SlideShare a Scribd company logo
MATH 350: Graph Theory and Combinatorics. Fall 2012.
Assignment #2: Bipartite graphs, matchings and connectivity.

1.

Show that a graph G is bipartite if and only if for every subgraph
H of G, there is a subset X ⊆ V (H) with |X| ≥ 1 |V (H)| so that no two
2
members of X are adjacent in H.
Solution: If G is bipartite and H is a subgraph of G then either A ∩ V (H)
or B ∩ V (H) satisfies the requirement. If G is not bipartite then it contains
an odd cycle H as a subgraph and the size of a maximum independent set
in H is 1 (|V (H)| − 1).
2
Let G be a loopless graph in which every vertex has degree ≥ 1.
Let X be the largest matching in G, and let Y be the smallest set of edges
of G so that every vertex of G is incident with ≥ 1 edge in Y . Show that
|X| + |Y | = |V (G)|.

2.

Solution: The solution of this problem was presented in class as Theorem
11.2.

3.

Let G be a bipartite graph with bipartition (A, B) in which every
vertex has degree ≥ 1. Assume that for every edge of G with ends a ∈ A
and b ∈ B we have deg(a) ≥ deg(b). Show that there exists a matching in
G covering A.
Solution: Suppose not. By Hall’s theorem there exists X ⊂ A with < |X|
neighbors in B. Choose such a set X with |X| minimum. Let Y ⊂ B
denote the set of vertices adjacent to any of the vertices in X. Then there
exists a matching M consisting of edges joining vertices of Y to vertices of
X of size |Y |. Indeed, otherwise, by Hall’s theorem, there exists Y ′ ⊂ Y
so that the set X ′ of vertices in X adjacent to any of the vertices of Y ′
satisfies |X ′ | < |Y ′ |. It follows that |X − X ′ | < |Y − Y ′ | and, as the vertices
of X − X ′ have no neighbors in Y ′ , we deduce that X − X ′ contradicts the
minimality of X.
Let F denote the set of edges joining X and Y . Then
∑
∑
|F | =
deg(a) >
deg(a) ≥
a∈A

=

∑

e=ab∈M
a∈A,b∈B

deg(b) ≥ |F |,

e=ab∈M
a∈A,b∈B

a contradiction. Thus G contains a matching covering A, as desired.
Given integers n ≥ m ≥ k ≥ 0, determine the maximum possible
number of edges in a simple bipartite graph G with bipartition (A, B),
with |A| = n, |B| = m and no matching of size k.

4.

Solution: If G has no matching of size k then by K¨nig’s theorem it
o
contains a set X with |X| ≤ k−1 so that every edge has an end in X. Every
vertex in X is incident with at most n edges. Therefore, |E(G)| ≤ (k −1)n.
One can have a graph with these many edges satisfying all the criteria by
having exactly k − 1 vertices of B with non-zero degree, each joined to all
the vertices of A.

5.

Let G be a connected graph in which every vertex has degree three.
Show that if G has no cut-edge then every two edges of G lie on a common
cycle.
Solution: Note that G is loopless, as otherwise it would contain a cutedge. Consider e1 , e2 ∈ E(G) and let xi , yi be the ends of ei for i = 1, 2. If
there exist two vertex-disjoint paths from x1 , y1 to x2 , y2 then these paths
together with e1 and e2 form the required cycle. Otherwise, by Menger’s
theorem, there exists a separation (A, B) of order 1 with x1 , y1 ∈ A, x2 , y2 ∈
B. Let {v} = A ∩ B. Let u1 , u2 , u3 be the other ends of edges incident
to v. (These three vertices are not necessarily distinct.) Without loss of
generality, u1 ∈ A, u2 , u3 ∈ B. Then the edge joining u1 and v is a cut-edge,
a contradiction.

6.
a) Distinct u, v ∈ V (G) are k-linked if there are k paths P1 , ..., Pk of G
from u to v so that E(Pi ∩ Pj ) = ∅ (1 ≤ i < j ≤ k). Suppose u, v, w
X

Z

X,Y

Y,Z

Figure 1: Counterexample for Problem 6b).

are distinct and u, v are k-linked, and so are v, w. Does it follow that
u, w are k-linked?
Solution: Yes. By Theorem 9.4 if u and w are not k-linked then there
exists X ⊆ V (G) with u in X, w ̸∈ X and |δ(X)| < k. By symmetry,
we may assume v ∈ X. Then the opposite direction of Theorem 9.4
implies that v and w are not k-linked.
b) Subsets X, Y ⊆ V (G) are k-joined if |X| = |Y | = k and there are k
paths P1 , ..., Pk of G from X to Y so that V (Pi ∩ Pj ) = ∅ (1 ≤ i < j ≤
k). Suppose X, Y, Z ⊆ V (G) and X, Y are k-joined, and so are Y, Z.
Does it follow that X, Z are k-joined?
Solution: No. See Figure 1 for an example with k = 2.

More Related Content

What's hot

A study on connectivity in graph theory june 18 pdf
A study on connectivity in graph theory  june 18 pdfA study on connectivity in graph theory  june 18 pdf
A study on connectivity in graph theory june 18 pdf
aswathymaths
 
Lingerie
LingerieLingerie
Lingerie
guesta96241
 
Basics on Graph Theory
Basics on Graph TheoryBasics on Graph Theory
Basics on Graph Theory
Guillaume Guérard
 
A study on connectivity in graph theory june 18 123e
A study on connectivity in graph theory  june 18 123eA study on connectivity in graph theory  june 18 123e
A study on connectivity in graph theory june 18 123e
aswathymaths
 
International journal of applied sciences and innovation vol 2015 - no 2 - ...
International journal of applied sciences and innovation   vol 2015 - no 2 - ...International journal of applied sciences and innovation   vol 2015 - no 2 - ...
International journal of applied sciences and innovation vol 2015 - no 2 - ...
sophiabelthome
 
On algorithmic problems concerning graphs of higher degree of symmetry
On algorithmic problems concerning graphs of higher degree of symmetryOn algorithmic problems concerning graphs of higher degree of symmetry
On algorithmic problems concerning graphs of higher degree of symmetry
graphhoc
 
Graph theory presentation
Graph theory presentationGraph theory presentation
Graph theory presentation
Aliul Kadir Akib
 
ON ALGORITHMIC PROBLEMS CONCERNING GRAPHS OF HIGHER DEGREE OF SYMMETRY
ON ALGORITHMIC PROBLEMS CONCERNING GRAPHS OF HIGHER DEGREE OF SYMMETRYON ALGORITHMIC PROBLEMS CONCERNING GRAPHS OF HIGHER DEGREE OF SYMMETRY
ON ALGORITHMIC PROBLEMS CONCERNING GRAPHS OF HIGHER DEGREE OF SYMMETRY
Fransiskeran
 
Discrete-Chapter 11 Graphs Part III
Discrete-Chapter 11 Graphs Part IIIDiscrete-Chapter 11 Graphs Part III
Discrete-Chapter 11 Graphs Part IIIWongyos Keardsri
 
Discrete-Chapter 11 Graphs Part I
Discrete-Chapter 11 Graphs Part IDiscrete-Chapter 11 Graphs Part I
Discrete-Chapter 11 Graphs Part IWongyos Keardsri
 
A common fixed point theorem for six mappings in g banach space with weak-com...
A common fixed point theorem for six mappings in g banach space with weak-com...A common fixed point theorem for six mappings in g banach space with weak-com...
A common fixed point theorem for six mappings in g banach space with weak-com...
Alexander Decker
 
Graph theory concepts complex networks presents-rouhollah nabati
Graph theory concepts   complex networks presents-rouhollah nabatiGraph theory concepts   complex networks presents-rouhollah nabati
Graph theory concepts complex networks presents-rouhollah nabati
nabati
 
Graph theory and its applications
Graph theory and its applicationsGraph theory and its applications
Graph theory and its applications
Manikanta satyala
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...ijceronline
 
Discrete-Chapter 11 Graphs Part II
Discrete-Chapter 11 Graphs Part IIDiscrete-Chapter 11 Graphs Part II
Discrete-Chapter 11 Graphs Part IIWongyos Keardsri
 

What's hot (20)

Working Smarter By Using Technology
Working Smarter By Using TechnologyWorking Smarter By Using Technology
Working Smarter By Using Technology
 
A study on connectivity in graph theory june 18 pdf
A study on connectivity in graph theory  june 18 pdfA study on connectivity in graph theory  june 18 pdf
A study on connectivity in graph theory june 18 pdf
 
Lingerie
LingerieLingerie
Lingerie
 
Basics on Graph Theory
Basics on Graph TheoryBasics on Graph Theory
Basics on Graph Theory
 
Connectivity of graph
Connectivity of graphConnectivity of graph
Connectivity of graph
 
A study on connectivity in graph theory june 18 123e
A study on connectivity in graph theory  june 18 123eA study on connectivity in graph theory  june 18 123e
A study on connectivity in graph theory june 18 123e
 
1452 86301000013 m
1452 86301000013 m1452 86301000013 m
1452 86301000013 m
 
International journal of applied sciences and innovation vol 2015 - no 2 - ...
International journal of applied sciences and innovation   vol 2015 - no 2 - ...International journal of applied sciences and innovation   vol 2015 - no 2 - ...
International journal of applied sciences and innovation vol 2015 - no 2 - ...
 
On algorithmic problems concerning graphs of higher degree of symmetry
On algorithmic problems concerning graphs of higher degree of symmetryOn algorithmic problems concerning graphs of higher degree of symmetry
On algorithmic problems concerning graphs of higher degree of symmetry
 
Graph theory presentation
Graph theory presentationGraph theory presentation
Graph theory presentation
 
ON ALGORITHMIC PROBLEMS CONCERNING GRAPHS OF HIGHER DEGREE OF SYMMETRY
ON ALGORITHMIC PROBLEMS CONCERNING GRAPHS OF HIGHER DEGREE OF SYMMETRYON ALGORITHMIC PROBLEMS CONCERNING GRAPHS OF HIGHER DEGREE OF SYMMETRY
ON ALGORITHMIC PROBLEMS CONCERNING GRAPHS OF HIGHER DEGREE OF SYMMETRY
 
Discrete-Chapter 11 Graphs Part III
Discrete-Chapter 11 Graphs Part IIIDiscrete-Chapter 11 Graphs Part III
Discrete-Chapter 11 Graphs Part III
 
Discrete-Chapter 11 Graphs Part I
Discrete-Chapter 11 Graphs Part IDiscrete-Chapter 11 Graphs Part I
Discrete-Chapter 11 Graphs Part I
 
A common fixed point theorem for six mappings in g banach space with weak-com...
A common fixed point theorem for six mappings in g banach space with weak-com...A common fixed point theorem for six mappings in g banach space with weak-com...
A common fixed point theorem for six mappings in g banach space with weak-com...
 
Graph theory concepts complex networks presents-rouhollah nabati
Graph theory concepts   complex networks presents-rouhollah nabatiGraph theory concepts   complex networks presents-rouhollah nabati
Graph theory concepts complex networks presents-rouhollah nabati
 
Am03102420247
Am03102420247Am03102420247
Am03102420247
 
Graph theory and its applications
Graph theory and its applicationsGraph theory and its applications
Graph theory and its applications
 
thesis
thesisthesis
thesis
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
Discrete-Chapter 11 Graphs Part II
Discrete-Chapter 11 Graphs Part IIDiscrete-Chapter 11 Graphs Part II
Discrete-Chapter 11 Graphs Part II
 

Viewers also liked

Mithfh lecturenotes 9
Mithfh lecturenotes 9Mithfh lecturenotes 9
Mithfh lecturenotes 9Praveen Kumar
 

Viewers also liked (8)

Summer+training
Summer+trainingSummer+training
Summer+training
 
Summer+training 2
Summer+training 2Summer+training 2
Summer+training 2
 
Mcs student
Mcs studentMcs student
Mcs student
 
Scribed lec8
Scribed lec8Scribed lec8
Scribed lec8
 
Networks 2
Networks 2Networks 2
Networks 2
 
Scholarship sc st
Scholarship sc stScholarship sc st
Scholarship sc st
 
Slides15
Slides15Slides15
Slides15
 
Mithfh lecturenotes 9
Mithfh lecturenotes 9Mithfh lecturenotes 9
Mithfh lecturenotes 9
 

Similar to Math350 hw2solutions

Rational points on elliptic curves
Rational points on elliptic curvesRational points on elliptic curves
Rational points on elliptic curves
mmasdeu
 
Text book pdf
Text book pdfText book pdf
Text book pdf
NISHAMATHS
 
Graphs.pdf
Graphs.pdfGraphs.pdf
Graphs.pdf
pubggaming58982
 
1. Graph and Graph Terminologiesimp.pptx
1. Graph and Graph Terminologiesimp.pptx1. Graph and Graph Terminologiesimp.pptx
1. Graph and Graph Terminologiesimp.pptx
swapnilbs2728
 
Degree Equitable Connected cototal dominating graph
Degree Equitable Connected cototal dominating graphDegree Equitable Connected cototal dominating graph
Degree Equitable Connected cototal dominating graph
IOSRJM
 
Graphs - Discrete Math
Graphs - Discrete MathGraphs - Discrete Math
Graphs - Discrete Math
Sikder Tahsin Al-Amin
 
Alg grp
Alg grpAlg grp
Stochastic Processes Homework Help
Stochastic Processes Homework Help Stochastic Processes Homework Help
Stochastic Processes Homework Help
Statistics Assignment Help
 
DIGITAL TEXT BOOK
DIGITAL TEXT BOOKDIGITAL TEXT BOOK
DIGITAL TEXT BOOK
shinyvarghese1991
 
Lecture13p.pdf.pdfThedeepness of freedom are threevalues.docx
Lecture13p.pdf.pdfThedeepness of freedom are threevalues.docxLecture13p.pdf.pdfThedeepness of freedom are threevalues.docx
Lecture13p.pdf.pdfThedeepness of freedom are threevalues.docx
croysierkathey
 
Lecture13p.pdf.pdfThedeepness of freedom are threevalues.docx
Lecture13p.pdf.pdfThedeepness of freedom are threevalues.docxLecture13p.pdf.pdfThedeepness of freedom are threevalues.docx
Lecture13p.pdf.pdfThedeepness of freedom are threevalues.docx
jeremylockett77
 
graph_theory_ch_3_20201124.ppt
graph_theory_ch_3_20201124.pptgraph_theory_ch_3_20201124.ppt
graph_theory_ch_3_20201124.ppt
ArwansyahDipanegara
 
The Graph Minor Theorem: a walk on the wild side of graphs
The Graph Minor Theorem: a walk on the wild side of graphsThe Graph Minor Theorem: a walk on the wild side of graphs
The Graph Minor Theorem: a walk on the wild side of graphs
Marco Benini
 
Simple algorithm & hopcroft karp for bipartite graph
Simple algorithm & hopcroft karp for bipartite graphSimple algorithm & hopcroft karp for bipartite graph
Simple algorithm & hopcroft karp for bipartite graphMiguel Pereira
 
optimal graph realization
optimal graph realizationoptimal graph realization
optimal graph realizationIgor Mandric
 
Total Dominating Color Transversal Number of Graphs And Graph Operations
Total Dominating Color Transversal Number of Graphs And Graph OperationsTotal Dominating Color Transversal Number of Graphs And Graph Operations
Total Dominating Color Transversal Number of Graphs And Graph Operations
inventionjournals
 
Chapter 1
Chapter   1Chapter   1
Chapter 1
MeeraMeghpara
 
Wythoff construction and l1-embedding
Wythoff construction and l1-embeddingWythoff construction and l1-embedding
Wythoff construction and l1-embedding
Mathieu Dutour Sikiric
 

Similar to Math350 hw2solutions (20)

Matching
MatchingMatching
Matching
 
Rational points on elliptic curves
Rational points on elliptic curvesRational points on elliptic curves
Rational points on elliptic curves
 
Text book pdf
Text book pdfText book pdf
Text book pdf
 
Graphs.pdf
Graphs.pdfGraphs.pdf
Graphs.pdf
 
1. Graph and Graph Terminologiesimp.pptx
1. Graph and Graph Terminologiesimp.pptx1. Graph and Graph Terminologiesimp.pptx
1. Graph and Graph Terminologiesimp.pptx
 
Degree Equitable Connected cototal dominating graph
Degree Equitable Connected cototal dominating graphDegree Equitable Connected cototal dominating graph
Degree Equitable Connected cototal dominating graph
 
Graphs - Discrete Math
Graphs - Discrete MathGraphs - Discrete Math
Graphs - Discrete Math
 
Alg grp
Alg grpAlg grp
Alg grp
 
Stochastic Processes Homework Help
Stochastic Processes Homework Help Stochastic Processes Homework Help
Stochastic Processes Homework Help
 
DIGITAL TEXT BOOK
DIGITAL TEXT BOOKDIGITAL TEXT BOOK
DIGITAL TEXT BOOK
 
Lecture13p.pdf.pdfThedeepness of freedom are threevalues.docx
Lecture13p.pdf.pdfThedeepness of freedom are threevalues.docxLecture13p.pdf.pdfThedeepness of freedom are threevalues.docx
Lecture13p.pdf.pdfThedeepness of freedom are threevalues.docx
 
Lecture13p.pdf.pdfThedeepness of freedom are threevalues.docx
Lecture13p.pdf.pdfThedeepness of freedom are threevalues.docxLecture13p.pdf.pdfThedeepness of freedom are threevalues.docx
Lecture13p.pdf.pdfThedeepness of freedom are threevalues.docx
 
Graph theory
Graph theoryGraph theory
Graph theory
 
graph_theory_ch_3_20201124.ppt
graph_theory_ch_3_20201124.pptgraph_theory_ch_3_20201124.ppt
graph_theory_ch_3_20201124.ppt
 
The Graph Minor Theorem: a walk on the wild side of graphs
The Graph Minor Theorem: a walk on the wild side of graphsThe Graph Minor Theorem: a walk on the wild side of graphs
The Graph Minor Theorem: a walk on the wild side of graphs
 
Simple algorithm & hopcroft karp for bipartite graph
Simple algorithm & hopcroft karp for bipartite graphSimple algorithm & hopcroft karp for bipartite graph
Simple algorithm & hopcroft karp for bipartite graph
 
optimal graph realization
optimal graph realizationoptimal graph realization
optimal graph realization
 
Total Dominating Color Transversal Number of Graphs And Graph Operations
Total Dominating Color Transversal Number of Graphs And Graph OperationsTotal Dominating Color Transversal Number of Graphs And Graph Operations
Total Dominating Color Transversal Number of Graphs And Graph Operations
 
Chapter 1
Chapter   1Chapter   1
Chapter 1
 
Wythoff construction and l1-embedding
Wythoff construction and l1-embeddingWythoff construction and l1-embedding
Wythoff construction and l1-embedding
 

More from Praveen Kumar

Summer2014 internship
Summer2014 internshipSummer2014 internship
Summer2014 internshipPraveen Kumar
 
Graphics display-devicesmod-1
Graphics display-devicesmod-1Graphics display-devicesmod-1
Graphics display-devicesmod-1Praveen Kumar
 
Cs344 lect15-robotic-knowledge-inferencing-prolog-11feb08
Cs344 lect15-robotic-knowledge-inferencing-prolog-11feb08Cs344 lect15-robotic-knowledge-inferencing-prolog-11feb08
Cs344 lect15-robotic-knowledge-inferencing-prolog-11feb08Praveen Kumar
 
Cse3461.c.signal encoding.09 04-2012
Cse3461.c.signal encoding.09 04-2012Cse3461.c.signal encoding.09 04-2012
Cse3461.c.signal encoding.09 04-2012Praveen Kumar
 
Artificial intelligence lecturenotes.v.1.0.4
Artificial intelligence lecturenotes.v.1.0.4Artificial intelligence lecturenotes.v.1.0.4
Artificial intelligence lecturenotes.v.1.0.4Praveen Kumar
 

More from Praveen Kumar (19)

Summer2014 internship
Summer2014 internshipSummer2014 internship
Summer2014 internship
 
Solutions1.1
Solutions1.1Solutions1.1
Solutions1.1
 
Line circle draw
Line circle drawLine circle draw
Line circle draw
 
Lecture3
Lecture3Lecture3
Lecture3
 
Lec2 state space
Lec2 state spaceLec2 state space
Lec2 state space
 
Graphtheory
GraphtheoryGraphtheory
Graphtheory
 
Graphics display-devicesmod-1
Graphics display-devicesmod-1Graphics display-devicesmod-1
Graphics display-devicesmod-1
 
Games.4
Games.4Games.4
Games.4
 
Dda line-algorithm
Dda line-algorithmDda line-algorithm
Dda line-algorithm
 
Cs344 lect15-robotic-knowledge-inferencing-prolog-11feb08
Cs344 lect15-robotic-knowledge-inferencing-prolog-11feb08Cs344 lect15-robotic-knowledge-inferencing-prolog-11feb08
Cs344 lect15-robotic-knowledge-inferencing-prolog-11feb08
 
Cse3461.c.signal encoding.09 04-2012
Cse3461.c.signal encoding.09 04-2012Cse3461.c.signal encoding.09 04-2012
Cse3461.c.signal encoding.09 04-2012
 
Comerv3 1-12(2)
Comerv3 1-12(2)Comerv3 1-12(2)
Comerv3 1-12(2)
 
Cimplementation
CimplementationCimplementation
Cimplementation
 
Artificial intelligence lecturenotes.v.1.0.4
Artificial intelligence lecturenotes.v.1.0.4Artificial intelligence lecturenotes.v.1.0.4
Artificial intelligence lecturenotes.v.1.0.4
 
Ai ch2
Ai ch2Ai ch2
Ai ch2
 
Aipapercpt
AipapercptAipapercpt
Aipapercpt
 
01127694
0112769401127694
01127694
 
427lects
427lects427lects
427lects
 
10 linescan
10 linescan10 linescan
10 linescan
 

Recently uploaded

20240607 QFM018 Elixir Reading List May 2024
20240607 QFM018 Elixir Reading List May 202420240607 QFM018 Elixir Reading List May 2024
20240607 QFM018 Elixir Reading List May 2024
Matthew Sinclair
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
Ana-Maria Mihalceanu
 
20240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 202420240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 2024
Matthew Sinclair
 
Removing Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software FuzzingRemoving Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software Fuzzing
Aftab Hussain
 
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
Neo4j
 
Pushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 daysPushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 days
Adtran
 
Communications Mining Series - Zero to Hero - Session 1
Communications Mining Series - Zero to Hero - Session 1Communications Mining Series - Zero to Hero - Session 1
Communications Mining Series - Zero to Hero - Session 1
DianaGray10
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance
 
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
Neo4j
 
GraphSummit Singapore | The Future of Agility: Supercharging Digital Transfor...
GraphSummit Singapore | The Future of Agility: Supercharging Digital Transfor...GraphSummit Singapore | The Future of Agility: Supercharging Digital Transfor...
GraphSummit Singapore | The Future of Agility: Supercharging Digital Transfor...
Neo4j
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
BookNet Canada
 
SAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdf
SAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdfSAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdf
SAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdf
Peter Spielvogel
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
James Anderson
 
Introduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - CybersecurityIntroduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - Cybersecurity
mikeeftimakis1
 
Secstrike : Reverse Engineering & Pwnable tools for CTF.pptx
Secstrike : Reverse Engineering & Pwnable tools for CTF.pptxSecstrike : Reverse Engineering & Pwnable tools for CTF.pptx
Secstrike : Reverse Engineering & Pwnable tools for CTF.pptx
nkrafacyberclub
 
Generative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to ProductionGenerative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to Production
Aggregage
 
PCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase TeamPCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase Team
ControlCase
 
Climate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing DaysClimate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing Days
Kari Kakkonen
 
Free Complete Python - A step towards Data Science
Free Complete Python - A step towards Data ScienceFree Complete Python - A step towards Data Science
Free Complete Python - A step towards Data Science
RinaMondal9
 

Recently uploaded (20)

20240607 QFM018 Elixir Reading List May 2024
20240607 QFM018 Elixir Reading List May 202420240607 QFM018 Elixir Reading List May 2024
20240607 QFM018 Elixir Reading List May 2024
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
 
20240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 202420240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 2024
 
Removing Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software FuzzingRemoving Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software Fuzzing
 
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
 
Pushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 daysPushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 days
 
Communications Mining Series - Zero to Hero - Session 1
Communications Mining Series - Zero to Hero - Session 1Communications Mining Series - Zero to Hero - Session 1
Communications Mining Series - Zero to Hero - Session 1
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
 
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
 
GraphSummit Singapore | The Future of Agility: Supercharging Digital Transfor...
GraphSummit Singapore | The Future of Agility: Supercharging Digital Transfor...GraphSummit Singapore | The Future of Agility: Supercharging Digital Transfor...
GraphSummit Singapore | The Future of Agility: Supercharging Digital Transfor...
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
 
SAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdf
SAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdfSAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdf
SAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdf
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
 
Introduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - CybersecurityIntroduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - Cybersecurity
 
Secstrike : Reverse Engineering & Pwnable tools for CTF.pptx
Secstrike : Reverse Engineering & Pwnable tools for CTF.pptxSecstrike : Reverse Engineering & Pwnable tools for CTF.pptx
Secstrike : Reverse Engineering & Pwnable tools for CTF.pptx
 
Generative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to ProductionGenerative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to Production
 
PCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase TeamPCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase Team
 
Climate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing DaysClimate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing Days
 
Free Complete Python - A step towards Data Science
Free Complete Python - A step towards Data ScienceFree Complete Python - A step towards Data Science
Free Complete Python - A step towards Data Science
 

Math350 hw2solutions

  • 1. MATH 350: Graph Theory and Combinatorics. Fall 2012. Assignment #2: Bipartite graphs, matchings and connectivity. 1. Show that a graph G is bipartite if and only if for every subgraph H of G, there is a subset X ⊆ V (H) with |X| ≥ 1 |V (H)| so that no two 2 members of X are adjacent in H. Solution: If G is bipartite and H is a subgraph of G then either A ∩ V (H) or B ∩ V (H) satisfies the requirement. If G is not bipartite then it contains an odd cycle H as a subgraph and the size of a maximum independent set in H is 1 (|V (H)| − 1). 2 Let G be a loopless graph in which every vertex has degree ≥ 1. Let X be the largest matching in G, and let Y be the smallest set of edges of G so that every vertex of G is incident with ≥ 1 edge in Y . Show that |X| + |Y | = |V (G)|. 2. Solution: The solution of this problem was presented in class as Theorem 11.2. 3. Let G be a bipartite graph with bipartition (A, B) in which every vertex has degree ≥ 1. Assume that for every edge of G with ends a ∈ A and b ∈ B we have deg(a) ≥ deg(b). Show that there exists a matching in G covering A. Solution: Suppose not. By Hall’s theorem there exists X ⊂ A with < |X| neighbors in B. Choose such a set X with |X| minimum. Let Y ⊂ B denote the set of vertices adjacent to any of the vertices in X. Then there exists a matching M consisting of edges joining vertices of Y to vertices of X of size |Y |. Indeed, otherwise, by Hall’s theorem, there exists Y ′ ⊂ Y so that the set X ′ of vertices in X adjacent to any of the vertices of Y ′ satisfies |X ′ | < |Y ′ |. It follows that |X − X ′ | < |Y − Y ′ | and, as the vertices of X − X ′ have no neighbors in Y ′ , we deduce that X − X ′ contradicts the minimality of X.
  • 2. Let F denote the set of edges joining X and Y . Then ∑ ∑ |F | = deg(a) > deg(a) ≥ a∈A = ∑ e=ab∈M a∈A,b∈B deg(b) ≥ |F |, e=ab∈M a∈A,b∈B a contradiction. Thus G contains a matching covering A, as desired. Given integers n ≥ m ≥ k ≥ 0, determine the maximum possible number of edges in a simple bipartite graph G with bipartition (A, B), with |A| = n, |B| = m and no matching of size k. 4. Solution: If G has no matching of size k then by K¨nig’s theorem it o contains a set X with |X| ≤ k−1 so that every edge has an end in X. Every vertex in X is incident with at most n edges. Therefore, |E(G)| ≤ (k −1)n. One can have a graph with these many edges satisfying all the criteria by having exactly k − 1 vertices of B with non-zero degree, each joined to all the vertices of A. 5. Let G be a connected graph in which every vertex has degree three. Show that if G has no cut-edge then every two edges of G lie on a common cycle. Solution: Note that G is loopless, as otherwise it would contain a cutedge. Consider e1 , e2 ∈ E(G) and let xi , yi be the ends of ei for i = 1, 2. If there exist two vertex-disjoint paths from x1 , y1 to x2 , y2 then these paths together with e1 and e2 form the required cycle. Otherwise, by Menger’s theorem, there exists a separation (A, B) of order 1 with x1 , y1 ∈ A, x2 , y2 ∈ B. Let {v} = A ∩ B. Let u1 , u2 , u3 be the other ends of edges incident to v. (These three vertices are not necessarily distinct.) Without loss of generality, u1 ∈ A, u2 , u3 ∈ B. Then the edge joining u1 and v is a cut-edge, a contradiction. 6. a) Distinct u, v ∈ V (G) are k-linked if there are k paths P1 , ..., Pk of G from u to v so that E(Pi ∩ Pj ) = ∅ (1 ≤ i < j ≤ k). Suppose u, v, w
  • 3. X Z X,Y Y,Z Figure 1: Counterexample for Problem 6b). are distinct and u, v are k-linked, and so are v, w. Does it follow that u, w are k-linked? Solution: Yes. By Theorem 9.4 if u and w are not k-linked then there exists X ⊆ V (G) with u in X, w ̸∈ X and |δ(X)| < k. By symmetry, we may assume v ∈ X. Then the opposite direction of Theorem 9.4 implies that v and w are not k-linked. b) Subsets X, Y ⊆ V (G) are k-joined if |X| = |Y | = k and there are k paths P1 , ..., Pk of G from X to Y so that V (Pi ∩ Pj ) = ∅ (1 ≤ i < j ≤ k). Suppose X, Y, Z ⊆ V (G) and X, Y are k-joined, and so are Y, Z. Does it follow that X, Z are k-joined? Solution: No. See Figure 1 for an example with k = 2.