SlideShare a Scribd company logo
1 of 20
Download to read offline
)
,r

Jurnsl Psnelitian Kelapa Sawit, 1998, 6(l): 19 - 38
Indovsior Joutnal of Oil Palm Research, 1998, 6(l): 19 - 38
MODEL PENGARUH KETERSEDIAAN AIR TERHADAP PERTUMBUHAN
DAN HASIL KELAPA SAWIT
Iman Yani Harahap dan Sjafrul Latif
ABSTRAK
Kajian ini bertujuan untuk mengentbangkan suattt model guna memprediksi dan meng-
anulisi.s flulctuasi bulanan hasil kelapa sawit (Elaeis guineensis Jac'q.). Pengembangan
ntodel menekunlian pada falctor penyebab fluknasi hasil. Faktor tersebut adalah vaiasi
lcetersecliaun air. .vang clipenganthi oleh clistibusi curah hujan. Pendekilan yang digunakan
urthtk pengeniltang,an model tersebut dilalafunn dengan dua cara, vaitu (l) mengintroduksi
aspek nerucu air ke dalam model, sehing(a model memiliki 2 submodel, yaitu submodel
pertuntbuhan dan perkentbangan tananmn, dan subntodel neraca air (2) melakukan pe-
nguntpulart clutct melahi penganrutan lapang selama satu tahun (Maret 1996 - Maret 1997)
tttttuli ntentbungun dan ntengji model tersebut. Data dihtmpulkan dan plot pengujian per-
crtbcran pernuliaun No. BJ-26-5, yang ditanam pada 1990 di kebun Bah Jambi,
l'7'.Perkebtmatt :1santara II', Sinrulungrtn, Sumatera (ltara. Pengembangan model di-
validasi dengan duta pengamalan pertumbuhan orgon vegetalif dan generatif, Iaju emisi
pelepah rlaun, hu.sil tandan, dan kontponen-kontporrcn neraca air yang nteliputi evapotrans-
pirusi dan kadar air tanah. Pengenbangan nndel nenunjulckan kevalidan model, dan intro-
duksi vtbntoclel neraca air meningkathan lcepekaan model terhadap vanasi lretersediaan air,
yartp akhint.v,u dupat ntening,katkan ketepatan prediksi hasil tandan buah hingga 15 %.
ltlotlel ter.sehut dapat digunalran tmtulc nenganalisis pengaruh kekenngan terhadap hasil
rundan melalui perlalnnn slcenafio lcelceringan. Hasil skenat'io ntentmjulckan bahwa ke-
kerirtgan .selanrct -l dan 6 bulan bertuntt-tttrat menyebabkan penurunan hasil 8-9 % dan 2l-
-13 o pudu tahun berilutnya. Pengaruh lrekeringan mulai terlihat pada 3 bulan pertama
setelah uval lielierntgan dan kemudian meningkat hingga mencapai pwtcaknya pada 9 - l3
htt,ttfl selt'lalt uval lielceringan. 7-iga belas bilan setelah awal kekeringon, tanaman menun-
tuA'kan pennilihatt kondisi dan kenruclian pengatahnya relatif kecil seteluh 36 bulan.
Kar, kuncr. Llaers euirteettsis. model tanamatr . pcngembangan model, prediksr. tluktuasi hasil,
kctcr>cdiaan air. kekeringan. perlakuan skenario
PEDAHULUAN
Sebaran ;urah huian menvebabkan ha-
srl elapa sart hrtlulruasi (10). Fluktuasi
h^r<rl rcrsebut urempengaruhl sebaran pauen
r ang sulrt unur drpredrlsr Predltsi sangat
dtperlute d-lrm pengelolaan budrdal-a ke-
lrya sasrt- sepenr peneelolaan produksi-
mn+onasr dan Enaga ke4a Kegtatan
memprediksi hasil dapat dilakukan dengan
menggunakan pendekatan analisis kuantitatif
terhadap sistem produksi tanaman kelapa
sa'tt.
Model simulasr tanaman adalah salatr
satu pendekatan kuantitatif untuk menga-
nalisis sistem tanaman pada berbagai tingkat
kompleksitas (2), yang dapat menerangkan
dampak masukan sistem, seperti faktor ling-
kungan terhadap hasil tanaman.
l9
Iman Yani Harahap dan Sjatiul Latif
Pada saat inr telah dikembangkan suatu
model simulasi kelapa sawit yang ditujukan
untuli rnemprediksi potensi hasil. dengan
asumsi tidak terdapat faktor pembatas pada
lingkungan tanam. Pada kenyataannya. iklim
musiman. terutama pada wilayah tropis
menyebabkan hasil yang berfluktuasi, se-
hingga diperlukan pengernbangan model
dengan mempertimbangkan faktor iklim ter-
sebut.
Penelitian urr berhqu:m mengembang-
kan suatu model untuk memprediksi hasil
tanaman kelapa sawit dengan mempertim-
bangkan radiasi surya dan ketersediaan air
sebagai faktor pembatas.
BAHAN DAN METODE
Pendekatan )'ang digturakan urfuk
nrengembangkan model adalah (l) memba-
ngulr sffuktur model yang rneliputi submodel
pertumbuhan dan fenologi. dan submodel
neraca air. (2) rnelakukan pengamatan
Iapang urhrk mengumpulkan data ],ang
digunakan dalam penurunan parameter dan
validasi model.
Penganratan lapang dilakukan pada
Maret 1996 - Maret 1997 (satu tahun) di
plot pengu_jian pcrcobaan penruliaan. No.
BJ-26-S- tahun tanant 1990, kebun Bah
Jarnbi- PT. Perkebunan Nusantara IV.
Sirnalungun- Surnatera Utara (2"59' LU
99'13'). Pengarnatan lapang dibagi dalam
tiga aspek vaitu fbtosintesis. perturnbuhan
dan fenologi. dan neraca air. Pengembangan
model dir alidasi terhadap data peftumbuhan
organ vegetatil- generatif. dan komponen
neraca air (erapotranspirasi dan kadar air
tanah; menggunal:an metode penrbandingan
u1i-t dengan jenlang kepercal'aan I dan 5 o%
(9)
Laju fotosintesis diukur in .stttr
dengan menggunakan penganalisis portabel
(IRGA), tipe LCA-4 (Analytical Develop-
ment Co., UK) rnengikuti metode Caem-
rnerer dan Farquhar (l). Pertumbuhan dan
fenologi diukur non-destuktif (3). Untuk
aspek neraca air. pengukuran kadar air tanah
mengikuti metode gravimetris. dan pengu-
kuran evapotransprrasi menggunakan metode
lysimeter untuli laju evaporasi tanah dan
menggunakan metode Dufrene, Dubous.
Rey, Quencez, and Saugier (4) untuk laju
transpirasi tanaman. Aplikasi model dilaku-
kan setelah model rtivalidasi. Pada penelitian
ini aplikasi model ditujukan unhrli menga-
nalisis dampak kckeringan terhadap hasil
tandan buah melalui perlakuan skenario.
HASIL DAN PEMBAHASAN
Struktur model
Pengernbangan model ditekankan pada
introduksi faktor ketersediaan air ke dalam
model !'ang telah dikembangkan sebelumnl a
oleh Gerritsma dan Goudriaan (5). dan Van
Kraalingen et al. (ll). Model y'ang dikem-
bangkan rnerniliki dua subrnodel yaitu sub-
model pertumbuhan dan fenologi serta sub-
model neraca air.
Submodel pcrtumbuhan dan l'enologi
Submodel ini mensimulasi proses-
proses )'ang berhubungan dengan keseim-
bangan biomassa selama periode perhun-
buhan. Proses pertumbuhan dapat dilihat
pada diagrarn Forrester untuk subrnodel
perhunbuhan dan fenologi (Larnpiran la).
Asimilat kotor (A, kg CH2O ha-l
hari-r) sebagai surnber perolehan bioruassa
)'ang dihasilkan dari proses fotosintesis r ang
todel pergaruh ketersediaan air terhaclap pertumbuhan dan hasil kelapa sawit
ffilulian radrasi surl'a (QO. MJ ha-r
han-') sebagar sttmkr energi. Di samping
radiasl sun' altiritas fotosintesis juga
ditenurkan oleh faktor-faklor lainnya yaitu
radiasi sun-a oleh kanopi (,),
kaersediaen arr (fiv)- dan parameter
efisiensr p€ng$maan radiasi surya (e- kg
CH:O MJ-t)- sehrngga produksi asimilat
kotor dapat diformulasikan mengikuti per-
samaan ( I )
A:e(l -r)Qoft. (la)
dengan-
.:
"*t'*
(lb)
trr'= I-a/Tm- I-a = f (Ta): fm = f (eo) (lc)
|. : koetisien pemadaman
L.I : indeks luas daun
I-a : konduktans stomalik aktual (rnm hari't)
fm : konduktans stomatik maksimum (mm hari-t)
Ta . transpirasi aktual (mm hari-t)
Asimilat kotor (A), kemudian didistri-
busikan ke dalam tiap organ (buah, daun,
batang. dan akar) berdasarkan faktor par-
tisinva (q). Sebagian dari asimilat diguna-
kan turtuk respirasi perhrmbuhan dan pe-
meliharaan sehrngga mengurangi kebuhrhan
unnlk perturnbuhan organ tanaman. Simbol
proses resprrasi untuk organ buah. daun.
batang. dan akar berhrrut-turut adatah R{
Rl. Rs. dan Rr. Pertumbuhan tiap organ
tanaman dihitung berdasarkan persamaan
(2)
dW* : l* (A - Rm) - Rg* (2a)
: (l -kg*) n.(A-lanWQ,o) (2b)
dengan-
Qr, -2(r-2-i5)/lo (2c)
fl'. : frrtumhuhan tiap organ (kg ha't hari't)
rl. , Jnrtisi asimilat untuk pertumbuhan organ
-{ a.unilat koror (ks CH:O ha hari'r)
Rm r*prrrsi pera$'atan (kg CH2O ha-r hari-r;
: respirasi perturnbuhan (kg CH2O ha-t hari-t)
: koetisien respirasi perawatan
: bobot kering biornassa tanaman (kg ha-^)
: koefisien respirasi pertumbuhan
: kuosien suhu
: suhu udara ("C)
Pada submodel perhrmbuhan dan fe-
nologi. hasil tandan dihitung dari kedu-
dukan pelepah dan pertumbuhan tandan
buah. sehingga laju emisi pelepah dan jum-
lah pelepah hams dideterminasi. Submodel
ini juga urendetenninasi biomassa tegakan,
sehingga pemangkasan pelepah dan laju
senesen akar dimasukkan ke dalarn sub-
model pertumbuhan dan fenologi. Indeks
luas daun (LAI) dihitung sebagai fungsi
biomassa tegakan dan parameter luas daun
spesifik (sla).
Submodel neraca air
Submodel neraca air terdiri dari kom-
ponen kadar lengas tanah (0), infiltrasi air
(Is), transpirasi tanarnan (Ta), evaporasi
tanah (Ea), dan perkolasi (Pc). Interaksi di
antara komponen-komponen tersebut dapat
dilihat pada Persamaan (3) dan Lampiran
lb
Lapisan tanah baeian atas (l)
0, (l): er-1 (l)-r [5' Pc, rl) - Td,(l) - Ea,(l) (3a)
Lapisan tanah baeian barvah (2)
0,(2):0,-r (2) + Pct (l) - Pcq (l) - Tat(l) (3b)
Sebagian curah hujan diintersepsi oleh
kanopi (lc) ketika mencapai permukaan
puncak kanopi dan sisanya mencapai per-
mukaan tanah rnelalui kanopi dan aliran
batang. Air r-ang diintersepsi kemudian
dievaporasikan kenrbali ke atrnosfir, sedang
yang mencapai pennukaan tanah akan terin-
filtrasi ke dalarn tanah sebagai air infiltrasi.
Rg-
km
w
kg-
Qro
T
f.
I
Lnan Yani Harahap dan Sjafrul Latif
a
Pada submodel ini diasumsikan bahwa tidak
terdapat aliran permukaan, sehingga model
tersebut ditujukan untuk aplikasi pada per-
mukaan tanah yang datar.
Air infiltrasi rnasuk ke lapisan tanah
yang lebih dalam jika kadar air tanah pada
lapisan tersebut telah melebihi kadar air
pada kapasitas laparrg (fc). Kelebihan air
pada tiap lapis tanah dikenal sebagai at
perkolasi (Pc). Air perkolasi pada lapisan .
tanah yang terdalam akan hilang sebagai air
drarnase.
Kadar air tanah (0) pada tiap lapis
tanah di atas titik layu pennanen (wp) akan
diabsorpsi akar, yang kemudian digunakan
dalam proses fisiologis dan transpirasi
tanaman melalui permukaan daun. Kebu-
tuhan air untuk proses fisiologis relatif
sedikit. yaitu sekitar | % dari yang di-
transpirasikan, sehingga dapat diabaikan.
Air yang diasorbsi akar pada tiap lapis
tanah dapat dihitung dari nilai transpirasi
maksimum (TM), kondisi atmosfir (evapo-
transpirasi potensial, ETP). dan indeks luas
daun (LAI). Transpirasi rnaksimum terjadi
jika tidak ada keterbatasan air tanah. Jum-
lah air yang diabsorpsi akar pada keselu-
ruhan lapisan disebut sebagai air transpirasi
aktual (Ta).
Pada lapisan tanah atas, air tanah
dapat hilang melalui proses evaporasi dari
permukaan tanah ke atmosfir. Evaporasi
tanah (Ea) dihitung berdasarkan metode dua
fase (8). Evaporasi rnaksimum (Em) pada
fase pertama terjadi ketika tidak ada keter-
batasan air tanah. sedangkan fase kedua
terjkadi jika laju evaporasi menumn secara
eksponensial.
Baik transplrasi maupun evaporasi di-
tunmkan dili peubah eksternal Qing-
kungan)- )raiu radiasi surya suhu udara,
kelembaban udara, dan kecepatan angin.
Peubah eksternal yffig mengendalikan
evapoffanspirasi melalui evapotranspirasi
potensial (ETP), dihitung melalui fonrrula
Penman (6).
Masukan model
Data masukan yang dibutuhkan model
adalah peubah iklirn harian dan inisialisasi
kondisi tanaman dan tanah. Peubah iklim
meliputi curah hujan (mrn hari-r), suhu
('C), lama penyinaran (am hari-l). kelem-
baban relatil (%). dan kecepatan angin (km
hari-r). Sedangkan nilai inisialisasi meliputi
bobot kering biornassa tegakan tiap organ
(kg ha-'). indeks luas daun. kadar air tanah
pada kapasitas lapang dan titik layu penna-
nen tiap lapisan tanah ('Zr).
Validasi dan l<enekaan model
Penggunaan modcl nrernbutulrkan ni-
lai-nilai paranteter. yang merupakan hasil
penurunan dari pettgamatan lapang. Pa-
rameter pada setiap submodel dan nilainya
disajikan pada Larnpiran 2a.
Validasi nrodel bertu.iuan untuk
rnengevaluasi keberhasilan pentbanguttatr
dan penurunan paranteter nrodel. Validasi
dilakukan dengan cara uretnbattdingkan
antara keluaran model dengan hasil peng-
ukuran lapang.
Tampilan rnodel neraca air. r'ang ter-
diri dari kadar air tanalr pada kedalaman
0 - 100 dan 0 - 180 cm menunjukkan kete-
patan prediksi ]-ang baik (Garnbar l). Hal
tersebut juga terjadi pada komponen neraca
air lairurya (Larnpiran 2b). Kecuali pertum-
buhan organ darm, hasil prediksi peubah
dalam submodel pertumbuhan dan fenologi
menturjukkan ketepatan yang baik (Lampi-
ran2b). Tampilan prediksi hasil bulanan
22
lr- "1
Vodd pcagguh kacrsedieen airtertradap pertumbuhan dan hasil kelapa sawit
m
6@
^5S
lsm
.? 4so
E*
!so
r3m
n
ill
-
-
EqD
E
-Eo
a
!o
fisrjfr- p& Cnbu 2, ymg menrmjuk-
kr b-re Ed+d ea p€riode ekstrim ha-
sil tr blan- yaih p€riode hasil tan-
dr h- ]rrg tinggi Ejadi Pada Oktober
dr Fir& h'cil r€dah t€rjadi pada
Fch-i=Afil- Fcnryilm tersebut meru-
pfugdra rcgcsemcif ffuknrasi hasil
hllldiSmualJtra
Umumnya, pen:[npilan model milrf
memprediksi peubah aspek pertumbuhan fo-
nologi, dan neraca air dengan baik, sehingga
pe,nunman parameter dari hasil pengamatan
lapang tersebut layak digunakan untuk
membangun model pertumbuhan kelapa
sawit.
Perpulcrran (kg/ha)
lEulsi (1 = 1 Jrrnd 19q S = 1 Janmd
1s4
Gambar l. Prediksi (garis) dan pengukuran (simbol) kadar air tanah (a) dan ploting data
prediksi-pengukuran terhadap garis l:l (b)
?mJ-
m
Im
E'|
5m
c
E@
o
!o
Fzm
tt
Et-
H0
I
m
6zl@
€
9m
a
*2m
to
drm
0
FgFS Od$ DsS RU9/
EIlan
23
Gambar 2. Prediksi Ga.is) dan pengukuran (simbol) hasil tandan buah segar bulanan (a) dan
ploting data predilisi-penguliuran terhadap garis l:l (b)
r
I
I
APR'90
Tmrn Yani Harahap dan Sjafrul Latif
AGST'96 OKT'96 DE5'96 FEB'97
Erlu
Gambar 3. Pengulnran (simbol) dan prediksi (garis) hasil tandan buah bulanan sebagai ke-
luaran model yang mempertimbangkan faktor ketersediaan air (fu : f{neraca
air)) dan tanpa mempertimbangkan faktor ketersediaan air (fu:1)
periode kering
periode kering
12 15 18 21 24, 27 30
Nomor bulan
Gambar 4. Persentase pelrrlnman hasil akibat kekeringan selama 3 dan 6 bulan
6 bulan
t/
25
Ert
Pio
s
5
g
o
g
t-
=
tr
o
CL
o
o
.E
c
o
o
L
o
o.
Pengujian kepekaan model dilalcrkan
terhadap stnrktur model. Tujuan pengujian
tersebut adalah mengevaluasi pengintro-
duksian faktor ketersediaan air dalam
pengembangan model. Pengujian dilakukan
dengan cara menbandingkan antara ke-
luaran model yang menrpertimbangkan fak-
tor ketersediaan air (fu : f { neraca ait})
dengan keluaran model yang tidak memper-
timbangkan faktor ketersediaan at (fu : l).
Pe,nbandingan hasil tandan buah
memmjukkan bahwa keluaran model yarg
tidak mempertimbangkan faktor keter-
sediaan air cenderung lebih tinggi dibandhg
dengan keluaran model yang mempertim-
bangkan faktor ketersediaan air. Hasil pem-
bandingan dari keluaran kedua model
Fw: f {neracaair}
Model penganrh ketersediaan airterhadap pertumbuhan dan hasil kelapa sawit
tersebut dengan hasil pengukuran lapang
menunjukkan bahwa pengembangan model
memngliatlian ketepatan prediksi hasil tan-
dan bulanan (Gambar 3).
Model yang tidak mempertimbangkan
faktor ketersediaan ar menghasilkan ke-
luaran model 19 % lebih tinggi dibanding
pengukuan langsung, sedangkan pengem-
bangan model yang mempertimbangkan
faktor ketersediaan air menghasilkan ke-
luaran model hanya 4 % lebth tinggi dan
pengukuran langsung. Hal ini menunjukkan
bahwa pengernbangan model dengan mem-
pertimbangkan faktor ketersediaan air dapat
meningkatkan ketepatan prediksi sekitar l5
%. Hasil analisis tersebut didasarkan pada
data )'ang dikunrpulkan dari wilayah
penelitian )'ang beriklim basah, sehingga
drperkirakan model tersebut akan lebih peka
1r}.a diaplikasikan di rvilayah yang memiliki
perbedaan musim kering dan penghujan
) ang jelas.
Analisis pengaruh kekeringan terhadap
hasil tandan buah
-nalisis dilakukan dengan menggula-
kan skenano perlakuan kekeringan. Perla-
kuan kekenngan meliputi (l) ttga bulan
penode kenng )'ang berkelanjutan, (2) enam
bulan penode kerrng )'ang berkelanjutan.
PErlaluan tErsebut mengasumsikan bahwa
Jumlah ;urah hu]an pada periode kering ti-
dali melebrlu 6r) mni per bulan.
K:dua perlaluan tersebut menunluk-
kan batrsa pengamh kekeringan mulai ter-
hhat pada 3 bulan pertama setelah awal
keksnngan- dan kemudian memngkat
sampal prn--alrna pada 13 bulan kemudian
)
-ans
menunman nastl 8 - 9 o/o pada pen-
ode ktsrtngan -: t'ulan dan 2l - 23 o/o pada
pm.rfu kelmngan 6 bulan Tiga belas bu-
lan setelah kekeringan. tanaman menunjuli-
kan pemulihan dan pengaruhnya relatif ke-
cil pada 36 bulan setelah awal kekeringan
(Gambar 4). Penurunan kadar at tanah
yang disebabkan periode kering menye-
babkan penumnan perolehan asimilat untuk
pertumbuhan tandan buah, sehingga hasil
menunrn. Pengaruh tersebut mulai tampak
pada 3 bulan setelah awal kekeringan. Hal
tersebut berhubungan dengan perkem-
bangan tandan buah yang membutuhkan pa-
sokan asimilat yang tinggi untuk fase pe-
ngisian mrnyak yang terjadi sejak 3 bulan
sebelum buah mat.tug fisiologis (7). Pe-
ngaruh kekeringan terhadap perkembangan
tandan buah dimulai sejak awal antesis
hingga matang fisiologis yang membutuh-
kan waktu 6 - 7 bulan. Apabila terjadi peri-
ode kekerrngan selama 6 bulan, maka pe-
ngaruhnya dapatterladi selama 12 bulan.
KESIMPULAN
Model tanaman kelaPa sawit Yang
dikembangkan adalah suatu model fisiologis
yang menekanlian pada faktor penyebab
fluktuasi hasil. ) ang berasumsi bahrva
fluktuasi tersebut drsebabkan variasi keter-
sediaan air yang bcrhubungan dengan dis-
tribusi curah hqan. Model menunjukkan
kevalidan, dan introduksi submodel neraca
air meningkatkan kepekaan model terhadap
variasi ketersediaatt air, sehingga mening-
katkan ketepatan prediksi hasil tandan buah
hingga 15 %. Olch karena ihr, pengem-
bangan model lavak digunakan untuk
menganalisis pengaruh kekeringan terhadap
hasil melalui skenario perlakuan'
Hasil skenario menunjukkan bahrva
kekeringan 3 dan ('' bulau menvebabkan ha-
sil menuntn berhrnrt-tunrt sebesar 8 - 9 %
l'r
-..'v
Iman Yani Harahap dan Sjafrul Latif
+
dan 2l - 23 % berturut-tunrt. Pengaruh
kekeringan mulai tampak pada 3 bulan
pertama setelah awal kekeringan, kemudian
meningkat pada 9 - 13 bulan kemudian.
Tiga b"lut Uot* setelah awal kekeringan,
tanaman me,lrunjukkan pe,mulihan dan pe-
nganrlrnya relatif kecil setelah 36 bulan
kemudian.
Penurunan parameter dalam model ini
dilakukan pada kondisi yarLg terbatas
(hanya pada satu bahan dan umur tanaman),
sehingga membutuhkan penunman parame-
ter pada kondisi yarLg lebih luas. Di
samping itu, model ini membutulrkan verifi-
kasi pada wilayah yang memiliki tipe
rklrm y arLg lebih kering.
DAFTAR PUSTAI(A
l. CAEMMERER, S. VON A]lD G.D. FARQTIHAR
l98l . Some relationstrip befween the bio-
chemistry of photosynthesis and the gas ex-
change ofleaves. Planta 153 :376-387-
2. CHARLES.EDWARDS , D. DOLEY, A}'{D G.M.
RX,MINGTON. 1986. Modelling Plant Growth
and Developmen! Asademic Press, Sy&tey.
235 P.
3. CORLEY, R.H.V., J.J. HARDON, Al'lD G.Y. TAI'I.
1970. Analysis of growth of the oil palm
(Etaeis guineensis Jacq). I. Estimation of
growttr parameters and application in breeding.
Euphytica 20:307 -315.
4. DUFRENE, E., DI'BOS, H. REY, P. QUENCEZ,
AI.ID B. SAUGIER. 1992. Changes evapG
transpiration liom an oil palm stand (Elaeis
gui neen si s Jacq) e:rposed to seasonal soil water
defioits. Acta Ecologioa 13 (3): 299 '3I4.
5. GERRITSMA W. Al.lD J. GOUDRIAAI"I ' 1988.
Simulation of oil palm yield. Dept. Theoretical
Production Ecolory. Agricultural University
Wageningen. 32 p
6. PENMANI, H.C.1948. Natural evaporation for open
water, bare soil and grass. Proc. R. Soo. Lon-
don 193 :120 - 146.
7. PENNING DE VRIES, F.W.T. 1983. Modelling of
growth and production. Encyclopedia of plant
physiology. Sprienger Verlg heidelberg.( I 2d):
I 17-150.
8. RITCHIE, J.T. 1972. Model tbr predicting evaporation
from a row ffop wilh incomplete cover. Water
Resource Research 8 : 1204 - 1213.
9. STEEI- R.G.P. AIID J.H. TORRIE.198l. lntrodustion
to Statistics. McGraw Hill, New York.382 p
10. TURNER P.D. 1977. Etrbcts of drouglrt on oil palm
yields in South East A.sia and the South Pasific
R"gotu p.673494.lnD.A- Earp and W. Ne-
wall (Ed.) International Development in Oil
Palm- Incorporated Society Of Planters, Kuala
hmpur.
ll. VAI{ KRAALINGEN, D.W.G., C.J. BREURE, A}'ID
T. SPITTERS. 1989. Simulation of oil palm
growttr and yield. Agric. and Forest Meteorol.
46:227 -244.
26
Model p€Nrgaruh ketersediaan air terhadap pertumbuhan dan hasil kelapa sawit
I^qirm la. Diagram Forrester perhrmbuhan dan fenologi kelapa sawit
Keterangan .
n
-/ : Suurbcr
a
DC : Laju
t] : Suile variable
: Peubah grpulasi
I Rtlsot
. Pcubah bantu
: Alirau masa
tl :Pcubahluar
( ) : Parameter
||i
t:
i;
[Radiasi surya]
[Kecepatan anginl
'L
rn
t)
lanrpiran lb. Diagram Forrester neraca air kelapa sawit
+
Iman Yani Harahap dan Sjafrul Latif
Lampiran 2b. Hasil pengujian menggunakan t-test student pada jenjang kepercayaaan
95 dan 99 %
28
I
I
kan2a' Nilai parameter vang digunakan dalam model
Submodel Parameter Simbol Setuan Nilai
Perantbuhan dan
Fenologi
Nertca air
Satuan bahang rmhrk tiap emisi daun
Temperatur dasar
Efrsiensi penggunaan radiasi surya
Partisi asimilat
Daun
Batang
Akar
Respirasi perawatan
Intersepsi curahhujan
Koefisien pemaarunan
Evapotranspirasi tanatl
(Fase I)
(tase II)
Hue
To
t
rl
Km
k
U
B
Hari "C
OC
Kg CH2O
Y''
mm
mm hari-ls
159,7
l5
3,1 l0-3
0,64
0,24
0,12
0,005
0,87
0,32
I l,l
2,7
Peubah Satuan t-hitung t-tabel
t 005 Beda t 001 Beda
Submodel neraca air
IGdar air tanalt 0 - 100 cm
Kadar air tanah 0 - 180 cm
Transpirasi aktual
Evaporasi aktuat
Submodel perhunbuhan dan fenologi
Enrisi daun
Pemangkasan daun
Pertumbuhan daun
Pertunbuhan batang
Pertumbulran tandan buah
Indeks luas darm
Hasil bulamn
lnm
mm
rnm hari'l
rnm hari-l
Kgha" 2
minggu-t
Kg ha-t 2
mhggu't
Kglw'' 2
minggu-t
Kg ha-'
btrlan'r
0,53
1,43
-0,48
-0,67
-0,21
-027
-2,63
-1,23
-1,87
1,69
4,72
2,04
2,M
2,12
2,02
2,13
2,13
2,70
2,10
2,10
2,10
2,20
ns
ns
ns
lls
NS
ns
'|
ns
ns
ns
ns
2,76
2.76
2,92
2,71)
2,94
2,94
2,89
2,89
2,89
2,89
3"10
ns
ns
NS
11s
lls
ns
ns
ns
ns
tul
Iul
Model of water availabilin,etl'cct on growth and vield of oil pralrrr
Dlodel of water availability effect on the growth and yield of oil palm
Lnan Yani Harahap and Sjafnrl Latif
Abstract
The study was aimed to develop an oil palm crop model to predict and analyze
monthly vield fluctuation. The model stressed on the factor causes yieltl fluctuation. This
factor was the variation on soil water available, alfected by rainfall distribution. The ap'
proaches tt.sed to develop that model were, firstly, by introducing soil water balance sub-
model, vhich simulate water available into previous ntodel, to develop growth, phenologt,
anc! u,ater halance submodels. Secondly, by conducting field observation for one year
(Alarc'h I996 - March 1997) to collect datafor constracting and validaring the developed
ntodel. Data utere c'ollected /rom Indonesian Oil Palm Research Institute (IOPN) breeding
trial plot, nuo. BJ-26-5, plantetl in 1990, at Bah Jambi estate, PT. Perkebunan Nlusantara IV,
Sinnlungtm, Surnatera L,rtura. The developed sinrulation model wus vuliilated against the
data oJ't,egetative uncl generative organ biomass, number of frond emtssion, ftait hunch
vield, and v,ater balance contponent.s inchding evapotranspiration and ';oil water content.
The mudel slxtwed good agreement with the observation dnta and the introduc'tictn of water
balance subtrurlel intu developecl ntodel increased sensitivity of model kt vaiation o.f soil
wurer ctvailable. which increase the precisirn of prediction on rnonthl fruit bunch yield
.lluctuatiort by I5 percent. Therefore, it could be used to annlyze the influence of drought on
yield in droughr treatilLent scerario. The scennrio showed that 3 and 6 monlh dry peiod
would decrea-se t,ield on the next year a. much as 8 - 9 Vo and 21 - 23 Va, resp€ctively. The
imtnediate itdluertce of'drought ccruld be seen in the first 3 months, and then aise to reach
its peak in 9 - I3 rnonths later. At thirteen rnonths after arought, the tree.s showed recover-
ing and then the influence o.f drought was relatively small after 36 montllr.
[agr ..rords oil pllm. crop nrodel. developed rnodel. predict, ],ield tluctuatiou. sorl lvateravailable,
drttught. treatmcnt sccllarl()
lntrotluction
Ramfall drsrrbutron ;auses the fluc-
Fl*xln of od trilm 1 reld r I u I The flucrua-
Ixn carses drft:uius rn predrcung han est
dsrrlhl.ro. hedcurr or hanest drstnbu-
txn ls rc;ess4 rn d patm culor auon- rn
a& to nrrrtge fu podnon- trmsporta-
Dgr d lfu -Eld pedcum could be
E & bl q $ditmrt aasrs +
F.ch o fu troho $xnem of oil
P.h-
Crop simulation model is one of quan-
titatir-e approaches to aualyze the croping
s) stem at ser-eral conrplexiff levels (2), and
therefore. it could explain the effect of input
s stem sirich is enr.irorunental factor to
r reld.
ln recent vear- the simulation model on
oil palm has been developed which assume
that there is no limiting factor on crop envi-
ronment- and the model was purposed to
predict the f ield potential. [n fact. seasonal
climate- especialll in tropical regions, can
cause r-ield fluchtatron. therefore develop-
29
i
,
hnan Yani Harahap and Sjatiul Latif
rng model which consider the seasonal cli-
mate factor is required.
This research was aimed to develop a
crop modeling of oil palm on growth and
yield of oil palm by considering the solar
radiation and water available as driving
factors.
Materials antl Methods
The approaches used in order to de-
velop the model u ere ( I ) bl constnrcting
the model which is include the growth. phe-
nology and rvater balance strbrnodels. (2) by
collecting field data for deriving atrd vali-
dating the model.
Fietd obsen atiou r,r,as conducted for
one year, behveen March 1996 and March
1997. at Indonesian Oil Palm Rescarch ln-
stitute (loPzu) breeding trial. plot No. BJ-
26-5, planted in 1990. at Bah Jarnbi estate.
PTP Nusantara IV. Simaluurgun. North Su-
matera (2"59' N - 99"13') Field obsen'a-
tions were separated into tluee aspects. tll-
cluding photosl nthetic actrr,'it)'- gror,r1h.
phenology and water balauce The rnodel
was validated against the data of vegetative.
generative organ biontass- and u'ater bal-
ance components (such as evapotrartspira-
tion and soil water oontent). Data u'ere sta-
tistically analyzed by' using t-test at I and -5
7o confidence levels (9).
Photosynthetic activity rate was
measured in situ using portable atralyzer
(IRGA), type LCA-4 (Analytical Devel-
opment Co., UK) retbrring to Caeruner
and Farquhar method (l). Growth rate ancl
phenology non-destructively lneasurement
wa-s done ret'erring to Corley et al. (3). In
water balance zlspects. soil water content
was meiLsured usrrg gravimetric method,
and evapotranspiration was measured us-
ing rnicrolysimeter tbr evaporation and
crop transpiration were determined hy Du-
trene et al. method (4). The application trf
model was done atter the model was vali-
dated to analyze drought eff'ect on yield hy
scenario treatment.
Results and Discussion
Structure of the rnodel
The development of rnodel was
stressed on the iruroduction of water
available factor into previous rnodel.
which was developed by Gerritstna atrd
Goudriaan (5) and by Van Kraalitrgen et
al. (l l). The ntodel developed here had
two subrnodels, ,grrnvtlt dttd phenology
and water balanct subrnodels.
Growth and phenology subntodel
This subnro.lel simulates the pl'oc-
esses. which is relatirtg to [riornass bal-
lrncing during tlrc growth period. The
grtxvth process could be seen iu Forrester
diagranr for gror,r th and phenulogy Sub-
rnodels (Appendix la).
Gross assirnilate (A, kg CH2O ha'
day'), as a souree of biornass was ob-
tained fronr photosynthetic activity that
require solar radiirtiort (Qo, MJ ha-' day-
') as source of cnergy. Beside the solar
radiation, photosvnthetic activity. also
detennined by other factors such as radi-
ant interception hy canopy (t), water
availability (fiv), and parameter of light
use efliciency (e, kg CHrO MJ-'), so the
production of gnrss assimilate could be
tbrmulated by equation below (l).
Modd of, urarer ernilability effect on growth and yield of oil palnt
A=rf l-t)Qofrr
rrrb,
t = etl..tl
fr = frfu. I-e = ftTeF I-n = f(Qo)
(la)
(lb)
(lc)
 canilrc co,firrrr
L{I,lcd rretr
Fe IEEtr' ".rrfrlrr- Io|rl (rrm day-l)
Fl : rrhnr.rrd- rdrlrn 1rrm dayl)
Te :clq:rin(mdrr'r)
Gr6s assimilarc (A) was then dls-
uihned ino each organ (fruit, leaf, stem,
ad roc) according to their partition fac-
ffi (n). A pan of assimilate will be used
for gronnh and maintenarrce respiration's,
ad freretbre, it will be decreasing for or-
gan grorrlth. The symbol of respiration
prcess for fruit, leaf, stem, and root were
Rf, Rl, Rs, and Rr, respectively. The
grornh of each organ was calculated based
on the tbllowing equation (2).
dW.: l* (A - Rm) - Rg*
be entered into the component of growth
and phenology subrnodels. Leaf area index
(LAD, was calculated as function of
standing biomass and specific leaf area pa-
rameter (sla).
Water balance submodel
Water balance submodel consists of
the following component, i.e. soil water
content (e), water intiltration (Is), crop
tran^spiration (Ta). soil evaporation (Ea),
and percolation (Pc). Interaction among
these components sould bee seen in equa-
tion (3) and in Appendix lb.
Upper soil layer (l)
0, (l) : 0,-r (l)+ Isr-Pcr (l) Tar(l)-Ea(l) (3a)
Lower soil layer (2)
0, (2) = 0,.r (2) + Por (l) - l'q (l) - ]'ar(l) (3b)
A part of rainfall u,as intercepted bf'
canopy (Ic) rvhen reaching the top of can-
opy and the other rvill go to soil surface by
free t'all from the canop), and tluough stem
flow. The intercepted rainfall will be re
evaporated to ahnosphere and the remaining
rvater in the soil surflace will be infiltrated
into the soil. [n thrs submodel. it was as-
sumed that there was llo mn-off or rvater
nur-on. Therefore. its application was pro-
posed to the flat strrlace soils.
Infiltration water entered the deeper
layer of soil if water content in this la1'er is
lesser than the rvater content at field capac-
i5, (fc). The exceed u'ater on each soil la1'er
was knorryn as percolation rvater (Pc). Per-
colation water on the deepest soil layer rvill
lose as drainage water.
Water content (0) in each soil layer
rvhich is higher than the wilting point (wp)
will be absorbed bv root- tiren it rvas used in
(2a)
I
I
: (l - kg*) n*(A - kmWQr,.,) (2b)
with.
e,u - 2{J-255)iltt ec)
: growth cach organs (kg ha'r day-r)
: assimilate partition rvhich allooated to each organs
: gross assinrile[.: 1kg CH2O ha day'r;
: nraintenansc respiration (kg CH2O ha-l day-r;
: grorvth r.rspiration tbr each organ
: coc'lli uient ot' rnaintcnance respiration
: dn'weiglrt ol'crop lriornass 1kg ha-t)
: coellicient of' growth respiration
: tenrperature quotrL'lrt
: air tcmperature (oC)
For growth and phenology submod-
els, yield was calculated tiom lrond posi-
tion and truit bunch growth, therefbre
emission rate of frond and lrond position
wiil determine the yield. This submodel
also determins the standing biomass, so
$at frond pruning and root death rate will
Iman Yani Harahap and Sjafrul Latif
physiological process and transpired
through passing leaf surface. The water
needed for physiological process was rela-
tively too small compared to transpiration'
less than I Yo. and therefore, it could be ig-
nored in water balance submodel.
The water. which was absorbed bY
root in each soil layer. was calculated from
its maximum transpiration value (Tm), at-
mospheric condition (evapotranspiration
potential, ETP), and leaf area index (LAI).
Maximum transpiration occurred when
there was no limitation on soil water con-
tent. Amount of water absorbed by root at
whole layer was called as actual transpira-
tion (Ta).
' At upper soil layer, there was water
lost by evaporation from soil surface to at-
mosphere The soil evaporation (Ea) was
calc;rlated based on two-phase methods (8)
Maiimum evaporation (Em) at first phase
occurred when there was no limitation on
soil water content, whereas the second
phase occured when evaporation rates im-
mediately decreasing exponentially with
time.
Both transpiration and evaporation
were derived by external variable (envi-
ronment). including solar radiation, air tem-
perature, air humidity and wind speed. The
exogenous variable driving evapotranspira-
tion by evapotranspiration potential (ETP),
will be calculated bv Penman formula (6).
Input model
Input data required in the model were
daily climate variables and initialization of
crop and soil condition. The climate vari-
able including raintall (mm day-t), air
temperature ("C), sunshine duration (hour
day-t), relative humidity (%), and wind
speed (lan day-t). Whereas the initializa-
tion values including standing biomass dry
weight of each organ (kg ha-l), leaf area
index, soil water content of each layer at
field capacity and wilting pont (%).
Validation and sensitivity model
The use of model requires Pa-
rameters, which are derived from the re-
sult of tield observation. The parameters
of eaoh submodel and their value were
shown in Appendix 2a.
Validity of rnodel ProPosed to
evaluate the successful of constructing and
deriving of parameters model. Validity
was done by comparing between output
model and field measurement.
Pertbrmance of water balance
model, which were consist of soil water
content on 0 - 100 and 0 - 180 cm deePs
(Figure l) showed a good precise on pre-
diction of soil water content and all of
water balance components. Except growth
of leaf, the prediction showed a good pre-
cise on all of growth and phenology vari-
ables (Appendix 2b).
Performance of monthlY Yield Pre-
diction presented in Figure 2. Model per-
formance showed that there were two ex-
tremes period of monthly yield. The first
was high yield period, which occurred in
October and ttre second one was low yield
period in February- April. This perform-
ance was generally representing the
monthly yield fluctuation in North Su-
matera.
In general, the model Performance
was able to predict the variable of growth,
phenology, and water balance aspects, and
therefore, the parameters were derived
from field observation can be used to de-
velop a model of oil palm growth.
The sensitivitv test of mpdel was done
on model structure. The aim of this testing
Model of water availabilily ell-ect on growth and yield ot'oil palnr
was to evaluate the effectivity of the intro-
duction of water available factor in order to
develop the model. The testing was done by
comparing the output of model which con-
sider the water available factor
(fu : f {water balance}) with the model
without considering that factor ( fw : l).
The comparison showed that fruit
bunch yreld as the output of model without
considering the water availability (fw : l)
tended to be higher than the output of an-
other model (fw : f {water balance}). The
output comparison of both models with field
measurement showed that the development
z!o&0
Ntrbdd4p(1 = 1 .,brry 1$ ffi = 1
.Al-ay1'971
AgS JnS A{gS dF DsS Rt9/
]t/ffil
of model could increase the precision of
prediction on monthly yield fluctuation
(Figure 3).
The output of rnodel without consid-
ering the water ar,ailable factor was 19 o/o
higher compared to the direct measurement,
whereas the output of model considering the
water available factor just 4 % higher
compared to direct measurement.
Therefore, the development of such model
could increase the precision of prediction by
E %. This analysis lvas based on the data
collected from field location having wet
climate type.
300 400 500 600 700
lVhasurement (mm)
01m2m3m4m5m
It/leasrenent of nnnhly yield (kg/ha)
650
600
F 550
E soo
5 450
E 400
E 350
o
i 300
50m
; 4sm
'; 4m
= 35m
Eego@
ESzsm
tEzm
.E ls@
Elm
tsm
do
l
i
lI
^@
6
€m
ED
5m
!t
3o
b2co
t
!to
=o
-r
@l
sl{
I
@l
olt
nl
1@L
1q)
E
E
_v
c
o
c
o
o
rb
(U
t
=:
o
ct)
250
I
200 L
200
{
Figrre l. Prediction (lines) and measurement (symbol) of soil water content (a) and plot-
ting data of prediction-measurement on line l:l (b)
Figrne 2. Prediction (line) and measurement (symbol) of monthlr fruit fresh bunch yield
(a) and plourng data of prediction-measurement on line l:l (b)
JJ
-
I
4500
4000
3500
I .ooo
E
$ zsoo
€
t zooo
I
f lsoo
1 000
500
o
AP R'96 JUN'96 AGST'g8 0 KT'96 D ES'96 FE B'07
Xonih
Figure 3. Prediction (lines) and measurement (symbol) of monthly
fiuit fresh brurch yield as result of output model considering
available water facto.r, fiv : f {water balance} and without
considering that factor (fiil: l)
dry period
3 months of dry pcriod
0 3 6 9 A63AXZI O3S
NrEdmrtr
Figure 4. Persentage of decreasing of yield as affected by 3 and 6
month dry period
E
!,
gga
Te"
SE"
H$'
.'o
collected from location having wet climate
t),pe. It rvas assumed that the model would
be more sensitive when it is applied tci the
area having dry and rain)' season which is
sharpl,".- difference.
The influence of drought on yieldanaly-
sis
fuialysis of drought effect on yield rvill
be based on the scenario of drought treat-
ment. The drought ffeahnents were 3
34
I
Iman Yani Harahap and Sjatiul Latif
Fw:1
todel of $'at€r a?rlability eftbct on growth and yield of oil palm
I
;
:
mtrs and 6 months conunuoush'. These
treatlneots lUere assumed as the amount of
rarnfdl :rs less than 60 mm at each dr--v-
month penod.
Botr of scenario treatrnents shorved
6at dre immerliate rnlluence of drought
could be seen in the first 3 month. and then
reached is peali rn 13 month later rvhich
decreas€d as much as 8 - 9 oh and 2l - 23
9'o for i and 6 months dry period. respec-
tir elv Thirtecn nronths after drought. the
trees recovered their grorvth and the inllu-
ence of drought  as relatively small 36
months later (Figure 4).
The lowering of soil water content
afibcted by dry period caused the de-
creasing of assimilate gain tbr gromh of
truit bunch and tinally decreased the
yield. The immediate intluence of drought
occurred at 3 month later. It related to the
phase of truit bunch development, when
fruit bunch required a highly assimilate
supply for synthesizing of oil 3 months
prior to ripening (7). The influence of
drought on yield occurred as long as 12
months since the begiruring of dry period.
It may relate to truit bunch development
period, since truit ripening completely
lrappened within 6 - 7 month after anthe-
sls. If dry period occur as long as 6
month, its totally eftbct will be as long as
12-13 months since the begiming of
drought.
Conclusion
The presented crop model is a phl,sio-
logical model stressing on the factors cause
tbe yeld fluctuatrcn. It r,r-as assurned that
6e frtors rere the variation of soil rvater
ar-ailable- silich s.as affected bv rainfall
distribution. The model showed good cor-
relation with observation data. The intro-
duction of water balance submodel into the
developed model could ulcrease its sensr-
tivity. The variation of soil water available,
could increase the precision of prediction on
fruit bunch yield by 15 %. Therefore. it
could be use to anahze the influence of
drought on yield irr drought treatment sce-
narlo.
The scenario shorved that 3 and 6
rnonth dry period rvould decrease the yield
onc year later. as much as 8 - 9 Yo and 2l
- 23 Vo, respecti'r'c['. The irnmediate inJlu-
ence of drought could be seen in the first 3
months, and reached its peak in 9 - 13
month later. The trees recovered after thir-
teen months of drought. however. the influ-
ence of drought was relatively small after
36 months later.
Deriving of parameters in this model
was done at lirnited environment (iust on
one material and age of planting), it is
therefore, required a wider enviroument
condition to represent the parameters. In
addition, the development of this present
model needs veritication on the area with
more dry climate type.
Rcl'ercnces
l. CAEMMERER. S. '( )N ancl Ci.D. I"ARQUHAR. l9t( I
. Some relatronship betwecn the l)lochemlstr'
of photosynthesis and the gas exchange of
leaves. Planta I 53 .376 - 387.
2. CH.ARL.FIS-EDU/ARDS D. DOLEY. and G.M.
REMINCiTON. 1986. lvlodelling Plant Cirorvth
and Development. Acadernic Press. Sydney.
235 p.
3. CORLEY. R.H.V.. .l .1. HARDON. and C;.Y. T.AN.
1970. Analvsis ot' growth ot' the oil palnr
(Elaer.r gutneen.sis .Iacq). [. Dstimation ot'
growth pararrrcters anc{ applicatiort in lrreeding.
Euphy'tioa 20 30'l -315.
;
I
I
)
I
I
35
a
4. DUFRENE, E., DUBC)S,If REY, P. QUENCIIZ, aad
B. SAUGIER 1992. Changes ovapoilrasspira-
tion from an oil palnr sand (Elaeis guineenils
Jacq) orposed to seasonal soil wdr defioits.
Asta Ecologica 13 (3): 299 -3L4.
5. GERRITSMA W. and J. GOUDRIAAI{ . 198t.
Simulation of oil palm yield. DepL Theoretical
Pr,odustion Boolory. i{grisulhral University
Wageningso" 32 p.
6. PENMAII, H.C.1948. Natural evaporation for open
waletr, bare soil and grass. Proo. R Soc. Lon-
don 193 :120 - L46.
7. PENNINC DE IRIES, F.W.T. 1983. Modelling of
growttr and production. Encyclopedia of plant
physiologgr. Sprienger Verlg Heidelbcg;( I 2d):
I l7-150.
Appedix la. Forrester diagram of growth and phemlogy of oil palm
[Temp]
Inan Yasi llarahap and Sjaftul I^atif
8. RITCHIE, J.T. 1972. Model for predicting
from a row crop withincomplet€ oover. Wat€r
Resource Rosoerch 8:1204 - 1213.
9. STEBI. R.G.P. and J.H. TORRIE.I98I. lntoductionto
Statistics. MoG'raw Hill, New York. 382 p
10. TLJRNE& P.D. 1977. Eftbcts of drouglrt on oil palm
yields in South East Asia and the South Pasifio
Regroq p.673494. InD.A- Earp and W. Ne-
wall (Ed.) Lilcrnational Development in Oil
Pakn Inoorpordsd Society Of Pla$t€rs, Kuala
l,umpur.
I l. VAII KRAALINGEN, D.W.G., C.J. BREURE, and T.
SPITTERS. 1989. Simulation of oil palnr
growth and yiold. Agric. and Forest Meteorol.
45:227 -244.
lT"'" I
Notes :
o
DG
q>
36
(n)
Source
Rate of flow
State variable
Population variable
Sink.
t1
o
Mass flow
Information flow
Auxiliary variable
Exogenous variable
Parameter
llod d wcrrnilrtflity ded mgrowth aad,yield of oil palm
e1pafr lb- Fmcsn diagrm of uraer balance of oil palm
()
I
,,
I
I
I
l
r
t
t
?'
t'
lt.
I
r
Appendi* 2a. Value of parameters which used in the developed model
I.AI l-, I rr.
tWind speedl
Em
-5
Tm
t? I
I
rt
>K Ea (ra
0(l)
rr (1) -l*"
>K pc trl T- Ir"]
lwpl
e(2)
'-f-DI-- rre
_l
>K PcQ't
Submodel Parameters SymboI Unit Value
Grc*uh and phe-
nulogt'
Wcr hlorce
Heat unit for each leaf emission
Basic temperature
Light use efficiency
Assimilate partition
Leaf
Stem
Root
Re spiration maintenance
Rainfall interception
Erinction coefficient
Soil evapotranspiration
Pb.p I
Pbsc tr
Hue
To
e
rl
Km
k
U
F
Day oC
oc
I(g CH2O
Y,
Mm
mm dayt's
t59.7
15
3.1 10'3
0.64
0.24
0.t2
0.005
0.87
0.32
I 1.1
2.7
rman Yani llarahap and Sjafrul l^atif
Appendix 2b. Testing result using t-test sftdent at 95 and 99 % sigwfrcant level
Notes : ns = non significant; * = signiticant
ooooo
Variables Units t-calc. t-table
t 005 Deff t 001 Deff
Water balance submodel
- Water conient 0 - 100 qm
- Water content 0 - 180 cm
- Transpiration actual
- Evaporation actual
Growth and phenolosy submodel
- Frond emission
- Frond pruning
- Growth of leaf
- Growth of stem
- $rowth of 1ruit bunch
- Leaf area index
- Monthly yield
rnm
urm dai'
mm duy't
Kg ha-t 2
u,eek'l
Kgha't 2
week-l
Kg}n-t 2
weekl
Kg hu-t
rnonth'l
0.53
r.43
-0.48
-0.67
-0.21
-0.27
-2.63
-t.23
-1.87
r.69
4.72
2.04
2.04
2.12
2.02
2.t3
2.t3
2.t0
2.t0
2.r0
2.10
2.20
ns
ns
ns
ns
NS
ns
tl
ns
NS
ns
ns
2.76
.2.76
2.92
2.70
2.94
2.94
2.89
2.89
2.89
2.89
3. l0
ns
ns
ns
ns
NS
NS
ns
ns
ns
ns
ns
38

More Related Content

Similar to Model Pengaruh Ketersediaan Air Terhadap Pertumbuhan dan Hasil Kelapa Sawit

Ekosistem sungai 1
Ekosistem sungai 1Ekosistem sungai 1
Ekosistem sungai 1PT. SASA
 
LAPORAN PRAKTIKUM FISIOLOGI TUMBUHAN ABSORBSI DAN TRANSPIRASI
LAPORAN PRAKTIKUM FISIOLOGI TUMBUHAN ABSORBSI DAN TRANSPIRASI  LAPORAN PRAKTIKUM FISIOLOGI TUMBUHAN ABSORBSI DAN TRANSPIRASI
LAPORAN PRAKTIKUM FISIOLOGI TUMBUHAN ABSORBSI DAN TRANSPIRASI RiaAnggun
 
STUDI DINAMIKA EKOSISTEM PERAIRAN DI TELUK LAMPUNG: PEMODELAN GABUNGAN HIDROD...
STUDI DINAMIKA EKOSISTEM PERAIRAN DI TELUK LAMPUNG: PEMODELAN GABUNGAN HIDROD...STUDI DINAMIKA EKOSISTEM PERAIRAN DI TELUK LAMPUNG: PEMODELAN GABUNGAN HIDROD...
STUDI DINAMIKA EKOSISTEM PERAIRAN DI TELUK LAMPUNG: PEMODELAN GABUNGAN HIDROD...Repository Ipb
 
Konsep dasar hidrologi
Konsep dasar hidrologiKonsep dasar hidrologi
Konsep dasar hidrologiQunk
 
Proses Alami RTH & RTB - Ning Purnomohadi @ jongForum!
Proses Alami RTH & RTB - Ning Purnomohadi @ jongForum!Proses Alami RTH & RTB - Ning Purnomohadi @ jongForum!
Proses Alami RTH & RTB - Ning Purnomohadi @ jongForum!jong arsitek
 
Penyaliran Tambang
Penyaliran TambangPenyaliran Tambang
Penyaliran Tambangheny novi
 
142729-ID-konsep-pengelolaan-sumber-daya-air-berke.pdf
142729-ID-konsep-pengelolaan-sumber-daya-air-berke.pdf142729-ID-konsep-pengelolaan-sumber-daya-air-berke.pdf
142729-ID-konsep-pengelolaan-sumber-daya-air-berke.pdfMSUBHAN13
 
BAKUL 05Kebutuhan Air Tanaman.ppt FWFWFW WVWEFEWRG FEWGTG WGWGW4 GEGWGTW AEGE...
BAKUL 05Kebutuhan Air Tanaman.ppt FWFWFW WVWEFEWRG FEWGTG WGWGW4 GEGWGTW AEGE...BAKUL 05Kebutuhan Air Tanaman.ppt FWFWFW WVWEFEWRG FEWGTG WGWGW4 GEGWGTW AEGE...
BAKUL 05Kebutuhan Air Tanaman.ppt FWFWFW WVWEFEWRG FEWGTG WGWGW4 GEGWGTW AEGE...P3MIANUGERAHPTHSJKNS
 
Nota geo s1 Mohd Nazren Saparudin ( bahagian a)
Nota geo s1 Mohd Nazren Saparudin ( bahagian a)Nota geo s1 Mohd Nazren Saparudin ( bahagian a)
Nota geo s1 Mohd Nazren Saparudin ( bahagian a)Mohd Nazren Saparudin
 
3 kuliah pa bab iii. kebutuhan air tanaman
3 kuliah pa bab iii. kebutuhan air tanaman3 kuliah pa bab iii. kebutuhan air tanaman
3 kuliah pa bab iii. kebutuhan air tanamanAndrew Hutabarat
 
limpasan air hujan dan pengukurannya
limpasan air hujan dan pengukurannyalimpasan air hujan dan pengukurannya
limpasan air hujan dan pengukurannyaFitria Anggrainy
 
Sistem perencanaan drainase dan sawerage perumahan griya asri cikarang, kab. ...
Sistem perencanaan drainase dan sawerage perumahan griya asri cikarang, kab. ...Sistem perencanaan drainase dan sawerage perumahan griya asri cikarang, kab. ...
Sistem perencanaan drainase dan sawerage perumahan griya asri cikarang, kab. ...Rendiswan Dhana
 

Similar to Model Pengaruh Ketersediaan Air Terhadap Pertumbuhan dan Hasil Kelapa Sawit (20)

Ekosistem sungai 1
Ekosistem sungai 1Ekosistem sungai 1
Ekosistem sungai 1
 
LAPORAN PRAKTIKUM FISIOLOGI TUMBUHAN ABSORBSI DAN TRANSPIRASI
LAPORAN PRAKTIKUM FISIOLOGI TUMBUHAN ABSORBSI DAN TRANSPIRASI  LAPORAN PRAKTIKUM FISIOLOGI TUMBUHAN ABSORBSI DAN TRANSPIRASI
LAPORAN PRAKTIKUM FISIOLOGI TUMBUHAN ABSORBSI DAN TRANSPIRASI
 
Tugas Paper Statistika
Tugas Paper StatistikaTugas Paper Statistika
Tugas Paper Statistika
 
Transpirasi
TranspirasiTranspirasi
Transpirasi
 
STUDI DINAMIKA EKOSISTEM PERAIRAN DI TELUK LAMPUNG: PEMODELAN GABUNGAN HIDROD...
STUDI DINAMIKA EKOSISTEM PERAIRAN DI TELUK LAMPUNG: PEMODELAN GABUNGAN HIDROD...STUDI DINAMIKA EKOSISTEM PERAIRAN DI TELUK LAMPUNG: PEMODELAN GABUNGAN HIDROD...
STUDI DINAMIKA EKOSISTEM PERAIRAN DI TELUK LAMPUNG: PEMODELAN GABUNGAN HIDROD...
 
Konsep dasar hidrologi
Konsep dasar hidrologiKonsep dasar hidrologi
Konsep dasar hidrologi
 
Proses Alami RTH & RTB - Ning Purnomohadi @ jongForum!
Proses Alami RTH & RTB - Ning Purnomohadi @ jongForum!Proses Alami RTH & RTB - Ning Purnomohadi @ jongForum!
Proses Alami RTH & RTB - Ning Purnomohadi @ jongForum!
 
1.pdf
1.pdf1.pdf
1.pdf
 
Laporan hidrologi
Laporan hidrologiLaporan hidrologi
Laporan hidrologi
 
Penyaliran Tambang
Penyaliran TambangPenyaliran Tambang
Penyaliran Tambang
 
142729-ID-konsep-pengelolaan-sumber-daya-air-berke.pdf
142729-ID-konsep-pengelolaan-sumber-daya-air-berke.pdf142729-ID-konsep-pengelolaan-sumber-daya-air-berke.pdf
142729-ID-konsep-pengelolaan-sumber-daya-air-berke.pdf
 
BAKUL 05Kebutuhan Air Tanaman.ppt FWFWFW WVWEFEWRG FEWGTG WGWGW4 GEGWGTW AEGE...
BAKUL 05Kebutuhan Air Tanaman.ppt FWFWFW WVWEFEWRG FEWGTG WGWGW4 GEGWGTW AEGE...BAKUL 05Kebutuhan Air Tanaman.ppt FWFWFW WVWEFEWRG FEWGTG WGWGW4 GEGWGTW AEGE...
BAKUL 05Kebutuhan Air Tanaman.ppt FWFWFW WVWEFEWRG FEWGTG WGWGW4 GEGWGTW AEGE...
 
Nota geo s1 Mohd Nazren Saparudin ( bahagian a)
Nota geo s1 Mohd Nazren Saparudin ( bahagian a)Nota geo s1 Mohd Nazren Saparudin ( bahagian a)
Nota geo s1 Mohd Nazren Saparudin ( bahagian a)
 
3. evaluasi perubahan tata guna lahan sebagai upaya menjaga keberlanjutan fun...
3. evaluasi perubahan tata guna lahan sebagai upaya menjaga keberlanjutan fun...3. evaluasi perubahan tata guna lahan sebagai upaya menjaga keberlanjutan fun...
3. evaluasi perubahan tata guna lahan sebagai upaya menjaga keberlanjutan fun...
 
3 kuliah pa bab iii. kebutuhan air tanaman
3 kuliah pa bab iii. kebutuhan air tanaman3 kuliah pa bab iii. kebutuhan air tanaman
3 kuliah pa bab iii. kebutuhan air tanaman
 
Tugas klimatologi
Tugas klimatologiTugas klimatologi
Tugas klimatologi
 
limpasan air hujan dan pengukurannya
limpasan air hujan dan pengukurannyalimpasan air hujan dan pengukurannya
limpasan air hujan dan pengukurannya
 
Journal lahan basah
Journal lahan basahJournal lahan basah
Journal lahan basah
 
PPT S1.ppt
PPT S1.pptPPT S1.ppt
PPT S1.ppt
 
Sistem perencanaan drainase dan sawerage perumahan griya asri cikarang, kab. ...
Sistem perencanaan drainase dan sawerage perumahan griya asri cikarang, kab. ...Sistem perencanaan drainase dan sawerage perumahan griya asri cikarang, kab. ...
Sistem perencanaan drainase dan sawerage perumahan griya asri cikarang, kab. ...
 

More from EdizonJambormias2

[Annika_Kangas,_Matti_Maltamo]_Forest_Inventory_M(BookZZ.org).pdf
[Annika_Kangas,_Matti_Maltamo]_Forest_Inventory_M(BookZZ.org).pdf[Annika_Kangas,_Matti_Maltamo]_Forest_Inventory_M(BookZZ.org).pdf
[Annika_Kangas,_Matti_Maltamo]_Forest_Inventory_M(BookZZ.org).pdfEdizonJambormias2
 
(Forestry Sciences 76) M. Köhl (auth.), Piermaria Corona, Michael Köhl, Marco...
(Forestry Sciences 76) M. Köhl (auth.), Piermaria Corona, Michael Köhl, Marco...(Forestry Sciences 76) M. Köhl (auth.), Piermaria Corona, Michael Köhl, Marco...
(Forestry Sciences 76) M. Köhl (auth.), Piermaria Corona, Michael Köhl, Marco...EdizonJambormias2
 
Operation Research_Model Pengendalian Persediaan new.pptx
Operation Research_Model Pengendalian Persediaan new.pptxOperation Research_Model Pengendalian Persediaan new.pptx
Operation Research_Model Pengendalian Persediaan new.pptxEdizonJambormias2
 
@@risetoperasi-9-model-persediaan di Bidang Kehutanan
@@risetoperasi-9-model-persediaan di Bidang Kehutanan@@risetoperasi-9-model-persediaan di Bidang Kehutanan
@@risetoperasi-9-model-persediaan di Bidang KehutananEdizonJambormias2
 
Prosiding Penguatan Sains dan Teknologi Atmosfir
Prosiding Penguatan Sains dan Teknologi AtmosfirProsiding Penguatan Sains dan Teknologi Atmosfir
Prosiding Penguatan Sains dan Teknologi AtmosfirEdizonJambormias2
 
Model Produksi Tanaman Padi. Untuk Pertanian pdf
Model Produksi Tanaman Padi. Untuk Pertanian pdfModel Produksi Tanaman Padi. Untuk Pertanian pdf
Model Produksi Tanaman Padi. Untuk Pertanian pdfEdizonJambormias2
 
Introduction to Next Generation Sequencing
Introduction to Next Generation SequencingIntroduction to Next Generation Sequencing
Introduction to Next Generation SequencingEdizonJambormias2
 
(The Ima Volumes in Mathematics and Its Applications) Terry Speed (editor), M...
(The Ima Volumes in Mathematics and Its Applications) Terry Speed (editor), M...(The Ima Volumes in Mathematics and Its Applications) Terry Speed (editor), M...
(The Ima Volumes in Mathematics and Its Applications) Terry Speed (editor), M...EdizonJambormias2
 
Dr Luke Alphey - DNA Sequencing (Introduction to Biotechniques)-Garland S
Dr Luke Alphey - DNA Sequencing (Introduction to Biotechniques)-Garland SDr Luke Alphey - DNA Sequencing (Introduction to Biotechniques)-Garland S
Dr Luke Alphey - DNA Sequencing (Introduction to Biotechniques)-Garland SEdizonJambormias2
 
Utility of transcriptome sequencing for phylogenetic
Utility of transcriptome sequencing for phylogeneticUtility of transcriptome sequencing for phylogenetic
Utility of transcriptome sequencing for phylogeneticEdizonJambormias2
 
Spatial transcriptomics in Plant (for Agriculture)
Spatial transcriptomics in Plant (for Agriculture)Spatial transcriptomics in Plant (for Agriculture)
Spatial transcriptomics in Plant (for Agriculture)EdizonJambormias2
 
Next Generation Sequencing - An Overview
Next Generation Sequencing - An OverviewNext Generation Sequencing - An Overview
Next Generation Sequencing - An OverviewEdizonJambormias2
 
Next Generation Sequencing (NGS) in the Clinic
Next Generation Sequencing (NGS) in the ClinicNext Generation Sequencing (NGS) in the Clinic
Next Generation Sequencing (NGS) in the ClinicEdizonJambormias2
 
EMT Next Generation Sequencing in Helath and Science
EMT Next Generation Sequencing in Helath and ScienceEMT Next Generation Sequencing in Helath and Science
EMT Next Generation Sequencing in Helath and ScienceEdizonJambormias2
 
AdamAmeur_SciLife_Bioinfo_course_Nov2015.ppt
AdamAmeur_SciLife_Bioinfo_course_Nov2015.pptAdamAmeur_SciLife_Bioinfo_course_Nov2015.ppt
AdamAmeur_SciLife_Bioinfo_course_Nov2015.pptEdizonJambormias2
 

More from EdizonJambormias2 (15)

[Annika_Kangas,_Matti_Maltamo]_Forest_Inventory_M(BookZZ.org).pdf
[Annika_Kangas,_Matti_Maltamo]_Forest_Inventory_M(BookZZ.org).pdf[Annika_Kangas,_Matti_Maltamo]_Forest_Inventory_M(BookZZ.org).pdf
[Annika_Kangas,_Matti_Maltamo]_Forest_Inventory_M(BookZZ.org).pdf
 
(Forestry Sciences 76) M. Köhl (auth.), Piermaria Corona, Michael Köhl, Marco...
(Forestry Sciences 76) M. Köhl (auth.), Piermaria Corona, Michael Köhl, Marco...(Forestry Sciences 76) M. Köhl (auth.), Piermaria Corona, Michael Köhl, Marco...
(Forestry Sciences 76) M. Köhl (auth.), Piermaria Corona, Michael Köhl, Marco...
 
Operation Research_Model Pengendalian Persediaan new.pptx
Operation Research_Model Pengendalian Persediaan new.pptxOperation Research_Model Pengendalian Persediaan new.pptx
Operation Research_Model Pengendalian Persediaan new.pptx
 
@@risetoperasi-9-model-persediaan di Bidang Kehutanan
@@risetoperasi-9-model-persediaan di Bidang Kehutanan@@risetoperasi-9-model-persediaan di Bidang Kehutanan
@@risetoperasi-9-model-persediaan di Bidang Kehutanan
 
Prosiding Penguatan Sains dan Teknologi Atmosfir
Prosiding Penguatan Sains dan Teknologi AtmosfirProsiding Penguatan Sains dan Teknologi Atmosfir
Prosiding Penguatan Sains dan Teknologi Atmosfir
 
Model Produksi Tanaman Padi. Untuk Pertanian pdf
Model Produksi Tanaman Padi. Untuk Pertanian pdfModel Produksi Tanaman Padi. Untuk Pertanian pdf
Model Produksi Tanaman Padi. Untuk Pertanian pdf
 
Introduction to Next Generation Sequencing
Introduction to Next Generation SequencingIntroduction to Next Generation Sequencing
Introduction to Next Generation Sequencing
 
(The Ima Volumes in Mathematics and Its Applications) Terry Speed (editor), M...
(The Ima Volumes in Mathematics and Its Applications) Terry Speed (editor), M...(The Ima Volumes in Mathematics and Its Applications) Terry Speed (editor), M...
(The Ima Volumes in Mathematics and Its Applications) Terry Speed (editor), M...
 
Dr Luke Alphey - DNA Sequencing (Introduction to Biotechniques)-Garland S
Dr Luke Alphey - DNA Sequencing (Introduction to Biotechniques)-Garland SDr Luke Alphey - DNA Sequencing (Introduction to Biotechniques)-Garland S
Dr Luke Alphey - DNA Sequencing (Introduction to Biotechniques)-Garland S
 
Utility of transcriptome sequencing for phylogenetic
Utility of transcriptome sequencing for phylogeneticUtility of transcriptome sequencing for phylogenetic
Utility of transcriptome sequencing for phylogenetic
 
Spatial transcriptomics in Plant (for Agriculture)
Spatial transcriptomics in Plant (for Agriculture)Spatial transcriptomics in Plant (for Agriculture)
Spatial transcriptomics in Plant (for Agriculture)
 
Next Generation Sequencing - An Overview
Next Generation Sequencing - An OverviewNext Generation Sequencing - An Overview
Next Generation Sequencing - An Overview
 
Next Generation Sequencing (NGS) in the Clinic
Next Generation Sequencing (NGS) in the ClinicNext Generation Sequencing (NGS) in the Clinic
Next Generation Sequencing (NGS) in the Clinic
 
EMT Next Generation Sequencing in Helath and Science
EMT Next Generation Sequencing in Helath and ScienceEMT Next Generation Sequencing in Helath and Science
EMT Next Generation Sequencing in Helath and Science
 
AdamAmeur_SciLife_Bioinfo_course_Nov2015.ppt
AdamAmeur_SciLife_Bioinfo_course_Nov2015.pptAdamAmeur_SciLife_Bioinfo_course_Nov2015.ppt
AdamAmeur_SciLife_Bioinfo_course_Nov2015.ppt
 

Model Pengaruh Ketersediaan Air Terhadap Pertumbuhan dan Hasil Kelapa Sawit

  • 1. ) ,r Jurnsl Psnelitian Kelapa Sawit, 1998, 6(l): 19 - 38 Indovsior Joutnal of Oil Palm Research, 1998, 6(l): 19 - 38 MODEL PENGARUH KETERSEDIAAN AIR TERHADAP PERTUMBUHAN DAN HASIL KELAPA SAWIT Iman Yani Harahap dan Sjafrul Latif ABSTRAK Kajian ini bertujuan untuk mengentbangkan suattt model guna memprediksi dan meng- anulisi.s flulctuasi bulanan hasil kelapa sawit (Elaeis guineensis Jac'q.). Pengembangan ntodel menekunlian pada falctor penyebab fluknasi hasil. Faktor tersebut adalah vaiasi lcetersecliaun air. .vang clipenganthi oleh clistibusi curah hujan. Pendekilan yang digunakan urthtk pengeniltang,an model tersebut dilalafunn dengan dua cara, vaitu (l) mengintroduksi aspek nerucu air ke dalam model, sehing(a model memiliki 2 submodel, yaitu submodel pertuntbuhan dan perkentbangan tananmn, dan subntodel neraca air (2) melakukan pe- nguntpulart clutct melahi penganrutan lapang selama satu tahun (Maret 1996 - Maret 1997) tttttuli ntentbungun dan ntengji model tersebut. Data dihtmpulkan dan plot pengujian per- crtbcran pernuliaun No. BJ-26-5, yang ditanam pada 1990 di kebun Bah Jambi, l'7'.Perkebtmatt :1santara II', Sinrulungrtn, Sumatera (ltara. Pengembangan model di- validasi dengan duta pengamalan pertumbuhan orgon vegetalif dan generatif, Iaju emisi pelepah rlaun, hu.sil tandan, dan kontponen-kontporrcn neraca air yang nteliputi evapotrans- pirusi dan kadar air tanah. Pengenbangan nndel nenunjulckan kevalidan model, dan intro- duksi vtbntoclel neraca air meningkathan lcepekaan model terhadap vanasi lretersediaan air, yartp akhint.v,u dupat ntening,katkan ketepatan prediksi hasil tandan buah hingga 15 %. ltlotlel ter.sehut dapat digunalran tmtulc nenganalisis pengaruh kekenngan terhadap hasil rundan melalui perlalnnn slcenafio lcelceringan. Hasil skenat'io ntentmjulckan bahwa ke- kerirtgan .selanrct -l dan 6 bulan bertuntt-tttrat menyebabkan penurunan hasil 8-9 % dan 2l- -13 o pudu tahun berilutnya. Pengaruh lrekeringan mulai terlihat pada 3 bulan pertama setelah uval lielierntgan dan kemudian meningkat hingga mencapai pwtcaknya pada 9 - l3 htt,ttfl selt'lalt uval lielceringan. 7-iga belas bilan setelah awal kekeringon, tanaman menun- tuA'kan pennilihatt kondisi dan kenruclian pengatahnya relatif kecil seteluh 36 bulan. Kar, kuncr. Llaers euirteettsis. model tanamatr . pcngembangan model, prediksr. tluktuasi hasil, kctcr>cdiaan air. kekeringan. perlakuan skenario PEDAHULUAN Sebaran ;urah huian menvebabkan ha- srl elapa sart hrtlulruasi (10). Fluktuasi h^r<rl rcrsebut urempengaruhl sebaran pauen r ang sulrt unur drpredrlsr Predltsi sangat dtperlute d-lrm pengelolaan budrdal-a ke- lrya sasrt- sepenr peneelolaan produksi- mn+onasr dan Enaga ke4a Kegtatan memprediksi hasil dapat dilakukan dengan menggunakan pendekatan analisis kuantitatif terhadap sistem produksi tanaman kelapa sa'tt. Model simulasr tanaman adalah salatr satu pendekatan kuantitatif untuk menga- nalisis sistem tanaman pada berbagai tingkat kompleksitas (2), yang dapat menerangkan dampak masukan sistem, seperti faktor ling- kungan terhadap hasil tanaman. l9
  • 2. Iman Yani Harahap dan Sjatiul Latif Pada saat inr telah dikembangkan suatu model simulasi kelapa sawit yang ditujukan untuli rnemprediksi potensi hasil. dengan asumsi tidak terdapat faktor pembatas pada lingkungan tanam. Pada kenyataannya. iklim musiman. terutama pada wilayah tropis menyebabkan hasil yang berfluktuasi, se- hingga diperlukan pengernbangan model dengan mempertimbangkan faktor iklim ter- sebut. Penelitian urr berhqu:m mengembang- kan suatu model untuk memprediksi hasil tanaman kelapa sawit dengan mempertim- bangkan radiasi surya dan ketersediaan air sebagai faktor pembatas. BAHAN DAN METODE Pendekatan )'ang digturakan urfuk nrengembangkan model adalah (l) memba- ngulr sffuktur model yang rneliputi submodel pertumbuhan dan fenologi. dan submodel neraca air. (2) rnelakukan pengamatan Iapang urhrk mengumpulkan data ],ang digunakan dalam penurunan parameter dan validasi model. Penganratan lapang dilakukan pada Maret 1996 - Maret 1997 (satu tahun) di plot pengu_jian pcrcobaan penruliaan. No. BJ-26-S- tahun tanant 1990, kebun Bah Jarnbi- PT. Perkebunan Nusantara IV. Sirnalungun- Surnatera Utara (2"59' LU 99'13'). Pengarnatan lapang dibagi dalam tiga aspek vaitu fbtosintesis. perturnbuhan dan fenologi. dan neraca air. Pengembangan model dir alidasi terhadap data peftumbuhan organ vegetatil- generatif. dan komponen neraca air (erapotranspirasi dan kadar air tanah; menggunal:an metode penrbandingan u1i-t dengan jenlang kepercal'aan I dan 5 o% (9) Laju fotosintesis diukur in .stttr dengan menggunakan penganalisis portabel (IRGA), tipe LCA-4 (Analytical Develop- ment Co., UK) rnengikuti metode Caem- rnerer dan Farquhar (l). Pertumbuhan dan fenologi diukur non-destuktif (3). Untuk aspek neraca air. pengukuran kadar air tanah mengikuti metode gravimetris. dan pengu- kuran evapotransprrasi menggunakan metode lysimeter untuli laju evaporasi tanah dan menggunakan metode Dufrene, Dubous. Rey, Quencez, and Saugier (4) untuk laju transpirasi tanaman. Aplikasi model dilaku- kan setelah model rtivalidasi. Pada penelitian ini aplikasi model ditujukan unhrli menga- nalisis dampak kckeringan terhadap hasil tandan buah melalui perlakuan skenario. HASIL DAN PEMBAHASAN Struktur model Pengernbangan model ditekankan pada introduksi faktor ketersediaan air ke dalam model !'ang telah dikembangkan sebelumnl a oleh Gerritsma dan Goudriaan (5). dan Van Kraalingen et al. (ll). Model y'ang dikem- bangkan rnerniliki dua subrnodel yaitu sub- model pertumbuhan dan fenologi serta sub- model neraca air. Submodel pcrtumbuhan dan l'enologi Submodel ini mensimulasi proses- proses )'ang berhubungan dengan keseim- bangan biomassa selama periode perhun- buhan. Proses pertumbuhan dapat dilihat pada diagrarn Forrester untuk subrnodel perhunbuhan dan fenologi (Larnpiran la). Asimilat kotor (A, kg CH2O ha-l hari-r) sebagai surnber perolehan bioruassa )'ang dihasilkan dari proses fotosintesis r ang
  • 3. todel pergaruh ketersediaan air terhaclap pertumbuhan dan hasil kelapa sawit ffilulian radrasi surl'a (QO. MJ ha-r han-') sebagar sttmkr energi. Di samping radiasl sun' altiritas fotosintesis juga ditenurkan oleh faktor-faklor lainnya yaitu radiasi sun-a oleh kanopi (,), kaersediaen arr (fiv)- dan parameter efisiensr p€ng$maan radiasi surya (e- kg CH:O MJ-t)- sehrngga produksi asimilat kotor dapat diformulasikan mengikuti per- samaan ( I ) A:e(l -r)Qoft. (la) dengan- .: "*t'* (lb) trr'= I-a/Tm- I-a = f (Ta): fm = f (eo) (lc) |. : koetisien pemadaman L.I : indeks luas daun I-a : konduktans stomalik aktual (rnm hari't) fm : konduktans stomatik maksimum (mm hari-t) Ta . transpirasi aktual (mm hari-t) Asimilat kotor (A), kemudian didistri- busikan ke dalam tiap organ (buah, daun, batang. dan akar) berdasarkan faktor par- tisinva (q). Sebagian dari asimilat diguna- kan turtuk respirasi perhrmbuhan dan pe- meliharaan sehrngga mengurangi kebuhrhan unnlk perturnbuhan organ tanaman. Simbol proses resprrasi untuk organ buah. daun. batang. dan akar berhrrut-turut adatah R{ Rl. Rs. dan Rr. Pertumbuhan tiap organ tanaman dihitung berdasarkan persamaan (2) dW* : l* (A - Rm) - Rg* (2a) : (l -kg*) n.(A-lanWQ,o) (2b) dengan- Qr, -2(r-2-i5)/lo (2c) fl'. : frrtumhuhan tiap organ (kg ha't hari't) rl. , Jnrtisi asimilat untuk pertumbuhan organ -{ a.unilat koror (ks CH:O ha hari'r) Rm r*prrrsi pera$'atan (kg CH2O ha-r hari-r; : respirasi perturnbuhan (kg CH2O ha-t hari-t) : koetisien respirasi perawatan : bobot kering biornassa tanaman (kg ha-^) : koefisien respirasi pertumbuhan : kuosien suhu : suhu udara ("C) Pada submodel perhrmbuhan dan fe- nologi. hasil tandan dihitung dari kedu- dukan pelepah dan pertumbuhan tandan buah. sehingga laju emisi pelepah dan jum- lah pelepah hams dideterminasi. Submodel ini juga urendetenninasi biomassa tegakan, sehingga pemangkasan pelepah dan laju senesen akar dimasukkan ke dalarn sub- model pertumbuhan dan fenologi. Indeks luas daun (LAI) dihitung sebagai fungsi biomassa tegakan dan parameter luas daun spesifik (sla). Submodel neraca air Submodel neraca air terdiri dari kom- ponen kadar lengas tanah (0), infiltrasi air (Is), transpirasi tanarnan (Ta), evaporasi tanah (Ea), dan perkolasi (Pc). Interaksi di antara komponen-komponen tersebut dapat dilihat pada Persamaan (3) dan Lampiran lb Lapisan tanah baeian atas (l) 0, (l): er-1 (l)-r [5' Pc, rl) - Td,(l) - Ea,(l) (3a) Lapisan tanah baeian barvah (2) 0,(2):0,-r (2) + Pct (l) - Pcq (l) - Tat(l) (3b) Sebagian curah hujan diintersepsi oleh kanopi (lc) ketika mencapai permukaan puncak kanopi dan sisanya mencapai per- mukaan tanah rnelalui kanopi dan aliran batang. Air r-ang diintersepsi kemudian dievaporasikan kenrbali ke atrnosfir, sedang yang mencapai pennukaan tanah akan terin- filtrasi ke dalarn tanah sebagai air infiltrasi. Rg- km w kg- Qro T f. I
  • 4. Lnan Yani Harahap dan Sjafrul Latif a Pada submodel ini diasumsikan bahwa tidak terdapat aliran permukaan, sehingga model tersebut ditujukan untuk aplikasi pada per- mukaan tanah yang datar. Air infiltrasi rnasuk ke lapisan tanah yang lebih dalam jika kadar air tanah pada lapisan tersebut telah melebihi kadar air pada kapasitas laparrg (fc). Kelebihan air pada tiap lapis tanah dikenal sebagai at perkolasi (Pc). Air perkolasi pada lapisan . tanah yang terdalam akan hilang sebagai air drarnase. Kadar air tanah (0) pada tiap lapis tanah di atas titik layu pennanen (wp) akan diabsorpsi akar, yang kemudian digunakan dalam proses fisiologis dan transpirasi tanaman melalui permukaan daun. Kebu- tuhan air untuk proses fisiologis relatif sedikit. yaitu sekitar | % dari yang di- transpirasikan, sehingga dapat diabaikan. Air yang diasorbsi akar pada tiap lapis tanah dapat dihitung dari nilai transpirasi maksimum (TM), kondisi atmosfir (evapo- transpirasi potensial, ETP). dan indeks luas daun (LAI). Transpirasi rnaksimum terjadi jika tidak ada keterbatasan air tanah. Jum- lah air yang diabsorpsi akar pada keselu- ruhan lapisan disebut sebagai air transpirasi aktual (Ta). Pada lapisan tanah atas, air tanah dapat hilang melalui proses evaporasi dari permukaan tanah ke atmosfir. Evaporasi tanah (Ea) dihitung berdasarkan metode dua fase (8). Evaporasi rnaksimum (Em) pada fase pertama terjadi ketika tidak ada keter- batasan air tanah. sedangkan fase kedua terjkadi jika laju evaporasi menumn secara eksponensial. Baik transplrasi maupun evaporasi di- tunmkan dili peubah eksternal Qing- kungan)- )raiu radiasi surya suhu udara, kelembaban udara, dan kecepatan angin. Peubah eksternal yffig mengendalikan evapoffanspirasi melalui evapotranspirasi potensial (ETP), dihitung melalui fonrrula Penman (6). Masukan model Data masukan yang dibutuhkan model adalah peubah iklirn harian dan inisialisasi kondisi tanaman dan tanah. Peubah iklim meliputi curah hujan (mrn hari-r), suhu ('C), lama penyinaran (am hari-l). kelem- baban relatil (%). dan kecepatan angin (km hari-r). Sedangkan nilai inisialisasi meliputi bobot kering biornassa tegakan tiap organ (kg ha-'). indeks luas daun. kadar air tanah pada kapasitas lapang dan titik layu penna- nen tiap lapisan tanah ('Zr). Validasi dan l<enekaan model Penggunaan modcl nrernbutulrkan ni- lai-nilai paranteter. yang merupakan hasil penurunan dari pettgamatan lapang. Pa- rameter pada setiap submodel dan nilainya disajikan pada Larnpiran 2a. Validasi nrodel bertu.iuan untuk rnengevaluasi keberhasilan pentbanguttatr dan penurunan paranteter nrodel. Validasi dilakukan dengan cara uretnbattdingkan antara keluaran model dengan hasil peng- ukuran lapang. Tampilan rnodel neraca air. r'ang ter- diri dari kadar air tanalr pada kedalaman 0 - 100 dan 0 - 180 cm menunjukkan kete- patan prediksi ]-ang baik (Garnbar l). Hal tersebut juga terjadi pada komponen neraca air lairurya (Larnpiran 2b). Kecuali pertum- buhan organ darm, hasil prediksi peubah dalam submodel pertumbuhan dan fenologi menturjukkan ketepatan yang baik (Lampi- ran2b). Tampilan prediksi hasil bulanan 22
  • 5. lr- "1 Vodd pcagguh kacrsedieen airtertradap pertumbuhan dan hasil kelapa sawit m 6@ ^5S lsm .? 4so E* !so r3m n ill - - EqD E -Eo a !o fisrjfr- p& Cnbu 2, ymg menrmjuk- kr b-re Ed+d ea p€riode ekstrim ha- sil tr blan- yaih p€riode hasil tan- dr h- ]rrg tinggi Ejadi Pada Oktober dr Fir& h'cil r€dah t€rjadi pada Fch-i=Afil- Fcnryilm tersebut meru- pfugdra rcgcsemcif ffuknrasi hasil hllldiSmualJtra Umumnya, pen:[npilan model milrf memprediksi peubah aspek pertumbuhan fo- nologi, dan neraca air dengan baik, sehingga pe,nunman parameter dari hasil pengamatan lapang tersebut layak digunakan untuk membangun model pertumbuhan kelapa sawit. Perpulcrran (kg/ha) lEulsi (1 = 1 Jrrnd 19q S = 1 Janmd 1s4 Gambar l. Prediksi (garis) dan pengukuran (simbol) kadar air tanah (a) dan ploting data prediksi-pengukuran terhadap garis l:l (b) ?mJ- m Im E'| 5m c E@ o !o Fzm tt Et- H0 I m 6zl@ € 9m a *2m to drm 0 FgFS Od$ DsS RU9/ EIlan 23 Gambar 2. Prediksi Ga.is) dan pengukuran (simbol) hasil tandan buah segar bulanan (a) dan ploting data predilisi-penguliuran terhadap garis l:l (b)
  • 6. r I I APR'90 Tmrn Yani Harahap dan Sjafrul Latif AGST'96 OKT'96 DE5'96 FEB'97 Erlu Gambar 3. Pengulnran (simbol) dan prediksi (garis) hasil tandan buah bulanan sebagai ke- luaran model yang mempertimbangkan faktor ketersediaan air (fu : f{neraca air)) dan tanpa mempertimbangkan faktor ketersediaan air (fu:1) periode kering periode kering 12 15 18 21 24, 27 30 Nomor bulan Gambar 4. Persentase pelrrlnman hasil akibat kekeringan selama 3 dan 6 bulan 6 bulan t/ 25 Ert Pio s 5 g o g t- = tr o CL o o .E c o o L o o. Pengujian kepekaan model dilalcrkan terhadap stnrktur model. Tujuan pengujian tersebut adalah mengevaluasi pengintro- duksian faktor ketersediaan air dalam pengembangan model. Pengujian dilakukan dengan cara menbandingkan antara ke- luaran model yang menrpertimbangkan fak- tor ketersediaan air (fu : f { neraca ait}) dengan keluaran model yang tidak memper- timbangkan faktor ketersediaan at (fu : l). Pe,nbandingan hasil tandan buah memmjukkan bahwa keluaran model yarg tidak mempertimbangkan faktor keter- sediaan air cenderung lebih tinggi dibandhg dengan keluaran model yang mempertim- bangkan faktor ketersediaan air. Hasil pem- bandingan dari keluaran kedua model Fw: f {neracaair}
  • 7. Model penganrh ketersediaan airterhadap pertumbuhan dan hasil kelapa sawit tersebut dengan hasil pengukuran lapang menunjukkan bahwa pengembangan model memngliatlian ketepatan prediksi hasil tan- dan bulanan (Gambar 3). Model yang tidak mempertimbangkan faktor ketersediaan ar menghasilkan ke- luaran model 19 % lebih tinggi dibanding pengukuan langsung, sedangkan pengem- bangan model yang mempertimbangkan faktor ketersediaan air menghasilkan ke- luaran model hanya 4 % lebth tinggi dan pengukuran langsung. Hal ini menunjukkan bahwa pengernbangan model dengan mem- pertimbangkan faktor ketersediaan air dapat meningkatkan ketepatan prediksi sekitar l5 %. Hasil analisis tersebut didasarkan pada data )'ang dikunrpulkan dari wilayah penelitian )'ang beriklim basah, sehingga drperkirakan model tersebut akan lebih peka 1r}.a diaplikasikan di rvilayah yang memiliki perbedaan musim kering dan penghujan ) ang jelas. Analisis pengaruh kekeringan terhadap hasil tandan buah -nalisis dilakukan dengan menggula- kan skenano perlakuan kekeringan. Perla- kuan kekenngan meliputi (l) ttga bulan penode kenng )'ang berkelanjutan, (2) enam bulan penode kerrng )'ang berkelanjutan. PErlaluan tErsebut mengasumsikan bahwa Jumlah ;urah hu]an pada periode kering ti- dali melebrlu 6r) mni per bulan. K:dua perlaluan tersebut menunluk- kan batrsa pengamh kekeringan mulai ter- hhat pada 3 bulan pertama setelah awal keksnngan- dan kemudian memngkat sampal prn--alrna pada 13 bulan kemudian ) -ans menunman nastl 8 - 9 o/o pada pen- ode ktsrtngan -: t'ulan dan 2l - 23 o/o pada pm.rfu kelmngan 6 bulan Tiga belas bu- lan setelah kekeringan. tanaman menunjuli- kan pemulihan dan pengaruhnya relatif ke- cil pada 36 bulan setelah awal kekeringan (Gambar 4). Penurunan kadar at tanah yang disebabkan periode kering menye- babkan penumnan perolehan asimilat untuk pertumbuhan tandan buah, sehingga hasil menunrn. Pengaruh tersebut mulai tampak pada 3 bulan setelah awal kekeringan. Hal tersebut berhubungan dengan perkem- bangan tandan buah yang membutuhkan pa- sokan asimilat yang tinggi untuk fase pe- ngisian mrnyak yang terjadi sejak 3 bulan sebelum buah mat.tug fisiologis (7). Pe- ngaruh kekeringan terhadap perkembangan tandan buah dimulai sejak awal antesis hingga matang fisiologis yang membutuh- kan waktu 6 - 7 bulan. Apabila terjadi peri- ode kekerrngan selama 6 bulan, maka pe- ngaruhnya dapatterladi selama 12 bulan. KESIMPULAN Model tanaman kelaPa sawit Yang dikembangkan adalah suatu model fisiologis yang menekanlian pada faktor penyebab fluktuasi hasil. ) ang berasumsi bahrva fluktuasi tersebut drsebabkan variasi keter- sediaan air yang bcrhubungan dengan dis- tribusi curah hqan. Model menunjukkan kevalidan, dan introduksi submodel neraca air meningkatkan kepekaan model terhadap variasi ketersediaatt air, sehingga mening- katkan ketepatan prediksi hasil tandan buah hingga 15 %. Olch karena ihr, pengem- bangan model lavak digunakan untuk menganalisis pengaruh kekeringan terhadap hasil melalui skenario perlakuan' Hasil skenario menunjukkan bahrva kekeringan 3 dan ('' bulau menvebabkan ha- sil menuntn berhrnrt-tunrt sebesar 8 - 9 % l'r
  • 8. -..'v Iman Yani Harahap dan Sjafrul Latif + dan 2l - 23 % berturut-tunrt. Pengaruh kekeringan mulai tampak pada 3 bulan pertama setelah awal kekeringan, kemudian meningkat pada 9 - 13 bulan kemudian. Tiga b"lut Uot* setelah awal kekeringan, tanaman me,lrunjukkan pe,mulihan dan pe- nganrlrnya relatif kecil setelah 36 bulan kemudian. Penurunan parameter dalam model ini dilakukan pada kondisi yarLg terbatas (hanya pada satu bahan dan umur tanaman), sehingga membutuhkan penunman parame- ter pada kondisi yarLg lebih luas. Di samping itu, model ini membutulrkan verifi- kasi pada wilayah yang memiliki tipe rklrm y arLg lebih kering. DAFTAR PUSTAI(A l. CAEMMERER, S. VON A]lD G.D. FARQTIHAR l98l . Some relationstrip befween the bio- chemistry of photosynthesis and the gas ex- change ofleaves. Planta 153 :376-387- 2. CHARLES.EDWARDS , D. DOLEY, A}'{D G.M. RX,MINGTON. 1986. Modelling Plant Growth and Developmen! Asademic Press, Sy&tey. 235 P. 3. CORLEY, R.H.V., J.J. HARDON, Al'lD G.Y. TAI'I. 1970. Analysis of growth of the oil palm (Etaeis guineensis Jacq). I. Estimation of growttr parameters and application in breeding. Euphytica 20:307 -315. 4. DUFRENE, E., DI'BOS, H. REY, P. QUENCEZ, AI.ID B. SAUGIER. 1992. Changes evapG transpiration liom an oil palm stand (Elaeis gui neen si s Jacq) e:rposed to seasonal soil water defioits. Acta Ecologioa 13 (3): 299 '3I4. 5. GERRITSMA W. Al.lD J. GOUDRIAAI"I ' 1988. Simulation of oil palm yield. Dept. Theoretical Production Ecolory. Agricultural University Wageningen. 32 p 6. PENMANI, H.C.1948. Natural evaporation for open water, bare soil and grass. Proc. R. Soo. Lon- don 193 :120 - 146. 7. PENNING DE VRIES, F.W.T. 1983. Modelling of growth and production. Encyclopedia of plant physiology. Sprienger Verlg heidelberg.( I 2d): I 17-150. 8. RITCHIE, J.T. 1972. Model tbr predicting evaporation from a row ffop wilh incomplete cover. Water Resource Research 8 : 1204 - 1213. 9. STEEI- R.G.P. AIID J.H. TORRIE.198l. lntrodustion to Statistics. McGraw Hill, New York.382 p 10. TURNER P.D. 1977. Etrbcts of drouglrt on oil palm yields in South East A.sia and the South Pasific R"gotu p.673494.lnD.A- Earp and W. Ne- wall (Ed.) International Development in Oil Palm- Incorporated Society Of Planters, Kuala hmpur. ll. VAI{ KRAALINGEN, D.W.G., C.J. BREURE, A}'ID T. SPITTERS. 1989. Simulation of oil palm growttr and yield. Agric. and Forest Meteorol. 46:227 -244. 26
  • 9. Model p€Nrgaruh ketersediaan air terhadap pertumbuhan dan hasil kelapa sawit I^qirm la. Diagram Forrester perhrmbuhan dan fenologi kelapa sawit Keterangan . n -/ : Suurbcr a DC : Laju t] : Suile variable : Peubah grpulasi I Rtlsot . Pcubah bantu : Alirau masa tl :Pcubahluar ( ) : Parameter ||i t: i; [Radiasi surya] [Kecepatan anginl 'L rn t) lanrpiran lb. Diagram Forrester neraca air kelapa sawit
  • 10. + Iman Yani Harahap dan Sjafrul Latif Lampiran 2b. Hasil pengujian menggunakan t-test student pada jenjang kepercayaaan 95 dan 99 % 28 I I kan2a' Nilai parameter vang digunakan dalam model Submodel Parameter Simbol Setuan Nilai Perantbuhan dan Fenologi Nertca air Satuan bahang rmhrk tiap emisi daun Temperatur dasar Efrsiensi penggunaan radiasi surya Partisi asimilat Daun Batang Akar Respirasi perawatan Intersepsi curahhujan Koefisien pemaarunan Evapotranspirasi tanatl (Fase I) (tase II) Hue To t rl Km k U B Hari "C OC Kg CH2O Y'' mm mm hari-ls 159,7 l5 3,1 l0-3 0,64 0,24 0,12 0,005 0,87 0,32 I l,l 2,7 Peubah Satuan t-hitung t-tabel t 005 Beda t 001 Beda Submodel neraca air IGdar air tanalt 0 - 100 cm Kadar air tanah 0 - 180 cm Transpirasi aktual Evaporasi aktuat Submodel perhunbuhan dan fenologi Enrisi daun Pemangkasan daun Pertumbuhan daun Pertunbuhan batang Pertumbulran tandan buah Indeks luas darm Hasil bulamn lnm mm rnm hari'l rnm hari-l Kgha" 2 minggu-t Kg ha-t 2 mhggu't Kglw'' 2 minggu-t Kg ha-' btrlan'r 0,53 1,43 -0,48 -0,67 -0,21 -027 -2,63 -1,23 -1,87 1,69 4,72 2,04 2,M 2,12 2,02 2,13 2,13 2,70 2,10 2,10 2,10 2,20 ns ns ns lls NS ns '| ns ns ns ns 2,76 2.76 2,92 2,71) 2,94 2,94 2,89 2,89 2,89 2,89 3"10 ns ns NS 11s lls ns ns ns ns tul Iul
  • 11. Model of water availabilin,etl'cct on growth and vield of oil pralrrr Dlodel of water availability effect on the growth and yield of oil palm Lnan Yani Harahap and Sjafnrl Latif Abstract The study was aimed to develop an oil palm crop model to predict and analyze monthly vield fluctuation. The model stressed on the factor causes yieltl fluctuation. This factor was the variation on soil water available, alfected by rainfall distribution. The ap' proaches tt.sed to develop that model were, firstly, by introducing soil water balance sub- model, vhich simulate water available into previous ntodel, to develop growth, phenologt, anc! u,ater halance submodels. Secondly, by conducting field observation for one year (Alarc'h I996 - March 1997) to collect datafor constracting and validaring the developed ntodel. Data utere c'ollected /rom Indonesian Oil Palm Research Institute (IOPN) breeding trial plot, nuo. BJ-26-5, plantetl in 1990, at Bah Jambi estate, PT. Perkebunan Nlusantara IV, Sinnlungtm, Surnatera L,rtura. The developed sinrulation model wus vuliilated against the data oJ't,egetative uncl generative organ biomass, number of frond emtssion, ftait hunch vield, and v,ater balance contponent.s inchding evapotranspiration and ';oil water content. The mudel slxtwed good agreement with the observation dnta and the introduc'tictn of water balance subtrurlel intu developecl ntodel increased sensitivity of model kt vaiation o.f soil wurer ctvailable. which increase the precisirn of prediction on rnonthl fruit bunch yield .lluctuatiort by I5 percent. Therefore, it could be used to annlyze the influence of drought on yield in droughr treatilLent scerario. The scennrio showed that 3 and 6 monlh dry peiod would decrea-se t,ield on the next year a. much as 8 - 9 Vo and 21 - 23 Va, resp€ctively. The imtnediate itdluertce of'drought ccruld be seen in the first 3 months, and then aise to reach its peak in 9 - I3 rnonths later. At thirteen rnonths after arought, the tree.s showed recover- ing and then the influence o.f drought was relatively small after 36 montllr. [agr ..rords oil pllm. crop nrodel. developed rnodel. predict, ],ield tluctuatiou. sorl lvateravailable, drttught. treatmcnt sccllarl() lntrotluction Ramfall drsrrbutron ;auses the fluc- Fl*xln of od trilm 1 reld r I u I The flucrua- Ixn carses drft:uius rn predrcung han est dsrrlhl.ro. hedcurr or hanest drstnbu- txn ls rc;ess4 rn d patm culor auon- rn a& to nrrrtge fu podnon- trmsporta- Dgr d lfu -Eld pedcum could be E & bl q $ditmrt aasrs + F.ch o fu troho $xnem of oil P.h- Crop simulation model is one of quan- titatir-e approaches to aualyze the croping s) stem at ser-eral conrplexiff levels (2), and therefore. it could explain the effect of input s stem sirich is enr.irorunental factor to r reld. ln recent vear- the simulation model on oil palm has been developed which assume that there is no limiting factor on crop envi- ronment- and the model was purposed to predict the f ield potential. [n fact. seasonal climate- especialll in tropical regions, can cause r-ield fluchtatron. therefore develop- 29
  • 12. i , hnan Yani Harahap and Sjatiul Latif rng model which consider the seasonal cli- mate factor is required. This research was aimed to develop a crop modeling of oil palm on growth and yield of oil palm by considering the solar radiation and water available as driving factors. Materials antl Methods The approaches used in order to de- velop the model u ere ( I ) bl constnrcting the model which is include the growth. phe- nology and rvater balance strbrnodels. (2) by collecting field data for deriving atrd vali- dating the model. Fietd obsen atiou r,r,as conducted for one year, behveen March 1996 and March 1997. at Indonesian Oil Palm Rescarch ln- stitute (loPzu) breeding trial. plot No. BJ- 26-5, planted in 1990. at Bah Jarnbi estate. PTP Nusantara IV. Simaluurgun. North Su- matera (2"59' N - 99"13') Field obsen'a- tions were separated into tluee aspects. tll- cluding photosl nthetic actrr,'it)'- gror,r1h. phenology and water balauce The rnodel was validated against the data of vegetative. generative organ biontass- and u'ater bal- ance components (such as evapotrartspira- tion and soil water oontent). Data u'ere sta- tistically analyzed by' using t-test at I and -5 7o confidence levels (9). Photosynthetic activity rate was measured in situ using portable atralyzer (IRGA), type LCA-4 (Analytical Devel- opment Co., UK) retbrring to Caeruner and Farquhar method (l). Growth rate ancl phenology non-destructively lneasurement wa-s done ret'erring to Corley et al. (3). In water balance zlspects. soil water content was meiLsured usrrg gravimetric method, and evapotranspiration was measured us- ing rnicrolysimeter tbr evaporation and crop transpiration were determined hy Du- trene et al. method (4). The application trf model was done atter the model was vali- dated to analyze drought eff'ect on yield hy scenario treatment. Results and Discussion Structure of the rnodel The development of rnodel was stressed on the iruroduction of water available factor into previous rnodel. which was developed by Gerritstna atrd Goudriaan (5) and by Van Kraalitrgen et al. (l l). The ntodel developed here had two subrnodels, ,grrnvtlt dttd phenology and water balanct subrnodels. Growth and phenology subntodel This subnro.lel simulates the pl'oc- esses. which is relatirtg to [riornass bal- lrncing during tlrc growth period. The grtxvth process could be seen iu Forrester diagranr for gror,r th and phenulogy Sub- rnodels (Appendix la). Gross assirnilate (A, kg CH2O ha' day'), as a souree of biornass was ob- tained fronr photosynthetic activity that require solar radiirtiort (Qo, MJ ha-' day- ') as source of cnergy. Beside the solar radiation, photosvnthetic activity. also detennined by other factors such as radi- ant interception hy canopy (t), water availability (fiv), and parameter of light use efliciency (e, kg CHrO MJ-'), so the production of gnrss assimilate could be tbrmulated by equation below (l).
  • 13. Modd of, urarer ernilability effect on growth and yield of oil palnt A=rf l-t)Qofrr rrrb, t = etl..tl fr = frfu. I-e = ftTeF I-n = f(Qo) (la) (lb) (lc) canilrc co,firrrr L{I,lcd rretr Fe IEEtr' ".rrfrlrr- Io|rl (rrm day-l) Fl : rrhnr.rrd- rdrlrn 1rrm dayl) Te :clq:rin(mdrr'r) Gr6s assimilarc (A) was then dls- uihned ino each organ (fruit, leaf, stem, ad roc) according to their partition fac- ffi (n). A pan of assimilate will be used for gronnh and maintenarrce respiration's, ad freretbre, it will be decreasing for or- gan grorrlth. The symbol of respiration prcess for fruit, leaf, stem, and root were Rf, Rl, Rs, and Rr, respectively. The grornh of each organ was calculated based on the tbllowing equation (2). dW.: l* (A - Rm) - Rg* be entered into the component of growth and phenology subrnodels. Leaf area index (LAD, was calculated as function of standing biomass and specific leaf area pa- rameter (sla). Water balance submodel Water balance submodel consists of the following component, i.e. soil water content (e), water intiltration (Is), crop tran^spiration (Ta). soil evaporation (Ea), and percolation (Pc). Interaction among these components sould bee seen in equa- tion (3) and in Appendix lb. Upper soil layer (l) 0, (l) : 0,-r (l)+ Isr-Pcr (l) Tar(l)-Ea(l) (3a) Lower soil layer (2) 0, (2) = 0,.r (2) + Por (l) - l'q (l) - ]'ar(l) (3b) A part of rainfall u,as intercepted bf' canopy (Ic) rvhen reaching the top of can- opy and the other rvill go to soil surface by free t'all from the canop), and tluough stem flow. The intercepted rainfall will be re evaporated to ahnosphere and the remaining rvater in the soil surflace will be infiltrated into the soil. [n thrs submodel. it was as- sumed that there was llo mn-off or rvater nur-on. Therefore. its application was pro- posed to the flat strrlace soils. Infiltration water entered the deeper layer of soil if water content in this la1'er is lesser than the rvater content at field capac- i5, (fc). The exceed u'ater on each soil la1'er was knorryn as percolation rvater (Pc). Per- colation water on the deepest soil layer rvill lose as drainage water. Water content (0) in each soil layer rvhich is higher than the wilting point (wp) will be absorbed bv root- tiren it rvas used in (2a) I I : (l - kg*) n*(A - kmWQr,.,) (2b) with. e,u - 2{J-255)iltt ec) : growth cach organs (kg ha'r day-r) : assimilate partition rvhich allooated to each organs : gross assinrile[.: 1kg CH2O ha day'r; : nraintenansc respiration (kg CH2O ha-l day-r; : grorvth r.rspiration tbr each organ : coc'lli uient ot' rnaintcnance respiration : dn'weiglrt ol'crop lriornass 1kg ha-t) : coellicient of' growth respiration : tenrperature quotrL'lrt : air tcmperature (oC) For growth and phenology submod- els, yield was calculated tiom lrond posi- tion and truit bunch growth, therefbre emission rate of frond and lrond position wiil determine the yield. This submodel also determins the standing biomass, so $at frond pruning and root death rate will
  • 14. Iman Yani Harahap and Sjafrul Latif physiological process and transpired through passing leaf surface. The water needed for physiological process was rela- tively too small compared to transpiration' less than I Yo. and therefore, it could be ig- nored in water balance submodel. The water. which was absorbed bY root in each soil layer. was calculated from its maximum transpiration value (Tm), at- mospheric condition (evapotranspiration potential, ETP), and leaf area index (LAI). Maximum transpiration occurred when there was no limitation on soil water con- tent. Amount of water absorbed by root at whole layer was called as actual transpira- tion (Ta). ' At upper soil layer, there was water lost by evaporation from soil surface to at- mosphere The soil evaporation (Ea) was calc;rlated based on two-phase methods (8) Maiimum evaporation (Em) at first phase occurred when there was no limitation on soil water content, whereas the second phase occured when evaporation rates im- mediately decreasing exponentially with time. Both transpiration and evaporation were derived by external variable (envi- ronment). including solar radiation, air tem- perature, air humidity and wind speed. The exogenous variable driving evapotranspira- tion by evapotranspiration potential (ETP), will be calculated bv Penman formula (6). Input model Input data required in the model were daily climate variables and initialization of crop and soil condition. The climate vari- able including raintall (mm day-t), air temperature ("C), sunshine duration (hour day-t), relative humidity (%), and wind speed (lan day-t). Whereas the initializa- tion values including standing biomass dry weight of each organ (kg ha-l), leaf area index, soil water content of each layer at field capacity and wilting pont (%). Validation and sensitivity model The use of model requires Pa- rameters, which are derived from the re- sult of tield observation. The parameters of eaoh submodel and their value were shown in Appendix 2a. Validity of rnodel ProPosed to evaluate the successful of constructing and deriving of parameters model. Validity was done by comparing between output model and field measurement. Pertbrmance of water balance model, which were consist of soil water content on 0 - 100 and 0 - 180 cm deePs (Figure l) showed a good precise on pre- diction of soil water content and all of water balance components. Except growth of leaf, the prediction showed a good pre- cise on all of growth and phenology vari- ables (Appendix 2b). Performance of monthlY Yield Pre- diction presented in Figure 2. Model per- formance showed that there were two ex- tremes period of monthly yield. The first was high yield period, which occurred in October and ttre second one was low yield period in February- April. This perform- ance was generally representing the monthly yield fluctuation in North Su- matera. In general, the model Performance was able to predict the variable of growth, phenology, and water balance aspects, and therefore, the parameters were derived from field observation can be used to de- velop a model of oil palm growth. The sensitivitv test of mpdel was done on model structure. The aim of this testing
  • 15. Model of water availabilily ell-ect on growth and yield ot'oil palnr was to evaluate the effectivity of the intro- duction of water available factor in order to develop the model. The testing was done by comparing the output of model which con- sider the water available factor (fu : f {water balance}) with the model without considering that factor ( fw : l). The comparison showed that fruit bunch yreld as the output of model without considering the water availability (fw : l) tended to be higher than the output of an- other model (fw : f {water balance}). The output comparison of both models with field measurement showed that the development z!o&0 Ntrbdd4p(1 = 1 .,brry 1$ ffi = 1 .Al-ay1'971 AgS JnS A{gS dF DsS Rt9/ ]t/ffil of model could increase the precision of prediction on monthly yield fluctuation (Figure 3). The output of rnodel without consid- ering the water ar,ailable factor was 19 o/o higher compared to the direct measurement, whereas the output of model considering the water available factor just 4 % higher compared to direct measurement. Therefore, the development of such model could increase the precision of prediction by E %. This analysis lvas based on the data collected from field location having wet climate type. 300 400 500 600 700 lVhasurement (mm) 01m2m3m4m5m It/leasrenent of nnnhly yield (kg/ha) 650 600 F 550 E soo 5 450 E 400 E 350 o i 300 50m ; 4sm '; 4m = 35m Eego@ ESzsm tEzm .E ls@ Elm tsm do l i lI ^@ 6 €m ED 5m !t 3o b2co t !to =o -r @l sl{ I @l olt nl 1@L 1q) E E _v c o c o o rb (U t =: o ct) 250 I 200 L 200 { Figrre l. Prediction (lines) and measurement (symbol) of soil water content (a) and plot- ting data of prediction-measurement on line l:l (b) Figrne 2. Prediction (line) and measurement (symbol) of monthlr fruit fresh bunch yield (a) and plourng data of prediction-measurement on line l:l (b) JJ
  • 16. - I 4500 4000 3500 I .ooo E $ zsoo € t zooo I f lsoo 1 000 500 o AP R'96 JUN'96 AGST'g8 0 KT'96 D ES'96 FE B'07 Xonih Figure 3. Prediction (lines) and measurement (symbol) of monthly fiuit fresh brurch yield as result of output model considering available water facto.r, fiv : f {water balance} and without considering that factor (fiil: l) dry period 3 months of dry pcriod 0 3 6 9 A63AXZI O3S NrEdmrtr Figure 4. Persentage of decreasing of yield as affected by 3 and 6 month dry period E !, gga Te" SE" H$' .'o collected from location having wet climate t),pe. It rvas assumed that the model would be more sensitive when it is applied tci the area having dry and rain)' season which is sharpl,".- difference. The influence of drought on yieldanaly- sis fuialysis of drought effect on yield rvill be based on the scenario of drought treat- ment. The drought ffeahnents were 3 34 I Iman Yani Harahap and Sjatiul Latif Fw:1
  • 17. todel of $'at€r a?rlability eftbct on growth and yield of oil palm I ; : mtrs and 6 months conunuoush'. These treatlneots lUere assumed as the amount of rarnfdl :rs less than 60 mm at each dr--v- month penod. Botr of scenario treatrnents shorved 6at dre immerliate rnlluence of drought could be seen in the first 3 month. and then reached is peali rn 13 month later rvhich decreas€d as much as 8 - 9 oh and 2l - 23 9'o for i and 6 months dry period. respec- tir elv Thirtecn nronths after drought. the trees recovered their grorvth and the inllu- ence of drought as relatively small 36 months later (Figure 4). The lowering of soil water content afibcted by dry period caused the de- creasing of assimilate gain tbr gromh of truit bunch and tinally decreased the yield. The immediate intluence of drought occurred at 3 month later. It related to the phase of truit bunch development, when fruit bunch required a highly assimilate supply for synthesizing of oil 3 months prior to ripening (7). The influence of drought on yield occurred as long as 12 months since the begiruring of dry period. It may relate to truit bunch development period, since truit ripening completely lrappened within 6 - 7 month after anthe- sls. If dry period occur as long as 6 month, its totally eftbct will be as long as 12-13 months since the begiming of drought. Conclusion The presented crop model is a phl,sio- logical model stressing on the factors cause tbe yeld fluctuatrcn. It r,r-as assurned that 6e frtors rere the variation of soil rvater ar-ailable- silich s.as affected bv rainfall distribution. The model showed good cor- relation with observation data. The intro- duction of water balance submodel into the developed model could ulcrease its sensr- tivity. The variation of soil water available, could increase the precision of prediction on fruit bunch yield by 15 %. Therefore. it could be use to anahze the influence of drought on yield irr drought treatment sce- narlo. The scenario shorved that 3 and 6 rnonth dry period rvould decrease the yield onc year later. as much as 8 - 9 Yo and 2l - 23 Vo, respecti'r'c['. The irnmediate inJlu- ence of drought could be seen in the first 3 months, and reached its peak in 9 - 13 month later. The trees recovered after thir- teen months of drought. however. the influ- ence of drought was relatively small after 36 months later. Deriving of parameters in this model was done at lirnited environment (iust on one material and age of planting), it is therefore, required a wider enviroument condition to represent the parameters. In addition, the development of this present model needs veritication on the area with more dry climate type. Rcl'ercnces l. CAEMMERER. S. '( )N ancl Ci.D. I"ARQUHAR. l9t( I . Some relatronship betwecn the l)lochemlstr' of photosynthesis and the gas exchange of leaves. Planta I 53 .376 - 387. 2. CH.ARL.FIS-EDU/ARDS D. DOLEY. and G.M. REMINCiTON. 1986. lvlodelling Plant Cirorvth and Development. Acadernic Press. Sydney. 235 p. 3. CORLEY. R.H.V.. .l .1. HARDON. and C;.Y. T.AN. 1970. Analvsis ot' growth ot' the oil palnr (Elaer.r gutneen.sis .Iacq). [. Dstimation ot' growth pararrrcters anc{ applicatiort in lrreeding. Euphy'tioa 20 30'l -315. ; I I ) I I 35
  • 18. a 4. DUFRENE, E., DUBC)S,If REY, P. QUENCIIZ, aad B. SAUGIER 1992. Changes ovapoilrasspira- tion from an oil palnr sand (Elaeis guineenils Jacq) orposed to seasonal soil wdr defioits. Asta Ecologica 13 (3): 299 -3L4. 5. GERRITSMA W. and J. GOUDRIAAI{ . 198t. Simulation of oil palm yield. DepL Theoretical Pr,odustion Boolory. i{grisulhral University Wageningso" 32 p. 6. PENMAII, H.C.1948. Natural evaporation for open waletr, bare soil and grass. Proo. R Soc. Lon- don 193 :120 - L46. 7. PENNINC DE IRIES, F.W.T. 1983. Modelling of growttr and production. Encyclopedia of plant physiologgr. Sprienger Verlg Heidelbcg;( I 2d): I l7-150. Appedix la. Forrester diagram of growth and phemlogy of oil palm [Temp] Inan Yasi llarahap and Sjaftul I^atif 8. RITCHIE, J.T. 1972. Model for predicting from a row crop withincomplet€ oover. Wat€r Resource Rosoerch 8:1204 - 1213. 9. STEBI. R.G.P. and J.H. TORRIE.I98I. lntoductionto Statistics. MoG'raw Hill, New York. 382 p 10. TLJRNE& P.D. 1977. Eftbcts of drouglrt on oil palm yields in South East Asia and the South Pasifio Regroq p.673494. InD.A- Earp and W. Ne- wall (Ed.) Lilcrnational Development in Oil Pakn Inoorpordsd Society Of Pla$t€rs, Kuala l,umpur. I l. VAII KRAALINGEN, D.W.G., C.J. BREURE, and T. SPITTERS. 1989. Simulation of oil palnr growth and yiold. Agric. and Forest Meteorol. 45:227 -244. lT"'" I Notes : o DG q> 36 (n) Source Rate of flow State variable Population variable Sink. t1 o Mass flow Information flow Auxiliary variable Exogenous variable Parameter
  • 19. llod d wcrrnilrtflity ded mgrowth aad,yield of oil palm e1pafr lb- Fmcsn diagrm of uraer balance of oil palm () I ,, I I I l r t t ?' t' lt. I r Appendi* 2a. Value of parameters which used in the developed model I.AI l-, I rr. tWind speedl Em -5 Tm t? I I rt >K Ea (ra 0(l) rr (1) -l*" >K pc trl T- Ir"] lwpl e(2) '-f-DI-- rre _l >K PcQ't Submodel Parameters SymboI Unit Value Grc*uh and phe- nulogt' Wcr hlorce Heat unit for each leaf emission Basic temperature Light use efficiency Assimilate partition Leaf Stem Root Re spiration maintenance Rainfall interception Erinction coefficient Soil evapotranspiration Pb.p I Pbsc tr Hue To e rl Km k U F Day oC oc I(g CH2O Y, Mm mm dayt's t59.7 15 3.1 10'3 0.64 0.24 0.t2 0.005 0.87 0.32 I 1.1 2.7
  • 20. rman Yani llarahap and Sjafrul l^atif Appendix 2b. Testing result using t-test sftdent at 95 and 99 % sigwfrcant level Notes : ns = non significant; * = signiticant ooooo Variables Units t-calc. t-table t 005 Deff t 001 Deff Water balance submodel - Water conient 0 - 100 qm - Water content 0 - 180 cm - Transpiration actual - Evaporation actual Growth and phenolosy submodel - Frond emission - Frond pruning - Growth of leaf - Growth of stem - $rowth of 1ruit bunch - Leaf area index - Monthly yield rnm urm dai' mm duy't Kg ha-t 2 u,eek'l Kgha't 2 week-l Kg}n-t 2 weekl Kg hu-t rnonth'l 0.53 r.43 -0.48 -0.67 -0.21 -0.27 -2.63 -t.23 -1.87 r.69 4.72 2.04 2.04 2.12 2.02 2.t3 2.t3 2.t0 2.t0 2.r0 2.10 2.20 ns ns ns ns NS ns tl ns NS ns ns 2.76 .2.76 2.92 2.70 2.94 2.94 2.89 2.89 2.89 2.89 3. l0 ns ns ns ns NS NS ns ns ns ns ns 38