr 7y Total x  3 y hrs 3 x  y hrs 17.50 x  7 y We have to maximize profit, i.e., 35 P = 17.50x + 7y = x  7y ...(i) 2 Y subject to the constraints x + 3y  12 ...(ii) D(0,12) 3x + y  12 ...(iii) x, y  0 ...(iv) First of all, we locate the region represented by (2), (3) and (4). For this, we consider the line x + 3y = 12, which passes through A (12, 0) and B (0, 4) and the line 3x + y = 12, which passes through the points B(0,4) E(3,3) C (4, 0) and D (0, 12). The two lines meet at E (3, 3). A(12,0) X The feasible region is shown shaded in the figure. O C(4,0) Note that O (0, 0) lies in this region. The corner points, which are to be examined for optimum solution are C (4, 0), E (3, 3) and B (0, 4). 35 At C (4, 0) P =  4  7  0  70 2 35 At E (3, 3) P =  3  7  3  73.5 2 35 At B (0, 4) P =  0  7  4  28 2 Hence the profit is maximum equal to ` 73.50 when 3 packages of each of nuts and bolts are manufactured.  /4  26. Prove that ( tan x  cot x )dx  2. 2 0 OR 3 Evaluate :  (2 x 2  5 x) dx as a limit of a sum. 1  sin x cos x  Ans. Let I =    cos x  sin x  dx    sin x  cos x =  sin x cos x dx Now let (sin x – cos x) = t ...(i) (cos x + sin x)dx = dt 2 2 2 Squaring (i), sin x + cos x – 2 sin x cos x = t 1 t2   sin x cos x 2 -(12)-
  • 13. STUDYmate When x = 0, t = 0 – 1 = –1  1 1 When x = ,t=  0 4 2 2 0 dt  I= 2 1 1 t2 2  sin 1 t   0 =   1 = 2 sin (0)  sin 1  1   1      = 2 0        2   = 2 2 OR 3 Ans. I =  (2 x  5 x) dx 2 1 b  a 3 1 a = 1, b = 3  h =  n n  nh = 2 2 Now, f(x) = 2x + 5x 2  f(a) = f(1) = 2(1) + 5(1) = 7 2 f(a + h) = f(1 + h) = 2(1 + h) + 5(1 + h) 2 = 2(1 + h + 2h) + 5 + 5h 2 = 2h + 9h + 7 2 f(a + 2h) = f(1 + 2h) = 2(1 + 2h) + 5(1 + 2h) 2 = 2(1 + 4h + 4h) + 5 + 10h 2 = 8h + 18h + 7 ... ... ... ... ... ... ... ...         2 f a  n 1 h  f 1  n 1 h = 2 1  n 1 h  5 1 n 1 h = 2 1   n  1 h 2  2h( n  1)   5  5h  n  1 2   2 2 = 2(n – 1) h + 9h (n – 1) + 7 b Since  f ( x)dx = hLt0 h  f (a )  f (a  h)  f (a  2h)  ...  f a  n  1 h       a I = hLt0 h  7  {7  9h  2h }  {7  18h  8h }  ...  {7  9h( n  1)  2(n  1) h } 2 2 2 2         2 = hLt0 h 7 n  9h(1  2  ...  n  1)  2h 2 12  22  ...  n  1      n(n  1) (n)(n  1)(2n  1)  = hLt0 h 7n  9h  2h 2    2 6   9hn(hn  h) hn(hn  h)(2hn  1)  = hLt0 h 7 hn      2 3  -(13)-
  • 14. STUDYmate  9  2(2  0) 2(2  0)(4  0)  = 7  2     2 3   16  = 14  18    3  42  54  16  =    3  112 = 3 27. Using the method of integration, find the area of the region bounded by the lines 3x – 2y + 1 = 0, 2x + 3y – 21 = 0 and x – 5y + 9 = 0. 3x  1 x 0  13 Ans. L1: 3x – 2y + 1 = 0  y= y 0.5 0 2 21  2 x x 0 10.5 L2: 2x + 3y – 21 = 0  y= y 7 0 3 x9 x 0 9 L3: x – 5y + 9 = 0  y= y 1.8 0 5 L2 C (3, 5) A B (6,3) (1,2) L3 (–9, 0) (10.5, 0) L1 Point of Intersection: 3x  1 21  2 x L1 and L2 :  2 3  9x + 3 = 42 – 4x  13x = 39  x=3  y=5 3x  1 x  9 L2 and L3 :  2 5  15x + 5 = 2x + 18  13x = 19  x=1  y=2 21  2 x x  9 L2 and L3 :  3 5 -(14)-
  • 15. STUDYmate  105 – 10x = 3x + 27  78 = 13x  x=6  y=3  A = (1, 2) ; B = (6, 3) ; C = (3, 5) 3 6 6 Thus, required area: A =  ydx   ydx   ydx 1 ( Line1) 3 ( Line 2) 1 ( Line 3) 3 6 6 1 1 1 = 21 (3x  1)dx  3  (21  2 x)dx  5  ( x  9)dx 3 1 3 6 1  3x 2  1 2 6 1  x2  = 2 2  x   3  21x  x  3  5  2  9 x    1  1 1  27 3  1 1 1  = 2 2  3  2  1  3 126  36  63  9  5 18  54  2  9     1  125  25 1 1 = 2 14    36   3  5 2    25 25 38  25 13 = 7  12   19    sq. units. 2 2 2 2 28. Show that the height of a closed right circular cylinder of given surface and maximum volume, is equal to the diameter of its base. Ans. Let r be the radius of the circular base, h the height and S, the total surface area of a right circular 2 cylinder, then S = 2r + 2rh is given to be a constant. Let V be the volume of the cylinder with the above dimensions, then 2  S  2r  r S  2r 2 2 V = r h = r    2 (S  2r ) 2 2 2 [ S = 2r + 2rh,  h = ]  2r  2r Sr S S  2r 2 S  V=  r 3 ,0  r  ...(i) [ h = > 0,  r < ] 2 2 2r 2 Differentiating (i), twice w.r.t. r, we get dV S   3r 2 dr 2 d 2V and  6r dr 2 dV  S  Now exists at all points in  0,  dr   2  and  dV S S  0   3r 2  0  r2 = dr 2 6 S S  r= [ 0 < r < ] 6 2  d 2V  S Also,  2   6 0  dr  r  S/(6  ) 6 S  V has a local maximum value at r = 6 -(15)-
  • 16. STUDYmate  S  S  S  Since V is continuous in  0,  and has only one extremum at   0,   , therefore, V is   2   6  2   S absolutely maximum for r = . 6  S  S  2   S S  2r2  6   2S 6 When r = , then h =  6 2r S 6 S 2 6 S = i.e., h = 2 = 2 radius = diameter. . 6 So, volume is maximum when the height is equal to the diameter. 29. Using matrices, solve the following system of linear equations: x – y + 2z = 7 3x + 4y – 5z = – 5 2x – y + 3z = 12 OR Using elementary operations, find the inverse of the following matrix.  1 1 2     1 2 3  3 1 1   Ans. The given system can be written as AX = B,  1 1 2    where A   3 4 5  2 1 3     x X   y   z   7 and B   5   12    1 1 2 Here | A |  3 4 5 2 1 3 = 1 (12 – 5) – (– 1) (9 + 10) + 2(–3 – 8) = 7 + 19 – 22 = 4  0 –1  A exists Therefore, the given system is consistent and has a unique solution given by 1  1  X = A B= (adj. A)  B | A |  -(16)-
  • 17. STUDYmate t  7 19 11  7  1    = 4  1 1 1   5  3 11  7  12      7 1 3  7  1   19 1 11   5   4  11 1 7  12      49  5  36  1   133  5  132   4  77  5  84     x  8   2  y   1  4   1     4    z   12   3       x = 2 , y = 1, z = 3 OR Ans. A = IA  1 1 2  1 0 0   1 2 3  0 1 0 A      3 1 1  0 0 1      R1   R2  1 2 3 0 1 0  1 1 2   1 0 0  A      3 1 1  0 0 1      R2  R2 + R1 ; R3  R3 – 3R1 1 2 3  0 1 0 0 3 5   1 1 0  A     0 5 8    0 3 1    R3  R3 + 2R2 1 2 3  0 1 0 0 3 5  1 1 0  A     0 1 2    2 1 1    R2  R3 1 2 3   0 1 0  0 1 2    2 1 1  A     0 3 5   1 1 0      R1  R1 – 2R2 R3  R3 – 3R2 1 0 1  4 3 2   0 1 2    2 1 1  A      0 1 1  5 4 3     R3  – R3 -(17)-
  • 18. STUDYmate 1 0 1  4 3 2  0 1 2    2 1 1  A     0 0 1   5 4 3      R1  R1 + R3 R2  R2 – 2R3 1 0 0   1 1 1  0 1 0    8 7 5 A     0 0 1   5 4 3       1 1 1   A 1   8 7 5    5 4 3    ×·×·×·×·× -(18)-
  • 19. STUDYmate Studymate Solutions to CBSE Board Examination 2011-2012 Series : SMA/1 Code No. 65/1/2 UNCOMMON QUESTIONS ONLY SECTION-A Question numbers 1 to 10 carry 1 mark each. 9. Find the sum of the following vectors:    a  i  2 ˆ, b  2i  3 ˆ, c  2i  3k ˆ j ˆ j ˆ ˆ    ˆ Ans. a  b  c  (i  2 ˆ)  (2i  3 ˆ)  (2i  3k ) ˆ j ˆ j ˆ ˆ j ˆ  5i  5 ˆ  3k 5 3 8 10. If   2 0 1 , write the cofactor of the element a32. 1 2 3 5 8 Ans. M 32  (1)3 2  (5  16)  11 2 1 SECTION-B Question numbers 11 to 22 carry 4 marks each. 19. Using properties of determinants, prove the following 1 1 1 a b c  (a  b)(b  c)(c  a )(a  b  c) a 3 b3 c3 1 1 1 Ans.   a b c a 3 b3 c3 Applying C1  C1 – C3 (Given) C2  C2 – C3 0 0 1   ac bc c a 3  c3 b3  c 3 c3 0 0 1 = ac bc c (a  c)( a 2  ac  c 2 ) (b  c) (b 2  bc  c 2 ) c3 -(19)-
  • 20. STUDYmate 0 0 1 = (a  c) (b  c) 1 1 c (a 2  ac  c 2 ) (b 2  bc  c 2 ) c3 2 2 2 = ( a  c ) (b  c ) (b  bc  c )  ( a  ac  c 2  Expanding along R1 2 2 = (a – c) (b – c) {(b – a ) + (bc – ac)} 2 2 = (a – c) (b – c) {(b – a ) + c(b – a)} = (a – c) (b – c) (b – a) {(b + a) + c} = (a – b) (b – c) (c – a) (a + b + c) = RHS. Hence proved 20. If y = 3 cos (log x) + 4 sin (log x), show that d2y dy x2 2 x  y0 dx dx Ans. Given y = 3 cos (log x) + 4 sin (log x) … (i) Differentiating w.r.t. x, we get dy 1 1 = – 3 sin (log x) + 4 cos (log x) dx x x Multiplying by x, we get xy1 = – 3 sin (log x) + 4 cos (log x) … (ii) Again differentiating w.r.t. x, we obtain 1 1 xy2 + y1 . 1 = – 3 cos (log x)– 4 sin (log x) x x Multiplying throughout by x, we have 2 x y2 + xy1 = – (3 cos (log x) + 4 sin (log x)) 2 or x y2 + xy1 = – y (using (i)) 2 or x y2 + xy1 + y = 0 21. Find the equation of the line passing through the point (–1, 3, –2) and perpendicular to the lines x y z x  2 y 1 z  1   and   1 2 3 3 2 5 Ans. Let the equation of line passing through (–1, 3, –2) be x  (1) y  3 z  (2)   ... (i) where (a, b, c) are dr’s of the line a b c Since, the required line is  to the lines: x y z x  2 y 1 z  1   and   1 2 3 3 2 5  a + 2b + 3c = 0 and – 3a + 2b + 5c = 0 (using a1a2 + b1b2 + c1c2 = 0) a b c Solving,   2 3 3 1 1 2 2 5 5 3 3 2 a b c    4 14 8 -(20)-
  • 21. STUDYmate a b c or    2 7 4  a = 2, b = –7, c = 4 Putting the values of a, b and c in equation (i) we get x 1 y 3 z  2   2 7 4 x 1 y 3 z  2 or   [Note: Using  is not compulsory] 2 7 4 22. Find the particular solution of the following differential equation dy ( x  1)  2e  y  1; y  0 when x = 0 dx Ans. Given differential equation is dy ( x  1)  2e  y  1 ...(i) dx dy dx  y  2e  1 x  1 e y dy dx   , 2e y x 1 Integrating, we obtain e y dy dx  2e y  x 1 C e y dy dx  –  C 2e y x 1 y  – log |2 – e | = log | x + 1| + C y log (x + 1) (2 – e ) = –C y –c  |(x + 1) (2 – e ) | = e y –c  (x + 1) (2 – e ) = ± e = A (say) y  (x + 1) (2 – e ) = A ... (ii) Also, when x = 0, y = 0, 0 (0 + 1) (2 – e ) = A  1(2 – 1) = A  A=1 Substituting this value of A in (ii), we obtain, the required particular solution as y (x + 1) (2 – e ) = 1. SECTION-C Question numbers 23 to 29 carry 6 marks each. 28. A girl throws a die. If she gets a 5 or 6, she tosses a coin three times and notes the number of heads. If she gets 1, 2, 3 or 4, she tosses a coin two times and notes the number of heads obtained. If she obtained exactly two heads, what is the probability that she threw 1, 2, 3 or 4 with the die? Ans. Let E1 : ‘1, 2, 3, or 4 is shown on die’, and -(21)-
  • 22. STUDYmate E2 : ‘5 or 6 is shown on die’, then E1 and E2 are mutually exclusive and exhaustive. Moreover, 4 2 P(E1 )   6 3 2 1 and P(E 2 )   6 3 Let E : ‘exactly one head shows up’, E 2 1 then P    P (exactly one head shows up when coin is tossed twice) = P({HT, TH}) =   E1  4 2  E  and P   P (exactly one head shows up when coin is tossed thrice)  E2  = P ({HTT, THT, TTH}) 3 = 8  E1   Required probability = P   E E P   P(E1 )   E1  E  E  (using Bayes Theorem) P   P(E1 )  P   P(E 2 )  E1   E2  1 2 1  2 3 8 8   3   1 2 3 1 1 1 8  3 11     2 3 8 3 3 8 29. Using the method of integration, find the area of the region bounded by the following lines: 3x – y – 3 = 0, 2x + y – 12 = 0, x – 2y – 1 = 0 Ans. 3x – y – 3 = 0 ... (i) 2x + y – 12 = 0 ... (ii) x – 2y – 1 = 0 ... (iii) Solving (i) and (ii) 5x – 15 = 0 i.e. x = 3 i.e. y = 9 – 3 = 6  Point of intersection (3, 6) Solving (ii) and (iii) 2 x  y  12  0 2x  4 y  2  0    5 y  10  0 y2  x=5  Point of intersection (5, 2) -(22)-
  • 23. STUDYmate Solving (iii) and (i) 3x  y  3  0 y 3x  6 y  3  0    y  0 and x  1 B(3, 6) 5y  0  Point of intersection is (1, 0) (ii ) Required area (i) = Area of region ABCA C(5, 2) = area of region ABCDA – Area of ACDA (iii) 3 5 5 x 0 A(1, 0) E(3,0) D(5,0)   y(i ) dx   y(ii ) dx   y(iii ) dx 1 3 1 3 5 5 ( x  1)   (3x  3) dx   (2 x  12)dx   dx 1 3 1 2 3 5  3x 2   x2 x    5   3 x    x 2  12 x     2  1 3  4 2 1  27  3   25 5   1 1      9     3     ( 25  60)  ( 9  36)            2  2   4 2   4 2    24   24 4     6  [35  27]     2   4 2 = 10 sq. units ×·×·×·×·× -(23)-
  • 24. STUDYmate Studymate Solutions to CBSE Board Examination 2011-2012 Series : SMA/1 Code No. 65/1/3 UNCOMMON QUESTIONS ONLY SECTION-A Question numbers 1 to 10 carry 1 mark each. 9. Find the sum of the following vectors:    ˆ j ˆ ˆ a  i  3k , b  2 ˆ  k , c  2i  3 ˆ  2k ˆ ˆ j    Ans. a  b  c  3i  ˆ  2k ˆ j ˆ 1 2 3 10. If   2 0 1 , write the minor of the element a22. 5 3 8 1 3 Ans. M 22   1  8  3  5  8  15  7 5 8 SECTION-B Question numbers 11 to 22 carry 4 marks each. 19. Using properties of determinants, prove the following 1 a 1 1 1 1 b 1  ab  bc  ca  abc 1 1 1 c Ans. Taking out factors a, b, c common from R1, R2 and R3, we get 1 1 1 1 a a a 1 1 1 L.H.S. = abc 1 b b b 1 1 1 1 c c c Applying R1  R1 + R2 + R3, we have 1 1 1 1 1 1 1 1 1 1   1   1   a b c a b c a b c 1 1 1   abc 1 b b b 1 1 1 1 c c c -(24)-
  • 25. STUDYmate 1 1 1  1 1 1 1 1 1  abc  1     1  a b c b b b 1 1 1 1 c c c Now applying C2  C2 – C1, C3  C3 – C1, we get 1 0 0  1 1 1 1   abc 1     1 0  a b c b 1 0 1 c  1 1 1  abc 1    [1(1  0)]  a b c  1 1 1  abc 1      abc  bc  ca  ab  R.H.S.  a b c 2 d2y dy If y = sin x, show that (1  x )  x  0. –1 20. 2 dx dx –1 Ans. We have y = sin x. Then dy 1  dx (1  x 2 ) or dy 1  x2 1 dx d  2 dy  So  1  x ).   0 dx  dx  1  x 2 ). d 2 y dy d  . dx2 dx dx  1 x )   0 2 d 2 y dy 2 x 1  x 2 ).  . 0 dx 2 dx 2 1  x2 d2y dy x or 1  x 2 ). 2 – . 0 dx dx 1  x2 d2y dy Hence (1  x 2 ) 2  x 0 dx dx 21. Find the particular solution of the following differential equation dy xy  ( x  2)( y  2); y  1 when x = 1 dx Ans. Given differential equation is dy xy  ( x  2) ( y  2) ...(i) dx -(25)-
  • 26. STUDYmate y x2 or dy  dx, y2 x integrating, we obtain y x2  y  2 dy   x dx  C  2   2 or  1  y  2  dy   1  x  dx  C     or y – 2 log | y + 2| = x + 2 log | x| + C ...(ii) But, (1, –1) lies on this curve, therefore, –1 – 2 log|–1 + 2| = 1 + 2 log 1 + C  –1 – 2 log 1 = 1 + 2 log 1 + C  C = –2 ( log 1 = 0) Hence, from (ii), we find the required curve as y – 2 log |y + 2| = x + 2 log |x| – 2 or y = x + 2 log | x (y + 2)| – 2. 22. Find the equation of a line passing through the point P (2, –1, 3) and perpendicular to the lines   ˆ j ˆ j ˆ ˆ ˆ r  (i  ˆ  k )  (2i  2 ˆ  k ) and r  (2i  ˆ  3k )  (i  2 ˆ  2k ). ˆ ˆ j ˆ j Ans. Let, the equation be x  x1 y  y1 z  z1   a b c It passes through (2, –1, 3) x  2 y 1 z  3    ... (i) a b c  ˆ j ˆ j ˆ Also (i) is  to r  (i  ˆ  k )  (2i  2 ˆ  k ) ˆ  2a – 2b + c = 0 ... (ii)  ˆ j ˆ ˆ j ˆ Also (i) is  to r  (2i  ˆ  3k )  µ(i  2 ˆ  2k )  a + 2b + 2c = 0 ... (iii) Solving (ii) and (iii) a b c   4  2 4  1 4  2 a b c   6 3 6 a b c    2 1 2  Taking a = 2, b = 1, c = –2 Required equation lie is x  2 y 1 z  3    ˆ j ˆ ˆ j ˆ or r  (2i  ˆ  3k )  (2i  ˆ  2k ) 2 1 2 -(26)-
  • 27. STUDYmate SECTION-C Question numbers 23 to 29 carry 6 marks each. 28. Bag I contains 3 red and 4 black balls and Bag II contains 4 red and 5 black balls. Two balls are transferred at random from Bag I to Bag II and then a ball is drawn from Bag II. The ball so drawn is found to be red in colour. Find the probability that the transferred balls were both black. Ans. Bag I contains 3 red, 4 black balls Bag II contains 4 red, 5 black balls 2 balls transferred from Bag I to Bag II Case 1 : Event A = Both black balls transferred Case 2 : Event B = One black balls and One red ball transferred Case 3 : Event C = Both red balls transferred. 4 3 C2 2 C  4C1 4 3 C 1  P ( A)  7  , P ( B)  1 7  , P (C )  7 2  C2 7 C2 7 C2 7 Let event E = 1 ball drawn from bag II is red. 4  P( E / A)  (Since bag II contains 4R, 7B balls now) 11 5 P( E / B)  (Bag II contains 5R, 6B balls now) 11 6 and P( E / C )  (Bag II contains 6R, 5B balls now) 11 Required Probability = P (A/E) P( A) P( E / A)  P( A) P( E / A)  P( B) P( E / B)  P(C ) P( E / C ) 2 4   7 11 2 4 4 5 1 6      7 11 7 77 7 11 8 8 4    8  20  6 34 17 29. Using the method of integration, find the area of the region bounded by the following lines 5x – 2y – 10 = 0, x + y – 9 = 0, 2x – 5y – 4 = 0. Ans. 5x – 2y – 10 = 0 ... (i) y x+y–9=0 ... (ii) 2x – 5y – 4 = 0. ... (iii) Solving (i) and (ii) B(4, 5) 5 x  2 y  10  0 (ii ) x y 9 0 (i) C(7, 2)    (iii) 7 x  28  0 x x = 4 ; y = 5; Point of intersection is (4, 5) 0 A(2, 0) E(4,0) D(7,0) -(27)-
  • 28. STUDYmate Solving (i) and (iii) 10 x  4 y  20  0 10 x  25 y  20  0    21 y  0 i.e., y = 0; x = 2, therefore, Point of intersection is (2, 0) Solving (ii) and (iii) 2 x  2 y  18  0 2x  5 y  4  0    7 y  14  0 i.e., y = 2; x = 7, therefore, Point of intersection is (7, 2) Required Area = Area of Region ABCA = Area of Region ABCDA – Area of Region ACDA 4 7 7   y(i ) dx   y(ii ) dx   y(iii ) dx 2 4 2 4 7 7  5 x  10   2x  4     dx   (9  x) dx     dx 2 2  4 2 5  4 7 7  5x2   x2   x2 4x    5x    9x        4 2  2  4  5 5  2  80   20    49   16    49 28   4 8      20     10     63     36              4   4    2   2    5 5   5 5   21 4   [5]  [38.5  28]      5 5 = 43.5 – 28 – 5 = 10.5 21  sq. units 2 ×·×·×·×·× -(28)-