SlideShare a Scribd company logo
the NSFC Grant 10771051
   2008 7 ·




       Difference Systems of Sets and Related Designs




                                                        1   38




                   leijg1964@yahoo.com.cn
2   38
1
1.1.


        n
               · · · x1 · · · xn y1 · · · yn · · ·




       · · · x1 · · · xi xi+1 · · · xn y1 · · · yi · · · yn · · ·
                                                                    3   38




       · · · x1 · · · xi xi+1 · · · xn y1 · · · yi · · · yn · · ·
x = x1 · · · xn   y = y1 · · · yn        :

               Ti (x, y) = xi+1 · · · xn y1 · · · yi , 1 ≤ i ≤ n − 1.

                                                         :
                                        n
                         ?



                                C ⊆ F n)
    n                    (                                             (          4   38

           C
)                                   .                              comma-free .
1.2.        comma-free
                        : C ⊆ Fqn ,     Fq = {0, 1, . . . , q − 1}.
           n     q

       C ⊆ Fqn                        ρ(C):
                     comma-free

                              ρ(C) = min d(z, Ti (x, y)),

                                                     x, y, z ∈ C      i = 1, . . . , n − 1.
         d Hamming            ,

                                      (ρ(C) − 1)/2
         ρ(C) > 0                                                          comma-free
       ρ(C)                                                (                   ).             5   38



                 comma-free                                            .
2
         (Levenshtein,1971)
       {Qi : i = 0, . . . , q − 1}                                        |Qi | = τi , i =
                                      Zn      q                  ,
    0, . . . , q − 1.                                s, s = 1, . . . , n − 1,
                               Zn

                                     x − y ≡ s (mod n)

               ρ      x, y,

                      x ∈ Qi , y ∈ Qj , i, j = 0, . . . , q − 1, i = j.
                                                                                             6   38

          {Qi : i = 0, . . . , q − 1}               (n, τ0 , . . . , τq−1 , ρ)
                                      DSS(n, {τ0 , . . . , τq−1 }, q, ρ).
    (difference system of sets).
Qi (i = 0, . . . , q − 1)                             m,
 DSS                  DSS(n, m, q, ρ).
        regular,
                     s, 1 ≤ s ≤ n − 1,           x − y ≡ s (mod n)        ρ   ,
      DSS       perfect.
DSS           (redundancy):
                                      q−1
                                            |Qi |.
                                 r=
                                      i=0

                        n, q, ρ, DSS                          ,
 (optimal).                                                                       7   38



      DSS             n, q, ρ,   rq (n, ρ)
 :                                                        .
. Z13                    :

        D0 = {0, 7, 8, 11}, D1 = {4, 10, 12} , D2 = {1, 2, 3, 5, 6, 9}

                             regular DSS(13, {4, 3, 6}, 3, 9).
          perfect,

. Z37                    :

                      {1, 10, 26}, {3, 4, 30} , {9, 12, 16}

                     {11, 27, 36}, {7, 33, 34} , {21, 25, 28}
                                                                         8   38

                             perfect DSS(37, 3, 6, 6).
          regular,
DSS
2.1.                      comma-free
                    Fqn
            q                                        .
                                                     DSS
       comma-free       0.
                       ρ>0
         comma-free                      .
                                                                               q−1
                  (n, τ0 , . . . , τq−1 , ρ) DSS{Q0 , . . . , Qq−1 },   Zn          Qi
                                                                               i=0
                             (information symbols),                                       0,
                                              C ⊆ Fqn .
                                n−r
         C          C       :

                                 C = C + (h1 , . . . , hn ),

                        j ∈ Qi (0 ≤ i ≤ q − 1).
         hj = i
                                                                                               9   38


                                         ρ(C ) ≥ ρ.

       . n = 9, q = 2, ρ = 1 : Q0 = {1, 2}, Q1 = {3, 5}.

                                  h = (001 ∗ 1 ∗ ∗ ∗ ∗).
rq (n, ρ)
2.2.
          : (Levenshtein, 1971)
                                                 qρ(n−1)
                                  rq (n, ρ) ≥      q−1

                           DSS       perfect regular.

                                                               ,             square-
   free    .
           : (Wang, 2007)
                   
                    qρ(n−1) + 1,               qρ(n−1)
                                                           square-free           ;
                        q−1                       q−1
       rq (n, ρ) ≥                                                                     10   38
                    qρ(n−1) ,              .
                        q−1

                           DSS                                     Qi   Qj
                                     perfect,
                   1.
. Z31                    :

Q0 = {1, 2, 4, 8, 16}, Q1 = {5, 9, 10, 18, 20}, Q2 = {7, 14, 19, 25, 28}.

          perfect, regular DSS(31, 5, 3, 5),         optimal.


: Levenshtein (1971)
                                                         √
                             2(n − 1)       r2 (n, 2) = 2 n − 1 .
           r2 (n, 1) =

        q ≥ 3,                                                              11   38
                                        .
3
3.1.
           2-(n, K, λ)     :

                                {Bi : Bi ⊆ Zn , |Bi | ∈ K}

                                    j ∈ Zn , Bi + j (mod n)
                          Bi                                          ,
                  x, y ∈ Zn , x = y          λ         .

            B1 , . . . , Bs (Bi ⊆ Zn )           Zn                       2-
    (n, K, λ)

                     {x − y (mod n) : x, y ∈ Bi , i = 1, . . . , s}            12   38



                         s ∈ Zn ρ        .

       .           2-(13,3,1)       :
             : B1 = {1, 3, 9}, B2 = {2, 5, 6}.
(cyclic difference packing) m-DP (v, K, λ):
m

             P = {Bi : Bi ⊆ Zn , |Bi | ∈ K, 0 ≤ i ≤ m − 1}

           d ∈ Zv  {0},      d ≡ b − b (mod v)              (b, b ) ∈
Bi × Bi   B0 , . . . , Bm−1         λ.

                  d ∈ Zv  {0},     B0 , . . . , Bm−1        λ
    :                                                            ,
    P                     m-DF (v, K, λ).
                     ,                                                   13   38
partition-type
           P = {B0 , . . . , Bm−1 }       m-DP (v, K, λ),          Zv
                   P                  ,                                 .
                                                    partition-type

  .

                     B0 = {0}, B1 = {1, 4}, B2 = {2, 3}

                     partition-type 3-DF (5, {1, 2, 2}, 1).
        Z5
                                                                            14   38
3.2.
  q           ,t                                         P G(2t + 1, q),
                            ,
                                    2t+2
                                      −1
                                q
  Zv                      ,v=       q−1 .

   k-flat: P G(2t + 1, q) k                         .

           GF (q 2t+2 )             GF (q t+1 ) t-flat
                                                                     q 2t+2 −1         q t+1 −1
           S = {0, m, 2m, . . . , (k − 1)m},                   m=                 k=
                                                                     q t+1 −1 ,           q−1 .


       W GF (q 2t+2 )                                                                     F0 ∈ W.
                                               S       (t + 1)-flat           ,
       P G(2t + 1, q)                      S                    :
                                                                                                    15   38
                                           σ : x → x + m.

        , (t + 1)-flat Fi = σ i F0 (0 ≤ i ≤ k − 1)                                      |W| = k,
                                                                          S.
       W = {Fi : 0 ≤ i ≤ k − 1}.
. a GF (26 )                                      a6 + a + 1 = 0.
                                ,
                              , v = 63, k = 7, m = 9. Ai = Fi  S,
P G(5, 2) ,          Z63


               S = {0, 9, 18, 27, 36, 45, 54},
               A0 = {1, 6, 8, 14, 38, 48, 49, 52},
               A1 = {10, 15, 17, 23, 47, 57, 58, 61},
               A2 = {3, 4, 7, 19, 24, 26, 32, 56},
               A3 = {2, 12, 13, 16, 28, 33, 35, 41},
               A4 = {11, 21, 22, 25, 37, 42, 44, 50},
               A5 = {20, 30, 31, 34, 46, 51, 53, 59},                16   38


               A6 = {5, 29, 39, 40, 43, 55, 60, 62}.
4
4.1.
        B = {x0 , . . . , xq−1 }                 (n, q, ρ)    ,

                    Q0 = {x0 }, Q1 = {x1 }, . . . , Qq−1 = {xq−1 }

            perfect regular DSS(n, 1, q, ρ).
       : DSS                           .
                           (n, q, ρ)        B,         B
        :
                                                 q−1                 17   38
                                           B=          Qi ,
                                                 i=0

            {Qi }q−1         optimal DSS?
                 i=0
(V.D. Tonchev, 2003)

B ⊆ Zn               (n, q, λ)    ,
                                 q−1
                           B=          Qi ,
                                 i=0

                                                       {Qi }q−1
  {Q0 , . . . , Qq−1 }            q-DP (v, K, λ1 ),         i=0
                ρ = λ − λ1 DSS.               DSS perfect
                                         ,
{Q0 , . . . , Qq−1 }       2-(n, K, λ1 )            .
                                                                  18   38
(V.D. Tonchev, 2003)
   n = mq + 1             ,α          GF (n)             .
Q0 = {αq , α2q , . . . , αmq },
Q1 = αQ0 , Q2 = α2 Q0 , . . . , Qq−1 = αq−1 Q0 .
       perfect regular DSS(n, m, q, n − m − 1).

         n = 19, q = 6, m = 3.                               DSS(19, 3, 6, 6).
   :

       {1, 7, 11}, {2, 14, 3}, {4, 9, 6}, {5, 16, 17}, {8, 18, 12}, {10, 13, 15}.
                                                                                    19   38

             {1, 7, 11}, {2, 14, 3}            perfect, regular DSS(19, 3, 2, 1).
(V.D. Tonchev, 2003)
  n = 2mq + 1 ≡ 3 (mod 4)                    ,α   GF (n)               Dm =
                                                                   .
{α2iq : 1 ≤ i ≤ m}.

             Q0 = Dm , Q1 = α2 Dm , . . . , Qq−1 = α2(q−1) Dm .

         perfect regular DSS(n, m, q, (n − 2m − 1)/4).

      n = 31, q = 3, m = 5, α = 3.
  :

  Q0 = {16, 8, 4, 2, 1}, Q1 = {20, 10, 5, 18, 9}, Q2 = {25, 28, 14, 7, 19}.
                                                                              20   38


         perfect regular DSS(31, 5, 3, 5).
(Y. Mutoh, V.D. Yonchev, 2004)
  n = emq + 1            .
               eq                  eq                   eq
                         eq
         Q0 = C0 , Q1 = Ce , Q2 = C2e , . . . , Qq−1 = C(q−1)e .

        regular DSS(n, m, q, ρ),
                                 q−1
            ρ = min{(i, 0)e −          (i + je, 0)eq : 0 ≤ i < e}.
                                 j=0

                                   q−1
                    i, (i, 0)e −         (i + je, 0)eq               ρ=
    ,                                                          ,
                                   j=0
m(q − 1)/e perfect DSS.                                                   21   38




                             ,           V.D. Tonchev (2005)         .
4.2.
 •                                         partition-type m-DP (v, K, λ) P =
                       Zv
           :
     {B0 , . . . , Bm−1 }, K = {|Bi | : 0 ≤ i ≤ m − 1}.      Zv
                                                                      v
           v DSS(v, K, m, ρ = v − λ). DSS                       λ = m + δx ,
                                                          ,
           xvm                    ,
                             
                             0,       if x = 0, 1;
                        δx =
                                       if 2 ≤ x ≤ m − 1.
                             0, 1,

       .
                                                                               22   38

                       B0 = {0}, B1 = {1, 4}, B2 = {2, 3}

                       perfect DSS(5, {1, 2, 2}, 3, 4).
            Z5
•                 , 1 ≤ x ≤ v.
       :x                              Zv               partition-type
                                       DSS(nv, K ∪{(n−1)x}, m+1, ρ),
    m-DP (v, K, λ1 ),   Znv
       ρ = min{v − λ1 , 2x}, r = (n − 1)x + v.

                {B0 , . . . , Bm−1 } Zv        partition-type cyclic m-DP (v, K, λ1 ).
          :
                              |X| = x
      X       Zv                                      Znv
                                             .                         :
                                                                ∗
          Q0 = nB0 , . . . , Qm−1 = nBm−1 , Qm = {a + nb : a ∈ Zn , b ∈ X}.

      {Q0 , . . . , Qm−1 , Qm }               DSS.

                                  partition-type m-DP (v, K, λ1 )
      :                                                                                  23   38


              2x = v − λ1 .               DSS perfect.
{D0 , D1 }                     partition-type 2-DF (7, {3, 4}, 3),
                       Z7
.

                         D0 = {1, 2, 4}, D1 = {0, 3, 5, 6}.

Z7n                      :
                     B0 = {n, 2n, 4n}, B1 = {0, 3n, 5n, 6n},
                     B2 = {1, . . . , n − 1, n + 1, . . . , 2n − 1}.

           perfect DSS(7n, {3, 4, 2n − 2}, 3, 4).
          1≤n≤5                  DSS
    ,                        ,            optimal.                           24   38
•                                     1 ≤ x ≤ v.
          : n, x          ,n                                  Zv
                                                                     DSS(nv, K ∪
          partition-type m-DP (v, K, λ1 ).     Znv
    { n−1 x}, m + 1, ρ),                                n−1
                             ρ = min{v − λ1 , x}, r =    2x   + v.
       2

           {B0 , . . . , Bm−1 } Zv        partition-type cyclic m-DP (v, K, λ1 ).
          :
                          |X| = x
      X Zv                                , O n Zn                              .
       Znv                   :

          Q0 = nB0 , . . . , Qm−1 = nBm−1 , Qm = {a + nb : a ∈ On , b ∈ X}.

      {Q0 , . . . , Qm−1 , Qm }           DSS.
                                                                                    25   38

                                  partition-type m-DP (v, K, λ1 )
      .
                 x = v − λ1 .             DSS perfect.
{D0 , D1 }                     partition-type 2-DF (7, {3, 4}, 3),
                          Z7
.

                           D0 = {1, 2, 4}, D1 = {0, 3, 5, 6}.

n                         Z7n
                      .                      :
               B0 = {n, 2n, 4n}, B1 = {0, 3n, 5n, 6n},
                                                                         n−3
    B2 = 2i + 1, 2i + 1 + n, 2i + 1 + 2n, 2i + 1 + 3n : 0 ≤ i ≤                .
                                                                          2

            perfect DSS(7n, {3, 4, 2n − 2}, 3, 4).
           n = 3, 5 ,          DSS
     ,                               optimal.                                      26   38
•                        1 ≤ x ≤ v.
             x
         :           ,
                                                  
                 partition-typem-DP (v, K1 , λ1 ) 
                                                  
                          x   DSS(v, K2 , q, ρ ) 
                                                 

             DSS(2v, K1 ∪ K2 , m + q, ρ),
    =⇒

             ρ = min{v − λ1 + ρ , 2x}, r = x + v.
                                                      27   38
{D0 , D1 , D2 } Z5                       partition-type 3-DP (5, {1, 2, 2},
   .
1),

                     D0 = {0}, D1 = {1, 4}, D2 = {2, 3}.

   {Q0 , Q1 } Z5                   DSS(5, 2, 2, 2),

                              Q0 = {1, 4}, Q1 = {2, 3}.

   Z10                   :

         B0 = {0}, B1 = {2, 8}, B2 = {4, 6}, B3 = {3, 9}, B4 = {5, 7}.
                                                                                       28   38
            DSS(10, {1, 2, 2, 2, 2}, 5, 6).
           qρ(n−1)           135
                     =              = 9 = r,    DSS    optimal    .
             q−1              2
•                        1 ≤ x ≤ v.                1 ≤ x ≤ v.
             x                        x
         .           ,                        ,
                                                  
                 partition-typem-DP (v, K1 , λ1 ) 
                                                  
                          x   DSS(v, K2 , q, ρ ) 
                                                 

             DSS(3v, K1 ∪ K2 , m + q, ρ),
    =⇒

             ρ = min{v − λ1 + ρ , x}, r = x + v.
                                                                29   38
{D0 , D1 } Z7                     partition-type 2-DP (7, {3, 4}, 3),
 .


                    D0 = {1, 2, 4}, D1 = {0, 3, 5, 6}.

 {Q0 , Q1 } Z7              DSS(7, 3, 2, 3),

                        Q0 = {1, 2, 4}, Q1 = {3, 5, 6}.

 Z21                :

B0 = {3, 6, 12}, B1 = {0, 9, 15, 18}, B2 = {4, 7, 13}, B3 = {10, 16, 19}.
                                                                               30   38
          DSS(21, {3, 4, 3, 3}, 4, 6).
                   √
         qρ(n−1)
                 =   160 = 13 = r,          DSS     optimal.
           q−1
DSS,                                     .   :
•       v
    :                ,                        :
                     p ≡ 3 (mod 4)
    1. v = p,                                     ;
    2. v = 2t − 1,          t≥1           ;
    3. v = p(p + 2),            p   p+2                   .
            Z3v
    1. DSS(3v, { v+1 , v+1 , v−1 }, 3, v+1 );
                  2     2     2         2
    2. DSS(3v, { v+1 , v−1 , v−1 }, 3, v−1 );
                  2     2     2         2
    3. DSS(3v, { v−1 , v−1 , v+1 , v+1 }, 4, v).
                  2     2     2     2

•       v
    :                ,                        :
                         p ≡ 3 (mod 4)
    1. v = 4p,                                        ;                   31   38



    2. v = 4(2t − 1),           t≥1           ;
    3. v = 4p(p + 2),           p   p+2                       .
                             DSS(3v, { v−2 , v , v+2 }, 3, v ).
            Z3v                         2    2    2        2
4.3.
                       q 2t+2 −1         t+1
                                              −1
                               k = q q−1 ,
 •              v=        q−1 ,                           q      ,t
            :                                                                        .
                   perfect DSS(k, {s1 , s2 , . . . , sm }, m, ρ ),
        Zk                                                                          Zv
     1) DSS(v, {s1 q t+1 , s2 q t+1 , . . . , sm q t+1 }, m, ρ),

                                        ρ = ρ (q t+1 − q).

     2) DSS(v, {k, s1 q t+1 , s2 q t+1 , . . . , sm q t+1 }, m + 1, ρ),
                                                            m
                                           t+1
                                                                  si , ρ q t+1 }.
                                                 − q) + 2
                          ρ = min{ρ (q
                                                            i=1

     3) DSS(v, {k + s1 q t+1 , s2 q t+1 , . . . , sm q t+1 }, m, ρ),
                                                                                         32   38
                                                            m
                         ρ = min{ρ (q t+1 − q) + 2              si ), ρ q t+1 }.
                                                          i=2

                         DSS
        :                            perfect,                                        .
{D0 , D1 , D2 }
  . P G(5, 2) , v = 63, k = 7.                             Z7           perfect
  DSS(7, 2, 3, 4),

                  D0 = {1, 6}, D1 = {2, 5}, D2 = {3, 4}.

  P G(5, 2)                 :
Q0 = A1 ∪ A6 = {5, 10, 15, 17, 23, 29, 39, 40, 43, 47, 55, 57, 58, 60, 61, 62},
Q1 = A2 ∪ A5 = {3, 4, 7, 19, 20, 24, 26, 30, 31, 32, 34, 46, 51, 53, 56, 59},
Q2 = A3 ∪ A4 = {2, 11, 12, 13, 16, 21, 22, 25, 28, 33, 35, 37, 41, 42, 44, 50},
          regular DSS(63, 16, 3, 24).
                    √                                                             33   38
         qρ(n−1)
                 =    2232 = 48 = r,         DSS     optimal.
           q−1
q 2t+2 −1          t+1
                                           −1
                                   k = q q−1 ,
•             v=          q−1 ,                   q              ,t
           :                                                                        .
                                     k perfect DSS(k, {s1 , s2 , . . . , sn }, n, ρ ),
           Zk
       Zv
    1) DSS(v, {k − 1, s1 q t+1 , s2 q t+1 , . . . , sn q t+1 }, n + 1, ρ),

                         ρ = min{ρ (q t+1 − q) + 2k − 2, ρ q t+1 }.

    2) DSS(v, {k − 1 + s1 q t+1 , s2 q t+1 , . . . , sn q t+1 }, n, ρ),

                     ρ = min{ρ (q t+1 − q) + 2k − 2 − 2s1 , ρ q t+1 }.
                                                                                         34   38

                        DSS
       :                              perfect,                                   .
{D0 , D1 , D2 , D3 }
       P G(5, 2) , v = 63, k = 7.                                       Z7
  .
  perfect DSS(7, {1, 2, 2, 2}, 4, 6),

            D0 = {0}, D1 = {1, 6}, D2 = {2, 5}, D3 = {3, 4}.

  P G(5, 2)                 :
Q0 = S ∗ ∪ A0 = {1, 6, 8, 9, 14, 18, 27, 36, 38, 45, 48, 49, 52, 54},
Q1 = A1 ∪ A6 = {5, 10, 15, 17, 23, 29, 39, 40, 43, 47, 55, 57, 58, 60, 61, 62},
Q2 = A2 ∪ A5 = {3, 4, 7, 19, 20, 24, 26, 30, 31, 32, 34, 46, 51, 53, 56, 59},
Q3 = A3 ∪ A4 = {2, 11, 12, 13, 16, 21, 22, 25, 28, 33, 35, 37, 41, 42, 44, 50},
          DSS(63, {14, 16, 16, 16}, 4, 46).                                       35   38


         qρ(n−1)
                   =     11408/3 = 62 = r,        DSS     optimal.
           q−1
DSS,                                 .           :
                     2t+2
                   −1
         : v = q q−1 ,
•                                     q          ,t>1                              Zv
                                                                     .
         DSS    :
                                  t         t
                            t
    1. DSS(v, q t+1 , q −1 , (q −q)(q −1) );
                      q−1        q−1
    2. DSS(v, q t+1 , q t , q t (q t − 1)(q − 1));
                                      t+1
                                       −1)(q t+1 −q)
                            t+1
    3. DSS(v, q t+1 , q q−1 , (q
                          −1
                                                      );
                                         q−1
                                   t+1            t+1
                         t+1
         DSS(v, q t+1 , q q−1 , (q −2q+1)(q −q) );
                             −q
    4.                                      q−1
                   t+2                              t+1
                       −q                                −1
         DSS(v, { q q−1 , q t+1 , . . . , q t+1 }, q q−1 , v − q t+1 − 3);
    5.
                                                             t+2     t
                   t+2                              t+1
         DSS(v, { q q−1 , q t+1 , . . . , q t+1 }, q q−1 , (q +q)(q −1) );
                       −1                                −1
    6.                                                           q−1
                    t+2
                        −1
         DSS(v, { q q−1 , q t+1 , . . . , q t+1 }, q t , ρ),                 ρ = q 2t (q − 1) +   36   38
                                                                  q ≥ 3,
    7.
    q t (3 − q) − 2;
                      t+2                        t+1
                    −1                               −q
    8. DSS(v, { q q−1 , q t+1 , . . . , q t+1 }, q q−1 , ρ),      ρ = v − 3q t+1 + 2q − 3.
5
[1] C. Fan, J. Lei, Y. Chang, Constructions of difference systems of sets and disjoint difference
families, IEEE Trans. Inform. Theory, 54(2008), 3195-3201.
[2] C. Fan, J. Lei, Constructions of difference systems of sets from partition-type difference pack-
ings, to submit.
[3] C. Fan, J. Lei, Constructions of difference systems of sets from finite projective geometries, to
submit.
[4] R. Fuji-Hara, A. Munemasa, V. D. Tonchev, Hyperplane partitions and difference systems of
sets, J. Combin. Theory, Ser. A 113 (2006) 1689 1698.
[5] V. I. Levenshtein, One method of constructing quasi codes providing synchronization in the
presence od errors, Problems Inform, Transmission, 7(1971), 215-222.
[6] Y. Mathon, V. D. Tonchev, Difference systems of sets and cyclotomy, Discrete Math.,
308(2008), 2959-2969.
[7] V. D. Tonchev, Difference systems of sets and code synchronization, Rend. Sem. Mat. Messina
Ser. II 9(2003), 217-226.
                                                                                                       37   38
[8] V. D. Tonchev, Partitions of difference sets and code synchronization, Finite Fields Appl.
11(2005), 601-621.
[9] V. D. Tonchev, H. Wang, An algorithm for optimal difference systems of sets, J. Combin.
Optim., 14(2007), 165-175.
[10] H. Wang, A new bound for difference systems of sets, J. Comb. Math. Comb. Comput.,
58(2006), 161-168.
!
    38   38

More Related Content

What's hot

División de un polinomio entre un binomio
División de un polinomio entre un binomioDivisión de un polinomio entre un binomio
División de un polinomio entre un binomio
profesorluis
 
110218 [아꿈사발표자료] taocp#1 1.2.9. 생성함수
110218 [아꿈사발표자료] taocp#1 1.2.9. 생성함수110218 [아꿈사발표자료] taocp#1 1.2.9. 생성함수
110218 [아꿈사발표자료] taocp#1 1.2.9. 생성함수
Youngman Choe
 
TABLA DE DERIVADAS
TABLA DE DERIVADASTABLA DE DERIVADAS
TABLA DE DERIVADAS
Educación
 
X2 T08 01 inequalities and graphs (2010)
X2 T08 01 inequalities and graphs (2010)X2 T08 01 inequalities and graphs (2010)
X2 T08 01 inequalities and graphs (2010)
Nigel Simmons
 
X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)
Nigel Simmons
 
Pde unit 1
Pde unit 1Pde unit 1
Pde unit 1
Rajini10
 
11X1 T12 01 first derivative (2010)
11X1 T12 01 first derivative (2010)11X1 T12 01 first derivative (2010)
11X1 T12 01 first derivative (2010)
Nigel Simmons
 
009 solid geometry
009 solid geometry009 solid geometry
009 solid geometry
physics101
 
2018 MUMS Fall Course - Sampling-based techniques for uncertainty propagation...
2018 MUMS Fall Course - Sampling-based techniques for uncertainty propagation...2018 MUMS Fall Course - Sampling-based techniques for uncertainty propagation...
2018 MUMS Fall Course - Sampling-based techniques for uncertainty propagation...
The Statistical and Applied Mathematical Sciences Institute
 
9-8 Notes
9-8 Notes9-8 Notes
9-8 Notes
Jimbo Lamb
 
Derivadas
DerivadasDerivadas
Prediction of Financial Processes
Prediction of Financial ProcessesPrediction of Financial Processes
Prediction of Financial Processes
SSA KPI
 
Particle filter
Particle filterParticle filter
Particle filter
bugway
 
Linear conformal mapping
Linear conformal mappingLinear conformal mapping
Linear conformal mapping
Tarun Gehlot
 
Matematika Ekonomi Diferensiasi fungsi sederhana
Matematika Ekonomi Diferensiasi fungsi sederhanaMatematika Ekonomi Diferensiasi fungsi sederhana
Matematika Ekonomi Diferensiasi fungsi sederhana
lia170494
 
Inverse circular function
Inverse circular functionInverse circular function
Inverse circular function
APEX INSTITUTE
 
Differential equation
Differential equation Differential equation
Differential equation
azyanmdzahri
 

What's hot (17)

División de un polinomio entre un binomio
División de un polinomio entre un binomioDivisión de un polinomio entre un binomio
División de un polinomio entre un binomio
 
110218 [아꿈사발표자료] taocp#1 1.2.9. 생성함수
110218 [아꿈사발표자료] taocp#1 1.2.9. 생성함수110218 [아꿈사발표자료] taocp#1 1.2.9. 생성함수
110218 [아꿈사발표자료] taocp#1 1.2.9. 생성함수
 
TABLA DE DERIVADAS
TABLA DE DERIVADASTABLA DE DERIVADAS
TABLA DE DERIVADAS
 
X2 T08 01 inequalities and graphs (2010)
X2 T08 01 inequalities and graphs (2010)X2 T08 01 inequalities and graphs (2010)
X2 T08 01 inequalities and graphs (2010)
 
X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)
 
Pde unit 1
Pde unit 1Pde unit 1
Pde unit 1
 
11X1 T12 01 first derivative (2010)
11X1 T12 01 first derivative (2010)11X1 T12 01 first derivative (2010)
11X1 T12 01 first derivative (2010)
 
009 solid geometry
009 solid geometry009 solid geometry
009 solid geometry
 
2018 MUMS Fall Course - Sampling-based techniques for uncertainty propagation...
2018 MUMS Fall Course - Sampling-based techniques for uncertainty propagation...2018 MUMS Fall Course - Sampling-based techniques for uncertainty propagation...
2018 MUMS Fall Course - Sampling-based techniques for uncertainty propagation...
 
9-8 Notes
9-8 Notes9-8 Notes
9-8 Notes
 
Derivadas
DerivadasDerivadas
Derivadas
 
Prediction of Financial Processes
Prediction of Financial ProcessesPrediction of Financial Processes
Prediction of Financial Processes
 
Particle filter
Particle filterParticle filter
Particle filter
 
Linear conformal mapping
Linear conformal mappingLinear conformal mapping
Linear conformal mapping
 
Matematika Ekonomi Diferensiasi fungsi sederhana
Matematika Ekonomi Diferensiasi fungsi sederhanaMatematika Ekonomi Diferensiasi fungsi sederhana
Matematika Ekonomi Diferensiasi fungsi sederhana
 
Inverse circular function
Inverse circular functionInverse circular function
Inverse circular function
 
Differential equation
Differential equation Differential equation
Differential equation
 

Viewers also liked

Welcome to the world of Jeannie!
Welcome to the world of Jeannie!Welcome to the world of Jeannie!
Welcome to the world of Jeannie!
J. Justice
 
Keeping it Real
Keeping it RealKeeping it Real
Keeping it Real
Jeff Bunch
 
Unidad Agronegocios
Unidad AgronegociosUnidad Agronegocios
Unidad Agronegocios
juanmpalermo
 
4830039321 Pechakucha
4830039321 Pechakucha4830039321 Pechakucha
4830039321 Pechakuchaguest2b4d80
 
Wealthy And Wise Winter 2009
Wealthy And Wise Winter 2009Wealthy And Wise Winter 2009
Wealthy And Wise Winter 2009
marnieeverline
 
New Cobra Laws
New Cobra LawsNew Cobra Laws
New Cobra Laws
Eric Swenson
 
Persediaan Dan Analisis Tenaga Kerja
Persediaan Dan Analisis Tenaga KerjaPersediaan Dan Analisis Tenaga Kerja
Persediaan Dan Analisis Tenaga Kerjaseptina miradani
 

Viewers also liked (7)

Welcome to the world of Jeannie!
Welcome to the world of Jeannie!Welcome to the world of Jeannie!
Welcome to the world of Jeannie!
 
Keeping it Real
Keeping it RealKeeping it Real
Keeping it Real
 
Unidad Agronegocios
Unidad AgronegociosUnidad Agronegocios
Unidad Agronegocios
 
4830039321 Pechakucha
4830039321 Pechakucha4830039321 Pechakucha
4830039321 Pechakucha
 
Wealthy And Wise Winter 2009
Wealthy And Wise Winter 2009Wealthy And Wise Winter 2009
Wealthy And Wise Winter 2009
 
New Cobra Laws
New Cobra LawsNew Cobra Laws
New Cobra Laws
 
Persediaan Dan Analisis Tenaga Kerja
Persediaan Dan Analisis Tenaga KerjaPersediaan Dan Analisis Tenaga Kerja
Persediaan Dan Analisis Tenaga Kerja
 

Similar to Lei

Iceaa07 Foils
Iceaa07 FoilsIceaa07 Foils
Iceaa07 Foils
Antonini
 
Positive and negative solutions of a boundary value problem for a fractional ...
Positive and negative solutions of a boundary value problem for a fractional ...Positive and negative solutions of a boundary value problem for a fractional ...
Positive and negative solutions of a boundary value problem for a fractional ...
journal ijrtem
 
Automatic Bayesian method for Numerical Integration
Automatic Bayesian method for Numerical Integration Automatic Bayesian method for Numerical Integration
Automatic Bayesian method for Numerical Integration
Jagadeeswaran Rathinavel
 
NTHU AI Reading Group: Improved Training of Wasserstein GANs
NTHU AI Reading Group: Improved Training of Wasserstein GANsNTHU AI Reading Group: Improved Training of Wasserstein GANs
NTHU AI Reading Group: Improved Training of Wasserstein GANs
Mark Chang
 
Montpellier Math Colloquium
Montpellier Math ColloquiumMontpellier Math Colloquium
Montpellier Math Colloquium
Christian Robert
 
fauvel_igarss.pdf
fauvel_igarss.pdffauvel_igarss.pdf
fauvel_igarss.pdf
grssieee
 
微積分定理與公式
微積分定理與公式微積分定理與公式
微積分定理與公式
zoayzoay
 
RNA Secondary Structure Prediction
RNA Secondary Structure PredictionRNA Secondary Structure Prediction
RNA Secondary Structure Prediction
Sumin Byeon
 
Summary Of Important Laws Of Differentiation And Integration
Summary Of Important Laws Of Differentiation And IntegrationSummary Of Important Laws Of Differentiation And Integration
Summary Of Important Laws Of Differentiation And Integration
Ahmed Hamed
 
Computer science-formulas
Computer science-formulasComputer science-formulas
Computer science-formulas
RAJIV GANDHI INSTITUTE OF TECHNOLOGY
 
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
The Statistical and Applied Mathematical Sciences Institute
 
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Amro Elfeki
 
Shell theory
Shell theoryShell theory
Shell theory
Meas potbounthoeun
 
Constant strain triangular
Constant strain triangular Constant strain triangular
Constant strain triangular
rahul183
 
Low Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse ProblemsLow Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse Problems
Gabriel Peyré
 
Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers IILesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers II
guestf32826
 
Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange  Multipliers IILesson 28: Lagrange  Multipliers II
Lesson 28: Lagrange Multipliers II
Matthew Leingang
 
Nonconvex Compressed Sensing with the Sum-of-Squares Method
Nonconvex Compressed Sensing with the Sum-of-Squares MethodNonconvex Compressed Sensing with the Sum-of-Squares Method
Nonconvex Compressed Sensing with the Sum-of-Squares Method
Tasuku Soma
 
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...
The Statistical and Applied Mathematical Sciences Institute
 
Measurement of Rule-based LTLf Declarative Process Specifications
Measurement of Rule-based LTLf Declarative Process SpecificationsMeasurement of Rule-based LTLf Declarative Process Specifications
Measurement of Rule-based LTLf Declarative Process Specifications
Claudio Di Ciccio
 

Similar to Lei (20)

Iceaa07 Foils
Iceaa07 FoilsIceaa07 Foils
Iceaa07 Foils
 
Positive and negative solutions of a boundary value problem for a fractional ...
Positive and negative solutions of a boundary value problem for a fractional ...Positive and negative solutions of a boundary value problem for a fractional ...
Positive and negative solutions of a boundary value problem for a fractional ...
 
Automatic Bayesian method for Numerical Integration
Automatic Bayesian method for Numerical Integration Automatic Bayesian method for Numerical Integration
Automatic Bayesian method for Numerical Integration
 
NTHU AI Reading Group: Improved Training of Wasserstein GANs
NTHU AI Reading Group: Improved Training of Wasserstein GANsNTHU AI Reading Group: Improved Training of Wasserstein GANs
NTHU AI Reading Group: Improved Training of Wasserstein GANs
 
Montpellier Math Colloquium
Montpellier Math ColloquiumMontpellier Math Colloquium
Montpellier Math Colloquium
 
fauvel_igarss.pdf
fauvel_igarss.pdffauvel_igarss.pdf
fauvel_igarss.pdf
 
微積分定理與公式
微積分定理與公式微積分定理與公式
微積分定理與公式
 
RNA Secondary Structure Prediction
RNA Secondary Structure PredictionRNA Secondary Structure Prediction
RNA Secondary Structure Prediction
 
Summary Of Important Laws Of Differentiation And Integration
Summary Of Important Laws Of Differentiation And IntegrationSummary Of Important Laws Of Differentiation And Integration
Summary Of Important Laws Of Differentiation And Integration
 
Computer science-formulas
Computer science-formulasComputer science-formulas
Computer science-formulas
 
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
 
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
 
Shell theory
Shell theoryShell theory
Shell theory
 
Constant strain triangular
Constant strain triangular Constant strain triangular
Constant strain triangular
 
Low Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse ProblemsLow Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse Problems
 
Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers IILesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers II
 
Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange  Multipliers IILesson 28: Lagrange  Multipliers II
Lesson 28: Lagrange Multipliers II
 
Nonconvex Compressed Sensing with the Sum-of-Squares Method
Nonconvex Compressed Sensing with the Sum-of-Squares MethodNonconvex Compressed Sensing with the Sum-of-Squares Method
Nonconvex Compressed Sensing with the Sum-of-Squares Method
 
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...
 
Measurement of Rule-based LTLf Declarative Process Specifications
Measurement of Rule-based LTLf Declarative Process SpecificationsMeasurement of Rule-based LTLf Declarative Process Specifications
Measurement of Rule-based LTLf Declarative Process Specifications
 

Recently uploaded

ℂall Girls Goa (india) +91-7426014248 Goa ℂall Girls
ℂall Girls Goa (india) +91-7426014248 Goa ℂall Girlsℂall Girls Goa (india) +91-7426014248 Goa ℂall Girls
ℂall Girls Goa (india) +91-7426014248 Goa ℂall Girls
moharsinghtrt1950
 
What Going to the Doctor is Like as an Adult Comics
What Going to the Doctor is Like as an Adult ComicsWhat Going to the Doctor is Like as an Adult Comics
What Going to the Doctor is Like as an Adult Comics
Salty Vixen Stories & More
 
美洲杯下注-美洲杯下注十六强-美洲杯下注买球网|【​网址​🎉ac22.net🎉​】
美洲杯下注-美洲杯下注十六强-美洲杯下注买球网|【​网址​🎉ac22.net🎉​】美洲杯下注-美洲杯下注十六强-美洲杯下注买球网|【​网址​🎉ac22.net🎉​】
美洲杯下注-美洲杯下注十六强-美洲杯下注买球网|【​网址​🎉ac22.net🎉​】
ahmedendrise81
 
欧洲杯足彩-欧洲杯足彩下注网站-欧洲杯足彩投注网站|【​网址​🎉ac99.net🎉​】
欧洲杯足彩-欧洲杯足彩下注网站-欧洲杯足彩投注网站|【​网址​🎉ac99.net🎉​】欧洲杯足彩-欧洲杯足彩下注网站-欧洲杯足彩投注网站|【​网址​🎉ac99.net🎉​】
欧洲杯足彩-欧洲杯足彩下注网站-欧洲杯足彩投注网站|【​网址​🎉ac99.net🎉​】
humbertogarsia692
 
Money Problem Solution Number 74260-14248
Money Problem Solution Number 74260-14248Money Problem Solution Number 74260-14248
Money Problem Solution Number 74260-14248
Mobile Problem
 
Enhance Your Viewing Experience with Gold IPTV- Tips and Tricks for 2024.pdf
Enhance Your Viewing Experience with Gold IPTV- Tips and Tricks for 2024.pdfEnhance Your Viewing Experience with Gold IPTV- Tips and Tricks for 2024.pdf
Enhance Your Viewing Experience with Gold IPTV- Tips and Tricks for 2024.pdf
Xtreame HDTV
 
ℂall Girls Lucknow (india) +91-7426014248 Lucknow ℂall Girls
ℂall Girls Lucknow (india) +91-7426014248 Lucknow ℂall Girlsℂall Girls Lucknow (india) +91-7426014248 Lucknow ℂall Girls
ℂall Girls Lucknow (india) +91-7426014248 Lucknow ℂall Girls
meherkumarescorts
 
review of Scion of Ram a book by Amish Tripathi tripathi.pptx
review of Scion of Ram a book by Amish Tripathi tripathi.pptxreview of Scion of Ram a book by Amish Tripathi tripathi.pptx
review of Scion of Ram a book by Amish Tripathi tripathi.pptx
1234manikey
 
Unlocking the Secrets of IPTV App Development_ A Comprehensive Guide.pdf
Unlocking the Secrets of IPTV App Development_ A Comprehensive Guide.pdfUnlocking the Secrets of IPTV App Development_ A Comprehensive Guide.pdf
Unlocking the Secrets of IPTV App Development_ A Comprehensive Guide.pdf
WHMCS Smarters
 
一比一原版(AUT毕业证)奥克兰理工大学毕业证如何办理
一比一原版(AUT毕业证)奥克兰理工大学毕业证如何办理一比一原版(AUT毕业证)奥克兰理工大学毕业证如何办理
一比一原版(AUT毕业证)奥克兰理工大学毕业证如何办理
etycev
 
Sunny and Rishi 3 Written by Basak Serin
Sunny and Rishi 3 Written by Basak SerinSunny and Rishi 3 Written by Basak Serin
Sunny and Rishi 3 Written by Basak Serin
Basak24
 
Tom Cruise Daughter: An Insight into the Life of Suri Cruise
Tom Cruise Daughter: An Insight into the Life of Suri CruiseTom Cruise Daughter: An Insight into the Life of Suri Cruise
Tom Cruise Daughter: An Insight into the Life of Suri Cruise
greendigital
 
Bangalore Call Girls 7339748667 No Advance Payment with Trusted Models
Bangalore Call Girls 7339748667 No Advance Payment  with Trusted ModelsBangalore Call Girls 7339748667 No Advance Payment  with Trusted Models
Bangalore Call Girls 7339748667 No Advance Payment with Trusted Models
vermadeepak3215
 
Morgan Freeman is Jimi Hendrix: Unveiling the Intriguing Hypothesis
Morgan Freeman is Jimi Hendrix: Unveiling the Intriguing HypothesisMorgan Freeman is Jimi Hendrix: Unveiling the Intriguing Hypothesis
Morgan Freeman is Jimi Hendrix: Unveiling the Intriguing Hypothesis
greendigital
 
The Evolution and Impact of Tom Cruise Long Hair
The Evolution and Impact of Tom Cruise Long HairThe Evolution and Impact of Tom Cruise Long Hair
The Evolution and Impact of Tom Cruise Long Hair
greendigital
 
一比一原版(uw毕业证书)美国威斯康星大学麦迪逊分校毕业证如何办理
一比一原版(uw毕业证书)美国威斯康星大学麦迪逊分校毕业证如何办理一比一原版(uw毕业证书)美国威斯康星大学麦迪逊分校毕业证如何办理
一比一原版(uw毕业证书)美国威斯康星大学麦迪逊分校毕业证如何办理
sbewyav
 
VR Economy
VR EconomyVR Economy
Clyde the cat and Space Poems by Basak Serin
Clyde the cat and Space Poems by Basak SerinClyde the cat and Space Poems by Basak Serin
Clyde the cat and Space Poems by Basak Serin
Basak24
 
Audio Video equipment supplier in Gurgaon
Audio Video equipment supplier in GurgaonAudio Video equipment supplier in Gurgaon
Audio Video equipment supplier in Gurgaon
demoacsindia
 
Chennai Call Girls 8824825030 High Calass Call Girl Chennai
Chennai Call Girls 8824825030 High Calass Call Girl ChennaiChennai Call Girls 8824825030 High Calass Call Girl Chennai
Chennai Call Girls 8824825030 High Calass Call Girl Chennai
Mobile Problem
 

Recently uploaded (20)

ℂall Girls Goa (india) +91-7426014248 Goa ℂall Girls
ℂall Girls Goa (india) +91-7426014248 Goa ℂall Girlsℂall Girls Goa (india) +91-7426014248 Goa ℂall Girls
ℂall Girls Goa (india) +91-7426014248 Goa ℂall Girls
 
What Going to the Doctor is Like as an Adult Comics
What Going to the Doctor is Like as an Adult ComicsWhat Going to the Doctor is Like as an Adult Comics
What Going to the Doctor is Like as an Adult Comics
 
美洲杯下注-美洲杯下注十六强-美洲杯下注买球网|【​网址​🎉ac22.net🎉​】
美洲杯下注-美洲杯下注十六强-美洲杯下注买球网|【​网址​🎉ac22.net🎉​】美洲杯下注-美洲杯下注十六强-美洲杯下注买球网|【​网址​🎉ac22.net🎉​】
美洲杯下注-美洲杯下注十六强-美洲杯下注买球网|【​网址​🎉ac22.net🎉​】
 
欧洲杯足彩-欧洲杯足彩下注网站-欧洲杯足彩投注网站|【​网址​🎉ac99.net🎉​】
欧洲杯足彩-欧洲杯足彩下注网站-欧洲杯足彩投注网站|【​网址​🎉ac99.net🎉​】欧洲杯足彩-欧洲杯足彩下注网站-欧洲杯足彩投注网站|【​网址​🎉ac99.net🎉​】
欧洲杯足彩-欧洲杯足彩下注网站-欧洲杯足彩投注网站|【​网址​🎉ac99.net🎉​】
 
Money Problem Solution Number 74260-14248
Money Problem Solution Number 74260-14248Money Problem Solution Number 74260-14248
Money Problem Solution Number 74260-14248
 
Enhance Your Viewing Experience with Gold IPTV- Tips and Tricks for 2024.pdf
Enhance Your Viewing Experience with Gold IPTV- Tips and Tricks for 2024.pdfEnhance Your Viewing Experience with Gold IPTV- Tips and Tricks for 2024.pdf
Enhance Your Viewing Experience with Gold IPTV- Tips and Tricks for 2024.pdf
 
ℂall Girls Lucknow (india) +91-7426014248 Lucknow ℂall Girls
ℂall Girls Lucknow (india) +91-7426014248 Lucknow ℂall Girlsℂall Girls Lucknow (india) +91-7426014248 Lucknow ℂall Girls
ℂall Girls Lucknow (india) +91-7426014248 Lucknow ℂall Girls
 
review of Scion of Ram a book by Amish Tripathi tripathi.pptx
review of Scion of Ram a book by Amish Tripathi tripathi.pptxreview of Scion of Ram a book by Amish Tripathi tripathi.pptx
review of Scion of Ram a book by Amish Tripathi tripathi.pptx
 
Unlocking the Secrets of IPTV App Development_ A Comprehensive Guide.pdf
Unlocking the Secrets of IPTV App Development_ A Comprehensive Guide.pdfUnlocking the Secrets of IPTV App Development_ A Comprehensive Guide.pdf
Unlocking the Secrets of IPTV App Development_ A Comprehensive Guide.pdf
 
一比一原版(AUT毕业证)奥克兰理工大学毕业证如何办理
一比一原版(AUT毕业证)奥克兰理工大学毕业证如何办理一比一原版(AUT毕业证)奥克兰理工大学毕业证如何办理
一比一原版(AUT毕业证)奥克兰理工大学毕业证如何办理
 
Sunny and Rishi 3 Written by Basak Serin
Sunny and Rishi 3 Written by Basak SerinSunny and Rishi 3 Written by Basak Serin
Sunny and Rishi 3 Written by Basak Serin
 
Tom Cruise Daughter: An Insight into the Life of Suri Cruise
Tom Cruise Daughter: An Insight into the Life of Suri CruiseTom Cruise Daughter: An Insight into the Life of Suri Cruise
Tom Cruise Daughter: An Insight into the Life of Suri Cruise
 
Bangalore Call Girls 7339748667 No Advance Payment with Trusted Models
Bangalore Call Girls 7339748667 No Advance Payment  with Trusted ModelsBangalore Call Girls 7339748667 No Advance Payment  with Trusted Models
Bangalore Call Girls 7339748667 No Advance Payment with Trusted Models
 
Morgan Freeman is Jimi Hendrix: Unveiling the Intriguing Hypothesis
Morgan Freeman is Jimi Hendrix: Unveiling the Intriguing HypothesisMorgan Freeman is Jimi Hendrix: Unveiling the Intriguing Hypothesis
Morgan Freeman is Jimi Hendrix: Unveiling the Intriguing Hypothesis
 
The Evolution and Impact of Tom Cruise Long Hair
The Evolution and Impact of Tom Cruise Long HairThe Evolution and Impact of Tom Cruise Long Hair
The Evolution and Impact of Tom Cruise Long Hair
 
一比一原版(uw毕业证书)美国威斯康星大学麦迪逊分校毕业证如何办理
一比一原版(uw毕业证书)美国威斯康星大学麦迪逊分校毕业证如何办理一比一原版(uw毕业证书)美国威斯康星大学麦迪逊分校毕业证如何办理
一比一原版(uw毕业证书)美国威斯康星大学麦迪逊分校毕业证如何办理
 
VR Economy
VR EconomyVR Economy
VR Economy
 
Clyde the cat and Space Poems by Basak Serin
Clyde the cat and Space Poems by Basak SerinClyde the cat and Space Poems by Basak Serin
Clyde the cat and Space Poems by Basak Serin
 
Audio Video equipment supplier in Gurgaon
Audio Video equipment supplier in GurgaonAudio Video equipment supplier in Gurgaon
Audio Video equipment supplier in Gurgaon
 
Chennai Call Girls 8824825030 High Calass Call Girl Chennai
Chennai Call Girls 8824825030 High Calass Call Girl ChennaiChennai Call Girls 8824825030 High Calass Call Girl Chennai
Chennai Call Girls 8824825030 High Calass Call Girl Chennai
 

Lei

  • 1. the NSFC Grant 10771051 2008 7 · Difference Systems of Sets and Related Designs 1 38 leijg1964@yahoo.com.cn
  • 2. 2 38
  • 3. 1 1.1. n · · · x1 · · · xn y1 · · · yn · · · · · · x1 · · · xi xi+1 · · · xn y1 · · · yi · · · yn · · · 3 38 · · · x1 · · · xi xi+1 · · · xn y1 · · · yi · · · yn · · ·
  • 4. x = x1 · · · xn y = y1 · · · yn : Ti (x, y) = xi+1 · · · xn y1 · · · yi , 1 ≤ i ≤ n − 1. : n ? C ⊆ F n) n ( ( 4 38 C ) . comma-free .
  • 5. 1.2. comma-free : C ⊆ Fqn , Fq = {0, 1, . . . , q − 1}. n q C ⊆ Fqn ρ(C): comma-free ρ(C) = min d(z, Ti (x, y)), x, y, z ∈ C i = 1, . . . , n − 1. d Hamming , (ρ(C) − 1)/2 ρ(C) > 0 comma-free ρ(C) ( ). 5 38 comma-free .
  • 6. 2 (Levenshtein,1971) {Qi : i = 0, . . . , q − 1} |Qi | = τi , i = Zn q , 0, . . . , q − 1. s, s = 1, . . . , n − 1, Zn x − y ≡ s (mod n) ρ x, y, x ∈ Qi , y ∈ Qj , i, j = 0, . . . , q − 1, i = j. 6 38 {Qi : i = 0, . . . , q − 1} (n, τ0 , . . . , τq−1 , ρ) DSS(n, {τ0 , . . . , τq−1 }, q, ρ). (difference system of sets).
  • 7. Qi (i = 0, . . . , q − 1) m, DSS DSS(n, m, q, ρ). regular, s, 1 ≤ s ≤ n − 1, x − y ≡ s (mod n) ρ , DSS perfect. DSS (redundancy): q−1 |Qi |. r= i=0 n, q, ρ, DSS , (optimal). 7 38 DSS n, q, ρ, rq (n, ρ) : .
  • 8. . Z13 : D0 = {0, 7, 8, 11}, D1 = {4, 10, 12} , D2 = {1, 2, 3, 5, 6, 9} regular DSS(13, {4, 3, 6}, 3, 9). perfect, . Z37 : {1, 10, 26}, {3, 4, 30} , {9, 12, 16} {11, 27, 36}, {7, 33, 34} , {21, 25, 28} 8 38 perfect DSS(37, 3, 6, 6). regular,
  • 9. DSS 2.1. comma-free Fqn q . DSS comma-free 0. ρ>0 comma-free . q−1 (n, τ0 , . . . , τq−1 , ρ) DSS{Q0 , . . . , Qq−1 }, Zn Qi i=0 (information symbols), 0, C ⊆ Fqn . n−r C C : C = C + (h1 , . . . , hn ), j ∈ Qi (0 ≤ i ≤ q − 1). hj = i 9 38 ρ(C ) ≥ ρ. . n = 9, q = 2, ρ = 1 : Q0 = {1, 2}, Q1 = {3, 5}. h = (001 ∗ 1 ∗ ∗ ∗ ∗).
  • 10. rq (n, ρ) 2.2. : (Levenshtein, 1971) qρ(n−1) rq (n, ρ) ≥ q−1 DSS perfect regular. , square- free . : (Wang, 2007)   qρ(n−1) + 1, qρ(n−1) square-free ; q−1 q−1 rq (n, ρ) ≥ 10 38  qρ(n−1) , . q−1 DSS Qi Qj perfect, 1.
  • 11. . Z31 : Q0 = {1, 2, 4, 8, 16}, Q1 = {5, 9, 10, 18, 20}, Q2 = {7, 14, 19, 25, 28}. perfect, regular DSS(31, 5, 3, 5), optimal. : Levenshtein (1971) √ 2(n − 1) r2 (n, 2) = 2 n − 1 . r2 (n, 1) = q ≥ 3, 11 38 .
  • 12. 3 3.1. 2-(n, K, λ) : {Bi : Bi ⊆ Zn , |Bi | ∈ K} j ∈ Zn , Bi + j (mod n) Bi , x, y ∈ Zn , x = y λ . B1 , . . . , Bs (Bi ⊆ Zn ) Zn 2- (n, K, λ) {x − y (mod n) : x, y ∈ Bi , i = 1, . . . , s} 12 38 s ∈ Zn ρ . . 2-(13,3,1) : : B1 = {1, 3, 9}, B2 = {2, 5, 6}.
  • 13. (cyclic difference packing) m-DP (v, K, λ): m P = {Bi : Bi ⊆ Zn , |Bi | ∈ K, 0 ≤ i ≤ m − 1} d ∈ Zv {0}, d ≡ b − b (mod v) (b, b ) ∈ Bi × Bi B0 , . . . , Bm−1 λ. d ∈ Zv {0}, B0 , . . . , Bm−1 λ : , P m-DF (v, K, λ). , 13 38
  • 14. partition-type P = {B0 , . . . , Bm−1 } m-DP (v, K, λ), Zv P , . partition-type . B0 = {0}, B1 = {1, 4}, B2 = {2, 3} partition-type 3-DF (5, {1, 2, 2}, 1). Z5 14 38
  • 15. 3.2. q ,t P G(2t + 1, q), , 2t+2 −1 q Zv ,v= q−1 . k-flat: P G(2t + 1, q) k . GF (q 2t+2 ) GF (q t+1 ) t-flat q 2t+2 −1 q t+1 −1 S = {0, m, 2m, . . . , (k − 1)m}, m= k= q t+1 −1 , q−1 . W GF (q 2t+2 ) F0 ∈ W. S (t + 1)-flat , P G(2t + 1, q) S : 15 38 σ : x → x + m. , (t + 1)-flat Fi = σ i F0 (0 ≤ i ≤ k − 1) |W| = k, S. W = {Fi : 0 ≤ i ≤ k − 1}.
  • 16. . a GF (26 ) a6 + a + 1 = 0. , , v = 63, k = 7, m = 9. Ai = Fi S, P G(5, 2) , Z63 S = {0, 9, 18, 27, 36, 45, 54}, A0 = {1, 6, 8, 14, 38, 48, 49, 52}, A1 = {10, 15, 17, 23, 47, 57, 58, 61}, A2 = {3, 4, 7, 19, 24, 26, 32, 56}, A3 = {2, 12, 13, 16, 28, 33, 35, 41}, A4 = {11, 21, 22, 25, 37, 42, 44, 50}, A5 = {20, 30, 31, 34, 46, 51, 53, 59}, 16 38 A6 = {5, 29, 39, 40, 43, 55, 60, 62}.
  • 17. 4 4.1. B = {x0 , . . . , xq−1 } (n, q, ρ) , Q0 = {x0 }, Q1 = {x1 }, . . . , Qq−1 = {xq−1 } perfect regular DSS(n, 1, q, ρ). : DSS . (n, q, ρ) B, B : q−1 17 38 B= Qi , i=0 {Qi }q−1 optimal DSS? i=0
  • 18. (V.D. Tonchev, 2003) B ⊆ Zn (n, q, λ) , q−1 B= Qi , i=0 {Qi }q−1 {Q0 , . . . , Qq−1 } q-DP (v, K, λ1 ), i=0 ρ = λ − λ1 DSS. DSS perfect , {Q0 , . . . , Qq−1 } 2-(n, K, λ1 ) . 18 38
  • 19. (V.D. Tonchev, 2003) n = mq + 1 ,α GF (n) . Q0 = {αq , α2q , . . . , αmq }, Q1 = αQ0 , Q2 = α2 Q0 , . . . , Qq−1 = αq−1 Q0 . perfect regular DSS(n, m, q, n − m − 1). n = 19, q = 6, m = 3. DSS(19, 3, 6, 6). : {1, 7, 11}, {2, 14, 3}, {4, 9, 6}, {5, 16, 17}, {8, 18, 12}, {10, 13, 15}. 19 38 {1, 7, 11}, {2, 14, 3} perfect, regular DSS(19, 3, 2, 1).
  • 20. (V.D. Tonchev, 2003) n = 2mq + 1 ≡ 3 (mod 4) ,α GF (n) Dm = . {α2iq : 1 ≤ i ≤ m}. Q0 = Dm , Q1 = α2 Dm , . . . , Qq−1 = α2(q−1) Dm . perfect regular DSS(n, m, q, (n − 2m − 1)/4). n = 31, q = 3, m = 5, α = 3. : Q0 = {16, 8, 4, 2, 1}, Q1 = {20, 10, 5, 18, 9}, Q2 = {25, 28, 14, 7, 19}. 20 38 perfect regular DSS(31, 5, 3, 5).
  • 21. (Y. Mutoh, V.D. Yonchev, 2004) n = emq + 1 . eq eq eq eq Q0 = C0 , Q1 = Ce , Q2 = C2e , . . . , Qq−1 = C(q−1)e . regular DSS(n, m, q, ρ), q−1 ρ = min{(i, 0)e − (i + je, 0)eq : 0 ≤ i < e}. j=0 q−1 i, (i, 0)e − (i + je, 0)eq ρ= , , j=0 m(q − 1)/e perfect DSS. 21 38 , V.D. Tonchev (2005) .
  • 22. 4.2. • partition-type m-DP (v, K, λ) P = Zv : {B0 , . . . , Bm−1 }, K = {|Bi | : 0 ≤ i ≤ m − 1}. Zv v v DSS(v, K, m, ρ = v − λ). DSS λ = m + δx , , xvm ,  0, if x = 0, 1; δx = if 2 ≤ x ≤ m − 1. 0, 1, . 22 38 B0 = {0}, B1 = {1, 4}, B2 = {2, 3} perfect DSS(5, {1, 2, 2}, 3, 4). Z5
  • 23. , 1 ≤ x ≤ v. :x Zv partition-type DSS(nv, K ∪{(n−1)x}, m+1, ρ), m-DP (v, K, λ1 ), Znv ρ = min{v − λ1 , 2x}, r = (n − 1)x + v. {B0 , . . . , Bm−1 } Zv partition-type cyclic m-DP (v, K, λ1 ). : |X| = x X Zv Znv . : ∗ Q0 = nB0 , . . . , Qm−1 = nBm−1 , Qm = {a + nb : a ∈ Zn , b ∈ X}. {Q0 , . . . , Qm−1 , Qm } DSS. partition-type m-DP (v, K, λ1 ) : 23 38 2x = v − λ1 . DSS perfect.
  • 24. {D0 , D1 } partition-type 2-DF (7, {3, 4}, 3), Z7 . D0 = {1, 2, 4}, D1 = {0, 3, 5, 6}. Z7n : B0 = {n, 2n, 4n}, B1 = {0, 3n, 5n, 6n}, B2 = {1, . . . , n − 1, n + 1, . . . , 2n − 1}. perfect DSS(7n, {3, 4, 2n − 2}, 3, 4). 1≤n≤5 DSS , , optimal. 24 38
  • 25. 1 ≤ x ≤ v. : n, x ,n Zv DSS(nv, K ∪ partition-type m-DP (v, K, λ1 ). Znv { n−1 x}, m + 1, ρ), n−1 ρ = min{v − λ1 , x}, r = 2x + v. 2 {B0 , . . . , Bm−1 } Zv partition-type cyclic m-DP (v, K, λ1 ). : |X| = x X Zv , O n Zn . Znv : Q0 = nB0 , . . . , Qm−1 = nBm−1 , Qm = {a + nb : a ∈ On , b ∈ X}. {Q0 , . . . , Qm−1 , Qm } DSS. 25 38 partition-type m-DP (v, K, λ1 ) . x = v − λ1 . DSS perfect.
  • 26. {D0 , D1 } partition-type 2-DF (7, {3, 4}, 3), Z7 . D0 = {1, 2, 4}, D1 = {0, 3, 5, 6}. n Z7n . : B0 = {n, 2n, 4n}, B1 = {0, 3n, 5n, 6n}, n−3 B2 = 2i + 1, 2i + 1 + n, 2i + 1 + 2n, 2i + 1 + 3n : 0 ≤ i ≤ . 2 perfect DSS(7n, {3, 4, 2n − 2}, 3, 4). n = 3, 5 , DSS , optimal. 26 38
  • 27. 1 ≤ x ≤ v. x : ,  partition-typem-DP (v, K1 , λ1 )   x DSS(v, K2 , q, ρ )   DSS(2v, K1 ∪ K2 , m + q, ρ), =⇒ ρ = min{v − λ1 + ρ , 2x}, r = x + v. 27 38
  • 28. {D0 , D1 , D2 } Z5 partition-type 3-DP (5, {1, 2, 2}, . 1), D0 = {0}, D1 = {1, 4}, D2 = {2, 3}. {Q0 , Q1 } Z5 DSS(5, 2, 2, 2), Q0 = {1, 4}, Q1 = {2, 3}. Z10 : B0 = {0}, B1 = {2, 8}, B2 = {4, 6}, B3 = {3, 9}, B4 = {5, 7}. 28 38 DSS(10, {1, 2, 2, 2, 2}, 5, 6). qρ(n−1) 135 = = 9 = r, DSS optimal . q−1 2
  • 29. 1 ≤ x ≤ v. 1 ≤ x ≤ v. x x . , ,  partition-typem-DP (v, K1 , λ1 )   x DSS(v, K2 , q, ρ )   DSS(3v, K1 ∪ K2 , m + q, ρ), =⇒ ρ = min{v − λ1 + ρ , x}, r = x + v. 29 38
  • 30. {D0 , D1 } Z7 partition-type 2-DP (7, {3, 4}, 3), . D0 = {1, 2, 4}, D1 = {0, 3, 5, 6}. {Q0 , Q1 } Z7 DSS(7, 3, 2, 3), Q0 = {1, 2, 4}, Q1 = {3, 5, 6}. Z21 : B0 = {3, 6, 12}, B1 = {0, 9, 15, 18}, B2 = {4, 7, 13}, B3 = {10, 16, 19}. 30 38 DSS(21, {3, 4, 3, 3}, 4, 6). √ qρ(n−1) = 160 = 13 = r, DSS optimal. q−1
  • 31. DSS, . : • v : , : p ≡ 3 (mod 4) 1. v = p, ; 2. v = 2t − 1, t≥1 ; 3. v = p(p + 2), p p+2 . Z3v 1. DSS(3v, { v+1 , v+1 , v−1 }, 3, v+1 ); 2 2 2 2 2. DSS(3v, { v+1 , v−1 , v−1 }, 3, v−1 ); 2 2 2 2 3. DSS(3v, { v−1 , v−1 , v+1 , v+1 }, 4, v). 2 2 2 2 • v : , : p ≡ 3 (mod 4) 1. v = 4p, ; 31 38 2. v = 4(2t − 1), t≥1 ; 3. v = 4p(p + 2), p p+2 . DSS(3v, { v−2 , v , v+2 }, 3, v ). Z3v 2 2 2 2
  • 32. 4.3. q 2t+2 −1 t+1 −1 k = q q−1 , • v= q−1 , q ,t : . perfect DSS(k, {s1 , s2 , . . . , sm }, m, ρ ), Zk Zv 1) DSS(v, {s1 q t+1 , s2 q t+1 , . . . , sm q t+1 }, m, ρ), ρ = ρ (q t+1 − q). 2) DSS(v, {k, s1 q t+1 , s2 q t+1 , . . . , sm q t+1 }, m + 1, ρ), m t+1 si , ρ q t+1 }. − q) + 2 ρ = min{ρ (q i=1 3) DSS(v, {k + s1 q t+1 , s2 q t+1 , . . . , sm q t+1 }, m, ρ), 32 38 m ρ = min{ρ (q t+1 − q) + 2 si ), ρ q t+1 }. i=2 DSS : perfect, .
  • 33. {D0 , D1 , D2 } . P G(5, 2) , v = 63, k = 7. Z7 perfect DSS(7, 2, 3, 4), D0 = {1, 6}, D1 = {2, 5}, D2 = {3, 4}. P G(5, 2) : Q0 = A1 ∪ A6 = {5, 10, 15, 17, 23, 29, 39, 40, 43, 47, 55, 57, 58, 60, 61, 62}, Q1 = A2 ∪ A5 = {3, 4, 7, 19, 20, 24, 26, 30, 31, 32, 34, 46, 51, 53, 56, 59}, Q2 = A3 ∪ A4 = {2, 11, 12, 13, 16, 21, 22, 25, 28, 33, 35, 37, 41, 42, 44, 50}, regular DSS(63, 16, 3, 24). √ 33 38 qρ(n−1) = 2232 = 48 = r, DSS optimal. q−1
  • 34. q 2t+2 −1 t+1 −1 k = q q−1 , • v= q−1 , q ,t : . k perfect DSS(k, {s1 , s2 , . . . , sn }, n, ρ ), Zk Zv 1) DSS(v, {k − 1, s1 q t+1 , s2 q t+1 , . . . , sn q t+1 }, n + 1, ρ), ρ = min{ρ (q t+1 − q) + 2k − 2, ρ q t+1 }. 2) DSS(v, {k − 1 + s1 q t+1 , s2 q t+1 , . . . , sn q t+1 }, n, ρ), ρ = min{ρ (q t+1 − q) + 2k − 2 − 2s1 , ρ q t+1 }. 34 38 DSS : perfect, .
  • 35. {D0 , D1 , D2 , D3 } P G(5, 2) , v = 63, k = 7. Z7 . perfect DSS(7, {1, 2, 2, 2}, 4, 6), D0 = {0}, D1 = {1, 6}, D2 = {2, 5}, D3 = {3, 4}. P G(5, 2) : Q0 = S ∗ ∪ A0 = {1, 6, 8, 9, 14, 18, 27, 36, 38, 45, 48, 49, 52, 54}, Q1 = A1 ∪ A6 = {5, 10, 15, 17, 23, 29, 39, 40, 43, 47, 55, 57, 58, 60, 61, 62}, Q2 = A2 ∪ A5 = {3, 4, 7, 19, 20, 24, 26, 30, 31, 32, 34, 46, 51, 53, 56, 59}, Q3 = A3 ∪ A4 = {2, 11, 12, 13, 16, 21, 22, 25, 28, 33, 35, 37, 41, 42, 44, 50}, DSS(63, {14, 16, 16, 16}, 4, 46). 35 38 qρ(n−1) = 11408/3 = 62 = r, DSS optimal. q−1
  • 36. DSS, . : 2t+2 −1 : v = q q−1 , • q ,t>1 Zv . DSS : t t t 1. DSS(v, q t+1 , q −1 , (q −q)(q −1) ); q−1 q−1 2. DSS(v, q t+1 , q t , q t (q t − 1)(q − 1)); t+1 −1)(q t+1 −q) t+1 3. DSS(v, q t+1 , q q−1 , (q −1 ); q−1 t+1 t+1 t+1 DSS(v, q t+1 , q q−1 , (q −2q+1)(q −q) ); −q 4. q−1 t+2 t+1 −q −1 DSS(v, { q q−1 , q t+1 , . . . , q t+1 }, q q−1 , v − q t+1 − 3); 5. t+2 t t+2 t+1 DSS(v, { q q−1 , q t+1 , . . . , q t+1 }, q q−1 , (q +q)(q −1) ); −1 −1 6. q−1 t+2 −1 DSS(v, { q q−1 , q t+1 , . . . , q t+1 }, q t , ρ), ρ = q 2t (q − 1) + 36 38 q ≥ 3, 7. q t (3 − q) − 2; t+2 t+1 −1 −q 8. DSS(v, { q q−1 , q t+1 , . . . , q t+1 }, q q−1 , ρ), ρ = v − 3q t+1 + 2q − 3.
  • 37. 5 [1] C. Fan, J. Lei, Y. Chang, Constructions of difference systems of sets and disjoint difference families, IEEE Trans. Inform. Theory, 54(2008), 3195-3201. [2] C. Fan, J. Lei, Constructions of difference systems of sets from partition-type difference pack- ings, to submit. [3] C. Fan, J. Lei, Constructions of difference systems of sets from finite projective geometries, to submit. [4] R. Fuji-Hara, A. Munemasa, V. D. Tonchev, Hyperplane partitions and difference systems of sets, J. Combin. Theory, Ser. A 113 (2006) 1689 1698. [5] V. I. Levenshtein, One method of constructing quasi codes providing synchronization in the presence od errors, Problems Inform, Transmission, 7(1971), 215-222. [6] Y. Mathon, V. D. Tonchev, Difference systems of sets and cyclotomy, Discrete Math., 308(2008), 2959-2969. [7] V. D. Tonchev, Difference systems of sets and code synchronization, Rend. Sem. Mat. Messina Ser. II 9(2003), 217-226. 37 38 [8] V. D. Tonchev, Partitions of difference sets and code synchronization, Finite Fields Appl. 11(2005), 601-621. [9] V. D. Tonchev, H. Wang, An algorithm for optimal difference systems of sets, J. Combin. Optim., 14(2007), 165-175. [10] H. Wang, A new bound for difference systems of sets, J. Comb. Math. Comb. Comput., 58(2006), 161-168.
  • 38. ! 38 38