SlideShare a Scribd company logo
1 of 13
Download to read offline
Microcontroller Based Voltage Stabilizer
Sabrina Chowdhury
Microcontroller Based Voltage Stabilizer
Abstract — Voltage stabilizers are nowadays one of the most important requirements for all equipment. This paper deals
with alternative control techniques for load voltage stabilization. The technique of tap-changing transformer switched by
a relay module in a coupled circuit is used. A microcontroller is used to control the switches to stabilize the load voltage
against supply voltage and load current variation. Boosting or bucking effect is performed at low distortion to drive the
relay module .The controlled stabilizer can reduce the supply voltage distortion and adjust the load voltage within very
short time.
Keywords— Bridge Rectifier, Rectification, Filtering, Tap changing transformer, Arduino Nano, Relay, Bulk converter
I. INTRODUCTION
This Paper analyses about different stabilizing topology and different design which is based upon tapping the relay
for different supply voltages to get nearly 220V value for each variation of supply to drive the load risk freely, thus
stabilizing the output voltage.
Following are steps which were taken during the process are charted below:
TABLE I .SPECIFICATIONS OF COMPONENTS
II. CIRCUIT DIAGRAM
Serial
no.
Components Specification Quantity
1. Diode 1N4007 4 piece
2. Resistor 1KΩ,2KΩ 1 piece each
3. Capacitor 10 uF 1 piece
4. 5 volts 1 piece
5. AC supply
(VARIAC)
180V~230V
(50 Hz)
6. Transformer I/P:220V~50 Hz
O/P:6*2V~600 mA
1 unit
7. Tap Changing
Transformer
I/P:180V-230V~50 Hz
O/P:220V~2A
1 unit
8. Arduino Nano 1 unit
9. Bulk Converter I/P: 12V(DC)
O/P: 5V (DC)
1 unit
10. Relay Module 8 Relay Module
( Operating Voltage: 5V
DC)
1 unit
11. LED(Red) 1.8 volts 1 piece
12. Bread Board 1 unit
13. Chords and wires
14. Digital Multimeter 1 unit
15. Bulb(Load) 60 watt, 210~240V
50 Hz
1 unit
III. DATA ANALYSIS
TABLE II: Arduino sampling values for different voltages
VARIAC Voltages (Volt) Analog Value of Arduino DC output of A0
(Volt)
130 265-283 1.26
140 293-306 1.36
150 313-335 1.48
160 342-363 1.60
170 369-394 1.73
180 392-413 1.94
190 419-434 1.96
200 451-474 2.08
210 472-506 2.20
215 483-512 2.25
220 488-525 2.32
225 507-542 2.37
228 511-546 2.41
230 519-552 2.43
TABLE III: Output voltage testing for the tap changing transformer for different voltages
For Tap-01 ( Yellow colored wire)
VARIAC Voltages (volt) Tap changing Transformer Output
(In Tap-01) (volt)
150 157.4
160 167.1
170 177.7
180 188.3
190 198.9
200 209.0
210 219.8
215 224.3
220 230.2
225 234.9
228 238.2
230 240.4
For Tap-02 (Orange colored wire)
VARIAC Voltages (volt) Tap changing Transformer Output
(In Tap-01) (volt)
150 164.4
160 174.4
170 185.4
180 196.5
190 206.9
200 218.5
210 229.1
215 234.4
220 240.7
225 245.5
228 248.3
230 250.9
For Tap-03 (White colored wire)
VARIAC Voltages (volt) Tap changing Transformer Output
(In Tap-01) (volt)
150 170.4
160 182.3
170 192.4
180 204.4
190 216.1
200 227.3
210 238.7
215 243.9
220 250.1
225 255.8
228 259.4
230 261.1
For Tap-04 (Black colored wire)
VARIAC Voltages (volt) Tap changing Transformer Output
(In Tap-01) (volt)
150 149.9
160 160.4
170 169.7
180 179.9
190 190.3
200 200.3
210 210.1
215 215.5
220 220.1
225 224.9
228 227.9
230 229.4
For Tap-05 (purple colored wire)
For Tap-06 (Blue colored wire)
VARIAC Voltages (volt) Tap changing Transformer Output
(In Tap-01) (volt)
150 136.1
160 144.6
170 155
180 163.5
190 172.7
200 182
210 191.2
215 194.8
220 200
225 204.2
228 207.2
230 209.1
For Tap-07 (Yellow colored wire)
VARIAC Voltages (volt) Tap changing Transformer Output
(In Tap-01) (volt)
150 129.1
160 138.2
170 146.7
180 155.3
190 163.8
200 173.8
210 180.6
215 185.3
220 190.2
225 194.4
228 196.2
230 198.2
VARIAC Voltages (volt) Tap changing Transformer Output
(In Tap-01) (volt)
150 143.3
160 152.3
170 162.6
180 172.2
190 181.8
200 190.3
210 200.1
215 205.5
220 210.7
225 214.3
228 217.6
230 219.4
TABLE IV: Result from the testing operation of Tap Changing Transformer :
Input
Voltage
(Volt)
Output
Voltage
(Volt)
Tap-1 Tap-2 Tap-3 Tap-4 Tap-5
180 207.4 OFF OFF ON OFF OFF
190 212.8 OFF OFF ON OFF OFF
200 215.8 OFF ON OFF OFF OFF
210 218.9 ON OFF OFF OFF OFF
215 223 OFF OFF OFF ON OFF
220 225 OFF OFF OFF OFF ON
225 228 OFF OFF OFF OFF ON
230 228 OFF OFF OFF OFF ON
IV. ARDUINO CODE
I. VOLTAGE SAMPLING CODE
int acval=0;
void setup()
{
Serial.begin(9600);
Serial.println(" Let's begin the sampling !");
}
void loop()
{
acval=analogRead(A0);
Serial.print("acval ");
Serial.print(acval);
Serial.println("");
delay(100);
}
II. FINAL CODE
int acval = 0;
int relay1 = 3;
int relay2 = 4;
int relay3 = 5;
int relay4 = 6;
int relay5 = 7;
void setup() {
Serial.begin(9600);
Serial.println("meaw");
pinMode(relay1, OUTPUT);
pinMode(relay2, OUTPUT);
pinMode(relay3, OUTPUT);
pinMode(relay4, OUTPUT);
pinMode(relay5, OUTPUT);
digitalWrite(relay1, 1);
digitalWrite(relay2, 1);
digitalWrite(relay3, 1);
digitalWrite(relay4, 1);
digitalWrite(relay5, 1);
}
void loop() {
acval = analogRead(A0);
Serial.print("AC analog VALUE
");
Serial.print(acval);
Serial.println("");
delay(100);
if ( acval <= 263)
{
Serial.println("Voltage is
less than 130V ");
digitalWrite(relay1, 1);
digitalWrite(relay2, 1);
digitalWrite(relay3, 1);
digitalWrite(relay4, 1);
digitalWrite(relay5, 1);
}
else if (acval >= 263 && acval <= 283)
{
Serial.println("Voltage is
around 130V ");
digitalWrite(relay1, 1); //
tapper 1
digitalWrite(relay2, 1); //
tapper 2
digitalWrite(relay3, 1);
//170 >>192.4 tapper3
digitalWrite(relay4, 1); //
tapper 4
digitalWrite(relay5, 1); //
tapper 5
}
else if (acval >= 293 && acval <= 306)
{
Serial.println("Voltage is
around 140V ");
digitalWrite(relay1, 1); //
tapper 1
digitalWrite(relay2, 1); //
tapper 2
digitalWrite(relay3, 1);
//170 >>192.4 tapper3
digitalWrite(relay4, 1); //
tapper 4
digitalWrite(relay5, 1); //
tapper 5
}
else if (acval >= 313 && acval <=
335)
{
Serial.println("Voltage is
around 150V ");
digitalWrite(relay1, 1); //
tapper 1
digitalWrite(relay2, 1); //
tapper 2
digitalWrite(relay3, 1);
//170 >>192.4 tapper3
digitalWrite(relay4, 1); //
tapper 4
digitalWrite(relay5, 1); //
tapper 5
}
else if (acval >= 342 && acval <= 363)
{
Serial.println("Voltage is
around 160V ");
digitalWrite(relay1,1); //
tapper 1
digitalWrite(relay2, 1); //
tapper 2
digitalWrite(relay3, 1);
//170 >>192.4 tapper3
digitalWrite(relay4, 1); //
tapper 4
digitalWrite(relay5, 1); //
tapper 5
}
else if (acval >= 369 && acval <= 394)
{
Serial.println("Voltage is
around 170V ");
digitalWrite(relay1, 1); //
digitalWrite(relay2, 1); //
digitalWrite(relay3, 1);
//170 >>192.4 tapper3
digitalWrite(relay4, 1); //
digitalWrite(relay5, 1); //
}
else if (acval >= 392 && acval <= 413)
{
Serial.println("Voltage is
around 180V ");
digitalWrite(relay1, 1); //
digitalWrite(relay2, 1); //
digitalWrite(relay3, 0);
//180 >>204.4 tapper3
digitalWrite(relay4, 1); //
digitalWrite(relay5, 1); //
}
else if (acval >= 419 && acval <= 434)
{
Serial.println("Voltage is
around 190V ");
digitalWrite(relay1, 1); //
tapper 1
digitalWrite(relay2, 1); //
tapper 2
digitalWrite(relay3, 0);
//190 >>216.1 tapper3
digitalWrite(relay4, 1); //
tapper 4
digitalWrite(relay5, 1); //
tapper 5
}
else if (acval >= 451 && acval <= 474)
{
Serial.println("Voltage is
around 200V ");
digitalWrite(relay1, 1); //
tapper 1
digitalWrite(relay2, 0); //
200>>218.5 tapper 2
digitalWrite(relay3, 1); //
tapper3
digitalWrite(relay4, 1); //
tapper 4
digitalWrite(relay5, 1); //
tapper 5
}
else if (acval >= 472 && acval <= 506)
{
Serial.println("Voltage is
around 210V ");
digitalWrite(relay1, 0); //
210>>219.5 tapper 1
digitalWrite(relay2, 1); //
tapper 2
digitalWrite(relay3, 1); //
tapper3
digitalWrite(relay4, 1); //
tapper 4
digitalWrite(relay5, 1); //
tapper 5
}
else if (acval >= 483 && acval <= 512)
{
Serial.println("Voltage is
around 215V ");
digitalWrite(relay1, 1); //
tapper 1
digitalWrite(relay2, 1); //
tapper 2
digitalWrite(relay3, 1); //
tapper3
digitalWrite(relay4, 0); //
215>>215.5 tapper 4
digitalWrite(relay5, 1); //
tapper 5
}
else if (acval >= 488 && acval <= 525)
{
Serial.println("Voltage is
around 220V ");
digitalWrite(relay1, 1); //
tapper 1
digitalWrite(relay2, 1); //
tapper 2
digitalWrite(relay3, 1); //
tapper3
digitalWrite(relay4, 0); //
220>>220.1 tapper 4
digitalWrite(relay5, 1); //
tapper 5
}
else if (acval >= 500 && acval <= 535)
{
Serial.println("Voltage is
around 222V ");
digitalWrite(relay1, 1); //
tapper 1
digitalWrite(relay2, 1); //
tapper 2
digitalWrite(relay3, 1); //
tapper3
digitalWrite(relay4, 1); //
tapper 4
digitalWrite(relay5, 0); //
222>220.2 tapper 5
}
else if (acval >= 507 && acval <= 542)
{
Serial.println("Voltage is
around 225V ");
digitalWrite(relay1, 1); //
tapper 1
digitalWrite(relay2, 1); //
tapper 2
digitalWrite(relay3, 1);
//170 >>192.4 tapper3
digitalWrite(relay4, 1); //
tapper 4
digitalWrite(relay5, 0); //
tapper 5
}
else if (acval >= 511 && acval <= 536)
{
Serial.println("Voltage is
around 228V ");
digitalWrite(relay1, 1); //
tapper 1
digitalWrite(relay2, 1); //
tapper 2
digitalWrite(relay3, 1);
//170 >>192.4 tapper3
digitalWrite(relay4, 1); //
tapper 4
digitalWrite(relay5, 0); //
228>>217.6 tapper 5
}
else if (acval >= 537 && acval <= 552)
{
Serial.println("Voltage is
around 230V ");
digitalWrite(relay1, 1); //
tapper 1
digitalWrite(relay2, 1); //
tapper 2
digitalWrite(relay3, 1); //
tapper3
digitalWrite(relay4, 1); //
tapper 4
digitalWrite(relay5, 0); //
230>>219.3 tapper 5
}
else if (acval >= 580)
{
Serial.println("Voltage is
more than 230V .Warning!! ");
digitalWrite(relay1, 1); //
tapper 1
digitalWrite(relay2, 1); //
tapper 2
digitalWrite(relay3, 1);
//170 >>192.4 tapper3
digitalWrite(relay4, 1); //
tapper 4
digitalWrite(relay5, 1); //
tapper 5
}
}
V. HARDWARE PICTURES
VI. LIMITATIONS OF DESIGN:
a) A higher value of the capacitor was used, it took a bit time to discharge fully after being switched off.
b) The input voltage range acts an important role to give a constant voltage output across the capacitor. If
this range exceeds, the constant voltage rises or fall. This may give rise to the quantization error. From
the practical values we’ve found that the input voltage of the Arduino analog pin A0 is about 2.32 V DC
at 220v AC input of the Transformer. Where the voltage should have remained in the range of 4.50~4.75V
DC. That means there’s a good amount of Quantization error in our work.
c) There may be an improper AC-DC conversion done in the work. And due to the existence of the ripple
voltage the output voltage was not so error-free.
d) The Transformer (I/P 220V, O/P 6V*2 ~ 50 Hz, 600 mA) became too weak to drive the Relay module ,
thus we had to use a DC 12 V adapter and a 5V DC Bulk Converter to drive the Relay module separately.
e) The Tap changing Transformer was not being properly designed or there may be some faults exist in the
manufacturing process of the transformer. For that reason, we witnessed a rapid fluctuation of switching
between the taps of the transformer. The tap voltage ranges being very close to each other and 2 of the
taps being manufactured to work below the 180 Volt, we couldn’t make those workable. Thus the 3 relays
of the relay module remained idle during the prototyping process.
VII. ASSUMPTIONS OF DESIGN:
a) The proper value of capacitor for this work can be calculated using the formula
= , in order to perform the filtering process more efficiently.
b) A simple AC-DC converter module could be used to get the sufficient DC voltage for sampling process
of ARDUINO. So that the Quantization error may decrease to some extent.
c) We could easily avoid the unnecessary arrangement of DC 12 V adapter and a 5V DC Bulk Converter
to drive the Relay module by replacing the Transformer (I/P 220V , O/P 6V*2 ~ 50 Hz, 600 mA) with
The Transformer ( I/P 220 V , O/P 12V*2 ~ 50 Hz, 1000 mA).
d) The appropriate designing procedure of the Tap changing transformer would lead the prototyping process
to more error free output.
The assumption made in the designing process is somehow like below:
For, 180 Volt we’ll have to get the output of the tap changing transformer= 220 Volt
,, 1 Volt ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, =220/180 Volt
,, 220 Volt ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, =220*220/180
=269 volt
Similarly for 190 Volt 254 V, 200 Volt242 Volt, 210 Volt230Volt , 220 Volt 220 Volt and so on
If the above designing technique could be followed the each tap of the transformer would exactly give 220
V each time of the variation of the input voltage from 180 V up to 230 V. Thus the output would be more
stable and there would remain a possibility of having less fluctuation of tap switching .
VII. RESULTS AND DISCUSSIONS:
There are 5 tap settings Tap 1,2,3,4 and 5 in random tap settings which are- 210,200,190,215,230Volt
respectively. The input voltage to the tapping transformer is set to 180v to 230 V and the output is 220V each
time. The load current is 2A. At this condition, the taps settings will be ON for the respective taps having the
voltages similar to the input voltages (Tap 1 in at ON when the voltage is 210 V and others remain OFF). This
prototype was tested for its reliability by measuring the output voltage of the transformer when the input voltage
was increased steadily. Each time the tap changing transformer changes its tap changing settings the output
voltages were recorded and the recorded values were being compared with the voltage 220V to ensure the stable
driving of the load.
VIII.CONCLUSIONS
Any variation of the output voltage of the transformer will be detected by the Arduino microcontroller , which in
turn computes and executes necessary command instruction to be passed on to the VARIAC. The relay will
change the tap position if variation is out of the permissible range. Thus the voltage of the system could be
maintained at nominal value. From the result it's been found that, if the tap changing transformer could be
designed in the proper way it would have been possible to regulate the power more efficiently for any variation
of the system voltage.

More Related Content

What's hot

Automatic Power Factor Correction using Microcontroller 8051
Automatic Power Factor Correction using Microcontroller 8051Automatic Power Factor Correction using Microcontroller 8051
Automatic Power Factor Correction using Microcontroller 8051Neehar NLN
 
star delta auto starter with forward reverse and motor protection
star delta auto starter with forward reverse and motor protectionstar delta auto starter with forward reverse and motor protection
star delta auto starter with forward reverse and motor protectionBHUPATI PRADHAN
 
Electrical substations: 132 KV
Electrical substations: 132 KV Electrical substations: 132 KV
Electrical substations: 132 KV Girish Gupta
 
Power flow solution
Power flow solutionPower flow solution
Power flow solutionBalaram Das
 
Symmertical components
Symmertical componentsSymmertical components
Symmertical componentsUday Wankar
 
DISTRIBUTION SYSTEM OPERATION AND CONTROL
DISTRIBUTION SYSTEM OPERATION AND CONTROLDISTRIBUTION SYSTEM OPERATION AND CONTROL
DISTRIBUTION SYSTEM OPERATION AND CONTROLyohannes feleke
 
A training report on 132 KV GSS, BHADOTI, sawai madhopur
A training report on 132 KV GSS, BHADOTI, sawai madhopurA training report on 132 KV GSS, BHADOTI, sawai madhopur
A training report on 132 KV GSS, BHADOTI, sawai madhopurdilkhush009
 
ETAP - Transformer sizing using etap
ETAP - Transformer sizing using etapETAP - Transformer sizing using etap
ETAP - Transformer sizing using etapHimmelstern
 
Unit 9 Labvolt Student Manual
Unit 9 Labvolt Student ManualUnit 9 Labvolt Student Manual
Unit 9 Labvolt Student ManualMichaelKeck10
 
3phase circuits
3phase circuits3phase circuits
3phase circuitsPradeepa M
 
INTRODUCTION TO POWER SYSTEM STABILITY BY Kundur Power Systems Solutions
INTRODUCTION TO POWER SYSTEM STABILITY BY Kundur Power Systems SolutionsINTRODUCTION TO POWER SYSTEM STABILITY BY Kundur Power Systems Solutions
INTRODUCTION TO POWER SYSTEM STABILITY BY Kundur Power Systems SolutionsPower System Operation
 
ETAP - udm - User-Defined Dynamic Models
ETAP -  udm - User-Defined Dynamic ModelsETAP -  udm - User-Defined Dynamic Models
ETAP - udm - User-Defined Dynamic ModelsHimmelstern
 
Insulation coordination.
Insulation coordination.Insulation coordination.
Insulation coordination.Parth Patel
 

What's hot (20)

Automatic Power Factor Correction using Microcontroller 8051
Automatic Power Factor Correction using Microcontroller 8051Automatic Power Factor Correction using Microcontroller 8051
Automatic Power Factor Correction using Microcontroller 8051
 
HVDC & FACTS
HVDC & FACTSHVDC & FACTS
HVDC & FACTS
 
Deltatron or Engetron
Deltatron or EngetronDeltatron or Engetron
Deltatron or Engetron
 
star delta auto starter with forward reverse and motor protection
star delta auto starter with forward reverse and motor protectionstar delta auto starter with forward reverse and motor protection
star delta auto starter with forward reverse and motor protection
 
Electrical substations: 132 KV
Electrical substations: 132 KV Electrical substations: 132 KV
Electrical substations: 132 KV
 
Power flow solution
Power flow solutionPower flow solution
Power flow solution
 
Symmertical components
Symmertical componentsSymmertical components
Symmertical components
 
DISTRIBUTION SYSTEM OPERATION AND CONTROL
DISTRIBUTION SYSTEM OPERATION AND CONTROLDISTRIBUTION SYSTEM OPERATION AND CONTROL
DISTRIBUTION SYSTEM OPERATION AND CONTROL
 
POWER SYSTEM STABILIZER
POWER SYSTEM STABILIZERPOWER SYSTEM STABILIZER
POWER SYSTEM STABILIZER
 
POWER SYSTEM OSCILLATIONS
POWER SYSTEM OSCILLATIONSPOWER SYSTEM OSCILLATIONS
POWER SYSTEM OSCILLATIONS
 
A training report on 132 KV GSS, BHADOTI, sawai madhopur
A training report on 132 KV GSS, BHADOTI, sawai madhopurA training report on 132 KV GSS, BHADOTI, sawai madhopur
A training report on 132 KV GSS, BHADOTI, sawai madhopur
 
ETAP - Transformer sizing using etap
ETAP - Transformer sizing using etapETAP - Transformer sizing using etap
ETAP - Transformer sizing using etap
 
Unit 9 Labvolt Student Manual
Unit 9 Labvolt Student ManualUnit 9 Labvolt Student Manual
Unit 9 Labvolt Student Manual
 
3phase circuits
3phase circuits3phase circuits
3phase circuits
 
33 kv substation vt report
33 kv substation vt report33 kv substation vt report
33 kv substation vt report
 
INTRODUCTION TO POWER SYSTEM STABILITY BY Kundur Power Systems Solutions
INTRODUCTION TO POWER SYSTEM STABILITY BY Kundur Power Systems SolutionsINTRODUCTION TO POWER SYSTEM STABILITY BY Kundur Power Systems Solutions
INTRODUCTION TO POWER SYSTEM STABILITY BY Kundur Power Systems Solutions
 
ETAP - udm - User-Defined Dynamic Models
ETAP -  udm - User-Defined Dynamic ModelsETAP -  udm - User-Defined Dynamic Models
ETAP - udm - User-Defined Dynamic Models
 
Switch yard & Protection
Switch yard & ProtectionSwitch yard & Protection
Switch yard & Protection
 
Insulation coordination.
Insulation coordination.Insulation coordination.
Insulation coordination.
 
Islands in power systems
Islands in power systemsIslands in power systems
Islands in power systems
 

Viewers also liked

Triac Based Automatic Voltage Stabilizer
Triac Based Automatic Voltage StabilizerTriac Based Automatic Voltage Stabilizer
Triac Based Automatic Voltage StabilizerWaqas Riaz
 
Pcb design using proteus workshop certificate
Pcb design using proteus workshop certificatePcb design using proteus workshop certificate
Pcb design using proteus workshop certificateSabrina Chowdhury
 
Championship award certificate for Innovative idea category
Championship award certificate for Innovative idea categoryChampionship award certificate for Innovative idea category
Championship award certificate for Innovative idea categorySabrina Chowdhury
 
Solar energy ppt
Solar energy pptSolar energy ppt
Solar energy pptshubhajit_b
 
The Online College Labor Market
The Online College Labor MarketThe Online College Labor Market
The Online College Labor MarketCEW Georgetown
 

Viewers also liked (9)

Triac Based Automatic Voltage Stabilizer
Triac Based Automatic Voltage StabilizerTriac Based Automatic Voltage Stabilizer
Triac Based Automatic Voltage Stabilizer
 
Pcb design using proteus workshop certificate
Pcb design using proteus workshop certificatePcb design using proteus workshop certificate
Pcb design using proteus workshop certificate
 
Championship award certificate for Innovative idea category
Championship award certificate for Innovative idea categoryChampionship award certificate for Innovative idea category
Championship award certificate for Innovative idea category
 
Armlab
ArmlabArmlab
Armlab
 
Transformer
TransformerTransformer
Transformer
 
Solar energy ppt
Solar energy pptSolar energy ppt
Solar energy ppt
 
Solar Energy
Solar EnergySolar Energy
Solar Energy
 
The Online College Labor Market
The Online College Labor MarketThe Online College Labor Market
The Online College Labor Market
 
transformer ppt
transformer ppttransformer ppt
transformer ppt
 

Similar to Microcontroller based voltage stabilizer

Advanced motion controls b100a400ac
Advanced motion controls b100a400acAdvanced motion controls b100a400ac
Advanced motion controls b100a400acElectromate
 
Advanced motion controls b060a400ac
Advanced motion controls b060a400acAdvanced motion controls b060a400ac
Advanced motion controls b060a400acElectromate
 
Advanced motion controls s60a40ac
Advanced motion controls s60a40acAdvanced motion controls s60a40ac
Advanced motion controls s60a40acElectromate
 
Uc3842 b d fuente 24vdc stacotec
Uc3842 b d  fuente 24vdc stacotecUc3842 b d  fuente 24vdc stacotec
Uc3842 b d fuente 24vdc stacotectavobecker
 
Advanced motion controls s30a40ac
Advanced motion controls s30a40acAdvanced motion controls s30a40ac
Advanced motion controls s30a40acElectromate
 
Advanced motion controls azbe25a20
Advanced motion controls azbe25a20Advanced motion controls azbe25a20
Advanced motion controls azbe25a20Electromate
 
Original Gate Driver IC TD62083APG 62083APG 62083 DIP-18 New Toshiba
Original Gate Driver IC TD62083APG  62083APG 62083 DIP-18 New ToshibaOriginal Gate Driver IC TD62083APG  62083APG 62083 DIP-18 New Toshiba
Original Gate Driver IC TD62083APG 62083APG 62083 DIP-18 New ToshibaAUTHELECTRONIC
 
Original Analog Switch IC CD74HC4066PWR SN74HC4066DR 4066DR 4066PWR 4066 SOP...
Original Analog Switch IC CD74HC4066PWR  SN74HC4066DR 4066DR 4066PWR 4066 SOP...Original Analog Switch IC CD74HC4066PWR  SN74HC4066DR 4066DR 4066PWR 4066 SOP...
Original Analog Switch IC CD74HC4066PWR SN74HC4066DR 4066DR 4066PWR 4066 SOP...AUTHELECTRONIC
 
Advanced motion controls azbe10a20
Advanced motion controls azbe10a20Advanced motion controls azbe10a20
Advanced motion controls azbe10a20Electromate
 
Advanced motion controls s100a40ac
Advanced motion controls s100a40acAdvanced motion controls s100a40ac
Advanced motion controls s100a40acElectromate
 
Implementation of PWM Control of DC Split Converter Fed Switched Reluctance M...
Implementation of PWM Control of DC Split Converter Fed Switched Reluctance M...Implementation of PWM Control of DC Split Converter Fed Switched Reluctance M...
Implementation of PWM Control of DC Split Converter Fed Switched Reluctance M...IJECEIAES
 
Notice technique sv110230_en
Notice technique sv110230_enNotice technique sv110230_en
Notice technique sv110230_ene-genieclimatique
 
Advanced motion controls azbe40a8
Advanced motion controls azbe40a8Advanced motion controls azbe40a8
Advanced motion controls azbe40a8Electromate
 
Advanced motion controls be30a8
Advanced motion controls be30a8Advanced motion controls be30a8
Advanced motion controls be30a8Electromate
 
Advanced motion controls be40a20i
Advanced motion controls be40a20iAdvanced motion controls be40a20i
Advanced motion controls be40a20iElectromate
 

Similar to Microcontroller based voltage stabilizer (20)

Advanced motion controls b100a400ac
Advanced motion controls b100a400acAdvanced motion controls b100a400ac
Advanced motion controls b100a400ac
 
Advanced motion controls b060a400ac
Advanced motion controls b060a400acAdvanced motion controls b060a400ac
Advanced motion controls b060a400ac
 
Advanced motion controls s60a40ac
Advanced motion controls s60a40acAdvanced motion controls s60a40ac
Advanced motion controls s60a40ac
 
Uc3842 b d fuente 24vdc stacotec
Uc3842 b d  fuente 24vdc stacotecUc3842 b d  fuente 24vdc stacotec
Uc3842 b d fuente 24vdc stacotec
 
Lm324
Lm324Lm324
Lm324
 
Advanced motion controls s30a40ac
Advanced motion controls s30a40acAdvanced motion controls s30a40ac
Advanced motion controls s30a40ac
 
Ucc 3895 dw
Ucc 3895 dwUcc 3895 dw
Ucc 3895 dw
 
Advanced motion controls azbe25a20
Advanced motion controls azbe25a20Advanced motion controls azbe25a20
Advanced motion controls azbe25a20
 
Original Gate Driver IC TD62083APG 62083APG 62083 DIP-18 New Toshiba
Original Gate Driver IC TD62083APG  62083APG 62083 DIP-18 New ToshibaOriginal Gate Driver IC TD62083APG  62083APG 62083 DIP-18 New Toshiba
Original Gate Driver IC TD62083APG 62083APG 62083 DIP-18 New Toshiba
 
Tl 2844 b
Tl 2844 bTl 2844 b
Tl 2844 b
 
Original Analog Switch IC CD74HC4066PWR SN74HC4066DR 4066DR 4066PWR 4066 SOP...
Original Analog Switch IC CD74HC4066PWR  SN74HC4066DR 4066DR 4066PWR 4066 SOP...Original Analog Switch IC CD74HC4066PWR  SN74HC4066DR 4066DR 4066PWR 4066 SOP...
Original Analog Switch IC CD74HC4066PWR SN74HC4066DR 4066DR 4066PWR 4066 SOP...
 
Advanced motion controls azbe10a20
Advanced motion controls azbe10a20Advanced motion controls azbe10a20
Advanced motion controls azbe10a20
 
Advanced motion controls s100a40ac
Advanced motion controls s100a40acAdvanced motion controls s100a40ac
Advanced motion controls s100a40ac
 
Tlv3491 556299
Tlv3491 556299Tlv3491 556299
Tlv3491 556299
 
Implementation of PWM Control of DC Split Converter Fed Switched Reluctance M...
Implementation of PWM Control of DC Split Converter Fed Switched Reluctance M...Implementation of PWM Control of DC Split Converter Fed Switched Reluctance M...
Implementation of PWM Control of DC Split Converter Fed Switched Reluctance M...
 
Notice technique sv110230_en
Notice technique sv110230_enNotice technique sv110230_en
Notice technique sv110230_en
 
Advanced motion controls azbe40a8
Advanced motion controls azbe40a8Advanced motion controls azbe40a8
Advanced motion controls azbe40a8
 
Advanced motion controls be30a8
Advanced motion controls be30a8Advanced motion controls be30a8
Advanced motion controls be30a8
 
03dh2aurcc5icw09cpxrosjkw5ky
03dh2aurcc5icw09cpxrosjkw5ky03dh2aurcc5icw09cpxrosjkw5ky
03dh2aurcc5icw09cpxrosjkw5ky
 
Advanced motion controls be40a20i
Advanced motion controls be40a20iAdvanced motion controls be40a20i
Advanced motion controls be40a20i
 

More from Sabrina Chowdhury

Certificate of Participation- Lufthansa Technik
Certificate of Participation- Lufthansa TechnikCertificate of Participation- Lufthansa Technik
Certificate of Participation- Lufthansa TechnikSabrina Chowdhury
 
Certificate of Completion-Introduction to Quantum Computing
Certificate of Completion-Introduction to Quantum ComputingCertificate of Completion-Introduction to Quantum Computing
Certificate of Completion-Introduction to Quantum ComputingSabrina Chowdhury
 
Certificate of Completion-Introduction to Quantum Cryptography
Certificate of Completion-Introduction to Quantum CryptographyCertificate of Completion-Introduction to Quantum Cryptography
Certificate of Completion-Introduction to Quantum CryptographySabrina Chowdhury
 
Office 365 Power Point New Features: Designer and Morph
Office 365 Power Point New Features: Designer and MorphOffice 365 Power Point New Features: Designer and Morph
Office 365 Power Point New Features: Designer and MorphSabrina Chowdhury
 
Certificate of Participation
Certificate of ParticipationCertificate of Participation
Certificate of ParticipationSabrina Chowdhury
 
Financial Forecasting with Big Data
Financial Forecasting with Big DataFinancial Forecasting with Big Data
Financial Forecasting with Big DataSabrina Chowdhury
 
SOLIDWORKS: Simulation for Finite Element Analysis
SOLIDWORKS: Simulation for Finite Element AnalysisSOLIDWORKS: Simulation for Finite Element Analysis
SOLIDWORKS: Simulation for Finite Element AnalysisSabrina Chowdhury
 
Reverse Engineering Foundations: Product Design
Reverse Engineering Foundations: Product DesignReverse Engineering Foundations: Product Design
Reverse Engineering Foundations: Product DesignSabrina Chowdhury
 
Cert Prep: PMI Agile Certified Practitioner (PMI-ACP)®
Cert Prep: PMI Agile Certified Practitioner (PMI-ACP)®Cert Prep: PMI Agile Certified Practitioner (PMI-ACP)®
Cert Prep: PMI Agile Certified Practitioner (PMI-ACP)®Sabrina Chowdhury
 
Designing for Neural Networks and AI Interfaces
Designing for Neural Networks and AI InterfacesDesigning for Neural Networks and AI Interfaces
Designing for Neural Networks and AI InterfacesSabrina Chowdhury
 
Women Transforming Tech: Finding Sponsors
Women Transforming Tech: Finding SponsorsWomen Transforming Tech: Finding Sponsors
Women Transforming Tech: Finding SponsorsSabrina Chowdhury
 
IoT Foundations: Fundamentals
IoT Foundations: FundamentalsIoT Foundations: Fundamentals
IoT Foundations: FundamentalsSabrina Chowdhury
 

More from Sabrina Chowdhury (20)

PM Basic Training
PM Basic TrainingPM Basic Training
PM Basic Training
 
Certificate of Participation- Lufthansa Technik
Certificate of Participation- Lufthansa TechnikCertificate of Participation- Lufthansa Technik
Certificate of Participation- Lufthansa Technik
 
Certificate of Completion-Introduction to Quantum Computing
Certificate of Completion-Introduction to Quantum ComputingCertificate of Completion-Introduction to Quantum Computing
Certificate of Completion-Introduction to Quantum Computing
 
Certificate of Completion-Introduction to Quantum Cryptography
Certificate of Completion-Introduction to Quantum CryptographyCertificate of Completion-Introduction to Quantum Cryptography
Certificate of Completion-Introduction to Quantum Cryptography
 
Public Speaking Foundations
Public Speaking FoundationsPublic Speaking Foundations
Public Speaking Foundations
 
Office 365 Power Point New Features: Designer and Morph
Office 365 Power Point New Features: Designer and MorphOffice 365 Power Point New Features: Designer and Morph
Office 365 Power Point New Features: Designer and Morph
 
Certificate of Participation
Certificate of ParticipationCertificate of Participation
Certificate of Participation
 
Learning Minitab
Learning MinitabLearning Minitab
Learning Minitab
 
Financial Forecasting with Big Data
Financial Forecasting with Big DataFinancial Forecasting with Big Data
Financial Forecasting with Big Data
 
Statistics Foundations: 3
Statistics Foundations: 3Statistics Foundations: 3
Statistics Foundations: 3
 
Statistics Foundations: 2
Statistics Foundations: 2Statistics Foundations: 2
Statistics Foundations: 2
 
SOLIDWORKS: Simulation for Finite Element Analysis
SOLIDWORKS: Simulation for Finite Element AnalysisSOLIDWORKS: Simulation for Finite Element Analysis
SOLIDWORKS: Simulation for Finite Element Analysis
 
Statistics Foundations: 1
Statistics Foundations: 1Statistics Foundations: 1
Statistics Foundations: 1
 
Learn Industrial Automation
Learn Industrial AutomationLearn Industrial Automation
Learn Industrial Automation
 
Reverse Engineering Foundations: Product Design
Reverse Engineering Foundations: Product DesignReverse Engineering Foundations: Product Design
Reverse Engineering Foundations: Product Design
 
Six Sigma Foundations
Six Sigma FoundationsSix Sigma Foundations
Six Sigma Foundations
 
Cert Prep: PMI Agile Certified Practitioner (PMI-ACP)®
Cert Prep: PMI Agile Certified Practitioner (PMI-ACP)®Cert Prep: PMI Agile Certified Practitioner (PMI-ACP)®
Cert Prep: PMI Agile Certified Practitioner (PMI-ACP)®
 
Designing for Neural Networks and AI Interfaces
Designing for Neural Networks and AI InterfacesDesigning for Neural Networks and AI Interfaces
Designing for Neural Networks and AI Interfaces
 
Women Transforming Tech: Finding Sponsors
Women Transforming Tech: Finding SponsorsWomen Transforming Tech: Finding Sponsors
Women Transforming Tech: Finding Sponsors
 
IoT Foundations: Fundamentals
IoT Foundations: FundamentalsIoT Foundations: Fundamentals
IoT Foundations: Fundamentals
 

Recently uploaded

MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 

Recently uploaded (20)

MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 

Microcontroller based voltage stabilizer

  • 1. Microcontroller Based Voltage Stabilizer Sabrina Chowdhury
  • 2. Microcontroller Based Voltage Stabilizer Abstract — Voltage stabilizers are nowadays one of the most important requirements for all equipment. This paper deals with alternative control techniques for load voltage stabilization. The technique of tap-changing transformer switched by a relay module in a coupled circuit is used. A microcontroller is used to control the switches to stabilize the load voltage against supply voltage and load current variation. Boosting or bucking effect is performed at low distortion to drive the relay module .The controlled stabilizer can reduce the supply voltage distortion and adjust the load voltage within very short time. Keywords— Bridge Rectifier, Rectification, Filtering, Tap changing transformer, Arduino Nano, Relay, Bulk converter I. INTRODUCTION This Paper analyses about different stabilizing topology and different design which is based upon tapping the relay for different supply voltages to get nearly 220V value for each variation of supply to drive the load risk freely, thus stabilizing the output voltage. Following are steps which were taken during the process are charted below:
  • 3. TABLE I .SPECIFICATIONS OF COMPONENTS II. CIRCUIT DIAGRAM Serial no. Components Specification Quantity 1. Diode 1N4007 4 piece 2. Resistor 1KΩ,2KΩ 1 piece each 3. Capacitor 10 uF 1 piece 4. 5 volts 1 piece 5. AC supply (VARIAC) 180V~230V (50 Hz) 6. Transformer I/P:220V~50 Hz O/P:6*2V~600 mA 1 unit 7. Tap Changing Transformer I/P:180V-230V~50 Hz O/P:220V~2A 1 unit 8. Arduino Nano 1 unit 9. Bulk Converter I/P: 12V(DC) O/P: 5V (DC) 1 unit 10. Relay Module 8 Relay Module ( Operating Voltage: 5V DC) 1 unit 11. LED(Red) 1.8 volts 1 piece 12. Bread Board 1 unit 13. Chords and wires 14. Digital Multimeter 1 unit 15. Bulb(Load) 60 watt, 210~240V 50 Hz 1 unit
  • 4. III. DATA ANALYSIS TABLE II: Arduino sampling values for different voltages VARIAC Voltages (Volt) Analog Value of Arduino DC output of A0 (Volt) 130 265-283 1.26 140 293-306 1.36 150 313-335 1.48 160 342-363 1.60 170 369-394 1.73 180 392-413 1.94 190 419-434 1.96 200 451-474 2.08 210 472-506 2.20 215 483-512 2.25 220 488-525 2.32 225 507-542 2.37 228 511-546 2.41 230 519-552 2.43 TABLE III: Output voltage testing for the tap changing transformer for different voltages For Tap-01 ( Yellow colored wire) VARIAC Voltages (volt) Tap changing Transformer Output (In Tap-01) (volt) 150 157.4 160 167.1 170 177.7 180 188.3 190 198.9 200 209.0 210 219.8 215 224.3 220 230.2 225 234.9 228 238.2 230 240.4 For Tap-02 (Orange colored wire) VARIAC Voltages (volt) Tap changing Transformer Output (In Tap-01) (volt) 150 164.4 160 174.4 170 185.4 180 196.5 190 206.9
  • 5. 200 218.5 210 229.1 215 234.4 220 240.7 225 245.5 228 248.3 230 250.9 For Tap-03 (White colored wire) VARIAC Voltages (volt) Tap changing Transformer Output (In Tap-01) (volt) 150 170.4 160 182.3 170 192.4 180 204.4 190 216.1 200 227.3 210 238.7 215 243.9 220 250.1 225 255.8 228 259.4 230 261.1 For Tap-04 (Black colored wire) VARIAC Voltages (volt) Tap changing Transformer Output (In Tap-01) (volt) 150 149.9 160 160.4 170 169.7 180 179.9 190 190.3 200 200.3 210 210.1 215 215.5 220 220.1 225 224.9 228 227.9 230 229.4 For Tap-05 (purple colored wire)
  • 6. For Tap-06 (Blue colored wire) VARIAC Voltages (volt) Tap changing Transformer Output (In Tap-01) (volt) 150 136.1 160 144.6 170 155 180 163.5 190 172.7 200 182 210 191.2 215 194.8 220 200 225 204.2 228 207.2 230 209.1 For Tap-07 (Yellow colored wire) VARIAC Voltages (volt) Tap changing Transformer Output (In Tap-01) (volt) 150 129.1 160 138.2 170 146.7 180 155.3 190 163.8 200 173.8 210 180.6 215 185.3 220 190.2 225 194.4 228 196.2 230 198.2 VARIAC Voltages (volt) Tap changing Transformer Output (In Tap-01) (volt) 150 143.3 160 152.3 170 162.6 180 172.2 190 181.8 200 190.3 210 200.1 215 205.5 220 210.7 225 214.3 228 217.6 230 219.4
  • 7. TABLE IV: Result from the testing operation of Tap Changing Transformer : Input Voltage (Volt) Output Voltage (Volt) Tap-1 Tap-2 Tap-3 Tap-4 Tap-5 180 207.4 OFF OFF ON OFF OFF 190 212.8 OFF OFF ON OFF OFF 200 215.8 OFF ON OFF OFF OFF 210 218.9 ON OFF OFF OFF OFF 215 223 OFF OFF OFF ON OFF 220 225 OFF OFF OFF OFF ON 225 228 OFF OFF OFF OFF ON 230 228 OFF OFF OFF OFF ON IV. ARDUINO CODE I. VOLTAGE SAMPLING CODE int acval=0; void setup() { Serial.begin(9600); Serial.println(" Let's begin the sampling !"); } void loop() { acval=analogRead(A0); Serial.print("acval "); Serial.print(acval); Serial.println(""); delay(100); } II. FINAL CODE int acval = 0; int relay1 = 3; int relay2 = 4; int relay3 = 5; int relay4 = 6; int relay5 = 7; void setup() { Serial.begin(9600); Serial.println("meaw"); pinMode(relay1, OUTPUT); pinMode(relay2, OUTPUT); pinMode(relay3, OUTPUT); pinMode(relay4, OUTPUT); pinMode(relay5, OUTPUT); digitalWrite(relay1, 1);
  • 8. digitalWrite(relay2, 1); digitalWrite(relay3, 1); digitalWrite(relay4, 1); digitalWrite(relay5, 1); } void loop() { acval = analogRead(A0); Serial.print("AC analog VALUE "); Serial.print(acval); Serial.println(""); delay(100); if ( acval <= 263) { Serial.println("Voltage is less than 130V "); digitalWrite(relay1, 1); digitalWrite(relay2, 1); digitalWrite(relay3, 1); digitalWrite(relay4, 1); digitalWrite(relay5, 1); } else if (acval >= 263 && acval <= 283) { Serial.println("Voltage is around 130V "); digitalWrite(relay1, 1); // tapper 1 digitalWrite(relay2, 1); // tapper 2 digitalWrite(relay3, 1); //170 >>192.4 tapper3 digitalWrite(relay4, 1); // tapper 4 digitalWrite(relay5, 1); // tapper 5 } else if (acval >= 293 && acval <= 306) { Serial.println("Voltage is around 140V "); digitalWrite(relay1, 1); // tapper 1 digitalWrite(relay2, 1); // tapper 2 digitalWrite(relay3, 1); //170 >>192.4 tapper3 digitalWrite(relay4, 1); // tapper 4 digitalWrite(relay5, 1); // tapper 5 } else if (acval >= 313 && acval <= 335) { Serial.println("Voltage is around 150V "); digitalWrite(relay1, 1); // tapper 1 digitalWrite(relay2, 1); // tapper 2 digitalWrite(relay3, 1); //170 >>192.4 tapper3 digitalWrite(relay4, 1); // tapper 4 digitalWrite(relay5, 1); // tapper 5 } else if (acval >= 342 && acval <= 363) { Serial.println("Voltage is around 160V "); digitalWrite(relay1,1); // tapper 1 digitalWrite(relay2, 1); // tapper 2 digitalWrite(relay3, 1); //170 >>192.4 tapper3 digitalWrite(relay4, 1); // tapper 4 digitalWrite(relay5, 1); // tapper 5 } else if (acval >= 369 && acval <= 394) { Serial.println("Voltage is around 170V "); digitalWrite(relay1, 1); // digitalWrite(relay2, 1); // digitalWrite(relay3, 1); //170 >>192.4 tapper3 digitalWrite(relay4, 1); // digitalWrite(relay5, 1); // } else if (acval >= 392 && acval <= 413) { Serial.println("Voltage is around 180V "); digitalWrite(relay1, 1); // digitalWrite(relay2, 1); // digitalWrite(relay3, 0); //180 >>204.4 tapper3 digitalWrite(relay4, 1); //
  • 9. digitalWrite(relay5, 1); // } else if (acval >= 419 && acval <= 434) { Serial.println("Voltage is around 190V "); digitalWrite(relay1, 1); // tapper 1 digitalWrite(relay2, 1); // tapper 2 digitalWrite(relay3, 0); //190 >>216.1 tapper3 digitalWrite(relay4, 1); // tapper 4 digitalWrite(relay5, 1); // tapper 5 } else if (acval >= 451 && acval <= 474) { Serial.println("Voltage is around 200V "); digitalWrite(relay1, 1); // tapper 1 digitalWrite(relay2, 0); // 200>>218.5 tapper 2 digitalWrite(relay3, 1); // tapper3 digitalWrite(relay4, 1); // tapper 4 digitalWrite(relay5, 1); // tapper 5 } else if (acval >= 472 && acval <= 506) { Serial.println("Voltage is around 210V "); digitalWrite(relay1, 0); // 210>>219.5 tapper 1 digitalWrite(relay2, 1); // tapper 2 digitalWrite(relay3, 1); // tapper3 digitalWrite(relay4, 1); // tapper 4 digitalWrite(relay5, 1); // tapper 5 } else if (acval >= 483 && acval <= 512) { Serial.println("Voltage is around 215V "); digitalWrite(relay1, 1); // tapper 1 digitalWrite(relay2, 1); // tapper 2 digitalWrite(relay3, 1); // tapper3 digitalWrite(relay4, 0); // 215>>215.5 tapper 4 digitalWrite(relay5, 1); // tapper 5 } else if (acval >= 488 && acval <= 525) { Serial.println("Voltage is around 220V "); digitalWrite(relay1, 1); // tapper 1 digitalWrite(relay2, 1); // tapper 2 digitalWrite(relay3, 1); // tapper3 digitalWrite(relay4, 0); // 220>>220.1 tapper 4 digitalWrite(relay5, 1); // tapper 5 } else if (acval >= 500 && acval <= 535) { Serial.println("Voltage is around 222V "); digitalWrite(relay1, 1); // tapper 1 digitalWrite(relay2, 1); // tapper 2 digitalWrite(relay3, 1); // tapper3 digitalWrite(relay4, 1); // tapper 4 digitalWrite(relay5, 0); // 222>220.2 tapper 5 } else if (acval >= 507 && acval <= 542) { Serial.println("Voltage is around 225V "); digitalWrite(relay1, 1); // tapper 1 digitalWrite(relay2, 1); // tapper 2 digitalWrite(relay3, 1); //170 >>192.4 tapper3 digitalWrite(relay4, 1); // tapper 4 digitalWrite(relay5, 0); // tapper 5
  • 10. } else if (acval >= 511 && acval <= 536) { Serial.println("Voltage is around 228V "); digitalWrite(relay1, 1); // tapper 1 digitalWrite(relay2, 1); // tapper 2 digitalWrite(relay3, 1); //170 >>192.4 tapper3 digitalWrite(relay4, 1); // tapper 4 digitalWrite(relay5, 0); // 228>>217.6 tapper 5 } else if (acval >= 537 && acval <= 552) { Serial.println("Voltage is around 230V "); digitalWrite(relay1, 1); // tapper 1 digitalWrite(relay2, 1); // tapper 2 digitalWrite(relay3, 1); // tapper3 digitalWrite(relay4, 1); // tapper 4 digitalWrite(relay5, 0); // 230>>219.3 tapper 5 } else if (acval >= 580) { Serial.println("Voltage is more than 230V .Warning!! "); digitalWrite(relay1, 1); // tapper 1 digitalWrite(relay2, 1); // tapper 2 digitalWrite(relay3, 1); //170 >>192.4 tapper3 digitalWrite(relay4, 1); // tapper 4 digitalWrite(relay5, 1); // tapper 5 } } V. HARDWARE PICTURES
  • 11.
  • 12. VI. LIMITATIONS OF DESIGN: a) A higher value of the capacitor was used, it took a bit time to discharge fully after being switched off. b) The input voltage range acts an important role to give a constant voltage output across the capacitor. If this range exceeds, the constant voltage rises or fall. This may give rise to the quantization error. From the practical values we’ve found that the input voltage of the Arduino analog pin A0 is about 2.32 V DC at 220v AC input of the Transformer. Where the voltage should have remained in the range of 4.50~4.75V DC. That means there’s a good amount of Quantization error in our work. c) There may be an improper AC-DC conversion done in the work. And due to the existence of the ripple voltage the output voltage was not so error-free. d) The Transformer (I/P 220V, O/P 6V*2 ~ 50 Hz, 600 mA) became too weak to drive the Relay module , thus we had to use a DC 12 V adapter and a 5V DC Bulk Converter to drive the Relay module separately. e) The Tap changing Transformer was not being properly designed or there may be some faults exist in the manufacturing process of the transformer. For that reason, we witnessed a rapid fluctuation of switching between the taps of the transformer. The tap voltage ranges being very close to each other and 2 of the taps being manufactured to work below the 180 Volt, we couldn’t make those workable. Thus the 3 relays of the relay module remained idle during the prototyping process. VII. ASSUMPTIONS OF DESIGN: a) The proper value of capacitor for this work can be calculated using the formula = , in order to perform the filtering process more efficiently. b) A simple AC-DC converter module could be used to get the sufficient DC voltage for sampling process of ARDUINO. So that the Quantization error may decrease to some extent.
  • 13. c) We could easily avoid the unnecessary arrangement of DC 12 V adapter and a 5V DC Bulk Converter to drive the Relay module by replacing the Transformer (I/P 220V , O/P 6V*2 ~ 50 Hz, 600 mA) with The Transformer ( I/P 220 V , O/P 12V*2 ~ 50 Hz, 1000 mA). d) The appropriate designing procedure of the Tap changing transformer would lead the prototyping process to more error free output. The assumption made in the designing process is somehow like below: For, 180 Volt we’ll have to get the output of the tap changing transformer= 220 Volt ,, 1 Volt ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, =220/180 Volt ,, 220 Volt ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, =220*220/180 =269 volt Similarly for 190 Volt 254 V, 200 Volt242 Volt, 210 Volt230Volt , 220 Volt 220 Volt and so on If the above designing technique could be followed the each tap of the transformer would exactly give 220 V each time of the variation of the input voltage from 180 V up to 230 V. Thus the output would be more stable and there would remain a possibility of having less fluctuation of tap switching . VII. RESULTS AND DISCUSSIONS: There are 5 tap settings Tap 1,2,3,4 and 5 in random tap settings which are- 210,200,190,215,230Volt respectively. The input voltage to the tapping transformer is set to 180v to 230 V and the output is 220V each time. The load current is 2A. At this condition, the taps settings will be ON for the respective taps having the voltages similar to the input voltages (Tap 1 in at ON when the voltage is 210 V and others remain OFF). This prototype was tested for its reliability by measuring the output voltage of the transformer when the input voltage was increased steadily. Each time the tap changing transformer changes its tap changing settings the output voltages were recorded and the recorded values were being compared with the voltage 220V to ensure the stable driving of the load. VIII.CONCLUSIONS Any variation of the output voltage of the transformer will be detected by the Arduino microcontroller , which in turn computes and executes necessary command instruction to be passed on to the VARIAC. The relay will change the tap position if variation is out of the permissible range. Thus the voltage of the system could be maintained at nominal value. From the result it's been found that, if the tap changing transformer could be designed in the proper way it would have been possible to regulate the power more efficiently for any variation of the system voltage.