SlideShare a Scribd company logo
RENCANA PELAKSANAAN PEMBELAJARAN ( RPP)
SatuanPendidikan : SMA
Kelas/Program/Semester : XI/IPA/2
Topik : Teori KinetikGas
Alokasi Waktu : 8 × 45 menit(4Pertemuan)
A. Kompetensi Inti:
KI 1 : Menghayati dan mengamalkan ajaran agama yang dianutnya.
KI 2 : Menghayati dan mengamalkan perilaku jujur, disiplin, tanggungjawab, peduli (gotong
royong,kerjasama,toleran,damai),santun,responsifdanpro-aktif danmenunjukkansikap
sebagai bagian dari solusi atas berbagai permasalahan dalam berinteraksi secara efektif
dengan lingkungan sosial dan alam serta dalam menempatkan diri sebagai cerminan
bangsa dalam pergaulan dunia.
KI 3 : Memahami, menerapkan, menganalisis pengetahuan faktual, konseptual, prosedural
berdasarkan rasa ingintahunya tentang ilmu pengetahuan, teknologi, seni, budaya, dan
humaniora dengan wawasan kemanusiaan, kebangsaan, kenegaraan, dan peradaban
terkaitpenyebabfenomenadankejadian,sertamenerapkanpengetahuanprosedural pada
bidangkajianyangspesifiksesuai denganbakatdanminatnya untukmemecahkanmasalah
KI 4 : Mengolah, menalar, dan menyaji dalam ranah konkret dan ranah abstrak terkait dengan
pengembangan dari yang dipelajarinya di sekolah secara mandiri, dan mampu
menggunakan metoda sesuai kaidah keilmuan
B. Kompetensi Dasar:
3.8. Memahami teori kinetikgasdalammenjelaskankarakteristikgaspadaruangtertutu
C. Indikator:
1. Menjelaskanhukum-hukumtentanggas
2. MemformulasikanhukumBoyle-GayLussac
3. Menggunakanpersamaan umumkeadaangasideal
4. Memformulasikantekanangasdari sifat mikroskopisgas
5. Memformulasikanenergi kinetikdankecepatanrata-ratapartikel gas
6. Memformulasikanteoremaekipartisi energi
7. Menerapkanpersamaankeadaangasideal dalamkehidupansehari-hari
D. Tujuan Pembelajaran
Pertemuanpertama
Melalui diskusi dilanjutkandenganpemberiansoal uji kompetensi,pesertadidikdiharapkandapat:
1. Menjelaskanhukum-hukumtentanggas
2. MemformulasikanhukumBoyle-GayLussac
3. Menggunakanpersamaan umumkeadaangasideal
Pertemuankedua
Melalui diskusi dilanjutkandenganpemberian soal uji kompetensi,pesertadidikdiharapkandapat:
1. Memformulasikantekanangasdari sifatmikroskopisgas
2. Memformulasikanenergi kinetikdankecepatanrata-ratapartikel gas
3. Memformulasikanteoremaekipartisi energi
Pertemuanketiga
Melalui metode jigsawdanpresentasi,pesertadidikdiharapkandapat:
1. Menerapkanpersamaankeadaangasideal dalamkehidupansehari-hari
Pertemuankeempat
Ujian
E. Materi Pembelajaran:
(Terlampir)
F. Metode Pembelajaran:
 Kontekstual
 Jigsaw
 Dikusi kelompok
 Eksperimen
 Penugasan
G. Kegiatan Pembelajaran:
Pertemuan1
Kegiatan Rincian Kegiatan
Waktu
(Menit)
Pendahuluan
 Guru memberikansalamdanberdoabersama(sebagai
implementasi nilai religius).
 Guru mengabsen,mengondisikankelasdanpembiasaan
(sebagai implementasinilai disiplin).
 Prasyarat kemampuansebelummempelajari subbab:
- Konversi skalasuhu
- Massa mol danmassa molekul
 Motivasi: Guru meminta siswa meniup balon, kemudian
menanyakan faktor-faktor apa saja yang dapat menyebabkan
volume balon bertambah besar?
 Guru menyampaikantujuanpembelajaran.
15
Kegiatan Inti
Mengamati (Observing)
 Menyimak informasi dari berbagai sumber tentang hukum
Boyle-gay Lusac tentang gas dan persamaan keadaan gas
melalui berbagai sumber
Menanya (Questioning)
 Mempertanyakan konsepteori kinetik gas dalam menjelaskan
karakteristik gas pada ruang tertutup
Mengeksplorasi/Eksperimen
 Mendiskusikanhubunganantarsuhu,volume ,dantekanangas
dalamruang tertutup.
60
Kegiatan Rincian Kegiatan
Waktu
(Menit)
 Mendiskusikan bentukpersamaankeadaangaskaitannya
denganrumusanBoyle-GayLusac
 Mendiskusikan bentukpersamaankeadaangaskaitannya
denganrumusanBoyle-GayLusac
Mengasosiasi (Associating)
 MenggunakanpersamaanBoyle-GayLussacdalam
memecahkanmasalahgaspadaruang tertutup
Mengkomunikasikan (Communicating)
 Membuatlaporantertulis
Penutup
 Guru bersama dengan peserta didik membuat simpulan
kegiatan pembelajaran.
 Guru memberikan umpan balik proses dan hasil
pembelajaran untuk mengetahui ketercapaian tujuan
pembelajaran.
 Guru meminta peserta didik untuk mempelajari konsep
tekanan dan energi kinetik menurut teori kinetik gas untuk
pertemuan berikutnya
 Tindaklanjut:Penugasan membacamateri selanjutnyadan
mengerjakansoal evaluasi yangberkaitandenganmateri yang
sudahdibahas.
15
Pertemuan2
Kegiatan Rincian Kegiatan
Waktu
(Menit)
Kegiatan Rincian Kegiatan
Waktu
(Menit)
Pendahuluan
 Siswaberkumpul danduduksesuai kelompoknyamasing-
masing
 Memberikansalamdanberdoa(sebagai implementasi nilai
religius).
 Guru mengabsen,mengondisikankelasdanpembiasaan
(sebagai implementasinilai disiplin).
 Prasyarat kemampuansebelummempelajari subbab:
- Tekanan
- Jumlahmolekul gas
- Impuls
 Motivasi: Guru menanyakandapatkahkitamengamati
molekul-molekul gasdenganmatatelanjang?
 Guru menyampaikantujuanpembelajaran.
15
Kegiatan Inti
Mengamati (Observing)
 Menyimak informasi dari berbagai sumber tentang
karakteristik gas dan gas ideal melalui berbagai sumber
Menanya (Questioning)
 Mempertanyakan sifat-sifat mikroskopis gas
Mengeksplorasi/Eksperimen
 Mendiskusikanhubunganantaraimpulsdengan gayadan
tekanan
 Mendiskusikangerakanpartikelgasmenumbukdinding
menyebabkantekanangas
 Mendiskusikankelompokhubunganantarasuhudenganenergi
60
Kegiatan Rincian Kegiatan
Waktu
(Menit)
kinetikdantekanangas
 Mendiskusikanhubunganantarsuhu,volume ,dantekanangas
dalamruang tertutup.
Mengasosiasi (Associating)
 Membuatilustrasi hubungantekanan,suhudanvolume,serta
ilustrasi penjelasanteori ekipartisi energi padasuhu
rendah,sedang,dantinggi
Mengkomunikasikan (Communicating)
 Membuatlaporantertulis
Penutup
 Guru bersama dengan peserta didik membuat simpulan
kegiatan pembelajaran.
 Guru memberikan umpan balik proses dan hasil
pembelajaran untuk mengetahui ketercapaian tujuan
pembelajaran.
 Guru memberikan penghargaan kepada kelompok terbaik
dalam pembelajaran.
 Guru meminta peserta didik untuk mempelajari pemecahan
masalah gas dalam ruang tertutup menggunakan
persamaan Boyle untuk pertemuan berikutnya
 Tindak lanjut: Penugasan membaca materi selanjutnya dan
mengerjakan uji kompetensi dari materi yang sudah dibahas.
15
Pertemuan3
Kegiatan Rincian Kegiatan
Waktu
(Menit)
Pendahuluan
 Siswaberkumpul danduduksesuai kelompoknyamasing-
masing
 Memberikansalamdanberdoa(sebagai implementasi nilai
religius).
 Guru mengabsen,mengondisikankelasdanpembiasaan
(sebagai implementasinilai disiplin).
 Guru menyampaikantujuanpembelajaran.
15
Kegiatan Inti
Mengeksplorasi/Eksperimen
 Eksplorasi penerapan persamaankeadaangasdan hukum
Boyle dalampemecahanmasalahgasdalamruangtertutup
Mengkomunikasikan (Communicating)
 Presentasi kelompok hasil ekplorasi menerapkan persamaan
keadaan gas dan hukum Boyle-Gay Lussac dan dalam
pemecahan masalah gas dalam ruang tertutup
60
Penutup
 Guru bersama dengan peserta didik membuat simpulan
kegiatan pembelajaran.
 Guru memberikan umpan balik proses dan hasil
pembelajaran untuk mengetahui ketercapaian tujuan
pembelajaran.
 Guru meminta peserta didik untuk mereview materi teori
kinetik gas sebagai persiapan ulangan harian
15
Kegiatan Rincian Kegiatan
Waktu
(Menit)
 Tindak lanjut: Penugasan menjawab uji kompetensi
Pertemuan4(2 jam)
Ulanganharian
H. Sumber Belajar/Bahan Ajar/Alat
Sumber:
BukupaketFisikakelasXIbabteori kinetikgas
I. Penilaian
1. Teknik Penilaian dan bentuk instrumen
Teknik Bentuk Instrumen
PengamatanSikap (Afektif) LembarPengamatan SikapdanRubrik
Tes Tertulis (Kognitif) PilihanGandadan Uraian
Portofolio LembarPenilaian Portofolio
2. Instrumen penilaian
a. Lembar pengamatan sikap
No Aspekyangdinilai 5 4 3 2 1 Keterangan
1 Menghayati danmengamalkan
ajaran agama yangdianutnya
2 menunjukkan perilakujujur,
disiplin,tanggungjawab,peduli
(gotongroyong,kerjasama,
toleran,damai),santun,
responsif danpro-aktif
Rubrikpengamatansikap
 1 = jika peserta didik sangat kurang konsisten memperlihatkan perilaku yang tertera
dalam indikator
 2 = jika peserta didik kurang konsisten memperlihatkan perilaku yang tertera dalam
indikator, tetapi belum konsisten
 3 = jika peserta didik mulai konsisten memperlihatkan perilaku yang tertera dalam
indikator
 4 = jika peserta didik konsisten memperlihatkan perilaku yang tertera dalam indikator
 5 = jika peserta didik selalu konsisten memperlihatkan perilaku yang tertera dalam
indikator
b. Penilaianpemahamankonsep
(Terlampir)
c. Penilaian portofolio
No KI / KD / PI Waktu
MACAM
PORTOFOLIO
Jumlah Skor
Nilai
Kualitas
Rangkuman
Makalah
Presentasi
kelompok
1
2
3
Catatan:
 PI = Pencapaian Indikator
 Untuk setiap karya peserta didik dikumpulkan dalam satu file sebagai bukti pekerjaan
yang masuk dalam portofolio.
 Skor menggunakan rentang antara 0 -10 atau 10 – 100.
 Penilaian Portofolio dilakukan dengan sistem pembobotan sesuai tingkat kesulitan
dalam pembuatannya.
TEORI KINETIK GAS
Sebagaimana telah diketahui bahwa gas terdiri dari partikel-partikel yang tersusun tidak
teratur. Jarak antarpartikel relatif jauh sehingga gaya tarik antarpartikel sangat lemah. Partikel-
partikel selalu bergerak dengan laju tinggi memenuhi tempatnya, sehingga pada saat terjadi
tumbukan antarpartikel, gaya tarik tidak cukup kuat untuk menjaga partikel-partikelnya tetap
dalam satu kesatuan. Teori kinetik muncul dengan anggapan bahwa partikelpartikel gas selalu
bergerak terus-menerus.
Gas yang tersusun atas satu unsur atom disebut gas monoatomik. Semua unsur gas mulia
(golongan VIII) merupakan gas monoatomik, yaitu helium (He), neon (Ne), radon (Rn), argon
(Ar), kripton (Kr), dan xenon (Xe). Helium dengan Ar = 4, digunakan dalam kapal, balon udara,
dan penyelam. Neon dengan Ar = 20, digunakan untuk papan reklame neon dan cahaya
fluoresen. Radon dengan Ar = 222, terbentuk dari hasil peluruhan radioaktif radium. Argon
dengan Ar = 40, digunakan pada bohlam listrik dan tabung fluoresen. Kripton dengan Ar = 84,
digunakan pada beberapa tabung laser, fluoresen, dan di dalam cahaya stroboskopik bandara.
Xenon dengan Ar = 131, digunakan untuk mengisi tabung fluoresen dan bohlam.
Pada bab ini, pembahasan dibatasi pada gas ideal, yaitu gas yang mempunyai sifat-sifat
yang sama pada kondisi yang sama. Dalam kondisi riil, gas yang berada pada tekanan rendah dan
jauh dari titik cair, dianggap mempunyai sifat-sifat seperti gas ideal. Persamaanpersamaan
tentang gas ideal adalah Hukum Boyle, Hukum Gay Lussac, Hukum Boyle-Gay Lussac, dan
persamaan gas ideal. Kita juga akan membahas mengenai tekanan, suhu, dan energi kinetik yang
dikaitkan dengan tingkah laku partikel gas. Dalam pembahasannya, tidak mungkin melakukan
perhitungan untuk setiap partikel, melainkan sifat gas secara keseluruhan sebagai hasil ratarata
dari partikel-partikel penyusun gas.
Gas ideal adalah gas yang memenuhi anggapan-anggapan berikut ini.
1. Gas terdiri atas partikel-partikel yang jumlahnya sangat banyak.
2. Partikel-partikel gas bergerak dengan laju dan arah yang beraneka ragam, serta
memenuhi Hukum Gerak Newton.
3. Partikel gas tersebar merata pada seluruh bagian ruangan yang ditempati.
4. Tidak ada gaya interaksi antarpartikel, kecuali ketika partikel bertumbukan.
5. Tumbukan yang terjadi antarpartikel atau antara partikel dengan dinding wadah adalah
lenting sempurna.
6. Ukuran partikel sangat kecil dibandingkan jarak antara partikel, sehingga bersama-sama
volumenya dapat diabaikan terhadap volume ruang yang ditempati.
A. Hukum-hukum Tentang Gas
1. Hukum Boyle
Volume gas dalam suatu ruang tertutup sangat bergantung pada tekanan dan suhunya.
Apabila suhu dijaga konstan, maka tekanan yang diberikan akan memperkecil volumenya.
Hubungan, tersebut dikenal dengan Hukum Boyle yang dapat dinyatakan berikut ini.
“Apabila suhu gas yang berada dalam ruang tertutup dijaga konstan, maka tekanan gas
berbanding terbalik dengan volumenya”.
Secara sistematis, pernyataan tersebut dapat dituliskan:
1
P
V
 , untuk P,V = konstan atau
(persamaan 8.1)
Dengan:
P1 = tekanan gas pada keadaan 1 (N/m2)
V1 = volume gas pada keadaan 1 (m3)
P2 = tekanan gas pada keadaan 2 (N/m2)
V2 = volume gas pada keadaan 2 (m3)
Persamaan 8.1 menyatakan bahwa pada suhu konstan, jika tekanan atau volume gas
berubah, maka variabel yang lain juga berubah sehingga hasil kali P.V selalu tetap.
1 1 2 2. .P V P V
P
V
Hubungan antara tekanan dan volume gas pada suhu konstan dapat dilukiskan dengan
grafik seperti yang tampak pada Gambar 8.2. Grafik tersebut menunjukkan bahwa pada saat
volumenya bertambah, tekanan gas akan berkurang. Proses pada suhu konstan disebut proses
isotermis.
2. Hukum Charles
Telah diketahui bahwa selain ditentukan oleh tekanan, volume gas dalam ruang tertutup
juga dipengaruhi oleh suhu. Jika suhu gas dinaikkan, maka gerak partikel-partikel gas akan
semakin cepat sehingga volumenya bertambah. Apabila tekanan tidak terlalu tinggi dan dijaga
konstan, volume gas akan bertambah terhadap kenaikan suhu. Hubungan tersebut dikenal dengan
Hukum Charles yang dapat dinyatakan berikut ini.
“Apabila tekanan gas yang berada dalam ruang tertutup dijaga konstan, maka volume gas
berbanding lurus dengan suhu mutlaknya.”
Secara matematis, pernyataan tersebut dapat dituliskan:
V T
V
T
= konstan atau 1 2
1 2
V V
T T
 (persamaan 8.2)
Dengan:
V1 = volume gas pada keadaan 1 (m3)
T1 = suhu mutlak gas pada keadaan 1 (K)
V2 = volume gas pada keadaan 2 (m3)
T2 = suhu mutlak gas pada keadaan 2 (K)
Hubungan antara volume gas dan suhu pada tekanan konstan dapat dilukiskan dengan
grafik seperti yang tampak pada Gambar 8.3. Proses yang terjadi pada tekanan tetap disebut
proses isobaris.
3. Hukum Gay Lussac
Apabila botol dalam keadaan tertutup kita masukkan ke api, maka botol tersebut akan
meledak. Hal ini terjadi karena naiknya tekanan gas di dalamnya akibat kenaikan suhu. Dengan
demikian, dapat dikatakan bahwa:
“Apabila volume gas yang berada pada ruang tertutup dijaga konstan, maka tekanan gas
berbanding lurus dengan suhu mutlaknya”.
Pernyataan tersebut dikenal dengan Hukum Gay Lussac. Secara matematis dapat
dituliskan:
P T
P
T
= konstan atau 1 2
1 2
P P
T T
 (persamaan 8.3)
Dengan:
P1 = tekanan gas pada keadaan 1 (N/m2)
T1 = suhu mutlak gas pada keadaan 1 (K)
P2 = tekanan gas pada keadaan 2 (N/m2)
T2 = suhu mutlak gas pada keadaan 2 (K)
Hubungan antara tekanan dan suhu gas pada volume konstan dapat dilukiskan dengan
grafik seperti yang tampak pada Gambar 8.4. Proses yang terjadi pada volume konstan disebut
proses isokhoris.
4. Hukum Boyle-Gay Lussac
Hukum Boyle-Gay Lussac merupakan gabungan dari persamaan (8.1), (8.2), dan (8.3),
sehingga dapat dituliskan:
PV
T
= Konstan
1 1 2 2
1 2
PV PV
T T
 (persamaan 8.4)
5. Persamaan Umum Gas Ideal
Sebelum membahas lebih lanjut mengenai persamaan umum gas ideal, kita akan mendefinisikan
dahulu beberapa istilah kimia yang berkaitan dengan gas ideal.
a. Massa atom relatif (Ar), adalah perbandingan massa rata-rata sebuah atom suatu unsur
terhadap
1
12
kalimassa sebuah atom 12
6C Harga massa atom relatif bukanlah massa yang
sebenarnya dari suatu atom, tetapi hanya merupakan harga perbandingan. Contoh:
Ar H =1
Ar Ne= 20
Ar Ar = 4
b. Massa molekul relatif (Mr), adalah jumlah keseluruhan massa atom relatif (Ar) unsur-
unsur penyusun senyawa.
c. Mol (n), adalah satuan banyaknya partikel yang besarnya merupakan hasil bagi massa
suatu unsur (senyawa) dengan massa relatifnya (Ar atau Mr).
n(mol)=
𝑚𝑎𝑠𝑠𝑎 𝑢𝑛𝑠𝑢𝑟 𝑎𝑡𝑎𝑢 𝑠𝑒𝑛𝑦𝑎𝑤𝑎 (𝑔𝑟𝑎𝑚)
𝐴𝑟 (𝑀𝑟)
d. Bilangan Avogadro, adalah bilangan yang menyatakan jumlah partikel dalam satu mol.
NA = 6,023 x 1023 partikel/mol
N = n NA
N adalah jumlah total partikel.
Hukum-hukum tentang gas dari Boyle, Charles, Gay Lussac, dan Boyle-Gay Lussac
diperoleh dengan menjaga satu atau lebih variabel dalam keadaan konstan untuk mengetahui
akibat dari perubahan satu variabel. Berdasarkan Hukum Boyle–Gay Lussac diperoleh:
PV
T
= Konstan atau
PV
k
T

Apabila jumlah partikel berubah, maka volume gas juga akan berubah. Hal ini berarti
bahwa harga
PV
T
adalah tetap, bergantung pada banyaknya partikel (N ) yang terkandung dalam
gas. Persamaan di atas dapat dituliskan:
.
PV
N k
T

. . .PV N k T (persamaan i)
k= konstanta Bolzmann, (k=1,38 x 10-23 J/K) karena N= n.NA, maka:
. . . .APV n N k T (persamaan ii)
.AN k R yang merupakan konstanta gas umum yang besarnya sama untuk semua gas, maka
persamaan (ii) menjadi:
. . .PV n RT (persamaaan 8.5)
dengan:
P = tekanan gas (N/m2)
V = volume gas (m3)
n = jumlah mol
T = suhu mutlak (K)
R = konstanta gas umum (J/mol.K)
R = NA.k
R = (6,023 x 1023) (1,38 x 10-23)
R = 8,31 J/mol.K = 0,082 L.atm/mol.K
Persamaan (8.5) disebut persamaan umum gas ideal.
Contoh soal
1. Suatu gas ideal sebanyak 4 liter memiliki tekanan 1,5 atmosfer dan suhu 27 °C. Tentukan
tekanan gas tersebut jika suhunya 47 °C dan volumenya 3,2 liter!
Penyelesaian:
Diketahui:
V1 = 4 liter
V2 = 3,2 liter
P1 = 1,5 atm
T1 = 27 °C = 27+273 = 300 K
T2 = 47 °C = 47+273 = 320 K
Ditanya: P2 = ... ?
Jawab:
1 1 2 2
1 2
PV PV
T T

2 3,21,5 4
300 320
P 

1,2 4 320
300 3,2
p
 


= 2 atm
2. Gas helium sebanyak 16 gram memiliki volume 5 liter dan tekanan 2 x 105 Pa. Jika R =
8,31 J/mol.K, berapakah suhu gas tersebut?
Penyelesaian:
Diketahui: m = 16 gram = 16 x 10-3 kg
Mr O2 = 4
P = 2 x 105 Pa
R = 8,31 J/mol.K
V = 5 liter = 5 x 10-3 m3
Ditanya: T = ... ?
Jawab:
m
n
Mr

3
16 10
4



= 4x 10-3 mol
. . .PV n RT
.
.
PV
T
n R

5 3
3
(2 10 )(5 10 )
(4 10 )(8,31)


 


= 30.084 K
B. Teori Kinetik Gas
1. Tekanan Gas Ideal
Berdasarkan teori kinetik, kita akan
menentukan secara kuantitatif tekanan dalam gas.
Misalnya, suatu gas yang mengandung sejumlah
partikel berada dalam suatu ruang yang berbentuk
kubus dengan sisi L dan luas masing-masing sisinya
A (Gambar 8.5). Tekanan yang diberikan gas pada
dinding sama dengan besarnya momentum yang
dilakukan oleh partikel gas tiap satuan luas tiap
satuan waktu.
Partikel yang massanya m0 bergerak dengan
kecepatan vx dalam arah sumbu x. Partikel
menumbuk dinding sebelah kiri yang luasnya A
dengan kecepatan -vx. Karena tumbukan bersifat
lenting sempurna, maka partikel akan terpantul
dengan kecepatan vx (Gambar 8.6). Perubahan
momentum yang terjadi pada partikel gas X
dirumuskan:
2 1p p p  
0 0. ( )x xm v m v  
02 . xp m v 
Partikel akan kembali menumbuk dinding yang sama setelah menempuh jarak 2L, dengan selang
waktu:
2
x
L
t
v
 
Besarnya impuls yang dialami dinding saat tumbukan adalah:
0
2
0 0 0
.
. 2
2. . 2 .
2
x
x x x
x
I p
F t p
F t m v
m v m v m v
F
Lt L
v
 
  
 
  

F adalah gaya yang dialami dinding pada saat tumbukan.
Besarnya tekanan gas dalam kubus adalah:
2
0
2
0
2
x
x
m v
m vF LP
A L V
  
Apabila dalam wadah terdapat N partikel gas, maka tekanan gas pada dinding dirumuskan:
2
0. . xN m v
P
V
 (persamaan 8.6)
2
xv adalah rata-rata kuadrat kecepatan partikel gas pada sumbu x.
2 2 2 2 2
1 2 3 ...x x x x nxv v v v v    
Partikel-partikel gas tersebut bergerak ke segala arah dengan laju yang tetap, sehingga:
2 2 2
2 2 2 2 2
2 2
3
1
3
x y z
x y z
x
v v v
v v v v v
v v
 
   

Dengan demikian, persamaan (8.6) menjadi:
(persamaan 8.7)
dengan:
P = tekanan gas (N/m2)
N = jumlah partikel
v = kecepatan (m/s)
m0 = massa partikel (kg)
V = volume gas (m3)
2
0. .1
3
N m v
P
V

Karena 2
0
1
.
2
m v adalah energi kinetik rata-rata partikel dalam gas, maka persamaan (8.7) dapat
dituliskan:
.2
3
kN E
P
V
 (persamaan 8.8)
Contoh soal
Sebuah tangki yang volumenya 50 liter mengandung 3 mol gas monoatomik. Jika energi kinetik
rata-rata yang dimiliki setiap gas adalah 8,2x10 -21J, tentukan besar tekanan gas dalam tangki?
Penyelesaian:
Diketahui: V = 50 liter = 5 x 10-2 m3
n = 3 mol
Ek = 8,2 x 10-21 J
Ditanya: P = ... ?
Jawab:
.2
3
kN E
P
V

. .2
3
A kn N E
V

23 21
2
2 (3)(6,02 10 )(8,2 10 )
3 5 10


 


5
1,97 10  N/m2
2. Suhu dan Energi kinetik Rata-rata PartikelGas Ideal
Energi kinetik rata-rata partikel gas bergantung pada besarnya suhu. Berdasarkan teori
kinetik, semakin tinggi suhunya, maka gerak partikel-partikel gas akan semakin cepat. Hubungan
antara suhu dengan energi kinetik ratarata partikel gas dinyatakan berikut ini. Menurut
persamaan umum gas ideal:
. . .PV N k T
. .N k T
P
V

Persamaan (8.8) menyatakan:
.2
3
kN E
P
V

Dengan menyamakan kedua persamaan tersebut diperoleh:
.. . 2
3
kN EN k T
V V

2
3
kT E
k
 atau
3
.
2
Ek k T (persamaan 8.9)
Persamaan (8.9) menyatakan bahwa energi kinetic rata-rata partikel gas sebanding dengan suhu
mutlaknya.
3. Kelajuan Efektif Gas Ideal
Salah satu anggapan tentang gas ideal adalah bahwa partikel-partikel gas bergerak
dengan laju dan arah yang beraneka ragam. Apabila di dalam suatu ruang tertutup terdapat N1
partikel yang bergerak dengan kecepatan v1, N2 partikel yang bergerak dengan kecepatan v2,
dan seterusnya, maka rata-rata kuadrat kecepatan partikel gas 2
v , dapat dituliskan:
22 2 2
2 1 1 2 2
1 2 3
... i ii i
i
N vN v N v N v
v
N N N N
  
 
 


(persamaan 8.10)
Akar dari rata-rata kuadrat kecepatan disebut kecepatan efektif gas atau vrms (rms = root mean
square).
2
rmsv v
Mengingat 2
0 0
1 1
. .
2 2
k rmsE m v m v  , maka apabila kita gabungkan dengan persamaan (8.9),
diperoleh:
2
0
1 3
. .
2 2
m v k T
0
3 .
rms
k T
v
m
 (persamaan 8.11)
dengan:
vrms = kelajuan efektif gas (m/s)
T = suhu mutlak (K)
m0 = massa sebuah partikel gas (kg)
k = konstanta Boltzmann ( J/K)
Karena massa sebuah partikel adalah .
A
Mr
m n Mr
N
  dan
A
R
k
N
 , maka persamaan (8.11)
dapat dituliskan:
3 .
rms
R T
v
Mr
 (persamaan 8.12)
Berdasarkan persamaan umum gas ideal
.
.
PV
k T
N
 , massa total gas 0.m N m dan
m
V
  ,
maka persamaan (8.12) dapat dinyatakan :
3
rms
P
v

 (persamaan 8.13)
Contoh soal
1. Jika konstanta Boltzmann k = 1,38 x 10-23 J/K, berapakah energi kinetik sebuah helium
pada suhu 27 °C?
Penyelesaian:
Diketahui: k = 1,38 x 10-23 J/K
T = 27 °C = 27 + 273 = 300 K
Ditanya: Ek = … ?
Jawab:
3
.
2
Ek k T
23 213
(1,38 10 )(300) 6,21 10
2
J 
   
2. Di dalam ruang tertutup terdapat gas yang tekanannya 3,2 x 105 N/m2. Jika massa jenis
gas tersebut adalah 6 kg/m3, berapakah kecepatan efektif tiap partikel gas tersebut?
Penyelesaian:
Diketahui: P = 3,2 x 105 N/m2
ρ = 6 kg/m3
Ditanya: Vrms = … ?
Jawab:
3
rms
P
v


5
3(3,2 10 )
6


400 m/s
C. Teorema Ekipartisi Energi
Berdasarkan sifat gas ideal, partikel-partikel gas bergerak dengan laju dan arah yang
beraneka ragam, sehingga sebuah partikel yang bergerak dengan kecepatan v dapat memiliki
komponen kecepatan pada sumbu -x, y dan sumbu z, yang besarnya:
2 2 2 2 2
3x y zv v v v v   
Energi kinetik partikel adalah:
2 2 2 21 1
. ( )
2 2
x y zEk m v m v v v   
Hal ini berarti bahwa sebuah partikel dapat bergerak pada tiga arah yang berbeda. Energi kinetik
rata-rata partikel dapat dihitung dengan menggunakan teorema ekipartisi energi, yang
menyatakan bahwa:
“Jika pada suatu system yang mengikuti Hukum Newton tentang gerak dan mempunyai
suhu mutlak T, maka setiap derajat kebebasan (f), suatu partikel memberikan kontribusi
1
.
2
k T
pada energi rata-rata partikel,”
sehingga energi rata-rata dapat dituliskan:
1
( . )
2
E f k T (persamaan 8.14)
Setiap derajat kebebasan f memberikan kontribusi pada energi mekanik partikel tersebut.
1. Derajat Kebebasan Molekul Gas
Pada gas ideal yang monoatomik atau beratom tunggal, partikel hanya melakukan gerak
translasi pada arah sumbu x, sumbu y, dan sumbu z. Apabila massa partikel m, maka energi
kinetik translasi sebesar:
2 2 2 21 1 1 1
. . . .
2 2 2 2
x y zEk m v m v m v m v   
Dengan demikian, dikatakan bahwa gas monoatomik mempunyai tiga derajat kebebasan.
Pada bahasan ini hanya terbatas pada gas
ideal monoatomik. Namun, sebagai pengayaan juga
kita pelajari sedikit tentang gas diatomik. Pada gas
diatomik atau beratom dua seperti H2, O2, dan N2,
partikel-partikel gas selain melakukan gerak
translasi juga terjadi gerak antaratom dalam
molekul yang mengakibatkan partikel melakukan
gerak rotasi dan vibrasi. Misalnya, kedua atom
dalam satu molekul kita anggap berada pada sumbu
x, seperti pada Gambar 8.7
Pada gambar tersebut, molekul gas diatomik dilukiskan dengan sebuah batang dengan
dua buah beban pada kedua ujungnya. Pusat massa molekul melakukan gerak translasi pada arah
sumbu x, y, dan z sehingga memiliki tiga derajat kebebasan. Molekul juga dapat melakukan
gerak rotasi dengan energi kinetic 21
2
Ek I . Karena molekul benda pada arah sumbu x, maka
momen inersia pada sumbu x adalah nol,
21
0( 0).
2
x xI Ek I   
Molekul hanya melakukan gerak rotasi terhadap sumbu y dan sumbu z. Ini berarti pada
gerak rotasi, molekul mempunyai dua derajat kebebasan. Pada gerak vibrasi, molekul dapat
memiliki energi kinetik dan energy potensial, sehingga mempunyai dua derajat kebebasan.
Dengan demikian, sebuah molekul gas diatomik pada suhu tinggi yang memungkinkan molekul
melakukan gerak translasi, rotasi, dan vibrasi dapat memiliki tujuh derajat kebebasan.
2. Energi Dalam Pada Gas Ideal
Berdasarkan teorema ekipartisi energi bahwa tiap partikel gas mempunyai energi kinetik
rata-rata sebesar
1
( )
2
Ek f kT . Energi dalam suatu gas ideal didefinisikan sebagai jumlah
energi kinetik seluruh molekul gas dalam ruang tertutup yang meliputi energi kinetik translasi,
rotasi, dan vibrasi. Apabila dalam suatu ruang terdapat N molekul gas, maka energi dalam gas
ideal U dinyatakan:
1
( )
2
U NE Nf kT  (persamaan 8.15)
Berdasarkan derajat kebebasannya, energi dalam gas monoatomik ideal dapat dituliskan sebagai
berikut:
3f 
(persamaan 8.16)
Contoh soal
1. Berapakah tekanan dari 20 mol gas yang berada dalam tangki yang volumenya 100 liter
jika suhunya 77 °C dan g = 9,8 m/s2 ? (R = 8,31 J/mol.K)
Penyelesaian:
Diketahui: n = 20 mol = 0,02 Mol
V = 100 liter = 0,1 m3
T = 77 °C = 77 + 273 = 350 K
g = 9,8 m/s2
Ditanya: P = … ?
Jawab:
. . .PV n RT
. .n RT
P
V

(0,02)(8,31)(350)
0,1
P 
P = 581,7N/m2 = 5,8 x 102 N/m2
2. Berapakah energi dalam 4 mol gas monoatomik ideal pada suhu 107 °C, jika diketahui k
= 1,38 x 10-23 J/K dan NA = 6,02 x 1026 molekul/kmol?
Penyelesaian:
Diketahui: T = (273 + 107) K = 380 K
1 3
3 ( )
2 2
U N kT NkT 
γ = 3
Ditanyakan: U = … ?
Jawab:
1
2
kE kT
 
  
 
3
2
kT
23
1
3
(1,38 10 )(380)
2
7,87 10 J


 
 
.U N Ek
26 23
7
(4 6,02 10 )(7,87 10 )
1,90 10 J

   
 
PETA MATERI
TEORI KINETIK
GAS
Hukum Boyle-Gay Lussac
PV
T
= konstan
1 1 2 2
1 2
PV PV
T T

Hukum Boyle
1
P
V
 , 1 1 2 2. .P V P V
Hukum Charles
V T , 1 2
1 2
V V
T T
 Hukum Gay Lussac
P T , 1 2
1 2
P P
T T

Persamaan Gas Ideal
. . .PV N k T atau
. . .PV n RT Tekanan Gas Ideal
2
0. .1
3
N m v
P
V
 atau
.2
3
kN E
P
V

Suhu Rata-Rata Partikel
Gas Ideal
2
3
kT E
k

Energi rata-rata partikel
gas ideal
3
.
2
Ek k T
Kelajuan Efektif Gas Ideal
3 .
rms
R T
v
Mr
 atau
3
rms
P
v


Energi Dalam Pada Gas
Ideal
1
( )
2
U NE Nf kT 
1 3
3 ( )
2 2
U N kT NkT 
Teorema Ekipartisi Energi
1
( . )
2
E f k T
f = derajat kebebasan
UJI KOMPETENSI
A. Pilihan Ganda
1. Partikel-partikel gas ideal mempunyai sifat-sifat sebagai berikut, kecuali ... .
A. selalu bergerak
B. tidak saling menarik
C. bertumbukan lenting sempurna
D. tersebar merata di seluruh bagian ruangan yang ditempati
E. tidak mengikuti Hukum Newton tentang gerak
2. Pada Hukum Boyle, P.V = k, P adalah tekanan dan V adalah volume. Konstanta
k mempunyai dimensi yang sama dengan ... .
A. daya
B. usaha
C. momentum
D. suhu
E. konstanta pegas
3. Gas dalam ruangan tertutup bersuhu 27°C, tekanan 3 atm dan volumennya 2L. Apabila
gas dipanaskan sampai 57°C dan tekanan naik 1 atm, maka volume gas berubah menjadi
A. 2 L
B. 1,80 L
C. 1.65 L
D. 1.20 L
E. 0,80 L
4. 2. Udara dalam ban mobil pada suhu 15°C mempunyai tekanan 305 kPa. Setelah berjalan
pada kecepatan tinggi, ban menjadi panas dan tekanannya menjadi 360 kPa. Temperatur
udara dalam ban jika tekanan udara luar 101 kPa adalah….
A. 54 OC
B. 34 OC
C. 45 OC
D. 25 OC
E. 37 OC
5. Berapa tekanan gas, jika volumennya 60L, jumlah mol (n) = 3 mol dan mempunyai suhu
27°C? (R = 8,315 J/mol.K)
A. 2,39 atm
B. 2,18 atm
C. 1,89 atm
D. 1,47 atm
E. 1,24 atm
6. Partikel-partikel gas ideal memiliki sifat-sifat antara lain ….
1) selalu bergerak
2) tidak tarik menarik
3) bertumbukan lenting sempurna
4) tidak mengikuti Hukum Newton tentang gerak
Pernyataan yang benar adalah …
A. 1, 2, dan 3
B. 2, 3, dan 4
C. 1, 3, dan 4
D. 1 dan 3
E. 2 dan 4
7. Jika suatu gas ideal dimampatkan secara isotermal sampai volumenya menjadi setengah
dari volume semula maka ….
A. tekanan dan suhu tetap
B. tekanan menjadi dua kali dan suhu tetap
C. tekanan tetap dan suhu menjadi dua kalinya
D. tekanan menjadi dua kalinya dan suhu menjadi setengahnya
E. tekanan dan suhu menjadi setengahnya.
8. Jika suhu gas dinaikkan, kecepatan rata-rata partikel gas bertambah karena kecepatan
gas…
A. Sebanding dengan akar masa partikel
B. Sebanding dengan akar suhu mutlak
C. Berbanding terbalik dengan masa partikel
D. Sebanding dengan suhu mutlak gas
E. Sebanding dengan kuadrat suhu mutlak
9. Sebuah ruang tertutup berisi gas ideal dengan suhu T dan kecepatan partikel gas di
dalamnya v. Jika suhu gas itu dinaikkan menjadi 2T maka kecepatan partikel gas tersebut
menjadi …
A. √2 v
B. 12 v
C. 2 v
D. 4 v
E. v2
10. Dalam suatu ruangan terdapat 800 miligram gas dengan tekanan 1 atm. Kelajuan rata-rata
partikel tersebut adalah 750 m/s. Jika 1 atm = 105 N/m2 , maka volume ruangan tersebut
adalah…
A. 1,5 x 10-3 m3
B. 2 x 10-3 m3
C. 6,7 x 10-3 m3
D. 1,5 x 10-2 m3
E. 6,7 x 10-2 m3
11. Sepuluh liter gas ideal suhunya 127°C mempunyai tekanan 165,6 N/m2. Maka
banyaknya partikel gas tersebut adalah…
A. 2 x 1019 buah
B. 3 x 1019 buah
C. 2 x 1020 buah
D. 3 x 1020 buah
E. 5 x 1020 buah
12. Besarnya energy kinetik sebuah atom helium pada suhu 227°C (k= 1,38 x 10-23 J/K)
adalah…
A. 9,25 x 10-21 J
B. 10,25 x 10-21 J
C. 10,35 x 10-21 J
D. 10,50 x 10-21 J
E. 10,60 x 10-21 J
13. Suatu gas ideal mempunyai energy dalam 1,01 x 1028 Joul. Jumlah mol gas ideal tersebut
bila besar energy kinetiknya 5 kJ adalah…mol
A. 3.350
B. 335
C. 33,5
D. 3,35
E. 0,33
14. Sejumlah gas berada dalam ruang tertutup bersuhu 327°C dan mempunyai energi kinetik
Ek. Jika gas dipanaskan hingga suhunya naik menjadi 627°C. Energi kinetik gas pada
suhu tersebut adalah…
A. 2,5 Ek
B. 3,5 Ek
C. 1,5 Ek
D. 4,5 Ek
E. 0,5 Ek
15. Dua mol gas ideal diatomic memiliki 5 derajat kebebasan bersuhu 800 K. Energi dalam
gas tersebut adalah…
A. 5,52 x 104 J
B. 1,34 x 105 J
C. 6,64 x 104 J
D. 4,32 x 105 J
E. 3,32 x 104 J
1. Essay
1. Gas oksigen pada suhu 27 °C memiliki volume 20 liter dan tekanan 2 x 105 N/m2.
Berapakah volume gas ketika tekanannya 16 x 104 N/m2 dan suhunya 47 °C ?
2. Gas oksigen (Mr = 32 kg/mol) massa 80 gram berada dalam tangki yang volumenya 8
liter. Hitunglah tekanan yang dilakukan oleh gas jika suhunya 27 °C ?
3. Suatu gas ideal (Mr = 40 kg/mol) berada dalam tabung tertutup dengan volume 8 liter.
Jika suhu gas 57 °C dan tekanan 2 x 105 N/m2, berapakah massa gas tersebut?
4. Jika massa jenis gas nitrogen 1,25 kg/m3, hitunglah kecepatan efektif partikel gas
tersebut pada suhu 227 °C dan tekanan 1,5 x 105 N/m2!
5. Suatu gas ideal berada di dalam ruang tertutup. Gas ideal tersebut dipanaskan hingga
kecepatan rata-rata partikel gas meningkat menjadi 3 kali kecepatan awal. Jika suhu awal
gas adalah 27oC, hitung suhu akhir gas ideal tersebut!
PEMBAHASAN UJI KOMPETENSI
A. Pilihan ganda
1. E. tidak mengikuti Hukum Newton tentang gerak
2. B. Usaha
3. Diketahui:
T1 = 27°C = 300°K
P1 = 3 atm
V1 = 2L
T2 = 57°C = 330°K
P2 = 4 atm
Ditanya:
berapa volume setelah gas dibakar (V2)?
Jawab :
1 1 2 2
1 2
PV PV
T T

243 2
300 330
atm Vatm Liter
K K


1980 = 1200 V2
V2 = 1.65 L
Jadi volumenya berubah menjadi C. 1,65 L
4. A. 54 OC
5. Diketahui :
V = 60L = 60 dm3 = 60x10-3 m3
n = 3 mol
T = 27°C = 300°K
R = 8,315 J/mol.K
Ditanya:
berapa tekanan gas tersebut (P)?
Jawab :
PV = nRT
P (60x10-3 m3) = 3 mol x 8,315 J/mol.K x 300°K
P 60x10-3 m3 = 7483,5 J
P = 7483,5 J / 60x10-3 m3
P = 124,725 x103
P = 1,24725 x105 Pascal
P = 1,24 atm
Jadi tekanan gasnya E. 1,24 atm
6. A. 1, 2 dan 3
7. B. tekanan menjadi dua kali dan suhu tetap
8. B. Sebanding dengan akar suhu mutlak
9. Diketahui:
T1 = T
T2 = 2T
V1 = ν
Ditanya:
v2 =.....
Jawab:
Kecepatan gas untuk dua suhu yang berbeda
Sehingga diperoleh
Maka kecepatan partikel gas tersebut adalah A. 2 v
10. Diketahui:
m = 800 mg = 8 x 10-4 kg
P = 1 atm = 105 N/m2
v = 750 m/s = 7,5 x 102 m/s
Ditanya:
Volume (V)…?
Jawab:
2
2
1
3
1
3
Nmv
P
V
Nmv
V
P


4 2 2
5
1 (1)(8 10 )(7,5 10 )
3 10

 

5
3
450
3 10
1,5 10


 
Jadi, volume ruangan tersebut adalah A. 1,5 x 10-3 m3
11. Diketahui:
T = 127°C = (127+273) K = 400 K
P = 165,6 N/m2
V = 10 liter = 10 dm3 = 10-2 m3
k = 1,38 x 10-23 J/K
Ditanya:
Jumlah partikel (N)=...?
Jawab:
PV NkT
PV
N
kT


2
23
19
20
(165,6)(10 )
(1,38 10 )(400)
30 10
3 10




 
 
Jadi jumlah partikelgas tersebut adalah D. 3 x 1020 buah
12. Diketahui:
k =1,38 x 10-23 J/K
N = 1
T = 227°C = (227+273) K = 500 K
Ditanya:
Energi kinetik (Ek)=…?
Jawab:
3
2
Ek NkT
23
21
3
(1)(1,38 10 )(500)
2
10,35 10 J


 
 
Jadi energi kinetik sebuah atom helium adalah C. 10,35 x 10-21J
13. Diketahui:
U = 1,01 x 1028 J
Ek = 5 kJ = 5 x 103 J
N0 = 6,02 x 1023
Ditanya:
Jumlah mol gas ideal (N) =…?
Jawab:
U NEk
28 3
1,01 10 (5 10 )N  
28
3
1,01 10
5 10
N



25
24
0,202 10
2,02 10
 
 
0
N
n
N

24
23
2,02 10
6,02 10
0,335 10
3,35



 

Jadi jumlah mol gas ideal adalah D. 3,35 mol
14. C. 1,5 Ek
15. E. 3,32 x 104 J
B. Essay
1. Diketahui:
T1 = 27°C = 27+ 273= 300 K
V1= 20 Liter
P1 = 2 x 105 N/m2
P2 = 16 x 104 N/m2
T2 = 47°C = 47+ 273= 320 K
Ditanya:
V2 =….?
Jawab:
1 1 2 2
1 2
PV PV
T T

4 25 2
2(16 10 / )(2 10 / )(20 )
300 320
N m VN m liter
K K


5 2 4 2
2(2 10 / )(20 )(320 ) (16 10 / )(300 )N m liter K N m K V  
7 6
2128 10 48 10 V  
7
2 6
128 10
48 10
V



= 26,67 liter
2. Diketahui:
Mr = 32 Kg/mol
Massa(m) = 80 gram = 80 x 10-3 kg
Volume (V) = 8 liter = 8 x 10-3 m3
Suhu (T) = 27°C = 27+ 273= 300 K
Ditanya:
Tekanan (P) = ….?
Jawab :
3
480 10
25 10
32 /
m kg
n mol
Mr kg mol


   
. . .PV n RT
4
3 3
. . (25 10 )(8,31 / )(300 )
8 10
n RT mol J molK K
P
V m



 

3
2
779 /
779 /
J m
N m


3. Diketahui:
Mr = 40 kg/mol
V = 80 Liter = 8 x 10-3 m3
T = 57°C = 57 + 273 = 330 K
P = 2 x 105 N/m2
R = 8,31 J/mol K
Ditanya :
Massa=…?
Jawab :
. . .PV n RT
.
.
PV
n
RT

5 2 3 3
(2 10 / )(8 10 )
(8,31 / )(330 )
N m m
J molK K

 

192,54n mol
m
n
Mr

.m n Mr
192,54 .40 /mol kg mol
= 7701,56 kg
4. Diketahui:
3
1,25 /kg m 
227T C 
5 2
1,5 10 /P N m 
Ditanya:
vrms=…..?
Jawab:
3
rms
P
v


5 2
3
3 1,5 10 /
1,25 /
N m
kg m
 

360000 /Nm kg
2 2
360000 /m s
= 60 m/s
5. Diketahui :
Suhu awal = 27oC + 273 = 300 Kelvin
Kecepatan awal = v
Kecepatan akhir = 2v
Ditanya :
Suhu akhir gas ideal
Jawab :
Kecepatan rata-rata akhir = 2 x Kecepatan rata-rata awal
Materi (teori kinetik gas)

More Related Content

What's hot

RPP HUKUM ARCHIMEDES
RPP HUKUM ARCHIMEDESRPP HUKUM ARCHIMEDES
RPP HUKUM ARCHIMEDES
MAFIA '11
 
9. sma kelas x rpp kd 3.6 dan 4.6 elastisitas dan hukum hooke (karlina 130823...
9. sma kelas x rpp kd 3.6 dan 4.6 elastisitas dan hukum hooke (karlina 130823...9. sma kelas x rpp kd 3.6 dan 4.6 elastisitas dan hukum hooke (karlina 130823...
9. sma kelas x rpp kd 3.6 dan 4.6 elastisitas dan hukum hooke (karlina 130823...
eli priyatna laidan
 
Osilasi tergandeng
Osilasi tergandengOsilasi tergandeng
Osilasi tergandeng
kyu manda
 
ATP Fisika SMA XI.docx
ATP Fisika SMA XI.docxATP Fisika SMA XI.docx
ATP Fisika SMA XI.docx
ViraMurtiAdhi
 
7. sma kelas xi rpp kd 3.6;4.6 dinamika rotasi (karlina 1308233)
7. sma kelas xi rpp kd 3.6;4.6 dinamika rotasi (karlina 1308233)7. sma kelas xi rpp kd 3.6;4.6 dinamika rotasi (karlina 1308233)
7. sma kelas xi rpp kd 3.6;4.6 dinamika rotasi (karlina 1308233)
eli priyatna laidan
 
Contoh Soal Persamaan Schrodinger dan penyelesaiannya
Contoh Soal Persamaan Schrodinger dan penyelesaiannyaContoh Soal Persamaan Schrodinger dan penyelesaiannya
Contoh Soal Persamaan Schrodinger dan penyelesaiannya
AyuShaleha
 
Power Point Materi Gelombang Bunyi
Power Point Materi Gelombang Bunyi Power Point Materi Gelombang Bunyi
Power Point Materi Gelombang Bunyi 240297
 
Termodinamika (1-2) a Diferensial eksak dan tak eksak
Termodinamika (1-2) a Diferensial eksak dan tak eksakTermodinamika (1-2) a Diferensial eksak dan tak eksak
Termodinamika (1-2) a Diferensial eksak dan tak eksakjayamartha
 
12. sma kelas xi rpp kd 3.11 pers.gelombang (karlina 1308233)
12. sma kelas xi rpp kd 3.11 pers.gelombang (karlina 1308233)12. sma kelas xi rpp kd 3.11 pers.gelombang (karlina 1308233)
12. sma kelas xi rpp kd 3.11 pers.gelombang (karlina 1308233)
eli priyatna laidan
 
Sistem Termodinamika
Sistem TermodinamikaSistem Termodinamika
Sistem Termodinamika
AlpiYanti
 
Kumpulan Materi Termodinamika
Kumpulan Materi TermodinamikaKumpulan Materi Termodinamika
Kumpulan Materi Termodinamika
FISIKA - UNIVERSITAS MUHAMMADIYAH RIAU
 
Kunci LKPD Hukum Pascal
Kunci LKPD Hukum PascalKunci LKPD Hukum Pascal
Kunci LKPD Hukum Pascal
NovaPriyanaLestari
 
3. rpp gerak lurus
3. rpp gerak lurus3. rpp gerak lurus
3. rpp gerak lurus
eli priyatna laidan
 
Lks gas ideal komplit
Lks gas ideal komplitLks gas ideal komplit
Lks gas ideal komplit
NolyShofiyah1
 
RPP USAHA DAN ENERGI.docx
RPP USAHA DAN ENERGI.docxRPP USAHA DAN ENERGI.docx
RPP USAHA DAN ENERGI.docx
elvasellya1
 
Efek Fotolistrik
Efek FotolistrikEfek Fotolistrik
Efek Fotolistrik
farahdibacm
 
Rpp (impuls dan momentum)
Rpp (impuls dan momentum)Rpp (impuls dan momentum)
Rpp (impuls dan momentum)
eli priyatna laidan
 
Termodinamika
TermodinamikaTermodinamika
Termodinamika
SMPN 3 TAMAN SIDOARJO
 
RPP SUHU & KALOR (SMA)
RPP SUHU & KALOR (SMA)RPP SUHU & KALOR (SMA)
RPP SUHU & KALOR (SMA)
MAFIA '11
 
10. sma kelas xi rpp kd 3.10;4.9 karakteristik gelombang (karlina 1308233)
10. sma kelas xi rpp kd 3.10;4.9 karakteristik gelombang (karlina 1308233)10. sma kelas xi rpp kd 3.10;4.9 karakteristik gelombang (karlina 1308233)
10. sma kelas xi rpp kd 3.10;4.9 karakteristik gelombang (karlina 1308233)
eli priyatna laidan
 

What's hot (20)

RPP HUKUM ARCHIMEDES
RPP HUKUM ARCHIMEDESRPP HUKUM ARCHIMEDES
RPP HUKUM ARCHIMEDES
 
9. sma kelas x rpp kd 3.6 dan 4.6 elastisitas dan hukum hooke (karlina 130823...
9. sma kelas x rpp kd 3.6 dan 4.6 elastisitas dan hukum hooke (karlina 130823...9. sma kelas x rpp kd 3.6 dan 4.6 elastisitas dan hukum hooke (karlina 130823...
9. sma kelas x rpp kd 3.6 dan 4.6 elastisitas dan hukum hooke (karlina 130823...
 
Osilasi tergandeng
Osilasi tergandengOsilasi tergandeng
Osilasi tergandeng
 
ATP Fisika SMA XI.docx
ATP Fisika SMA XI.docxATP Fisika SMA XI.docx
ATP Fisika SMA XI.docx
 
7. sma kelas xi rpp kd 3.6;4.6 dinamika rotasi (karlina 1308233)
7. sma kelas xi rpp kd 3.6;4.6 dinamika rotasi (karlina 1308233)7. sma kelas xi rpp kd 3.6;4.6 dinamika rotasi (karlina 1308233)
7. sma kelas xi rpp kd 3.6;4.6 dinamika rotasi (karlina 1308233)
 
Contoh Soal Persamaan Schrodinger dan penyelesaiannya
Contoh Soal Persamaan Schrodinger dan penyelesaiannyaContoh Soal Persamaan Schrodinger dan penyelesaiannya
Contoh Soal Persamaan Schrodinger dan penyelesaiannya
 
Power Point Materi Gelombang Bunyi
Power Point Materi Gelombang Bunyi Power Point Materi Gelombang Bunyi
Power Point Materi Gelombang Bunyi
 
Termodinamika (1-2) a Diferensial eksak dan tak eksak
Termodinamika (1-2) a Diferensial eksak dan tak eksakTermodinamika (1-2) a Diferensial eksak dan tak eksak
Termodinamika (1-2) a Diferensial eksak dan tak eksak
 
12. sma kelas xi rpp kd 3.11 pers.gelombang (karlina 1308233)
12. sma kelas xi rpp kd 3.11 pers.gelombang (karlina 1308233)12. sma kelas xi rpp kd 3.11 pers.gelombang (karlina 1308233)
12. sma kelas xi rpp kd 3.11 pers.gelombang (karlina 1308233)
 
Sistem Termodinamika
Sistem TermodinamikaSistem Termodinamika
Sistem Termodinamika
 
Kumpulan Materi Termodinamika
Kumpulan Materi TermodinamikaKumpulan Materi Termodinamika
Kumpulan Materi Termodinamika
 
Kunci LKPD Hukum Pascal
Kunci LKPD Hukum PascalKunci LKPD Hukum Pascal
Kunci LKPD Hukum Pascal
 
3. rpp gerak lurus
3. rpp gerak lurus3. rpp gerak lurus
3. rpp gerak lurus
 
Lks gas ideal komplit
Lks gas ideal komplitLks gas ideal komplit
Lks gas ideal komplit
 
RPP USAHA DAN ENERGI.docx
RPP USAHA DAN ENERGI.docxRPP USAHA DAN ENERGI.docx
RPP USAHA DAN ENERGI.docx
 
Efek Fotolistrik
Efek FotolistrikEfek Fotolistrik
Efek Fotolistrik
 
Rpp (impuls dan momentum)
Rpp (impuls dan momentum)Rpp (impuls dan momentum)
Rpp (impuls dan momentum)
 
Termodinamika
TermodinamikaTermodinamika
Termodinamika
 
RPP SUHU & KALOR (SMA)
RPP SUHU & KALOR (SMA)RPP SUHU & KALOR (SMA)
RPP SUHU & KALOR (SMA)
 
10. sma kelas xi rpp kd 3.10;4.9 karakteristik gelombang (karlina 1308233)
10. sma kelas xi rpp kd 3.10;4.9 karakteristik gelombang (karlina 1308233)10. sma kelas xi rpp kd 3.10;4.9 karakteristik gelombang (karlina 1308233)
10. sma kelas xi rpp kd 3.10;4.9 karakteristik gelombang (karlina 1308233)
 

Viewers also liked

Tekanan gas dalam ruang tertutup
Tekanan gas dalam ruang tertutupTekanan gas dalam ruang tertutup
Tekanan gas dalam ruang tertutupfanda_eka
 
Teori Kinetik Gas
Teori Kinetik GasTeori Kinetik Gas
Teori Kinetik Gas
SMPN 3 TAMAN SIDOARJO
 
Teori Kinetik Gas
Teori Kinetik GasTeori Kinetik Gas
Teori Kinetik Gas
SMA Cokroaminoto Makassar
 
teori kinetik gas
teori kinetik gasteori kinetik gas
teori kinetik gas
SMA Negeri 9 KERINCI
 
kumpulan soal hukum-hukum gas
kumpulan soal hukum-hukum gaskumpulan soal hukum-hukum gas
kumpulan soal hukum-hukum gasRfebiola
 
Teori Kinetik Gas - Zainal Abidin
Teori Kinetik Gas - Zainal AbidinTeori Kinetik Gas - Zainal Abidin
Teori Kinetik Gas - Zainal Abidin
Zainal Abidin Mustofa
 
Teori Kinetik Gas
Teori Kinetik GasTeori Kinetik Gas
Teori Kinetik Gas
Rizka A. Hutami
 
Teori kinetik gas
Teori kinetik gasTeori kinetik gas
Teori kinetik gas
Larasaty Putri
 
teori kinetik gas
teori kinetik gasteori kinetik gas
teori kinetik gas
SMA Negeri 9 KERINCI
 
4 teori kinetika gas
4 teori kinetika gas4 teori kinetika gas
4 teori kinetika gas
Mahammad Khadafi
 
Ekipartisi Energi
Ekipartisi EnergiEkipartisi Energi
Ekipartisi Energi
Reza Aufar Savero
 
Bajar ajar fi sisika gas ideal (revisi).ppt
Bajar ajar fi sisika gas ideal (revisi).pptBajar ajar fi sisika gas ideal (revisi).ppt
Bajar ajar fi sisika gas ideal (revisi).ppt
eli priyatna laidan
 
Teori kinetik gas
Teori kinetik gasTeori kinetik gas
Teori kinetik gas
larash 13
 
Teorema Ekuipartisi
Teorema EkuipartisiTeorema Ekuipartisi
Teorema Ekuipartisi
Nafilah Azizah
 
Teori kinetik gas (smt2) i ipa
Teori kinetik gas (smt2) i ipa Teori kinetik gas (smt2) i ipa
Teori kinetik gas (smt2) i ipa Exca Febryanto
 
Derajat kebebasan & teorema ekipirtasi
Derajat kebebasan & teorema ekipirtasi Derajat kebebasan & teorema ekipirtasi
Derajat kebebasan & teorema ekipirtasi
Lifia Citra Ramadhanti
 
21 bab 19 tekanan
21 bab 19 tekanan21 bab 19 tekanan
21 bab 19 tekananslametwdt
 
Termodinamika & teori kinetik gas
Termodinamika & teori kinetik gasTermodinamika & teori kinetik gas
Termodinamika & teori kinetik gasNuRul Emi
 

Viewers also liked (20)

Tekanan gas dalam ruang tertutup
Tekanan gas dalam ruang tertutupTekanan gas dalam ruang tertutup
Tekanan gas dalam ruang tertutup
 
Teori Kinetik Gas
Teori Kinetik GasTeori Kinetik Gas
Teori Kinetik Gas
 
Teori Kinetik Gas
Teori Kinetik GasTeori Kinetik Gas
Teori Kinetik Gas
 
teori kinetik gas
teori kinetik gasteori kinetik gas
teori kinetik gas
 
kumpulan soal hukum-hukum gas
kumpulan soal hukum-hukum gaskumpulan soal hukum-hukum gas
kumpulan soal hukum-hukum gas
 
Teori Kinetik Gas - Zainal Abidin
Teori Kinetik Gas - Zainal AbidinTeori Kinetik Gas - Zainal Abidin
Teori Kinetik Gas - Zainal Abidin
 
Teori Kinetik Gas
Teori Kinetik GasTeori Kinetik Gas
Teori Kinetik Gas
 
Teori kinetik gas
Teori kinetik gasTeori kinetik gas
Teori kinetik gas
 
Teori kinetik gas
Teori kinetik gasTeori kinetik gas
Teori kinetik gas
 
teori kinetik gas
teori kinetik gasteori kinetik gas
teori kinetik gas
 
4 teori kinetika gas
4 teori kinetika gas4 teori kinetika gas
4 teori kinetika gas
 
Ekipartisi Energi
Ekipartisi EnergiEkipartisi Energi
Ekipartisi Energi
 
Bajar ajar fi sisika gas ideal (revisi).ppt
Bajar ajar fi sisika gas ideal (revisi).pptBajar ajar fi sisika gas ideal (revisi).ppt
Bajar ajar fi sisika gas ideal (revisi).ppt
 
Teori kinetik gas
Teori kinetik gasTeori kinetik gas
Teori kinetik gas
 
Teorema Ekuipartisi
Teorema EkuipartisiTeorema Ekuipartisi
Teorema Ekuipartisi
 
Teori kinetik gas (smt2) i ipa
Teori kinetik gas (smt2) i ipa Teori kinetik gas (smt2) i ipa
Teori kinetik gas (smt2) i ipa
 
Derajat kebebasan & teorema ekipirtasi
Derajat kebebasan & teorema ekipirtasi Derajat kebebasan & teorema ekipirtasi
Derajat kebebasan & teorema ekipirtasi
 
21 bab 19 tekanan
21 bab 19 tekanan21 bab 19 tekanan
21 bab 19 tekanan
 
Termodinamika & teori kinetik gas
Termodinamika & teori kinetik gasTermodinamika & teori kinetik gas
Termodinamika & teori kinetik gas
 
09 bab 8
09 bab 809 bab 8
09 bab 8
 

Similar to Materi (teori kinetik gas)

Rpp teori kinetik gas
Rpp teori kinetik gasRpp teori kinetik gas
Rpp teori kinetik gas
jayanti eka Fitriana
 
rpp-kimia-kls-x-pertemuan 2-kurklm-2013
rpp-kimia-kls-x-pertemuan 2-kurklm-2013rpp-kimia-kls-x-pertemuan 2-kurklm-2013
rpp-kimia-kls-x-pertemuan 2-kurklm-2013Excha Setya
 
Contoh rpp-kimia-kls-x-pertemuan 2-kurklm-2013
Contoh rpp-kimia-kls-x-pertemuan 2-kurklm-2013Contoh rpp-kimia-kls-x-pertemuan 2-kurklm-2013
Contoh rpp-kimia-kls-x-pertemuan 2-kurklm-2013Zuraida Daud
 
Elastisitas rpp
Elastisitas rppElastisitas rpp
Elastisitas rpp
SMA Negeri 9 KERINCI
 
Contoh rpp-kimia-kls-x-pertemuan 2-kurklm-2013
Contoh rpp-kimia-kls-x-pertemuan 2-kurklm-2013Contoh rpp-kimia-kls-x-pertemuan 2-kurklm-2013
Contoh rpp-kimia-kls-x-pertemuan 2-kurklm-2013
Dian Putri
 
Rencana pelaksanaan pembelajaran tkg
Rencana pelaksanaan pembelajaran tkgRencana pelaksanaan pembelajaran tkg
Rencana pelaksanaan pembelajaran tkgtaikkutu
 
RPP SMA Fisika Kelas X
RPP SMA Fisika Kelas XRPP SMA Fisika Kelas X
RPP SMA Fisika Kelas X
Diva Pendidikan
 
Teknologi Pembangkit Listrik Tenaga Bayu (PLTB) Kelas 11
Teknologi Pembangkit Listrik Tenaga Bayu (PLTB) Kelas 11Teknologi Pembangkit Listrik Tenaga Bayu (PLTB) Kelas 11
Teknologi Pembangkit Listrik Tenaga Bayu (PLTB) Kelas 11
Diva Pendidikan
 
Rpp kurikulum 2013 kimia
Rpp kurikulum 2013 kimiaRpp kurikulum 2013 kimia
Rpp kurikulum 2013 kimia
trisucihandayani
 
Rpp kimia-sma-hukum2-dasar-kimia-kurikulum-2013
Rpp kimia-sma-hukum2-dasar-kimia-kurikulum-2013Rpp kimia-sma-hukum2-dasar-kimia-kurikulum-2013
Rpp kimia-sma-hukum2-dasar-kimia-kurikulum-2013
Amir Maksum
 
rpp termokimia konsep dasar eksoterm dan endoterm
rpp termokimia konsep dasar eksoterm dan endotermrpp termokimia konsep dasar eksoterm dan endoterm
rpp termokimia konsep dasar eksoterm dan endoterm
irma ima
 
Rpp fisika bernaulli
Rpp fisika bernaulliRpp fisika bernaulli
Rpp fisika bernaulliEKO SUPRIYADI
 
Contoh rpp-kimia-kls-x-pertemuan 2-kurklm-2013
Contoh rpp-kimia-kls-x-pertemuan 2-kurklm-2013Contoh rpp-kimia-kls-x-pertemuan 2-kurklm-2013
Contoh rpp-kimia-kls-x-pertemuan 2-kurklm-2013
rina fitri
 
Rpp fisika sma kelas x suhu dan kalor sman1 cikembar eli priyatna kurikulum 2013
Rpp fisika sma kelas x suhu dan kalor sman1 cikembar eli priyatna kurikulum 2013Rpp fisika sma kelas x suhu dan kalor sman1 cikembar eli priyatna kurikulum 2013
Rpp fisika sma kelas x suhu dan kalor sman1 cikembar eli priyatna kurikulum 2013
eli priyatna laidan
 
RPP KIMIA X Kurikulum 2013 kd 3.9
RPP KIMIA X Kurikulum 2013 kd 3.9RPP KIMIA X Kurikulum 2013 kd 3.9
RPP KIMIA X Kurikulum 2013 kd 3.9
yasirmaster web.id
 
rpp torsi
rpp torsi rpp torsi
rpp torsi
rroromega
 
09. usaha dan energi
09. usaha dan energi09. usaha dan energi
09. usaha dan energi
JackirSS
 
Contoh Rencana Pelaksanaan Pembelajaran+THB+LKS - Hukum archimedes
Contoh Rencana Pelaksanaan Pembelajaran+THB+LKS -  Hukum archimedesContoh Rencana Pelaksanaan Pembelajaran+THB+LKS -  Hukum archimedes
Contoh Rencana Pelaksanaan Pembelajaran+THB+LKS - Hukum archimedes
Wahyu Pratama
 
Suhu, Kalor dan Perubahan Wujud rpp
Suhu, Kalor dan Perubahan Wujud rppSuhu, Kalor dan Perubahan Wujud rpp
Suhu, Kalor dan Perubahan Wujud rpp
SMA Negeri 9 KERINCI
 
Rpp pertemuan ke 1
Rpp pertemuan ke 1Rpp pertemuan ke 1
Rpp pertemuan ke 1
dilakaco
 

Similar to Materi (teori kinetik gas) (20)

Rpp teori kinetik gas
Rpp teori kinetik gasRpp teori kinetik gas
Rpp teori kinetik gas
 
rpp-kimia-kls-x-pertemuan 2-kurklm-2013
rpp-kimia-kls-x-pertemuan 2-kurklm-2013rpp-kimia-kls-x-pertemuan 2-kurklm-2013
rpp-kimia-kls-x-pertemuan 2-kurklm-2013
 
Contoh rpp-kimia-kls-x-pertemuan 2-kurklm-2013
Contoh rpp-kimia-kls-x-pertemuan 2-kurklm-2013Contoh rpp-kimia-kls-x-pertemuan 2-kurklm-2013
Contoh rpp-kimia-kls-x-pertemuan 2-kurklm-2013
 
Elastisitas rpp
Elastisitas rppElastisitas rpp
Elastisitas rpp
 
Contoh rpp-kimia-kls-x-pertemuan 2-kurklm-2013
Contoh rpp-kimia-kls-x-pertemuan 2-kurklm-2013Contoh rpp-kimia-kls-x-pertemuan 2-kurklm-2013
Contoh rpp-kimia-kls-x-pertemuan 2-kurklm-2013
 
Rencana pelaksanaan pembelajaran tkg
Rencana pelaksanaan pembelajaran tkgRencana pelaksanaan pembelajaran tkg
Rencana pelaksanaan pembelajaran tkg
 
RPP SMA Fisika Kelas X
RPP SMA Fisika Kelas XRPP SMA Fisika Kelas X
RPP SMA Fisika Kelas X
 
Teknologi Pembangkit Listrik Tenaga Bayu (PLTB) Kelas 11
Teknologi Pembangkit Listrik Tenaga Bayu (PLTB) Kelas 11Teknologi Pembangkit Listrik Tenaga Bayu (PLTB) Kelas 11
Teknologi Pembangkit Listrik Tenaga Bayu (PLTB) Kelas 11
 
Rpp kurikulum 2013 kimia
Rpp kurikulum 2013 kimiaRpp kurikulum 2013 kimia
Rpp kurikulum 2013 kimia
 
Rpp kimia-sma-hukum2-dasar-kimia-kurikulum-2013
Rpp kimia-sma-hukum2-dasar-kimia-kurikulum-2013Rpp kimia-sma-hukum2-dasar-kimia-kurikulum-2013
Rpp kimia-sma-hukum2-dasar-kimia-kurikulum-2013
 
rpp termokimia konsep dasar eksoterm dan endoterm
rpp termokimia konsep dasar eksoterm dan endotermrpp termokimia konsep dasar eksoterm dan endoterm
rpp termokimia konsep dasar eksoterm dan endoterm
 
Rpp fisika bernaulli
Rpp fisika bernaulliRpp fisika bernaulli
Rpp fisika bernaulli
 
Contoh rpp-kimia-kls-x-pertemuan 2-kurklm-2013
Contoh rpp-kimia-kls-x-pertemuan 2-kurklm-2013Contoh rpp-kimia-kls-x-pertemuan 2-kurklm-2013
Contoh rpp-kimia-kls-x-pertemuan 2-kurklm-2013
 
Rpp fisika sma kelas x suhu dan kalor sman1 cikembar eli priyatna kurikulum 2013
Rpp fisika sma kelas x suhu dan kalor sman1 cikembar eli priyatna kurikulum 2013Rpp fisika sma kelas x suhu dan kalor sman1 cikembar eli priyatna kurikulum 2013
Rpp fisika sma kelas x suhu dan kalor sman1 cikembar eli priyatna kurikulum 2013
 
RPP KIMIA X Kurikulum 2013 kd 3.9
RPP KIMIA X Kurikulum 2013 kd 3.9RPP KIMIA X Kurikulum 2013 kd 3.9
RPP KIMIA X Kurikulum 2013 kd 3.9
 
rpp torsi
rpp torsi rpp torsi
rpp torsi
 
09. usaha dan energi
09. usaha dan energi09. usaha dan energi
09. usaha dan energi
 
Contoh Rencana Pelaksanaan Pembelajaran+THB+LKS - Hukum archimedes
Contoh Rencana Pelaksanaan Pembelajaran+THB+LKS -  Hukum archimedesContoh Rencana Pelaksanaan Pembelajaran+THB+LKS -  Hukum archimedes
Contoh Rencana Pelaksanaan Pembelajaran+THB+LKS - Hukum archimedes
 
Suhu, Kalor dan Perubahan Wujud rpp
Suhu, Kalor dan Perubahan Wujud rppSuhu, Kalor dan Perubahan Wujud rpp
Suhu, Kalor dan Perubahan Wujud rpp
 
Rpp pertemuan ke 1
Rpp pertemuan ke 1Rpp pertemuan ke 1
Rpp pertemuan ke 1
 

Recently uploaded

Modul ajar logaritma matematika kelas X SMK
Modul ajar logaritma matematika kelas X SMKModul ajar logaritma matematika kelas X SMK
Modul ajar logaritma matematika kelas X SMK
WinaldiSatria
 
materi sosialisai perencanaan visi misi satuan pendidikan.pptx
materi sosialisai perencanaan visi misi satuan pendidikan.pptxmateri sosialisai perencanaan visi misi satuan pendidikan.pptx
materi sosialisai perencanaan visi misi satuan pendidikan.pptx
srihardiyanty17
 
Koneksi Antar Materi modul 1.4 Budaya Positif
Koneksi Antar Materi modul 1.4 Budaya PositifKoneksi Antar Materi modul 1.4 Budaya Positif
Koneksi Antar Materi modul 1.4 Budaya Positif
Rima98947
 
Komunitas Belajar dalam Sekolah.Mari Melakukan Identifikasi! Apakah kombel Ib...
Komunitas Belajar dalam Sekolah.Mari Melakukan Identifikasi! Apakah kombel Ib...Komunitas Belajar dalam Sekolah.Mari Melakukan Identifikasi! Apakah kombel Ib...
Komunitas Belajar dalam Sekolah.Mari Melakukan Identifikasi! Apakah kombel Ib...
JokoPramono34
 
PRESENTASI T TEST (GROUP 1) -07 DESEMBER 2021.pptx
PRESENTASI T TEST (GROUP 1) -07 DESEMBER 2021.pptxPRESENTASI T TEST (GROUP 1) -07 DESEMBER 2021.pptx
PRESENTASI T TEST (GROUP 1) -07 DESEMBER 2021.pptx
AlifMauliddina1
 
Meet 6 Pengembangan konsep pembangunan-pertanian.ppt
Meet 6 Pengembangan konsep pembangunan-pertanian.pptMeet 6 Pengembangan konsep pembangunan-pertanian.ppt
Meet 6 Pengembangan konsep pembangunan-pertanian.ppt
RosmalahUMK
 
Materi 2_Benahi Perencanaan dan Benahi Implementasi.pptx
Materi 2_Benahi Perencanaan dan Benahi Implementasi.pptxMateri 2_Benahi Perencanaan dan Benahi Implementasi.pptx
Materi 2_Benahi Perencanaan dan Benahi Implementasi.pptx
ahyani72
 
Laporan Kegiatan Pramuka Tugas Tambahan PMM.pdf
Laporan Kegiatan Pramuka Tugas Tambahan PMM.pdfLaporan Kegiatan Pramuka Tugas Tambahan PMM.pdf
Laporan Kegiatan Pramuka Tugas Tambahan PMM.pdf
UmyHasna1
 
Mengenal Otoritas Veteriner dan Eksistensinya di Indonesia - IMAKAHI VISI 202...
Mengenal Otoritas Veteriner dan Eksistensinya di Indonesia - IMAKAHI VISI 202...Mengenal Otoritas Veteriner dan Eksistensinya di Indonesia - IMAKAHI VISI 202...
Mengenal Otoritas Veteriner dan Eksistensinya di Indonesia - IMAKAHI VISI 202...
Tata Naipospos
 
0. PPT Juknis PPDB TK-SD -SMP 2024-2025 Cilacap.pptx
0. PPT Juknis PPDB TK-SD -SMP 2024-2025 Cilacap.pptx0. PPT Juknis PPDB TK-SD -SMP 2024-2025 Cilacap.pptx
0. PPT Juknis PPDB TK-SD -SMP 2024-2025 Cilacap.pptx
Indah106914
 
PENDAMPINGAN INDIVIDU 2 CGP ANGKATAN 10 KOTA DEPOK
PENDAMPINGAN INDIVIDU 2 CGP ANGKATAN 10 KOTA DEPOKPENDAMPINGAN INDIVIDU 2 CGP ANGKATAN 10 KOTA DEPOK
PENDAMPINGAN INDIVIDU 2 CGP ANGKATAN 10 KOTA DEPOK
GusniartiGusniarti5
 
Laporan Pembina OSIS UNTUK PMMOK.pdf.pdf
Laporan Pembina OSIS UNTUK PMMOK.pdf.pdfLaporan Pembina OSIS UNTUK PMMOK.pdf.pdf
Laporan Pembina OSIS UNTUK PMMOK.pdf.pdf
OcitaDianAntari
 
Sebuah buku foto yang berjudul Lensa Kampung Ondel-Ondel
Sebuah buku foto yang berjudul Lensa Kampung Ondel-OndelSebuah buku foto yang berjudul Lensa Kampung Ondel-Ondel
Sebuah buku foto yang berjudul Lensa Kampung Ondel-Ondel
ferrydmn1999
 
ALur Tujuan Pembelajaran Materi IPA Kelas VII (1).pptx
ALur Tujuan Pembelajaran Materi IPA  Kelas VII (1).pptxALur Tujuan Pembelajaran Materi IPA  Kelas VII (1).pptx
ALur Tujuan Pembelajaran Materi IPA Kelas VII (1).pptx
rusinaharva1
 
Penjelasan tentang Tahapan Sinkro PMM.pptx
Penjelasan tentang Tahapan Sinkro PMM.pptxPenjelasan tentang Tahapan Sinkro PMM.pptx
Penjelasan tentang Tahapan Sinkro PMM.pptx
GuneriHollyIrda
 
PENGUMUMAN PPDB SMPN 4 PONOROGO TAHUN 2024.pdf
PENGUMUMAN PPDB SMPN 4 PONOROGO TAHUN 2024.pdfPENGUMUMAN PPDB SMPN 4 PONOROGO TAHUN 2024.pdf
PENGUMUMAN PPDB SMPN 4 PONOROGO TAHUN 2024.pdf
smp4prg
 
ppt profesionalisasi pendidikan Pai 9.pdf
ppt profesionalisasi pendidikan Pai 9.pdfppt profesionalisasi pendidikan Pai 9.pdf
ppt profesionalisasi pendidikan Pai 9.pdf
Nur afiyah
 
Aksi Nyata Merdeka Belajar Lolos Validasi
Aksi Nyata Merdeka Belajar Lolos ValidasiAksi Nyata Merdeka Belajar Lolos Validasi
Aksi Nyata Merdeka Belajar Lolos Validasi
DinaSetiawan2
 
SOAL SBDP KELAS 3 SEMESTER GENAP TAHUN PELAJARAN 2023 2024
SOAL SBDP KELAS 3 SEMESTER GENAP TAHUN PELAJARAN 2023 2024SOAL SBDP KELAS 3 SEMESTER GENAP TAHUN PELAJARAN 2023 2024
SOAL SBDP KELAS 3 SEMESTER GENAP TAHUN PELAJARAN 2023 2024
ozijaya
 
ppt landasan pendidikan Alat alat pendidikan PAI 9_
ppt landasan pendidikan Alat alat pendidikan PAI 9_ppt landasan pendidikan Alat alat pendidikan PAI 9_
ppt landasan pendidikan Alat alat pendidikan PAI 9_
setiatinambunan
 

Recently uploaded (20)

Modul ajar logaritma matematika kelas X SMK
Modul ajar logaritma matematika kelas X SMKModul ajar logaritma matematika kelas X SMK
Modul ajar logaritma matematika kelas X SMK
 
materi sosialisai perencanaan visi misi satuan pendidikan.pptx
materi sosialisai perencanaan visi misi satuan pendidikan.pptxmateri sosialisai perencanaan visi misi satuan pendidikan.pptx
materi sosialisai perencanaan visi misi satuan pendidikan.pptx
 
Koneksi Antar Materi modul 1.4 Budaya Positif
Koneksi Antar Materi modul 1.4 Budaya PositifKoneksi Antar Materi modul 1.4 Budaya Positif
Koneksi Antar Materi modul 1.4 Budaya Positif
 
Komunitas Belajar dalam Sekolah.Mari Melakukan Identifikasi! Apakah kombel Ib...
Komunitas Belajar dalam Sekolah.Mari Melakukan Identifikasi! Apakah kombel Ib...Komunitas Belajar dalam Sekolah.Mari Melakukan Identifikasi! Apakah kombel Ib...
Komunitas Belajar dalam Sekolah.Mari Melakukan Identifikasi! Apakah kombel Ib...
 
PRESENTASI T TEST (GROUP 1) -07 DESEMBER 2021.pptx
PRESENTASI T TEST (GROUP 1) -07 DESEMBER 2021.pptxPRESENTASI T TEST (GROUP 1) -07 DESEMBER 2021.pptx
PRESENTASI T TEST (GROUP 1) -07 DESEMBER 2021.pptx
 
Meet 6 Pengembangan konsep pembangunan-pertanian.ppt
Meet 6 Pengembangan konsep pembangunan-pertanian.pptMeet 6 Pengembangan konsep pembangunan-pertanian.ppt
Meet 6 Pengembangan konsep pembangunan-pertanian.ppt
 
Materi 2_Benahi Perencanaan dan Benahi Implementasi.pptx
Materi 2_Benahi Perencanaan dan Benahi Implementasi.pptxMateri 2_Benahi Perencanaan dan Benahi Implementasi.pptx
Materi 2_Benahi Perencanaan dan Benahi Implementasi.pptx
 
Laporan Kegiatan Pramuka Tugas Tambahan PMM.pdf
Laporan Kegiatan Pramuka Tugas Tambahan PMM.pdfLaporan Kegiatan Pramuka Tugas Tambahan PMM.pdf
Laporan Kegiatan Pramuka Tugas Tambahan PMM.pdf
 
Mengenal Otoritas Veteriner dan Eksistensinya di Indonesia - IMAKAHI VISI 202...
Mengenal Otoritas Veteriner dan Eksistensinya di Indonesia - IMAKAHI VISI 202...Mengenal Otoritas Veteriner dan Eksistensinya di Indonesia - IMAKAHI VISI 202...
Mengenal Otoritas Veteriner dan Eksistensinya di Indonesia - IMAKAHI VISI 202...
 
0. PPT Juknis PPDB TK-SD -SMP 2024-2025 Cilacap.pptx
0. PPT Juknis PPDB TK-SD -SMP 2024-2025 Cilacap.pptx0. PPT Juknis PPDB TK-SD -SMP 2024-2025 Cilacap.pptx
0. PPT Juknis PPDB TK-SD -SMP 2024-2025 Cilacap.pptx
 
PENDAMPINGAN INDIVIDU 2 CGP ANGKATAN 10 KOTA DEPOK
PENDAMPINGAN INDIVIDU 2 CGP ANGKATAN 10 KOTA DEPOKPENDAMPINGAN INDIVIDU 2 CGP ANGKATAN 10 KOTA DEPOK
PENDAMPINGAN INDIVIDU 2 CGP ANGKATAN 10 KOTA DEPOK
 
Laporan Pembina OSIS UNTUK PMMOK.pdf.pdf
Laporan Pembina OSIS UNTUK PMMOK.pdf.pdfLaporan Pembina OSIS UNTUK PMMOK.pdf.pdf
Laporan Pembina OSIS UNTUK PMMOK.pdf.pdf
 
Sebuah buku foto yang berjudul Lensa Kampung Ondel-Ondel
Sebuah buku foto yang berjudul Lensa Kampung Ondel-OndelSebuah buku foto yang berjudul Lensa Kampung Ondel-Ondel
Sebuah buku foto yang berjudul Lensa Kampung Ondel-Ondel
 
ALur Tujuan Pembelajaran Materi IPA Kelas VII (1).pptx
ALur Tujuan Pembelajaran Materi IPA  Kelas VII (1).pptxALur Tujuan Pembelajaran Materi IPA  Kelas VII (1).pptx
ALur Tujuan Pembelajaran Materi IPA Kelas VII (1).pptx
 
Penjelasan tentang Tahapan Sinkro PMM.pptx
Penjelasan tentang Tahapan Sinkro PMM.pptxPenjelasan tentang Tahapan Sinkro PMM.pptx
Penjelasan tentang Tahapan Sinkro PMM.pptx
 
PENGUMUMAN PPDB SMPN 4 PONOROGO TAHUN 2024.pdf
PENGUMUMAN PPDB SMPN 4 PONOROGO TAHUN 2024.pdfPENGUMUMAN PPDB SMPN 4 PONOROGO TAHUN 2024.pdf
PENGUMUMAN PPDB SMPN 4 PONOROGO TAHUN 2024.pdf
 
ppt profesionalisasi pendidikan Pai 9.pdf
ppt profesionalisasi pendidikan Pai 9.pdfppt profesionalisasi pendidikan Pai 9.pdf
ppt profesionalisasi pendidikan Pai 9.pdf
 
Aksi Nyata Merdeka Belajar Lolos Validasi
Aksi Nyata Merdeka Belajar Lolos ValidasiAksi Nyata Merdeka Belajar Lolos Validasi
Aksi Nyata Merdeka Belajar Lolos Validasi
 
SOAL SBDP KELAS 3 SEMESTER GENAP TAHUN PELAJARAN 2023 2024
SOAL SBDP KELAS 3 SEMESTER GENAP TAHUN PELAJARAN 2023 2024SOAL SBDP KELAS 3 SEMESTER GENAP TAHUN PELAJARAN 2023 2024
SOAL SBDP KELAS 3 SEMESTER GENAP TAHUN PELAJARAN 2023 2024
 
ppt landasan pendidikan Alat alat pendidikan PAI 9_
ppt landasan pendidikan Alat alat pendidikan PAI 9_ppt landasan pendidikan Alat alat pendidikan PAI 9_
ppt landasan pendidikan Alat alat pendidikan PAI 9_
 

Materi (teori kinetik gas)

  • 1. RENCANA PELAKSANAAN PEMBELAJARAN ( RPP) SatuanPendidikan : SMA Kelas/Program/Semester : XI/IPA/2 Topik : Teori KinetikGas Alokasi Waktu : 8 × 45 menit(4Pertemuan) A. Kompetensi Inti: KI 1 : Menghayati dan mengamalkan ajaran agama yang dianutnya. KI 2 : Menghayati dan mengamalkan perilaku jujur, disiplin, tanggungjawab, peduli (gotong royong,kerjasama,toleran,damai),santun,responsifdanpro-aktif danmenunjukkansikap sebagai bagian dari solusi atas berbagai permasalahan dalam berinteraksi secara efektif dengan lingkungan sosial dan alam serta dalam menempatkan diri sebagai cerminan bangsa dalam pergaulan dunia. KI 3 : Memahami, menerapkan, menganalisis pengetahuan faktual, konseptual, prosedural berdasarkan rasa ingintahunya tentang ilmu pengetahuan, teknologi, seni, budaya, dan humaniora dengan wawasan kemanusiaan, kebangsaan, kenegaraan, dan peradaban terkaitpenyebabfenomenadankejadian,sertamenerapkanpengetahuanprosedural pada bidangkajianyangspesifiksesuai denganbakatdanminatnya untukmemecahkanmasalah KI 4 : Mengolah, menalar, dan menyaji dalam ranah konkret dan ranah abstrak terkait dengan pengembangan dari yang dipelajarinya di sekolah secara mandiri, dan mampu menggunakan metoda sesuai kaidah keilmuan B. Kompetensi Dasar: 3.8. Memahami teori kinetikgasdalammenjelaskankarakteristikgaspadaruangtertutu C. Indikator: 1. Menjelaskanhukum-hukumtentanggas 2. MemformulasikanhukumBoyle-GayLussac 3. Menggunakanpersamaan umumkeadaangasideal 4. Memformulasikantekanangasdari sifat mikroskopisgas 5. Memformulasikanenergi kinetikdankecepatanrata-ratapartikel gas
  • 2. 6. Memformulasikanteoremaekipartisi energi 7. Menerapkanpersamaankeadaangasideal dalamkehidupansehari-hari D. Tujuan Pembelajaran Pertemuanpertama Melalui diskusi dilanjutkandenganpemberiansoal uji kompetensi,pesertadidikdiharapkandapat: 1. Menjelaskanhukum-hukumtentanggas 2. MemformulasikanhukumBoyle-GayLussac 3. Menggunakanpersamaan umumkeadaangasideal Pertemuankedua Melalui diskusi dilanjutkandenganpemberian soal uji kompetensi,pesertadidikdiharapkandapat: 1. Memformulasikantekanangasdari sifatmikroskopisgas 2. Memformulasikanenergi kinetikdankecepatanrata-ratapartikel gas 3. Memformulasikanteoremaekipartisi energi Pertemuanketiga Melalui metode jigsawdanpresentasi,pesertadidikdiharapkandapat: 1. Menerapkanpersamaankeadaangasideal dalamkehidupansehari-hari Pertemuankeempat Ujian E. Materi Pembelajaran: (Terlampir) F. Metode Pembelajaran:  Kontekstual  Jigsaw  Dikusi kelompok  Eksperimen  Penugasan
  • 3. G. Kegiatan Pembelajaran: Pertemuan1 Kegiatan Rincian Kegiatan Waktu (Menit) Pendahuluan  Guru memberikansalamdanberdoabersama(sebagai implementasi nilai religius).  Guru mengabsen,mengondisikankelasdanpembiasaan (sebagai implementasinilai disiplin).  Prasyarat kemampuansebelummempelajari subbab: - Konversi skalasuhu - Massa mol danmassa molekul  Motivasi: Guru meminta siswa meniup balon, kemudian menanyakan faktor-faktor apa saja yang dapat menyebabkan volume balon bertambah besar?  Guru menyampaikantujuanpembelajaran. 15 Kegiatan Inti Mengamati (Observing)  Menyimak informasi dari berbagai sumber tentang hukum Boyle-gay Lusac tentang gas dan persamaan keadaan gas melalui berbagai sumber Menanya (Questioning)  Mempertanyakan konsepteori kinetik gas dalam menjelaskan karakteristik gas pada ruang tertutup Mengeksplorasi/Eksperimen  Mendiskusikanhubunganantarsuhu,volume ,dantekanangas dalamruang tertutup. 60
  • 4. Kegiatan Rincian Kegiatan Waktu (Menit)  Mendiskusikan bentukpersamaankeadaangaskaitannya denganrumusanBoyle-GayLusac  Mendiskusikan bentukpersamaankeadaangaskaitannya denganrumusanBoyle-GayLusac Mengasosiasi (Associating)  MenggunakanpersamaanBoyle-GayLussacdalam memecahkanmasalahgaspadaruang tertutup Mengkomunikasikan (Communicating)  Membuatlaporantertulis Penutup  Guru bersama dengan peserta didik membuat simpulan kegiatan pembelajaran.  Guru memberikan umpan balik proses dan hasil pembelajaran untuk mengetahui ketercapaian tujuan pembelajaran.  Guru meminta peserta didik untuk mempelajari konsep tekanan dan energi kinetik menurut teori kinetik gas untuk pertemuan berikutnya  Tindaklanjut:Penugasan membacamateri selanjutnyadan mengerjakansoal evaluasi yangberkaitandenganmateri yang sudahdibahas. 15 Pertemuan2 Kegiatan Rincian Kegiatan Waktu (Menit)
  • 5. Kegiatan Rincian Kegiatan Waktu (Menit) Pendahuluan  Siswaberkumpul danduduksesuai kelompoknyamasing- masing  Memberikansalamdanberdoa(sebagai implementasi nilai religius).  Guru mengabsen,mengondisikankelasdanpembiasaan (sebagai implementasinilai disiplin).  Prasyarat kemampuansebelummempelajari subbab: - Tekanan - Jumlahmolekul gas - Impuls  Motivasi: Guru menanyakandapatkahkitamengamati molekul-molekul gasdenganmatatelanjang?  Guru menyampaikantujuanpembelajaran. 15 Kegiatan Inti Mengamati (Observing)  Menyimak informasi dari berbagai sumber tentang karakteristik gas dan gas ideal melalui berbagai sumber Menanya (Questioning)  Mempertanyakan sifat-sifat mikroskopis gas Mengeksplorasi/Eksperimen  Mendiskusikanhubunganantaraimpulsdengan gayadan tekanan  Mendiskusikangerakanpartikelgasmenumbukdinding menyebabkantekanangas  Mendiskusikankelompokhubunganantarasuhudenganenergi 60
  • 6. Kegiatan Rincian Kegiatan Waktu (Menit) kinetikdantekanangas  Mendiskusikanhubunganantarsuhu,volume ,dantekanangas dalamruang tertutup. Mengasosiasi (Associating)  Membuatilustrasi hubungantekanan,suhudanvolume,serta ilustrasi penjelasanteori ekipartisi energi padasuhu rendah,sedang,dantinggi Mengkomunikasikan (Communicating)  Membuatlaporantertulis Penutup  Guru bersama dengan peserta didik membuat simpulan kegiatan pembelajaran.  Guru memberikan umpan balik proses dan hasil pembelajaran untuk mengetahui ketercapaian tujuan pembelajaran.  Guru memberikan penghargaan kepada kelompok terbaik dalam pembelajaran.  Guru meminta peserta didik untuk mempelajari pemecahan masalah gas dalam ruang tertutup menggunakan persamaan Boyle untuk pertemuan berikutnya  Tindak lanjut: Penugasan membaca materi selanjutnya dan mengerjakan uji kompetensi dari materi yang sudah dibahas. 15
  • 7. Pertemuan3 Kegiatan Rincian Kegiatan Waktu (Menit) Pendahuluan  Siswaberkumpul danduduksesuai kelompoknyamasing- masing  Memberikansalamdanberdoa(sebagai implementasi nilai religius).  Guru mengabsen,mengondisikankelasdanpembiasaan (sebagai implementasinilai disiplin).  Guru menyampaikantujuanpembelajaran. 15 Kegiatan Inti Mengeksplorasi/Eksperimen  Eksplorasi penerapan persamaankeadaangasdan hukum Boyle dalampemecahanmasalahgasdalamruangtertutup Mengkomunikasikan (Communicating)  Presentasi kelompok hasil ekplorasi menerapkan persamaan keadaan gas dan hukum Boyle-Gay Lussac dan dalam pemecahan masalah gas dalam ruang tertutup 60 Penutup  Guru bersama dengan peserta didik membuat simpulan kegiatan pembelajaran.  Guru memberikan umpan balik proses dan hasil pembelajaran untuk mengetahui ketercapaian tujuan pembelajaran.  Guru meminta peserta didik untuk mereview materi teori kinetik gas sebagai persiapan ulangan harian 15
  • 8. Kegiatan Rincian Kegiatan Waktu (Menit)  Tindak lanjut: Penugasan menjawab uji kompetensi Pertemuan4(2 jam) Ulanganharian H. Sumber Belajar/Bahan Ajar/Alat Sumber: BukupaketFisikakelasXIbabteori kinetikgas I. Penilaian 1. Teknik Penilaian dan bentuk instrumen Teknik Bentuk Instrumen PengamatanSikap (Afektif) LembarPengamatan SikapdanRubrik Tes Tertulis (Kognitif) PilihanGandadan Uraian Portofolio LembarPenilaian Portofolio 2. Instrumen penilaian a. Lembar pengamatan sikap No Aspekyangdinilai 5 4 3 2 1 Keterangan 1 Menghayati danmengamalkan ajaran agama yangdianutnya 2 menunjukkan perilakujujur, disiplin,tanggungjawab,peduli (gotongroyong,kerjasama, toleran,damai),santun, responsif danpro-aktif
  • 9. Rubrikpengamatansikap  1 = jika peserta didik sangat kurang konsisten memperlihatkan perilaku yang tertera dalam indikator  2 = jika peserta didik kurang konsisten memperlihatkan perilaku yang tertera dalam indikator, tetapi belum konsisten  3 = jika peserta didik mulai konsisten memperlihatkan perilaku yang tertera dalam indikator  4 = jika peserta didik konsisten memperlihatkan perilaku yang tertera dalam indikator  5 = jika peserta didik selalu konsisten memperlihatkan perilaku yang tertera dalam indikator b. Penilaianpemahamankonsep (Terlampir) c. Penilaian portofolio No KI / KD / PI Waktu MACAM PORTOFOLIO Jumlah Skor Nilai Kualitas Rangkuman Makalah Presentasi kelompok 1 2 3
  • 10. Catatan:  PI = Pencapaian Indikator  Untuk setiap karya peserta didik dikumpulkan dalam satu file sebagai bukti pekerjaan yang masuk dalam portofolio.  Skor menggunakan rentang antara 0 -10 atau 10 – 100.  Penilaian Portofolio dilakukan dengan sistem pembobotan sesuai tingkat kesulitan dalam pembuatannya.
  • 11. TEORI KINETIK GAS Sebagaimana telah diketahui bahwa gas terdiri dari partikel-partikel yang tersusun tidak teratur. Jarak antarpartikel relatif jauh sehingga gaya tarik antarpartikel sangat lemah. Partikel- partikel selalu bergerak dengan laju tinggi memenuhi tempatnya, sehingga pada saat terjadi tumbukan antarpartikel, gaya tarik tidak cukup kuat untuk menjaga partikel-partikelnya tetap dalam satu kesatuan. Teori kinetik muncul dengan anggapan bahwa partikelpartikel gas selalu bergerak terus-menerus. Gas yang tersusun atas satu unsur atom disebut gas monoatomik. Semua unsur gas mulia (golongan VIII) merupakan gas monoatomik, yaitu helium (He), neon (Ne), radon (Rn), argon (Ar), kripton (Kr), dan xenon (Xe). Helium dengan Ar = 4, digunakan dalam kapal, balon udara, dan penyelam. Neon dengan Ar = 20, digunakan untuk papan reklame neon dan cahaya fluoresen. Radon dengan Ar = 222, terbentuk dari hasil peluruhan radioaktif radium. Argon dengan Ar = 40, digunakan pada bohlam listrik dan tabung fluoresen. Kripton dengan Ar = 84, digunakan pada beberapa tabung laser, fluoresen, dan di dalam cahaya stroboskopik bandara. Xenon dengan Ar = 131, digunakan untuk mengisi tabung fluoresen dan bohlam. Pada bab ini, pembahasan dibatasi pada gas ideal, yaitu gas yang mempunyai sifat-sifat yang sama pada kondisi yang sama. Dalam kondisi riil, gas yang berada pada tekanan rendah dan jauh dari titik cair, dianggap mempunyai sifat-sifat seperti gas ideal. Persamaanpersamaan tentang gas ideal adalah Hukum Boyle, Hukum Gay Lussac, Hukum Boyle-Gay Lussac, dan persamaan gas ideal. Kita juga akan membahas mengenai tekanan, suhu, dan energi kinetik yang dikaitkan dengan tingkah laku partikel gas. Dalam pembahasannya, tidak mungkin melakukan perhitungan untuk setiap partikel, melainkan sifat gas secara keseluruhan sebagai hasil ratarata dari partikel-partikel penyusun gas. Gas ideal adalah gas yang memenuhi anggapan-anggapan berikut ini. 1. Gas terdiri atas partikel-partikel yang jumlahnya sangat banyak. 2. Partikel-partikel gas bergerak dengan laju dan arah yang beraneka ragam, serta memenuhi Hukum Gerak Newton. 3. Partikel gas tersebar merata pada seluruh bagian ruangan yang ditempati. 4. Tidak ada gaya interaksi antarpartikel, kecuali ketika partikel bertumbukan.
  • 12. 5. Tumbukan yang terjadi antarpartikel atau antara partikel dengan dinding wadah adalah lenting sempurna. 6. Ukuran partikel sangat kecil dibandingkan jarak antara partikel, sehingga bersama-sama volumenya dapat diabaikan terhadap volume ruang yang ditempati. A. Hukum-hukum Tentang Gas 1. Hukum Boyle Volume gas dalam suatu ruang tertutup sangat bergantung pada tekanan dan suhunya. Apabila suhu dijaga konstan, maka tekanan yang diberikan akan memperkecil volumenya. Hubungan, tersebut dikenal dengan Hukum Boyle yang dapat dinyatakan berikut ini. “Apabila suhu gas yang berada dalam ruang tertutup dijaga konstan, maka tekanan gas berbanding terbalik dengan volumenya”. Secara sistematis, pernyataan tersebut dapat dituliskan: 1 P V  , untuk P,V = konstan atau (persamaan 8.1) Dengan: P1 = tekanan gas pada keadaan 1 (N/m2) V1 = volume gas pada keadaan 1 (m3) P2 = tekanan gas pada keadaan 2 (N/m2) V2 = volume gas pada keadaan 2 (m3) Persamaan 8.1 menyatakan bahwa pada suhu konstan, jika tekanan atau volume gas berubah, maka variabel yang lain juga berubah sehingga hasil kali P.V selalu tetap. 1 1 2 2. .P V P V P V
  • 13. Hubungan antara tekanan dan volume gas pada suhu konstan dapat dilukiskan dengan grafik seperti yang tampak pada Gambar 8.2. Grafik tersebut menunjukkan bahwa pada saat volumenya bertambah, tekanan gas akan berkurang. Proses pada suhu konstan disebut proses isotermis. 2. Hukum Charles Telah diketahui bahwa selain ditentukan oleh tekanan, volume gas dalam ruang tertutup juga dipengaruhi oleh suhu. Jika suhu gas dinaikkan, maka gerak partikel-partikel gas akan semakin cepat sehingga volumenya bertambah. Apabila tekanan tidak terlalu tinggi dan dijaga konstan, volume gas akan bertambah terhadap kenaikan suhu. Hubungan tersebut dikenal dengan Hukum Charles yang dapat dinyatakan berikut ini. “Apabila tekanan gas yang berada dalam ruang tertutup dijaga konstan, maka volume gas berbanding lurus dengan suhu mutlaknya.” Secara matematis, pernyataan tersebut dapat dituliskan: V T V T = konstan atau 1 2 1 2 V V T T  (persamaan 8.2) Dengan: V1 = volume gas pada keadaan 1 (m3) T1 = suhu mutlak gas pada keadaan 1 (K) V2 = volume gas pada keadaan 2 (m3) T2 = suhu mutlak gas pada keadaan 2 (K) Hubungan antara volume gas dan suhu pada tekanan konstan dapat dilukiskan dengan grafik seperti yang tampak pada Gambar 8.3. Proses yang terjadi pada tekanan tetap disebut proses isobaris.
  • 14. 3. Hukum Gay Lussac Apabila botol dalam keadaan tertutup kita masukkan ke api, maka botol tersebut akan meledak. Hal ini terjadi karena naiknya tekanan gas di dalamnya akibat kenaikan suhu. Dengan demikian, dapat dikatakan bahwa: “Apabila volume gas yang berada pada ruang tertutup dijaga konstan, maka tekanan gas berbanding lurus dengan suhu mutlaknya”. Pernyataan tersebut dikenal dengan Hukum Gay Lussac. Secara matematis dapat dituliskan: P T P T = konstan atau 1 2 1 2 P P T T  (persamaan 8.3) Dengan: P1 = tekanan gas pada keadaan 1 (N/m2) T1 = suhu mutlak gas pada keadaan 1 (K) P2 = tekanan gas pada keadaan 2 (N/m2) T2 = suhu mutlak gas pada keadaan 2 (K) Hubungan antara tekanan dan suhu gas pada volume konstan dapat dilukiskan dengan grafik seperti yang tampak pada Gambar 8.4. Proses yang terjadi pada volume konstan disebut proses isokhoris. 4. Hukum Boyle-Gay Lussac Hukum Boyle-Gay Lussac merupakan gabungan dari persamaan (8.1), (8.2), dan (8.3), sehingga dapat dituliskan: PV T = Konstan 1 1 2 2 1 2 PV PV T T  (persamaan 8.4)
  • 15. 5. Persamaan Umum Gas Ideal Sebelum membahas lebih lanjut mengenai persamaan umum gas ideal, kita akan mendefinisikan dahulu beberapa istilah kimia yang berkaitan dengan gas ideal. a. Massa atom relatif (Ar), adalah perbandingan massa rata-rata sebuah atom suatu unsur terhadap 1 12 kalimassa sebuah atom 12 6C Harga massa atom relatif bukanlah massa yang sebenarnya dari suatu atom, tetapi hanya merupakan harga perbandingan. Contoh: Ar H =1 Ar Ne= 20 Ar Ar = 4 b. Massa molekul relatif (Mr), adalah jumlah keseluruhan massa atom relatif (Ar) unsur- unsur penyusun senyawa. c. Mol (n), adalah satuan banyaknya partikel yang besarnya merupakan hasil bagi massa suatu unsur (senyawa) dengan massa relatifnya (Ar atau Mr). n(mol)= 𝑚𝑎𝑠𝑠𝑎 𝑢𝑛𝑠𝑢𝑟 𝑎𝑡𝑎𝑢 𝑠𝑒𝑛𝑦𝑎𝑤𝑎 (𝑔𝑟𝑎𝑚) 𝐴𝑟 (𝑀𝑟) d. Bilangan Avogadro, adalah bilangan yang menyatakan jumlah partikel dalam satu mol. NA = 6,023 x 1023 partikel/mol N = n NA N adalah jumlah total partikel. Hukum-hukum tentang gas dari Boyle, Charles, Gay Lussac, dan Boyle-Gay Lussac diperoleh dengan menjaga satu atau lebih variabel dalam keadaan konstan untuk mengetahui akibat dari perubahan satu variabel. Berdasarkan Hukum Boyle–Gay Lussac diperoleh: PV T = Konstan atau PV k T  Apabila jumlah partikel berubah, maka volume gas juga akan berubah. Hal ini berarti bahwa harga PV T adalah tetap, bergantung pada banyaknya partikel (N ) yang terkandung dalam gas. Persamaan di atas dapat dituliskan:
  • 16. . PV N k T  . . .PV N k T (persamaan i) k= konstanta Bolzmann, (k=1,38 x 10-23 J/K) karena N= n.NA, maka: . . . .APV n N k T (persamaan ii) .AN k R yang merupakan konstanta gas umum yang besarnya sama untuk semua gas, maka persamaan (ii) menjadi: . . .PV n RT (persamaaan 8.5) dengan: P = tekanan gas (N/m2) V = volume gas (m3) n = jumlah mol T = suhu mutlak (K) R = konstanta gas umum (J/mol.K) R = NA.k R = (6,023 x 1023) (1,38 x 10-23) R = 8,31 J/mol.K = 0,082 L.atm/mol.K Persamaan (8.5) disebut persamaan umum gas ideal. Contoh soal 1. Suatu gas ideal sebanyak 4 liter memiliki tekanan 1,5 atmosfer dan suhu 27 °C. Tentukan tekanan gas tersebut jika suhunya 47 °C dan volumenya 3,2 liter! Penyelesaian: Diketahui: V1 = 4 liter V2 = 3,2 liter P1 = 1,5 atm T1 = 27 °C = 27+273 = 300 K T2 = 47 °C = 47+273 = 320 K
  • 17. Ditanya: P2 = ... ? Jawab: 1 1 2 2 1 2 PV PV T T  2 3,21,5 4 300 320 P   1,2 4 320 300 3,2 p     = 2 atm 2. Gas helium sebanyak 16 gram memiliki volume 5 liter dan tekanan 2 x 105 Pa. Jika R = 8,31 J/mol.K, berapakah suhu gas tersebut? Penyelesaian: Diketahui: m = 16 gram = 16 x 10-3 kg Mr O2 = 4 P = 2 x 105 Pa R = 8,31 J/mol.K V = 5 liter = 5 x 10-3 m3 Ditanya: T = ... ? Jawab: m n Mr  3 16 10 4    = 4x 10-3 mol . . .PV n RT . . PV T n R  5 3 3 (2 10 )(5 10 ) (4 10 )(8,31)       = 30.084 K
  • 18. B. Teori Kinetik Gas 1. Tekanan Gas Ideal Berdasarkan teori kinetik, kita akan menentukan secara kuantitatif tekanan dalam gas. Misalnya, suatu gas yang mengandung sejumlah partikel berada dalam suatu ruang yang berbentuk kubus dengan sisi L dan luas masing-masing sisinya A (Gambar 8.5). Tekanan yang diberikan gas pada dinding sama dengan besarnya momentum yang dilakukan oleh partikel gas tiap satuan luas tiap satuan waktu. Partikel yang massanya m0 bergerak dengan kecepatan vx dalam arah sumbu x. Partikel menumbuk dinding sebelah kiri yang luasnya A dengan kecepatan -vx. Karena tumbukan bersifat lenting sempurna, maka partikel akan terpantul dengan kecepatan vx (Gambar 8.6). Perubahan momentum yang terjadi pada partikel gas X dirumuskan: 2 1p p p   0 0. ( )x xm v m v   02 . xp m v  Partikel akan kembali menumbuk dinding yang sama setelah menempuh jarak 2L, dengan selang waktu: 2 x L t v   Besarnya impuls yang dialami dinding saat tumbukan adalah:
  • 19. 0 2 0 0 0 . . 2 2. . 2 . 2 x x x x x I p F t p F t m v m v m v m v F Lt L v            F adalah gaya yang dialami dinding pada saat tumbukan. Besarnya tekanan gas dalam kubus adalah: 2 0 2 0 2 x x m v m vF LP A L V    Apabila dalam wadah terdapat N partikel gas, maka tekanan gas pada dinding dirumuskan: 2 0. . xN m v P V  (persamaan 8.6) 2 xv adalah rata-rata kuadrat kecepatan partikel gas pada sumbu x. 2 2 2 2 2 1 2 3 ...x x x x nxv v v v v     Partikel-partikel gas tersebut bergerak ke segala arah dengan laju yang tetap, sehingga: 2 2 2 2 2 2 2 2 2 2 3 1 3 x y z x y z x v v v v v v v v v v        Dengan demikian, persamaan (8.6) menjadi: (persamaan 8.7) dengan: P = tekanan gas (N/m2) N = jumlah partikel v = kecepatan (m/s) m0 = massa partikel (kg) V = volume gas (m3) 2 0. .1 3 N m v P V 
  • 20. Karena 2 0 1 . 2 m v adalah energi kinetik rata-rata partikel dalam gas, maka persamaan (8.7) dapat dituliskan: .2 3 kN E P V  (persamaan 8.8) Contoh soal Sebuah tangki yang volumenya 50 liter mengandung 3 mol gas monoatomik. Jika energi kinetik rata-rata yang dimiliki setiap gas adalah 8,2x10 -21J, tentukan besar tekanan gas dalam tangki? Penyelesaian: Diketahui: V = 50 liter = 5 x 10-2 m3 n = 3 mol Ek = 8,2 x 10-21 J Ditanya: P = ... ? Jawab: .2 3 kN E P V  . .2 3 A kn N E V  23 21 2 2 (3)(6,02 10 )(8,2 10 ) 3 5 10       5 1,97 10  N/m2 2. Suhu dan Energi kinetik Rata-rata PartikelGas Ideal Energi kinetik rata-rata partikel gas bergantung pada besarnya suhu. Berdasarkan teori kinetik, semakin tinggi suhunya, maka gerak partikel-partikel gas akan semakin cepat. Hubungan antara suhu dengan energi kinetik ratarata partikel gas dinyatakan berikut ini. Menurut persamaan umum gas ideal: . . .PV N k T
  • 21. . .N k T P V  Persamaan (8.8) menyatakan: .2 3 kN E P V  Dengan menyamakan kedua persamaan tersebut diperoleh: .. . 2 3 kN EN k T V V  2 3 kT E k  atau 3 . 2 Ek k T (persamaan 8.9) Persamaan (8.9) menyatakan bahwa energi kinetic rata-rata partikel gas sebanding dengan suhu mutlaknya. 3. Kelajuan Efektif Gas Ideal Salah satu anggapan tentang gas ideal adalah bahwa partikel-partikel gas bergerak dengan laju dan arah yang beraneka ragam. Apabila di dalam suatu ruang tertutup terdapat N1 partikel yang bergerak dengan kecepatan v1, N2 partikel yang bergerak dengan kecepatan v2, dan seterusnya, maka rata-rata kuadrat kecepatan partikel gas 2 v , dapat dituliskan: 22 2 2 2 1 1 2 2 1 2 3 ... i ii i i N vN v N v N v v N N N N          (persamaan 8.10) Akar dari rata-rata kuadrat kecepatan disebut kecepatan efektif gas atau vrms (rms = root mean square). 2 rmsv v Mengingat 2 0 0 1 1 . . 2 2 k rmsE m v m v  , maka apabila kita gabungkan dengan persamaan (8.9), diperoleh: 2 0 1 3 . . 2 2 m v k T 0 3 . rms k T v m  (persamaan 8.11) dengan: vrms = kelajuan efektif gas (m/s)
  • 22. T = suhu mutlak (K) m0 = massa sebuah partikel gas (kg) k = konstanta Boltzmann ( J/K) Karena massa sebuah partikel adalah . A Mr m n Mr N   dan A R k N  , maka persamaan (8.11) dapat dituliskan: 3 . rms R T v Mr  (persamaan 8.12) Berdasarkan persamaan umum gas ideal . . PV k T N  , massa total gas 0.m N m dan m V   , maka persamaan (8.12) dapat dinyatakan : 3 rms P v   (persamaan 8.13) Contoh soal 1. Jika konstanta Boltzmann k = 1,38 x 10-23 J/K, berapakah energi kinetik sebuah helium pada suhu 27 °C? Penyelesaian: Diketahui: k = 1,38 x 10-23 J/K T = 27 °C = 27 + 273 = 300 K Ditanya: Ek = … ? Jawab: 3 . 2 Ek k T 23 213 (1,38 10 )(300) 6,21 10 2 J      2. Di dalam ruang tertutup terdapat gas yang tekanannya 3,2 x 105 N/m2. Jika massa jenis gas tersebut adalah 6 kg/m3, berapakah kecepatan efektif tiap partikel gas tersebut? Penyelesaian: Diketahui: P = 3,2 x 105 N/m2 ρ = 6 kg/m3 Ditanya: Vrms = … ? Jawab:
  • 23. 3 rms P v   5 3(3,2 10 ) 6   400 m/s C. Teorema Ekipartisi Energi Berdasarkan sifat gas ideal, partikel-partikel gas bergerak dengan laju dan arah yang beraneka ragam, sehingga sebuah partikel yang bergerak dengan kecepatan v dapat memiliki komponen kecepatan pada sumbu -x, y dan sumbu z, yang besarnya: 2 2 2 2 2 3x y zv v v v v    Energi kinetik partikel adalah: 2 2 2 21 1 . ( ) 2 2 x y zEk m v m v v v    Hal ini berarti bahwa sebuah partikel dapat bergerak pada tiga arah yang berbeda. Energi kinetik rata-rata partikel dapat dihitung dengan menggunakan teorema ekipartisi energi, yang menyatakan bahwa: “Jika pada suatu system yang mengikuti Hukum Newton tentang gerak dan mempunyai suhu mutlak T, maka setiap derajat kebebasan (f), suatu partikel memberikan kontribusi 1 . 2 k T pada energi rata-rata partikel,” sehingga energi rata-rata dapat dituliskan: 1 ( . ) 2 E f k T (persamaan 8.14) Setiap derajat kebebasan f memberikan kontribusi pada energi mekanik partikel tersebut. 1. Derajat Kebebasan Molekul Gas Pada gas ideal yang monoatomik atau beratom tunggal, partikel hanya melakukan gerak translasi pada arah sumbu x, sumbu y, dan sumbu z. Apabila massa partikel m, maka energi kinetik translasi sebesar:
  • 24. 2 2 2 21 1 1 1 . . . . 2 2 2 2 x y zEk m v m v m v m v    Dengan demikian, dikatakan bahwa gas monoatomik mempunyai tiga derajat kebebasan. Pada bahasan ini hanya terbatas pada gas ideal monoatomik. Namun, sebagai pengayaan juga kita pelajari sedikit tentang gas diatomik. Pada gas diatomik atau beratom dua seperti H2, O2, dan N2, partikel-partikel gas selain melakukan gerak translasi juga terjadi gerak antaratom dalam molekul yang mengakibatkan partikel melakukan gerak rotasi dan vibrasi. Misalnya, kedua atom dalam satu molekul kita anggap berada pada sumbu x, seperti pada Gambar 8.7 Pada gambar tersebut, molekul gas diatomik dilukiskan dengan sebuah batang dengan dua buah beban pada kedua ujungnya. Pusat massa molekul melakukan gerak translasi pada arah sumbu x, y, dan z sehingga memiliki tiga derajat kebebasan. Molekul juga dapat melakukan gerak rotasi dengan energi kinetic 21 2 Ek I . Karena molekul benda pada arah sumbu x, maka momen inersia pada sumbu x adalah nol, 21 0( 0). 2 x xI Ek I    Molekul hanya melakukan gerak rotasi terhadap sumbu y dan sumbu z. Ini berarti pada gerak rotasi, molekul mempunyai dua derajat kebebasan. Pada gerak vibrasi, molekul dapat memiliki energi kinetik dan energy potensial, sehingga mempunyai dua derajat kebebasan. Dengan demikian, sebuah molekul gas diatomik pada suhu tinggi yang memungkinkan molekul melakukan gerak translasi, rotasi, dan vibrasi dapat memiliki tujuh derajat kebebasan. 2. Energi Dalam Pada Gas Ideal Berdasarkan teorema ekipartisi energi bahwa tiap partikel gas mempunyai energi kinetik rata-rata sebesar 1 ( ) 2 Ek f kT . Energi dalam suatu gas ideal didefinisikan sebagai jumlah
  • 25. energi kinetik seluruh molekul gas dalam ruang tertutup yang meliputi energi kinetik translasi, rotasi, dan vibrasi. Apabila dalam suatu ruang terdapat N molekul gas, maka energi dalam gas ideal U dinyatakan: 1 ( ) 2 U NE Nf kT  (persamaan 8.15) Berdasarkan derajat kebebasannya, energi dalam gas monoatomik ideal dapat dituliskan sebagai berikut: 3f  (persamaan 8.16) Contoh soal 1. Berapakah tekanan dari 20 mol gas yang berada dalam tangki yang volumenya 100 liter jika suhunya 77 °C dan g = 9,8 m/s2 ? (R = 8,31 J/mol.K) Penyelesaian: Diketahui: n = 20 mol = 0,02 Mol V = 100 liter = 0,1 m3 T = 77 °C = 77 + 273 = 350 K g = 9,8 m/s2 Ditanya: P = … ? Jawab: . . .PV n RT . .n RT P V  (0,02)(8,31)(350) 0,1 P  P = 581,7N/m2 = 5,8 x 102 N/m2 2. Berapakah energi dalam 4 mol gas monoatomik ideal pada suhu 107 °C, jika diketahui k = 1,38 x 10-23 J/K dan NA = 6,02 x 1026 molekul/kmol? Penyelesaian: Diketahui: T = (273 + 107) K = 380 K 1 3 3 ( ) 2 2 U N kT NkT 
  • 26. γ = 3 Ditanyakan: U = … ? Jawab: 1 2 kE kT        3 2 kT 23 1 3 (1,38 10 )(380) 2 7,87 10 J       .U N Ek 26 23 7 (4 6,02 10 )(7,87 10 ) 1,90 10 J       
  • 27. PETA MATERI TEORI KINETIK GAS Hukum Boyle-Gay Lussac PV T = konstan 1 1 2 2 1 2 PV PV T T  Hukum Boyle 1 P V  , 1 1 2 2. .P V P V Hukum Charles V T , 1 2 1 2 V V T T  Hukum Gay Lussac P T , 1 2 1 2 P P T T  Persamaan Gas Ideal . . .PV N k T atau . . .PV n RT Tekanan Gas Ideal 2 0. .1 3 N m v P V  atau .2 3 kN E P V  Suhu Rata-Rata Partikel Gas Ideal 2 3 kT E k  Energi rata-rata partikel gas ideal 3 . 2 Ek k T Kelajuan Efektif Gas Ideal 3 . rms R T v Mr  atau 3 rms P v   Energi Dalam Pada Gas Ideal 1 ( ) 2 U NE Nf kT  1 3 3 ( ) 2 2 U N kT NkT  Teorema Ekipartisi Energi 1 ( . ) 2 E f k T f = derajat kebebasan
  • 28. UJI KOMPETENSI A. Pilihan Ganda 1. Partikel-partikel gas ideal mempunyai sifat-sifat sebagai berikut, kecuali ... . A. selalu bergerak B. tidak saling menarik C. bertumbukan lenting sempurna D. tersebar merata di seluruh bagian ruangan yang ditempati E. tidak mengikuti Hukum Newton tentang gerak 2. Pada Hukum Boyle, P.V = k, P adalah tekanan dan V adalah volume. Konstanta k mempunyai dimensi yang sama dengan ... . A. daya B. usaha C. momentum D. suhu E. konstanta pegas 3. Gas dalam ruangan tertutup bersuhu 27°C, tekanan 3 atm dan volumennya 2L. Apabila gas dipanaskan sampai 57°C dan tekanan naik 1 atm, maka volume gas berubah menjadi A. 2 L B. 1,80 L C. 1.65 L D. 1.20 L E. 0,80 L 4. 2. Udara dalam ban mobil pada suhu 15°C mempunyai tekanan 305 kPa. Setelah berjalan pada kecepatan tinggi, ban menjadi panas dan tekanannya menjadi 360 kPa. Temperatur udara dalam ban jika tekanan udara luar 101 kPa adalah…. A. 54 OC B. 34 OC C. 45 OC D. 25 OC E. 37 OC 5. Berapa tekanan gas, jika volumennya 60L, jumlah mol (n) = 3 mol dan mempunyai suhu 27°C? (R = 8,315 J/mol.K) A. 2,39 atm B. 2,18 atm C. 1,89 atm D. 1,47 atm E. 1,24 atm 6. Partikel-partikel gas ideal memiliki sifat-sifat antara lain …. 1) selalu bergerak
  • 29. 2) tidak tarik menarik 3) bertumbukan lenting sempurna 4) tidak mengikuti Hukum Newton tentang gerak Pernyataan yang benar adalah … A. 1, 2, dan 3 B. 2, 3, dan 4 C. 1, 3, dan 4 D. 1 dan 3 E. 2 dan 4 7. Jika suatu gas ideal dimampatkan secara isotermal sampai volumenya menjadi setengah dari volume semula maka …. A. tekanan dan suhu tetap B. tekanan menjadi dua kali dan suhu tetap C. tekanan tetap dan suhu menjadi dua kalinya D. tekanan menjadi dua kalinya dan suhu menjadi setengahnya E. tekanan dan suhu menjadi setengahnya. 8. Jika suhu gas dinaikkan, kecepatan rata-rata partikel gas bertambah karena kecepatan gas… A. Sebanding dengan akar masa partikel B. Sebanding dengan akar suhu mutlak C. Berbanding terbalik dengan masa partikel D. Sebanding dengan suhu mutlak gas E. Sebanding dengan kuadrat suhu mutlak 9. Sebuah ruang tertutup berisi gas ideal dengan suhu T dan kecepatan partikel gas di dalamnya v. Jika suhu gas itu dinaikkan menjadi 2T maka kecepatan partikel gas tersebut menjadi … A. √2 v B. 12 v C. 2 v D. 4 v E. v2 10. Dalam suatu ruangan terdapat 800 miligram gas dengan tekanan 1 atm. Kelajuan rata-rata partikel tersebut adalah 750 m/s. Jika 1 atm = 105 N/m2 , maka volume ruangan tersebut adalah… A. 1,5 x 10-3 m3
  • 30. B. 2 x 10-3 m3 C. 6,7 x 10-3 m3 D. 1,5 x 10-2 m3 E. 6,7 x 10-2 m3 11. Sepuluh liter gas ideal suhunya 127°C mempunyai tekanan 165,6 N/m2. Maka banyaknya partikel gas tersebut adalah… A. 2 x 1019 buah B. 3 x 1019 buah C. 2 x 1020 buah D. 3 x 1020 buah E. 5 x 1020 buah 12. Besarnya energy kinetik sebuah atom helium pada suhu 227°C (k= 1,38 x 10-23 J/K) adalah… A. 9,25 x 10-21 J B. 10,25 x 10-21 J C. 10,35 x 10-21 J D. 10,50 x 10-21 J E. 10,60 x 10-21 J 13. Suatu gas ideal mempunyai energy dalam 1,01 x 1028 Joul. Jumlah mol gas ideal tersebut bila besar energy kinetiknya 5 kJ adalah…mol A. 3.350 B. 335 C. 33,5 D. 3,35 E. 0,33 14. Sejumlah gas berada dalam ruang tertutup bersuhu 327°C dan mempunyai energi kinetik Ek. Jika gas dipanaskan hingga suhunya naik menjadi 627°C. Energi kinetik gas pada suhu tersebut adalah… A. 2,5 Ek B. 3,5 Ek C. 1,5 Ek D. 4,5 Ek E. 0,5 Ek 15. Dua mol gas ideal diatomic memiliki 5 derajat kebebasan bersuhu 800 K. Energi dalam gas tersebut adalah…
  • 31. A. 5,52 x 104 J B. 1,34 x 105 J C. 6,64 x 104 J D. 4,32 x 105 J E. 3,32 x 104 J 1. Essay 1. Gas oksigen pada suhu 27 °C memiliki volume 20 liter dan tekanan 2 x 105 N/m2. Berapakah volume gas ketika tekanannya 16 x 104 N/m2 dan suhunya 47 °C ? 2. Gas oksigen (Mr = 32 kg/mol) massa 80 gram berada dalam tangki yang volumenya 8 liter. Hitunglah tekanan yang dilakukan oleh gas jika suhunya 27 °C ? 3. Suatu gas ideal (Mr = 40 kg/mol) berada dalam tabung tertutup dengan volume 8 liter. Jika suhu gas 57 °C dan tekanan 2 x 105 N/m2, berapakah massa gas tersebut? 4. Jika massa jenis gas nitrogen 1,25 kg/m3, hitunglah kecepatan efektif partikel gas tersebut pada suhu 227 °C dan tekanan 1,5 x 105 N/m2! 5. Suatu gas ideal berada di dalam ruang tertutup. Gas ideal tersebut dipanaskan hingga kecepatan rata-rata partikel gas meningkat menjadi 3 kali kecepatan awal. Jika suhu awal gas adalah 27oC, hitung suhu akhir gas ideal tersebut!
  • 32. PEMBAHASAN UJI KOMPETENSI A. Pilihan ganda 1. E. tidak mengikuti Hukum Newton tentang gerak 2. B. Usaha 3. Diketahui: T1 = 27°C = 300°K P1 = 3 atm V1 = 2L T2 = 57°C = 330°K P2 = 4 atm Ditanya: berapa volume setelah gas dibakar (V2)? Jawab : 1 1 2 2 1 2 PV PV T T  243 2 300 330 atm Vatm Liter K K   1980 = 1200 V2 V2 = 1.65 L Jadi volumenya berubah menjadi C. 1,65 L 4. A. 54 OC 5. Diketahui : V = 60L = 60 dm3 = 60x10-3 m3 n = 3 mol T = 27°C = 300°K R = 8,315 J/mol.K Ditanya: berapa tekanan gas tersebut (P)? Jawab :
  • 33. PV = nRT P (60x10-3 m3) = 3 mol x 8,315 J/mol.K x 300°K P 60x10-3 m3 = 7483,5 J P = 7483,5 J / 60x10-3 m3 P = 124,725 x103 P = 1,24725 x105 Pascal P = 1,24 atm Jadi tekanan gasnya E. 1,24 atm 6. A. 1, 2 dan 3 7. B. tekanan menjadi dua kali dan suhu tetap 8. B. Sebanding dengan akar suhu mutlak 9. Diketahui: T1 = T T2 = 2T V1 = ν Ditanya: v2 =..... Jawab: Kecepatan gas untuk dua suhu yang berbeda Sehingga diperoleh Maka kecepatan partikel gas tersebut adalah A. 2 v 10. Diketahui: m = 800 mg = 8 x 10-4 kg P = 1 atm = 105 N/m2 v = 750 m/s = 7,5 x 102 m/s
  • 34. Ditanya: Volume (V)…? Jawab: 2 2 1 3 1 3 Nmv P V Nmv V P   4 2 2 5 1 (1)(8 10 )(7,5 10 ) 3 10     5 3 450 3 10 1,5 10     Jadi, volume ruangan tersebut adalah A. 1,5 x 10-3 m3 11. Diketahui: T = 127°C = (127+273) K = 400 K P = 165,6 N/m2 V = 10 liter = 10 dm3 = 10-2 m3 k = 1,38 x 10-23 J/K Ditanya: Jumlah partikel (N)=...? Jawab: PV NkT PV N kT   2 23 19 20 (165,6)(10 ) (1,38 10 )(400) 30 10 3 10         Jadi jumlah partikelgas tersebut adalah D. 3 x 1020 buah 12. Diketahui: k =1,38 x 10-23 J/K N = 1 T = 227°C = (227+273) K = 500 K
  • 35. Ditanya: Energi kinetik (Ek)=…? Jawab: 3 2 Ek NkT 23 21 3 (1)(1,38 10 )(500) 2 10,35 10 J       Jadi energi kinetik sebuah atom helium adalah C. 10,35 x 10-21J 13. Diketahui: U = 1,01 x 1028 J Ek = 5 kJ = 5 x 103 J N0 = 6,02 x 1023 Ditanya: Jumlah mol gas ideal (N) =…? Jawab: U NEk 28 3 1,01 10 (5 10 )N   28 3 1,01 10 5 10 N    25 24 0,202 10 2,02 10     0 N n N  24 23 2,02 10 6,02 10 0,335 10 3,35       Jadi jumlah mol gas ideal adalah D. 3,35 mol 14. C. 1,5 Ek 15. E. 3,32 x 104 J
  • 36. B. Essay 1. Diketahui: T1 = 27°C = 27+ 273= 300 K V1= 20 Liter P1 = 2 x 105 N/m2 P2 = 16 x 104 N/m2 T2 = 47°C = 47+ 273= 320 K Ditanya: V2 =….? Jawab: 1 1 2 2 1 2 PV PV T T  4 25 2 2(16 10 / )(2 10 / )(20 ) 300 320 N m VN m liter K K   5 2 4 2 2(2 10 / )(20 )(320 ) (16 10 / )(300 )N m liter K N m K V   7 6 2128 10 48 10 V   7 2 6 128 10 48 10 V    = 26,67 liter 2. Diketahui: Mr = 32 Kg/mol Massa(m) = 80 gram = 80 x 10-3 kg Volume (V) = 8 liter = 8 x 10-3 m3 Suhu (T) = 27°C = 27+ 273= 300 K Ditanya: Tekanan (P) = ….? Jawab : 3 480 10 25 10 32 / m kg n mol Mr kg mol       . . .PV n RT
  • 37. 4 3 3 . . (25 10 )(8,31 / )(300 ) 8 10 n RT mol J molK K P V m       3 2 779 / 779 / J m N m   3. Diketahui: Mr = 40 kg/mol V = 80 Liter = 8 x 10-3 m3 T = 57°C = 57 + 273 = 330 K P = 2 x 105 N/m2 R = 8,31 J/mol K Ditanya : Massa=…? Jawab : . . .PV n RT . . PV n RT  5 2 3 3 (2 10 / )(8 10 ) (8,31 / )(330 ) N m m J molK K     192,54n mol m n Mr  .m n Mr 192,54 .40 /mol kg mol = 7701,56 kg 4. Diketahui: 3 1,25 /kg m  227T C  5 2 1,5 10 /P N m  Ditanya: vrms=…..? Jawab:
  • 38. 3 rms P v   5 2 3 3 1,5 10 / 1,25 / N m kg m    360000 /Nm kg 2 2 360000 /m s = 60 m/s 5. Diketahui : Suhu awal = 27oC + 273 = 300 Kelvin Kecepatan awal = v Kecepatan akhir = 2v Ditanya : Suhu akhir gas ideal Jawab : Kecepatan rata-rata akhir = 2 x Kecepatan rata-rata awal