SlideShare a Scribd company logo
ENGINEERING
MATERIALS AND TEIR
       PROPERTIES
                    DISUSUN OLEH:
  FITRI HANDAYANI (0804102010003)
  ANDRIANSYAH     (0804102010025)


       JURUSAN TEKNIK MESIN
             FAKULTAS TEKNIK
     UNIVERSITAS SYIAH KUALA
                        2010
INTRODUCTION
a)  Material boleh dikatakan sebagai makanan dari
    design.
b) Suksesnya produk dilihat dari:
 tampilan yang baik yaitu memiliki nilai uang dan
  memberikan kepuasan kepada si pengguna
 menggunakan material terbaik untuk pekerjaan
  tersebut dengan memanfaatkan sepenuhnya
  potensi dan karakterstik yang ada.
a) Material yang kita cari adalah material yang ciri
    dan sifat tertentu.
b) Material yang bagus adalah material yang telah
    kita ketahui moduli, strength , damping
    capacities, konduktivitas listrik dan thermal.
The Families of Engineering Material
                                  Steels, Cast
                                   Irons, Al-
                                     alloys
                                   Metals
                                  Cu-alloys,
                                 Zn-alloys, Ti-
                                    alloys
          Aluminas,                                       PP, PE, PC,
           Silicon                                          PS, PA,
                                                             PMMK
         Ceramic
          carbidas
                                                          Plastics
                                  composites,
                                  sandwichses             Phenolics,
          Zirconia
                                                          Expoxies
                                 Hybrids
                                   segmented
                                    structures,
                                 lattices weaves

                Soda glass,                        Isoprene, Neo
                borosillicate                       prene, Butyl
                   glass.                              rubber
                 Glasses                           Elastomers
               Silica glasses,                     Natural rubber
                  Glass-                            Silicons EVA
                 ceramics
The Material Properties
    General properties :
1)   Densitas
2)   Harga
    Mechanical properties :                                                                 Metals
                                                                                                                               ζu
1)   ultimate strength




                                                                           Stress ζ = F/Ao
2)   Compressive strength
2)   Failure strength
3)   Hardness                                                                                      ζy                     Ao   F
4)   Fatique endurance limit
5)   Thoughness                                                                                                            L
6)   Damping capacity                                                                           Slope E = ζ/ε

                                                                                              0.2% offset
                               X Brittle: T << Tg               Polymers
                                                                                                        Strain ε = δL/L
                               Polymers
                                                                    Ao F
             Stress ζ = F/Ao




                               Limited plasticity: T = 0.8 Tg


                               ζy    Cold drawing: T = Tg
                               L
                               Viscous flow: T >> Tg



                                            1% strain
                                         Strai ε = δL/L
      Thermal properties:
1)     melting point
2)     Glass temperatur
3)     Maximum service
4)     Minimum service
5)     Specific heat
6)     Thermal conduktivity
7)     Thermal expansion coefficient
8)     Thermal shock resistance
    Electrical properties:
1)   Electrical resistivity
2)   Diaelectric constant
3)   Breakdownpotential
4)   Power factor
    Optical                    properties:
     optical, transfarent, translucent, opaq
     ue, Referactive index.
    E-co     properties:     energy/kg   to
     extract material, CO2 /kg to extract
     material.
    Environmental               resistance
     properties:                   Corrotion
     rates, Oxidation rates,      wear rate
     constant.
Mechanical Properties
Kekuatan pada keramik dan glass
bergantung dengan kekuatan
pada     bentuk      pembebanan.
Intension,   ‘‘strength’’   berarti                       ζf   (compression)
                                                                               Ceramics
kekuatan sebelum patah, tIn                                             Compression
compression itu maksudnya the




                                      Stress ζ = F/Ao
                                                                                          Ao
crushing strength         c, yang
memiliki daerah yang lebih luas                         Slope E = σ/ε
dengan tipe tersendiri.                                                               L
                                                        ζt (tension)
                                                        Tension
                                                        Strain ε = δL/L
Endurance limit   Ao   ∆F




                                            Stress amplitude ∆ζ
                                                                        ζu
                                                                                    L



                                                                                               107
                                                                  Endurance limit             cycles
                                                                       ∆ζe

Hardness is measured as the load P
divided by the projected area of
contact, A, when a diamond-shaped
indenter is forced into the surface.
                                       The endurance limit,     e, is the
                                       cyclic stress that causes failure in Nf
                                       ¼ 107 cycles.
Fracture toughness
                                                                    ζc
The     fracture   toughness,     KIC,




                                          Stress ζ = F/Ao
measures the resistance to the
propagation of a crack.
The failure strength of a brittle solid                                      2c

containing a crack of length 2c is KIC
¼ Y ð ,where Y is a constant near
unity.                                                                   K1C = ζc(πa)
                                                                                        1/2
Loss coefficient
                                                                    Area
                                                                     ∆U
                                                  A     ∆F




                                        = F/Ao
The     loss-coefficient,          (a                                      Area
                                                                             U
dimensionless              quantity),
measures the degree to which a
material    dissipates    vibrational
energy     (Figure     3.9).    If a
material is loaded elastically to a
stress, max, it stores an elastic
energy per unit volume. If it is
loaded     and then unloaded, it
dissipates an energy
             I
         U ¼ d"
Thermal Properties
Two      temperatures, the melting                       Thermal conductivity
                                                                                  T           T2
temperature, Tm,        and   the glass
temperature, Tg      (units for both: K                                                  X
or C) are fundamental because they
relate directly to the strength of the




                                           Heat flux q
bonds in the solid. Crystalline                                          Heat                        Heat
solids have a sharp melting point,                                       input                        sink
                                                                         q W/m2                    q W/m2
Tm. Non-crystalline solids do not; the
temperature Tg       characterizes the
transition from true solid to very
viscous liquid.      It is helpful, in
engineering                                                                nsulation         Sample
design,    to    define   two    further                       Slope λ                   ∆T
temperatures: the maximum            and                                        q =− λ
                                                                                         ∆X
minimum service temperatures Tmax
and Tmin (both: K or C).
                                                           Temperature gradient (T1 T2)/X
Thermal Expansion
         The     thermal strain     per
degree of temperature change is                                      Thermal expansion
measured by the linear thermal-                                                                  ∆L
                                                                                            α= 1




                                           Thermal strain ε = δL/L
expansion coefficient,        (units: K                              Slope α
1    or,   more     conveniently,    as                                                        L ∆T
‘‘microstrain/C’’ or 10    6 C    1). If
the material is thermally isotropic,
the volume expansion, per degree, is                                                         L
3 . If it is anisotropic, two or more
coefficients are required, and the
volume expansion becomes the sum
of the principal thermal strains.                                                                             ∆L
         The       thermal       shock                                                                 α
resistance     Ts   (units: K or C) is
the      maximum       tem- perature
difference    through       which     a
material       can     be    quenched                                          Insulation     Heater       Sample
suddenly without       damage.       It,
and the creep resistance, are
important in        high- temperature                                  Temperature change
design.
                                                                       ∆T
Electrical Properties

The electrical conductivity is simply
the reciprocal     of the resisitivity.
When an insulator is placed in an                                   Electrical resistivity




                                          Potential difference ∆V
electric field, it becomes polarized
and charges appear on its surfaces                                                             ∆V
that tend to screen the interior
                                                                                 ι                           ι
from the electric field.          The
tendency to polarize is measured                                                                X
by the dielectric constant, Ed (a                                                                           Area A
dimensionless quantity). Its value                                       Resistance           Resistivity
for free space and, for practical                                        R = ∆V/ι                 ∆V A
                                                                                             ρe =
purposes, for most gasses, is 1.                                                                   X ι
Most      insulators    have values                                                   Current ι
between 2 and 30, though low-
density foams approach the value 1
because they are largely air.
Optical Properties
      All materials allow some passage of
light, although for metals it is exceed-
ingly small. The speed of light when in
the material,      v, is always less than
that in vacuum, c. A consequence is that
a beam of light striking the surface of
such a material at an angle          , the
angle of incidence, enters the material at
an angle , the angle of refraction.
Eco - Properties
   The contained or production energy (units
    MJ/kg) is the energy required to extract 1
    kg of a material       from     its ores and
    feedstocks. The associated CO2 production
    (units: kg/kg) is the mass of carbon dioxide
    released into the atmosphere during the
    production of 1 kg of material.
Environmental Properties
Environmental       resistance       is
conventionally characterized on a                                                                3.4 Summ
discrete
5-point    scale: very good, good,                         Wear rate
average, poor, very poor. ‘‘Very good’’                         P3        P2    P1
means




                                           Wear volume V
that the material is highly resistant
to the environment, ‘‘very poor’’ that
it is completely     non-resistant or                                          Load P
unstable.     The categorization is
                                                                                        Sliding
designed     to    help with initial                                 W = V/S            velocity v
screening; supporting      information
should    always    be     sought     if
environmental attack is a concern.
Ways of doing this are described
later.
Summary
   There     are six important families of materials      for
    mechanical design: metals, ceramics, glasses, polymers,
    elastomers, and hybrids that combine the properties of
    two or more of the others.
   Within     a family there is certain    common ground:
    ceramics as a family are hard, brittle, and corrosion
    resistant; metals are ductile, tough, and good thermal
    and electrical conductors;     polymers are light, easily
    shaped, and electrical insulators, and so on — that is
    what makes the classification useful.
   In design we wish to escape from the constraints of family,
    and think, instead, of the material name as an identifier
    for a certain property-profile
THANK YOU

More Related Content

What's hot

Komposit matrik logam
Komposit  matrik logamKomposit  matrik logam
Komposit matrik logam
Maisaroh A. Kasbak
 
Bantalan (bearing)
Bantalan (bearing)Bantalan (bearing)
Bantalan (bearing)
Khairul Fadli
 
penggunaan keramik pada komponen mesin
penggunaan keramik pada komponen mesinpenggunaan keramik pada komponen mesin
penggunaan keramik pada komponen mesinAndi Suciana Malla
 
Material teknik (2)
Material teknik (2)Material teknik (2)
Material teknik (2)
YOHANIS SAHABAT
 
MACAM-MACAM SAMBUNGAN PADA KONSTRUKSI MESIN
MACAM-MACAM SAMBUNGAN PADA KONSTRUKSI MESINMACAM-MACAM SAMBUNGAN PADA KONSTRUKSI MESIN
MACAM-MACAM SAMBUNGAN PADA KONSTRUKSI MESIN
Dwi Ratna
 
MEKANIKA TEKNIK - TEGANGAN
MEKANIKA TEKNIK - TEGANGANMEKANIKA TEKNIK - TEGANGAN
MEKANIKA TEKNIK - TEGANGAN
Hettyk Sari
 
Bab4 mt uji tarik
Bab4 mt uji tarikBab4 mt uji tarik
Bab4 mt uji tarikkaatteell
 
Pengujian lengkung (bend test)
Pengujian lengkung (bend test)Pengujian lengkung (bend test)
Pengujian lengkung (bend test)
Mukhamad Suwardo
 
(2)analisa tegangan
(2)analisa tegangan(2)analisa tegangan
(2)analisa tegangan
Pindraswarti Sp
 
Jenis besi cor dan kandungan nya
Jenis besi cor dan kandungan nyaJenis besi cor dan kandungan nya
Jenis besi cor dan kandungan nya
Muhamad Awal
 
Kelelahan Logam (Fatigue)
Kelelahan Logam (Fatigue)Kelelahan Logam (Fatigue)
Kelelahan Logam (Fatigue)
Abrianto Akuan
 
Pembentukan
PembentukanPembentukan
Pembentukan
Suhada Amir
 
Proses pembuatan besi tuang
Proses pembuatan besi tuangProses pembuatan besi tuang
Proses pembuatan besi tuang
Putri Mawardani
 
15566461 factor-of-safety
15566461 factor-of-safety15566461 factor-of-safety
15566461 factor-of-safety
أحمد صباري
 
metalurgi serbuk
metalurgi serbukmetalurgi serbuk
metalurgi serbuk
Mega Audina
 
Diagram fasa fe fe3 c
Diagram fasa fe fe3 cDiagram fasa fe fe3 c
Diagram fasa fe fe3 cBayu Fajri
 
Bab 7 analisis eksergi
Bab 7 analisis eksergi Bab 7 analisis eksergi
Bab 7 analisis eksergi
Arya Perdana
 
Elemen Mesin 1 - Bantalan
Elemen Mesin 1 - BantalanElemen Mesin 1 - Bantalan
Elemen Mesin 1 - Bantalan
Charis Muhammad
 
Proses pembentukan piston
Proses pembentukan pistonProses pembentukan piston
Proses pembentukan pistonFixri Pupone
 
Diagram ttt
Diagram tttDiagram ttt
Diagram ttt
Nindy Arraya
 

What's hot (20)

Komposit matrik logam
Komposit  matrik logamKomposit  matrik logam
Komposit matrik logam
 
Bantalan (bearing)
Bantalan (bearing)Bantalan (bearing)
Bantalan (bearing)
 
penggunaan keramik pada komponen mesin
penggunaan keramik pada komponen mesinpenggunaan keramik pada komponen mesin
penggunaan keramik pada komponen mesin
 
Material teknik (2)
Material teknik (2)Material teknik (2)
Material teknik (2)
 
MACAM-MACAM SAMBUNGAN PADA KONSTRUKSI MESIN
MACAM-MACAM SAMBUNGAN PADA KONSTRUKSI MESINMACAM-MACAM SAMBUNGAN PADA KONSTRUKSI MESIN
MACAM-MACAM SAMBUNGAN PADA KONSTRUKSI MESIN
 
MEKANIKA TEKNIK - TEGANGAN
MEKANIKA TEKNIK - TEGANGANMEKANIKA TEKNIK - TEGANGAN
MEKANIKA TEKNIK - TEGANGAN
 
Bab4 mt uji tarik
Bab4 mt uji tarikBab4 mt uji tarik
Bab4 mt uji tarik
 
Pengujian lengkung (bend test)
Pengujian lengkung (bend test)Pengujian lengkung (bend test)
Pengujian lengkung (bend test)
 
(2)analisa tegangan
(2)analisa tegangan(2)analisa tegangan
(2)analisa tegangan
 
Jenis besi cor dan kandungan nya
Jenis besi cor dan kandungan nyaJenis besi cor dan kandungan nya
Jenis besi cor dan kandungan nya
 
Kelelahan Logam (Fatigue)
Kelelahan Logam (Fatigue)Kelelahan Logam (Fatigue)
Kelelahan Logam (Fatigue)
 
Pembentukan
PembentukanPembentukan
Pembentukan
 
Proses pembuatan besi tuang
Proses pembuatan besi tuangProses pembuatan besi tuang
Proses pembuatan besi tuang
 
15566461 factor-of-safety
15566461 factor-of-safety15566461 factor-of-safety
15566461 factor-of-safety
 
metalurgi serbuk
metalurgi serbukmetalurgi serbuk
metalurgi serbuk
 
Diagram fasa fe fe3 c
Diagram fasa fe fe3 cDiagram fasa fe fe3 c
Diagram fasa fe fe3 c
 
Bab 7 analisis eksergi
Bab 7 analisis eksergi Bab 7 analisis eksergi
Bab 7 analisis eksergi
 
Elemen Mesin 1 - Bantalan
Elemen Mesin 1 - BantalanElemen Mesin 1 - Bantalan
Elemen Mesin 1 - Bantalan
 
Proses pembentukan piston
Proses pembentukan pistonProses pembentukan piston
Proses pembentukan piston
 
Diagram ttt
Diagram tttDiagram ttt
Diagram ttt
 

Viewers also liked

Material Teknik
Material TeknikMaterial Teknik
Material Teknik
Arismon Saputra
 
SIFAT BAHAN TEKNIK
SIFAT BAHAN TEKNIKSIFAT BAHAN TEKNIK
SIFAT BAHAN TEKNIK
Lifia Citra Ramadhanti
 
Material teknik
Material teknikMaterial teknik
Material teknik
Electric Car
 
554 pengetahuan bahan-teknik
554 pengetahuan bahan-teknik554 pengetahuan bahan-teknik
554 pengetahuan bahan-teknikMukhlis Adam
 
Material Teknik Dasar
Material Teknik DasarMaterial Teknik Dasar
Material Teknik Dasar
555
 
Rev. material teknik
Rev. material teknikRev. material teknik
Rev. material teknik
orangedansekali
 
Material Teknik Presentation
Material Teknik PresentationMaterial Teknik Presentation
Material Teknik Presentation
dwi pramudia
 
Jenis - Jenis Bahan Material
Jenis - Jenis Bahan MaterialJenis - Jenis Bahan Material
Jenis - Jenis Bahan MaterialFerRy P. RAzi
 
Ilmu pngthuan bahan
Ilmu pngthuan bahanIlmu pngthuan bahan
Ilmu pngthuan bahanReandy Risky
 
Tugas 1 material teknik
Tugas 1 material teknikTugas 1 material teknik
Tugas 1 material teknik
Zul Abidin
 
Jenis - Jenis Bahan Material
Jenis - Jenis Bahan MaterialJenis - Jenis Bahan Material
Jenis - Jenis Bahan Material
F. Miftahkur Avijanto
 
38368006 materi-pengetahuan-bahan-i
38368006 materi-pengetahuan-bahan-i38368006 materi-pengetahuan-bahan-i
38368006 materi-pengetahuan-bahan-i
shanchan29
 
Material teknik
Material teknikMaterial teknik
Material teknik
Endang Hastutiningsih
 
Jenis jenis logam
Jenis jenis logamJenis jenis logam
Jenis jenis logam
Eko Supriyadi
 
indeks miller
indeks millerindeks miller
indeks miller
Alfu Nei NeiRa
 
Baja dan klasifikasinya
Baja dan klasifikasinyaBaja dan klasifikasinya
Baja dan klasifikasinya
wizdan ozil
 
Membaca Gambar Teknik
Membaca Gambar TeknikMembaca Gambar Teknik
Membaca Gambar Teknik
emodul-learning
 
Makalah Pengetahuan Bahan Teknik : Karet
Makalah Pengetahuan Bahan Teknik : KaretMakalah Pengetahuan Bahan Teknik : Karet
Makalah Pengetahuan Bahan Teknik : Karet
Dewi Izza
 
Presentation meng tek
Presentation meng tekPresentation meng tek
Presentation meng tek
Yazib M Nur
 

Viewers also liked (20)

Material Teknik
Material TeknikMaterial Teknik
Material Teknik
 
SIFAT BAHAN TEKNIK
SIFAT BAHAN TEKNIKSIFAT BAHAN TEKNIK
SIFAT BAHAN TEKNIK
 
Material teknik
Material teknikMaterial teknik
Material teknik
 
554 pengetahuan bahan-teknik
554 pengetahuan bahan-teknik554 pengetahuan bahan-teknik
554 pengetahuan bahan-teknik
 
Material Teknik Dasar
Material Teknik DasarMaterial Teknik Dasar
Material Teknik Dasar
 
Rev. material teknik
Rev. material teknikRev. material teknik
Rev. material teknik
 
Material Teknik Presentation
Material Teknik PresentationMaterial Teknik Presentation
Material Teknik Presentation
 
Jenis - Jenis Bahan Material
Jenis - Jenis Bahan MaterialJenis - Jenis Bahan Material
Jenis - Jenis Bahan Material
 
Ilmu pngthuan bahan
Ilmu pngthuan bahanIlmu pngthuan bahan
Ilmu pngthuan bahan
 
Tugas 1 material teknik
Tugas 1 material teknikTugas 1 material teknik
Tugas 1 material teknik
 
Jenis - Jenis Bahan Material
Jenis - Jenis Bahan MaterialJenis - Jenis Bahan Material
Jenis - Jenis Bahan Material
 
38368006 materi-pengetahuan-bahan-i
38368006 materi-pengetahuan-bahan-i38368006 materi-pengetahuan-bahan-i
38368006 materi-pengetahuan-bahan-i
 
Material teknik
Material teknikMaterial teknik
Material teknik
 
Jenis jenis logam
Jenis jenis logamJenis jenis logam
Jenis jenis logam
 
indeks miller
indeks millerindeks miller
indeks miller
 
Baja dan klasifikasinya
Baja dan klasifikasinyaBaja dan klasifikasinya
Baja dan klasifikasinya
 
Membaca Gambar Teknik
Membaca Gambar TeknikMembaca Gambar Teknik
Membaca Gambar Teknik
 
Makalah Pengetahuan Bahan Teknik : Karet
Makalah Pengetahuan Bahan Teknik : KaretMakalah Pengetahuan Bahan Teknik : Karet
Makalah Pengetahuan Bahan Teknik : Karet
 
Pesawat fokker model
Pesawat fokker modelPesawat fokker model
Pesawat fokker model
 
Presentation meng tek
Presentation meng tekPresentation meng tek
Presentation meng tek
 

Similar to Material teknik dan sifatnya

Chapter 07
Chapter 07Chapter 07
Chapter 07
archnavarro31
 
Shrikage behavior of UHPC
Shrikage behavior of UHPCShrikage behavior of UHPC
Shrikage behavior of UHPC
supercrete
 
Onr (Italy) Review On Blast Resistance
Onr (Italy) Review On Blast ResistanceOnr (Italy) Review On Blast Resistance
Onr (Italy) Review On Blast Resistance
Nazrul
 
Aem Lect17
Aem Lect17Aem Lect17
Aem Lect17
langtudaikieu
 
materialteknikdansifatnya-121014005134-phpapp01-1.pdf
materialteknikdansifatnya-121014005134-phpapp01-1.pdfmaterialteknikdansifatnya-121014005134-phpapp01-1.pdf
materialteknikdansifatnya-121014005134-phpapp01-1.pdf
stiteknas jambi
 
Overview of Zeta Potential Concept, Measurement Use, and Applications
Overview of Zeta Potential Concept, Measurement Use, and ApplicationsOverview of Zeta Potential Concept, Measurement Use, and Applications
Overview of Zeta Potential Concept, Measurement Use, and Applications
HORIBA Particle
 
Recent advances of MEIS for near surface analysis
Recent advances of MEIS for near surface analysis Recent advances of MEIS for near surface analysis
Recent advances of MEIS for near surface analysis
Instituto Nacional de Engenharia de Superfícies
 
Welding lectures 7 8
Welding lectures 7 8Welding lectures 7 8
Welding lectures 7 8
Nishant Prabhakar
 
Welding lectures 7 8
Welding lectures 7 8Welding lectures 7 8
Welding lectures 7 8
Nishant Prabhakar
 

Similar to Material teknik dan sifatnya (9)

Chapter 07
Chapter 07Chapter 07
Chapter 07
 
Shrikage behavior of UHPC
Shrikage behavior of UHPCShrikage behavior of UHPC
Shrikage behavior of UHPC
 
Onr (Italy) Review On Blast Resistance
Onr (Italy) Review On Blast ResistanceOnr (Italy) Review On Blast Resistance
Onr (Italy) Review On Blast Resistance
 
Aem Lect17
Aem Lect17Aem Lect17
Aem Lect17
 
materialteknikdansifatnya-121014005134-phpapp01-1.pdf
materialteknikdansifatnya-121014005134-phpapp01-1.pdfmaterialteknikdansifatnya-121014005134-phpapp01-1.pdf
materialteknikdansifatnya-121014005134-phpapp01-1.pdf
 
Overview of Zeta Potential Concept, Measurement Use, and Applications
Overview of Zeta Potential Concept, Measurement Use, and ApplicationsOverview of Zeta Potential Concept, Measurement Use, and Applications
Overview of Zeta Potential Concept, Measurement Use, and Applications
 
Recent advances of MEIS for near surface analysis
Recent advances of MEIS for near surface analysis Recent advances of MEIS for near surface analysis
Recent advances of MEIS for near surface analysis
 
Welding lectures 7 8
Welding lectures 7 8Welding lectures 7 8
Welding lectures 7 8
 
Welding lectures 7 8
Welding lectures 7 8Welding lectures 7 8
Welding lectures 7 8
 

More from Iriansyah Putra

Pesawat fokker model
Pesawat fokker modelPesawat fokker model
Pesawat fokker model
Iriansyah Putra
 
Simulasi aliran pada turbin
Simulasi aliran pada turbinSimulasi aliran pada turbin
Simulasi aliran pada turbin
Iriansyah Putra
 
Evaporasi
EvaporasiEvaporasi
Evaporasi
Iriansyah Putra
 
Atmospheric corrosion tga
Atmospheric corrosion tgaAtmospheric corrosion tga
Atmospheric corrosion tga
Iriansyah Putra
 
Slide tga irian syahputra (0504102010028)
Slide tga   irian syahputra (0504102010028)Slide tga   irian syahputra (0504102010028)
Slide tga irian syahputra (0504102010028)
Iriansyah Putra
 
Slide tga zamri
Slide tga zamriSlide tga zamri
Slide tga zamri
Iriansyah Putra
 

More from Iriansyah Putra (6)

Pesawat fokker model
Pesawat fokker modelPesawat fokker model
Pesawat fokker model
 
Simulasi aliran pada turbin
Simulasi aliran pada turbinSimulasi aliran pada turbin
Simulasi aliran pada turbin
 
Evaporasi
EvaporasiEvaporasi
Evaporasi
 
Atmospheric corrosion tga
Atmospheric corrosion tgaAtmospheric corrosion tga
Atmospheric corrosion tga
 
Slide tga irian syahputra (0504102010028)
Slide tga   irian syahputra (0504102010028)Slide tga   irian syahputra (0504102010028)
Slide tga irian syahputra (0504102010028)
 
Slide tga zamri
Slide tga zamriSlide tga zamri
Slide tga zamri
 

Material teknik dan sifatnya

  • 1. ENGINEERING MATERIALS AND TEIR PROPERTIES DISUSUN OLEH: FITRI HANDAYANI (0804102010003) ANDRIANSYAH (0804102010025) JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SYIAH KUALA 2010
  • 2. INTRODUCTION a) Material boleh dikatakan sebagai makanan dari design. b) Suksesnya produk dilihat dari:  tampilan yang baik yaitu memiliki nilai uang dan memberikan kepuasan kepada si pengguna  menggunakan material terbaik untuk pekerjaan tersebut dengan memanfaatkan sepenuhnya potensi dan karakterstik yang ada. a) Material yang kita cari adalah material yang ciri dan sifat tertentu. b) Material yang bagus adalah material yang telah kita ketahui moduli, strength , damping capacities, konduktivitas listrik dan thermal.
  • 3. The Families of Engineering Material Steels, Cast Irons, Al- alloys Metals Cu-alloys, Zn-alloys, Ti- alloys Aluminas, PP, PE, PC, Silicon PS, PA, PMMK Ceramic carbidas Plastics composites, sandwichses Phenolics, Zirconia Expoxies Hybrids segmented structures, lattices weaves Soda glass, Isoprene, Neo borosillicate prene, Butyl glass. rubber Glasses Elastomers Silica glasses, Natural rubber Glass- Silicons EVA ceramics
  • 4. The Material Properties  General properties : 1) Densitas 2) Harga  Mechanical properties : Metals ζu 1) ultimate strength Stress ζ = F/Ao 2) Compressive strength 2) Failure strength 3) Hardness ζy Ao F 4) Fatique endurance limit 5) Thoughness L 6) Damping capacity Slope E = ζ/ε 0.2% offset X Brittle: T << Tg Polymers Strain ε = δL/L Polymers Ao F Stress ζ = F/Ao Limited plasticity: T = 0.8 Tg ζy Cold drawing: T = Tg L Viscous flow: T >> Tg 1% strain Strai ε = δL/L
  • 5. Thermal properties: 1) melting point 2) Glass temperatur 3) Maximum service 4) Minimum service 5) Specific heat 6) Thermal conduktivity 7) Thermal expansion coefficient 8) Thermal shock resistance  Electrical properties: 1) Electrical resistivity 2) Diaelectric constant 3) Breakdownpotential 4) Power factor  Optical properties: optical, transfarent, translucent, opaq ue, Referactive index.  E-co properties: energy/kg to extract material, CO2 /kg to extract material.  Environmental resistance properties: Corrotion rates, Oxidation rates, wear rate constant.
  • 6. Mechanical Properties Kekuatan pada keramik dan glass bergantung dengan kekuatan pada bentuk pembebanan. Intension, ‘‘strength’’ berarti ζf (compression) Ceramics kekuatan sebelum patah, tIn Compression compression itu maksudnya the Stress ζ = F/Ao Ao crushing strength c, yang memiliki daerah yang lebih luas Slope E = σ/ε dengan tipe tersendiri. L ζt (tension) Tension Strain ε = δL/L
  • 7. Endurance limit Ao ∆F Stress amplitude ∆ζ ζu L 107 Endurance limit cycles ∆ζe Hardness is measured as the load P divided by the projected area of contact, A, when a diamond-shaped indenter is forced into the surface. The endurance limit, e, is the cyclic stress that causes failure in Nf ¼ 107 cycles.
  • 8. Fracture toughness ζc The fracture toughness, KIC, Stress ζ = F/Ao measures the resistance to the propagation of a crack. The failure strength of a brittle solid 2c containing a crack of length 2c is KIC ¼ Y ð ,where Y is a constant near unity. K1C = ζc(πa) 1/2
  • 9. Loss coefficient Area ∆U A ∆F = F/Ao The loss-coefficient, (a Area U dimensionless quantity), measures the degree to which a material dissipates vibrational energy (Figure 3.9). If a material is loaded elastically to a stress, max, it stores an elastic energy per unit volume. If it is loaded and then unloaded, it dissipates an energy I U ¼ d"
  • 10. Thermal Properties Two temperatures, the melting Thermal conductivity T T2 temperature, Tm, and the glass temperature, Tg (units for both: K X or C) are fundamental because they relate directly to the strength of the Heat flux q bonds in the solid. Crystalline Heat Heat solids have a sharp melting point, input sink q W/m2 q W/m2 Tm. Non-crystalline solids do not; the temperature Tg characterizes the transition from true solid to very viscous liquid. It is helpful, in engineering nsulation Sample design, to define two further Slope λ ∆T temperatures: the maximum and q =− λ ∆X minimum service temperatures Tmax and Tmin (both: K or C). Temperature gradient (T1 T2)/X
  • 11. Thermal Expansion The thermal strain per degree of temperature change is Thermal expansion measured by the linear thermal- ∆L α= 1 Thermal strain ε = δL/L expansion coefficient, (units: K Slope α 1 or, more conveniently, as L ∆T ‘‘microstrain/C’’ or 10 6 C 1). If the material is thermally isotropic, the volume expansion, per degree, is L 3 . If it is anisotropic, two or more coefficients are required, and the volume expansion becomes the sum of the principal thermal strains. ∆L The thermal shock α resistance Ts (units: K or C) is the maximum tem- perature difference through which a material can be quenched Insulation Heater Sample suddenly without damage. It, and the creep resistance, are important in high- temperature Temperature change design. ∆T
  • 12. Electrical Properties The electrical conductivity is simply the reciprocal of the resisitivity. When an insulator is placed in an Electrical resistivity Potential difference ∆V electric field, it becomes polarized and charges appear on its surfaces ∆V that tend to screen the interior ι ι from the electric field. The tendency to polarize is measured X by the dielectric constant, Ed (a Area A dimensionless quantity). Its value Resistance Resistivity for free space and, for practical R = ∆V/ι ∆V A ρe = purposes, for most gasses, is 1. X ι Most insulators have values Current ι between 2 and 30, though low- density foams approach the value 1 because they are largely air.
  • 13. Optical Properties All materials allow some passage of light, although for metals it is exceed- ingly small. The speed of light when in the material, v, is always less than that in vacuum, c. A consequence is that a beam of light striking the surface of such a material at an angle , the angle of incidence, enters the material at an angle , the angle of refraction.
  • 14. Eco - Properties  The contained or production energy (units MJ/kg) is the energy required to extract 1 kg of a material from its ores and feedstocks. The associated CO2 production (units: kg/kg) is the mass of carbon dioxide released into the atmosphere during the production of 1 kg of material.
  • 15. Environmental Properties Environmental resistance is conventionally characterized on a 3.4 Summ discrete 5-point scale: very good, good, Wear rate average, poor, very poor. ‘‘Very good’’ P3 P2 P1 means Wear volume V that the material is highly resistant to the environment, ‘‘very poor’’ that it is completely non-resistant or Load P unstable. The categorization is Sliding designed to help with initial W = V/S velocity v screening; supporting information should always be sought if environmental attack is a concern. Ways of doing this are described later.
  • 16. Summary  There are six important families of materials for mechanical design: metals, ceramics, glasses, polymers, elastomers, and hybrids that combine the properties of two or more of the others.  Within a family there is certain common ground: ceramics as a family are hard, brittle, and corrosion resistant; metals are ductile, tough, and good thermal and electrical conductors; polymers are light, easily shaped, and electrical insulators, and so on — that is what makes the classification useful.  In design we wish to escape from the constraints of family, and think, instead, of the material name as an identifier for a certain property-profile