SlideShare a Scribd company logo
1 of 69
DNA Genome “Genomics”
Proteins
Cell
functions
Proteome “Proteomics”
DNA sequencing
cDNA arrays
2D PAGE, HPLC
CGTCCAA
CTGACGT
CTACAAG
TTCCTAA
GCT
RNA
Transcriptome
“-ome”
Reactome, the chemical reactions involving a nucleotide
Protein Chemistry/Proteomics
Protein Chemistry
• Individual proteins
• Complete sequence analysis
• Emphasis on structure and
function
• Structural biology
Proteomics
• Complex mixtures
• Partial sequence analysis
• Emphasis in identification by
database matching
• System biology
Proteins are the mediators of functions in the cell
Deviations from normal status denotes disease
Proteins are drug/therapeutic targets
Why are we studying proteins?
Proteome Mining
Identifying as many as
possible of the proteins in
your sample
Protein Expression Profiling
Identification of proteins in a particular
sample as a function of a particular
state of the organism or cell
Functional
proteomics
Post-translational
modifications
Identifying how and
where the proteins are
modified
Protein-protein
interactions Protein-
network mapping
Determining how the
proteins interact with
each other in living
systems
Structural
Proteomics
Protein quantitation
or differential
analysis
Proteomics and biology /Applications
Tools of Proteomics
Protein separation technology
Simplify complex protein mixtures
Target specific proteins for analysis
Mass spectrometry (MS)
Provide accurate molecular mass measurements
of intact proteins and peptides
Database
Protein, EST, and complete genome sequence
databases
Software collection
Match the MS data with specific protein
sequences in databases
The Proteome
• Cycle of Proteins
• Proteins as Modular Structures – motifs, domains
• Functional Families
• Genomic Sequences
• Protein Expression /Protein level
The proteome in any cell represents a subset of all possible gene
products
Not all the genes are expressed in all the cells.
It will vary in different cells and tissue types in the same organism and
between different growth and developmental stages
The proteome is dependent on environmental factors, disease, drugs,
stress, growth conditions.
Life cycle of a protein
Information found in DNA is used for
synthesis of the proteins
mRNA Protein
Proteolytic Cleaveage
Acylation
Methylation
Phosphorylation
Sulfation
Selenoproteins
Ubiquination
Glycolisation
Translocation
Damage
-free radicals
Degradation
Environmental
-chemicals
radioactiivty
Posttranslational Processing
to specific subcellular or
extracellular compartments
Folding
Molecular Structures
-helices
-sheets
Primary structure a chain of amino acids
Secondary structure three dimensional form, formally
defined by the hydrogen bonds of the polymer
Amino acids vary in their ability
to form the various secondary
structure elements.
Confer similar properties or functions when
they occur in a variety of proteins
Amino acids that prefer to adopt helical conformations in
proteins include methionine, alanine, leucine, glutamate
and lysine ("MALEK" in amino acid 1-letter codes)
The large aromatic residues (tryptophan, tyrosine and
phenylalanine) and Cβ-branched amino acids (isoleucine,
valine and threonine) prefer to adopt -strand
conformations.
Sequence alignment
A software tool used for general
sequences alignment tasks is
ClustalW
The degree of relatedness, similarity between the
sequences is predicted computationally or
statistically
Sequence alignment is a way of arranging primary sequences (of
DNA, RNA, or proteins) in such a way as to align areas sharing
common properties.
ClustalW
BLAST
It is used to compare a novel sequence with
those contained in nucleotide and protein data
bases by aligning the novel sequence with the
previously characterized genes.
The emphasis of this tools is to find regions of
sequence similarity, which will yield functional
and evolutionary clues about the structure and
function of this novel sequence.
Basic Local Alignment Search Tool
NCBI BLAST
http://www.ncbi.nlm.nih.gov/BLAST/
Molecular Structures / Functional Families
Tertiary structure the overall shape of the protein (fold)
the process by which a protein assumes its characteristic function
The three-dimensional shape of the proteins might be critical to their
function. For example, specific binding sites for substrates on enzymes
Specific sequences that also confer unique properties and
functions, motifs or domains
Quaternary structure -formation usually involves the "assembly" or
"coassembly" of subunits that have already folded
Incorrectly folded proteins are responsible for illnesses such as
Creutfeltdt_Jakob disease and Bovine spongiform encephalopathy (mad
cow disease), and amyloid related illnesses such as Alzheimer’s.
Domains / Motifs
Structural alignment: a method for
discovering significant structural motifs.
-based on comparison of shape
Structural
alignment of
thioredoxins from
humans (red)and
the fly Drosphila
melangaster
(yellow).
Motifs: short conserved sequences, which appear in a variety of other
molecules.
Domains: part of the sequence that appear as conserved
modules in proteins that are not related, in global terms.
Usually with a distinct three dimensional fold, carrying a unique function
and appearing in different proteins
Repeats: structurally or functionally interdependent modules.
Functional families
Protein family classification databases:
PROSITE. Database of protein families and domain, defined by
patterns and profiles, at ExPASY. http://au.expasy.org/prosite/
Pfam. Multiple sequence alignments and HMMs of protein domains
and families, at Sanger Institute.
http://www.sanger.ac.uk/Software/Pfam/help/index.shtml
SMART Simple Modular Architecture Research Tool, at EMBL.
http://smart.embl-heidelberg.de/
By associating a novel protein with a protein family, one can predict
the function of the novel protein
Domains are clustered into families in which
significant sequence similarity is detected as
well as conservation of biochemical activity.
SCOP-a structural classification of proteins
Proteins can be grouped into functional families;
proteins that carry out related functions
Structural
Signaling pathways
Metabolic
Transportation
Enzymes
45%
Heat Shock
4%
Other
30%
Structural
9%
Factors
4%
Channels
1%
Hypothetical
3%
Ribosomal
4%
Protein function chart
A Pseudo-Rotational Online Service and Interactive Tool
Pfam
Sequence
Threading
Sequence-Structure-Function
Structure more conserved than sequence
Structure Function
Threading techniques try to match a target sequence on a library of known
three-dimensional structures by “threading” the target sequence over the
known coordinates.
In this manner, threading tries to predict the three-dimensional structure
starting from a given protein sequence. It is sometimes successful when
comparisons based on sequences or sequence profiles alone fail to a too
low similarity.
(modified from: http://www.pasteur.fr/recherche/unites/Binfs/definition/bioinformatics_definition.html)
Genomic sequencing/ Protein level
Genome
size (bp)
5.386
580.000
12,1  106
3,2  109
90  109
670  109
Mycoplasma genitalium
Yeast (S. Cerevisiae)
X-174 virus
Human
Lilium longiflorum
Amoeba dubia
Biological complexity does not
come simply from greater
number of genes.
complexity
Complexity
Proteome complexity
More than 100 modification forms known
A single protein may carry several modifications
Modified proteins show different properties compared to
unmodified counterparts
In most cases, we do not know the origin or the biological
significance of the observed heterogeneities
Much larger number of spots compared to protein species they represent
H.influenza : 1500 spots 500 different proteins
Protein Heterogeneity
4.5
pI
Electrophoresis, 1999, 20 (14) 2970
g-enolase
About 3000 Spots after Coomassie Stain
Partial 2D-gel images showing g-enolase from human
brain. The protein is represented by one spot when IEF
was performed on pH 3-10 non-linear IPG strips (A),
and by six spots when IEF was performed on pH 4-7 strips
(B).
Increased Resolution and Detection of
More Spots with the Use of Narrow pH
Gradient Strips
A B
2D gel image of brain proteins
http://www.lcb.uu.se/course/embo2001/binz/presen
tation-PAB-intro/ppframe.htm
Genomic sequencing
Paralogues are similar sequences
within a single organism that have
arisen due to a gene duplication
event.
Homologues are similar sequences in two
different organisms that have been derived
from a common ancestor sequence.
Orthologues are similar
sequences in two different
organisms that have arisen
due to a speciation event.
Pattern / Profile
Pattern –conserved sequence of a few amino acids
identify various important sites within protein
•Enzyme catalytic site
•Prosthetic group attachment
•Metal ion binding site
•Cysteines for disulphide bonds
•Protein or molecular binding
Profile a multiple alignment with matrix frequencies- describe
protein families or domains conserved in sequence.
•Score-based representations
•Position-specific scoring matrix (PSSM)
•Hidden Markov model (HMM)
Database: PROSITE Patterns
Patterns and Profiles aredused to search for motifs/ domains of biological significance that
characterize protein family
Protein level
Codon bias- the tendency of an organism to prefer certain codons
over others that code for the same amino acid in the gene
sequence.
The level of any protein in a cell at a given
time:
• Transcription rate
• Efficiency of translation in the cell
• The rate of degradation of the protein
Larger genomes have larger gene families
(the average family size also increases with genome size)
Protein expression
Protein
It consists of the stages after DNA has been translated Amino acid chains chains
which is ultimately folded into proteins
Expression profiling what genes are expressed in
a particular cell type of an organism, at a particular
time, under particular conditions? As the expression of
many genes is known to be regulated after transcription, an increase
in mRNA concentration need not always increase expression
ESI-MS
Electrospray Ionization tandem MS
MALDI-TOF
Matrix Assisted Laser Desorption
Ionization –Time of Flight
General workflow of proteomics analysis
proteins digestion
separation
MALDI, MS/MS
digestion
peptides
(LC)-MS/MS
Identification
The less complex a mixture of proteins is,
the better chance we have to identify more
proteins.
Detergents
Reductants
Denaturing
agents
Enzymes
digestion
Separation of Protein Mixtures
Separation techniques
1D- and 2D-SDS PAGE
Preparative IEF isoelectric
focusing
HPLC
Separating intact proteins to take
advantage of their diversity in
physical properties
Separation techniques for peptides
MS-MS
HPLC (MudPIT) Multi-Dimensional Protein Identification Technology
SELDI Surface-enhanced laser desorption/ionization
Separation techniques used with intact proteins
Differential display proteomics
Difference gel electrophoresis (DIGE)
Isotope-coded affinity tagging (ICAT)
•Enrichment from larger volumes Selective precipitation
Selective centrifugation
Preparative approaches
•Combination of 2DE with LC
•Multi-dimensional LC
Enrichment /Fractionation
For the detection of low-abundance proteins, a
separation of complex mixtures into fractions with fewer
components is necessary
Detergents: solubilize membrane proteins-
separation from lipids
Reductants: Reduce S-S bonds
Denaturing agents: Disrupt protein-protein
interactions-unfold proteins
Enzymes: Digest contaminating molecules
(nucleic acids etc)
Protease inhibitors
Aim: High recovery-low contamination-compatibility with separation method
Protein extraction
Why digest the protein?
Accuracy of mass measurements
Suitability
Sensitivity
Good activity both in gel digestion
and in solution
The ideal protein digestion
approach would cleave proteins at
certain specific amino acid residues
to yield fragments that are most
compatible with MS analysis.
Peptide fragments of
between 6 – 20 amino
acids are ideal for MS
analysis and database
comparisons.
Other enzymes with more
or less specific cleavage:
Chymotrypsin
Glu C (V8 protease)
Lys C
Asp N
Protein digestion
Trypsin
Cleaves at lysine and
arginine, unless either is
followed by proline in C-
terminal direction
Gel electrophoresis
Classical process
High resolving power: visualization of thousands of protein
forms
Quantative
Identifying proteins within proteome
Up/ down regulation of proteins
Detection of post-translational modifications
Silver: www.healthsystem.virginia.edu
Ruby: www.komabiotech.co.kr
Protein fixing and staining or blotting
General detection methods (staining)
Organic dye – and silver based methods Coomassie blue, Silver
Radioactive labeling methods
Reverse stain methods
Fluorescence methods (Supro Ruby)
Gel scanning
(storage of image in a database)
Coomassie blue stained gels
Silver stained
Ruby red
Isoelectric point
•Proteins are amphoteric molecules
i.e. they have both acidic and basic functional groups
•pI= isoelectric point, is where the protein does not have
any net charge
•The protein charge depends on the pH of the solution.
A pH gradient is generated by a
limited number of well defined
chemicals (immobilines) which are
co-polymerized with the acrylamide
matrix.
Migration of proteins in a pH
gradient: protein stop at pH=pI
Loading quantities (18 cm strip)
Analytical run: 50-100 μg
Micropreparative runs: 0,5 – 10 mg
Individual strips:
24,18,11,7 cm long
3 mm wide
0,5 mm thickness
Use narrow range IPG strips
to focus on particular pI range
Immobilized pH gradients (IPGs)
1st dimension
IsoElectric Focusing, IEF
2nd dimension
pH 3
pH 10
The strip is
loaded onto
a SDS gel
Mw
pI
Staining !
Proteins that were
separated on IEF gel
are next separated in
the second dimension
based on their
molecular weights.
Limitations/difficulties with the 2D gel
Reproducibility
Samples must be run at least in triplicate to rule out effects
from gel-to-gel variation (statistics)
Incompatibility of some proteins with
the first dimension IEF step
(hydrophobic proteins)
Marginal solubility leads to protein
precipitation and degradation-
smearing
(Glycolysation, oxidation)
Small dynamic range of protein staining as a detection
technique- visualization of abundant proteins while less
abundant might be missed.
Posttranscriptional control
mechanisms
Co-migrating spots forming a
complex region
Streaking and smearing
Weak spots and background
4.5 9.5
pI
90
20
kDa
A B
Brain Proteins
(About 3000 Spots after Coomassie Stain)
Electrophoresis, 1999, 20 (14) 2970
A B
g-enolase
Partial 2D-gel images showing g-enolase from human brain. The protein is
represented by one spot when IEF was performed on pH 3-10 non-linear
IPG strips (A),
and by six spots when IEF was performed on pH 4-7 strips (B).
Protein Heterogeneity
Increased Resolution and Detection of
More Spots with the Use of Narrow pH
Gradient Strips
Vacuum assisted aspiration into
sample tubes
Large amount of proteins (up
to 3g protein)
Preparative IEF
The protein mixture is
injected into the focusing
chamber
Proteins are focused as in
standard IEF
The pH gradient is
achieved with soluble
ampholytes
DIGE
Proteins are labeled prior to
running the first dimension with up
to three different fluorescent
cyanide dyes
Allows use of an internal standard
in each gel-to-gel variation,
reduces the number of gels to be
run
Adds 500 Da to the protein labeled
Additional postelectrophoretic
staining needed
Quantification of Spot Relative Levels
2D Fluorescence Difference Gel Electrophoresis
Separation by LC
modified:www.dcu.ie/chemistry/ssg/image
s/Techni7.gif
Salt
gradient UV detector
EC detector
column
waste
Number of peaks indicates the complexity of starting material
Peak position (i.e. elution time) may provide qualitative information about the sample
(comparison with standards)
Peak area may provide information on relative concentration of components.
If coupled to MS protein identification (MW) can be provided
Multidimensional HPLC
Mud PIT
Multidimensional Protein Identification Techniques or Tandem
HPLC
the combination of dissimilar separation modes will allow a greater
resolution of peptides in mixture.
Ion-exchange Reversed phase
•Reversed phase, hydrophobicity
•Ion exchange, net positive/negative charge
•Size exclusion, peptide size, molecular weight
•Affinity chromatography, interaction with
specific functional groups
Multidimensional LC
The sample has to be introduced into the ionization source of the instrument. Once inside
the ionization source the sample molecules are ionized, because ions are easier to
manipulate than neutral molecules.
These ions are extracted into the analyzer region of the mass spectrometer where they are
separated according to their mass (m)-to-charge (z) ratios (m/z).
The separated ions are detected and this signal sent to a data system where the m/z ratios
are stored together with their relative abundance for presentation in the format of a m/z
spectrum.
The analyzer and detector of the mass spectrometer, and often the ionization source too,
are maintained under high vacuum to give the ions a reasonable chance of traveling from
one end of the instrument to the other without any hindrance from air molecules.
Modified from www.csupomona.edu/~drlivesay/
Chm561/winter04_561_lect1.ppt
A Mass Spectrometer
source analyzer detector
..consists of..
Detector –detection of mass separated ions
source analyzer detector
MALDI, Matrix-Assisted Laser Desorption
and Ionisation
ESI, ElectroSpray Ionisation
Source -produces the ions from the sample
(vaporization /ionization)
Mass Anlyzer - resolves ions based on their
mass/charge (m/z) ratio
Generate different, but
complementary information
MALDI
Matrix Assisted Laser Desorption and Ionisation
Peptides co-crystallised with matrix
Produces singly charged protonated
molecular ions
High throughput
Single proteins
Rapid procedure, high rate of sample
throughput
large scale identification (“first look at a
sample”)
+
+
-
+
-
+
laser
ions
+
-
-
+
TOF
Separate ions o f different m/z based
on flight time
Fast
Requires pulsed ionization
Time of flight
Measures the time it takes for the ions
to fly form one end to other and strike
the detector.
The speed with which the ions fly
down the analyzer tube is proportional
to their m/z values.
The greater the m/z the faster they fly
Matrix-assisted laser desorption ionization-time of flight
MALDI-TOF
+
+
-
+
-
+
+
-
-
+
Quick, easy, inexpensive
Highly tolerant to contaminents
High sensitivity
Good accuracy in mass determination
Compatible with robotic devices for
high-throughput proteomics work
Best suited to measuring peptide
masses
TOF analyzer
Low reproducibility and repeatability of
single shot spectra (Averaging)
Low resolution
Matrix ions interfere in the low max range
MALDI-TOF data
Peak List = List of masses
112.1
234.4
890.5
1296.9
1876.4
1987.5
…….
=
Modified from
http://plantsci.arabidopsis.info/pg/day3practical1.ppt
Every peak corresponds to the exact mass (m/z) of a
peptide ion
fingerprint
ElectroSpray Ionization, ESI
Voltage
Ions are generated by spraying a sample solution through a charged inlet
Produces multiply protonated molecular ions of biopolymers
++
+
++ +
+
+
++
Capillary
column
Charged
droplets
+
+
+ +
Peptide ions
Heated desolvation region
•Nanospray needles, fine tipped gold coated needles
•Single samples
•Nanospray LC probe, connects directly to HPLC
outlet – automated sample injection
•Samples in solution
•Compatible with HPLC
•Complex mixtures
•Tandem MS analysis
•Peptide sequence
Analyzers
Detector –detection of mass separated ions
source analyzer detector
MALDI, Matrix-Assisted Laser Desorption
and Ionisation
ESI, ElectroSpray Ionisation
Source -produces the ions from the sample
(vaporization /ionization)
Mass Anlyzer - resolves ions based on their
mass/charge (m/z) ratio
Time of Flight, TOF
The Quadrupole, Q
Ion Trap
The Quadrupole
The quadrupole consists of four parallel
metal rods. Ions travel down the
quadropole in between the rods.
Only ions of a certain m/q will reach the detector
for a given ratio of voltages: other ions have
unstable trajectories and will collide with the
rods.
This allows selection of a particular ion, or
scanning by varying the voltages.
source
Voltage
Filters out all m/z values except the ones it
is set to pass
Obtains a mass spectrum by sweeping
across the entire mass range
Collects and store ions in order
to perform MS-MS analyses on
them.
Ion Trap Mass Analyzer
Trapped
ions
Ions in
Ions out
The trap consists of a top and a bottom
electrode and a ring electrode around
the middle.
Ions are ejected on the basis of their m/z
values.
To monitor the ions coming from the
source, the trap continuoulsy repeats a
cylcle of filling the trap with ions and
scanning the ions according to their m/z
values.
Separates the mass analysis and ion isolation
events in time (using a single mass analyzer)
Ionization ion transfer/trapping
parent ion isolation/
fragmentation
daughter ion
detection
A mass analyzer for determining the mass-to-charge ratio (m/z) of ions based on the cyclotron
frequency of the ions in a fixed magnetic field.
All ions are detectedall ions are detected
simultaneously over some given period of time
Ions are injected into a magnetic field , that causes them to travel in circular paths.
Excitation with oscillating electrical field increases the radius and enables a frequency
measurement
Fourier Transform MS
Fourier transform ion cyclotron resonance mass spectrometry, FTICMS
ICR can be used with different
ionization methods, ESI, MALDI
A short sweep of frequencies is used to excite all ions.
The complex spectrum of intensity/time is analyzed
with Fourier Transform to extract the m/z componets
High resolution
High accuracy
Very sensitive (the minimal quantity
for detection is in order of several
hundered ions
Non destructive –the ions don’t hit
the detection plate so they can be
selected for further fragmentation
Sensitivity amounts of proteins are limited
Resolution how well we can distinguish ion of very
similar m/z values (the ability of the instrument to resolve two
closely placed peaks in the mass spectrum)
Mass accuracy the measured values for the
peptide ions must be as close as possible to their
real values. (the relative percent difference between the
measured mass and the true mass, usually represented in ppm.)
type m/z range Resolving
power
cost
Quadrupole 1-4000 1000 $$
Ion trap 10-4000 1000 $$
Time of flight 1-100.000 30.000 $$$
Fourier
transform
18-10.000 >100.000 $$$$
Figures of merit for mass analyzers
MS
R = m/Δm = m/(m2-m1)
Mass Resolution
intensity
The ability of the instrument to resolve two closely placed peaks.
Mass accuracy
The relative percent difference between the measured mass and the
true mass (usually represented in ppm).
(The lower the number the better the mass accuracy)
Molecular ion / precursor ion
Ion formed by ionization of the analyte species
Fragment ions / product ions
Ions formed by the gas-phase dissociation of the
molecular ion
Relative Abundance
Relative Abundance is a measure of the relative amount of
ion signal recorded by the detector
MS/MS terminology
Hybrid instruments /Tandem MS
Combines two or more mass analyzers of the same or
different types
First mass analyzer isolates the ion of interest (parent ion)
The ions are then fragmented between the first and second
mass analyzer via collisions or irridation with UV light
The last mass analyzer obtains the mass spectrum of the
fragments ions (daughter ions spectrum)
MS-MS spectra reveal fragmentation patterns
to provide structural information about a molecule
Protein identification by cross-correlation algorithms
The triple Quadrupole Mass analyzer
Mass analyzer Detector
Mixture
Survey scan
Mass analyzer Mass analyzer Detector
Mixture
Isolated
species
Fragments
MS/MS scan
Collision cell
Modified fromÖ Christophe D. Masselon, CEA Grenoble
Full-scan, rapid scanning of Q1, values of all ions coming from the
source at any given moment are recorded
The first quad (Q1) will act as a mass filter in which the voltage settings
are fixed to allow only ions of a specific m/z value to pass through.
The peptide ions then enter Q2, where they collide with argon gas, to
fragment the parent ion present (collision induced dissociation, CID)
The third quad (Q3) scans repeatedly over a mass range to detect the
fragment ions, obtaining a spectrum.
Q-TOF
Quadruple Time of Flight mass analyzer
Higher mass resolution, increased
mass accuracies
More effectively used in software-
assisted data interpretation
SELDI
Advantages of SELDI technology:
Uses small amounts (< 1l/ 500-1000 cells) of
sample (biopsies, microdissected tissue).
Quickly obtain protein mapping from multiple
samples at same conditions.
Ideal for discovering biomarkers quickly.
Surface Enhanced Laser Desorption Ionization
A combination of chromatography (protein chips) and MALDI-TOF MS
Protein capture and enrichment on a
chemically or bio affinity active solid
phase surface
washing EAM, energy absorbing
molecule
Retained proteins are “eluted” from the
Protein Chip array by Laser Desorption and
Ionization
Ionized proteins are detected and their
mass accurately determined by Time-of-
Flight Mass Spectrometry
Chemical Surfaces
(Hydrophobic) (Anionic) (Metal Ion) (Normal Phase)
(Cationic)
(Antibody - Antigen) (Receptor - Ligand) (DNA - Protein)
(PS10 or PS20)
Biological Surfaces
The chip
Software for MS
PeptIdent
MultiIdent
ProFound
PepSea
MASCOT
MS-Fit
SEQUEST
PepFrag
MS-Tag
Sherpa
Task for students: find the appropriate url for each above mentioned tool

More Related Content

Similar to Lecture__on__Proteomics_Introduction.ppt

Proteomics and its applications in phytopathology
Proteomics and its applications in phytopathologyProteomics and its applications in phytopathology
Proteomics and its applications in phytopathologyAbhijeet Kashyap
 
Functional proteomics, and tools
Functional proteomics, and toolsFunctional proteomics, and tools
Functional proteomics, and toolsKAUSHAL SAHU
 
STRING - Prediction of a functional association network for the yeast mitocho...
STRING - Prediction of a functional association network for the yeast mitocho...STRING - Prediction of a functional association network for the yeast mitocho...
STRING - Prediction of a functional association network for the yeast mitocho...Lars Juhl Jensen
 
Genome organization ,gene expression sand regulation
Genome organization ,gene expression sand regulation Genome organization ,gene expression sand regulation
Genome organization ,gene expression sand regulation sukanyakk
 
Yeast two hybrid
Yeast two hybridYeast two hybrid
Yeast two hybridhina ojha
 
Bioinformatics, application by kk sahu sir
Bioinformatics, application by kk sahu sirBioinformatics, application by kk sahu sir
Bioinformatics, application by kk sahu sirKAUSHAL SAHU
 
protein microarray.pptx
protein microarray.pptxprotein microarray.pptx
protein microarray.pptxAtulSingh77625
 
Knowing Your NGS Downstream: Functional Predictions
Knowing Your NGS Downstream: Functional PredictionsKnowing Your NGS Downstream: Functional Predictions
Knowing Your NGS Downstream: Functional PredictionsGolden Helix Inc
 
NCBI Boot Camp for Beginners Slides
NCBI Boot Camp for Beginners SlidesNCBI Boot Camp for Beginners Slides
NCBI Boot Camp for Beginners SlidesJackie Wirz, PhD
 
protein-protein interaction
protein-protein  interactionprotein-protein  interaction
protein-protein interactionZeshan Haider
 
Yeast two hybrid system
Yeast two hybrid systemYeast two hybrid system
Yeast two hybrid systemiqraakbar8
 
Bio process
Bio processBio process
Bio processsun777
 
Bio process
Bio processBio process
Bio processsun777
 

Similar to Lecture__on__Proteomics_Introduction.ppt (20)

www.ijerd.com
www.ijerd.comwww.ijerd.com
www.ijerd.com
 
Proteomics and its applications in phytopathology
Proteomics and its applications in phytopathologyProteomics and its applications in phytopathology
Proteomics and its applications in phytopathology
 
Protein database
Protein databaseProtein database
Protein database
 
Functional proteomics, and tools
Functional proteomics, and toolsFunctional proteomics, and tools
Functional proteomics, and tools
 
STRING - Prediction of a functional association network for the yeast mitocho...
STRING - Prediction of a functional association network for the yeast mitocho...STRING - Prediction of a functional association network for the yeast mitocho...
STRING - Prediction of a functional association network for the yeast mitocho...
 
Proteomics ppt
Proteomics pptProteomics ppt
Proteomics ppt
 
Genome organization ,gene expression sand regulation
Genome organization ,gene expression sand regulation Genome organization ,gene expression sand regulation
Genome organization ,gene expression sand regulation
 
Yeast two hybrid
Yeast two hybridYeast two hybrid
Yeast two hybrid
 
Protein protein interactions
Protein protein interactionsProtein protein interactions
Protein protein interactions
 
KSD_L8_CMB06.ppt
KSD_L8_CMB06.pptKSD_L8_CMB06.ppt
KSD_L8_CMB06.ppt
 
Bioinformatics, application by kk sahu sir
Bioinformatics, application by kk sahu sirBioinformatics, application by kk sahu sir
Bioinformatics, application by kk sahu sir
 
protein microarray.pptx
protein microarray.pptxprotein microarray.pptx
protein microarray.pptx
 
Biomedical genomics lecture
Biomedical genomics lectureBiomedical genomics lecture
Biomedical genomics lecture
 
Knowing Your NGS Downstream: Functional Predictions
Knowing Your NGS Downstream: Functional PredictionsKnowing Your NGS Downstream: Functional Predictions
Knowing Your NGS Downstream: Functional Predictions
 
NCBI Boot Camp for Beginners Slides
NCBI Boot Camp for Beginners SlidesNCBI Boot Camp for Beginners Slides
NCBI Boot Camp for Beginners Slides
 
protein-protein interaction
protein-protein  interactionprotein-protein  interaction
protein-protein interaction
 
Yeast two hybrid system
Yeast two hybrid systemYeast two hybrid system
Yeast two hybrid system
 
Proteomic databases
Proteomic databasesProteomic databases
Proteomic databases
 
Bio process
Bio processBio process
Bio process
 
Bio process
Bio processBio process
Bio process
 

More from Sachin Teotia

protein microarray-types and approaches.pptx
protein microarray-types and approaches.pptxprotein microarray-types and approaches.pptx
protein microarray-types and approaches.pptxSachin Teotia
 
Metabolic Profiling_techniques and approaches.ppt
Metabolic Profiling_techniques and approaches.pptMetabolic Profiling_techniques and approaches.ppt
Metabolic Profiling_techniques and approaches.pptSachin Teotia
 
metabolomics_techniques_approaches_methods
metabolomics_techniques_approaches_methodsmetabolomics_techniques_approaches_methods
metabolomics_techniques_approaches_methodsSachin Teotia
 
PLasma_membrane_transport_lecture__.pptx
PLasma_membrane_transport_lecture__.pptxPLasma_membrane_transport_lecture__.pptx
PLasma_membrane_transport_lecture__.pptxSachin Teotia
 
Transport__Across__Cell__Membranes_.pptx
Transport__Across__Cell__Membranes_.pptxTransport__Across__Cell__Membranes_.pptx
Transport__Across__Cell__Membranes_.pptxSachin Teotia
 
Lecture 2-PM-Cellular Membranes_structure.ppt
Lecture 2-PM-Cellular Membranes_structure.pptLecture 2-PM-Cellular Membranes_structure.ppt
Lecture 2-PM-Cellular Membranes_structure.pptSachin Teotia
 
Postranslational Modification--short.ppt
Postranslational Modification--short.pptPostranslational Modification--short.ppt
Postranslational Modification--short.pptSachin Teotia
 
Metabolic Profiling: Limitations, Challenges.ppt
Metabolic Profiling: Limitations, Challenges.pptMetabolic Profiling: Limitations, Challenges.ppt
Metabolic Profiling: Limitations, Challenges.pptSachin Teotia
 
operon_lac_and_trp_in_ bacteria.ppt
operon_lac_and_trp_in_      bacteria.pptoperon_lac_and_trp_in_      bacteria.ppt
operon_lac_and_trp_in_ bacteria.pptSachin Teotia
 
End DNA replication in prokaryotes mechanism
End DNA replication in prokaryotes mechanismEnd DNA replication in prokaryotes mechanism
End DNA replication in prokaryotes mechanismSachin Teotia
 
DNA Replication-2 in prokaryotes and eukaryotes.ppt
DNA Replication-2 in prokaryotes and eukaryotes.pptDNA Replication-2 in prokaryotes and eukaryotes.ppt
DNA Replication-2 in prokaryotes and eukaryotes.pptSachin Teotia
 
Protein Chemistry-Proteomics-Lec1_Intro.ppt
Protein Chemistry-Proteomics-Lec1_Intro.pptProtein Chemistry-Proteomics-Lec1_Intro.ppt
Protein Chemistry-Proteomics-Lec1_Intro.pptSachin Teotia
 
Lehninger_Chapter 17_Fatty acid Oxid.ppt
Lehninger_Chapter 17_Fatty acid Oxid.pptLehninger_Chapter 17_Fatty acid Oxid.ppt
Lehninger_Chapter 17_Fatty acid Oxid.pptSachin Teotia
 
Fatty Acid metabolism_oxidation, catabolism.ppt
Fatty Acid metabolism_oxidation, catabolism.pptFatty Acid metabolism_oxidation, catabolism.ppt
Fatty Acid metabolism_oxidation, catabolism.pptSachin Teotia
 
Biochemistry_II_Ch._22_Fatty_Acid_Metabolism_Spring_2011.ppt
Biochemistry_II_Ch._22_Fatty_Acid_Metabolism_Spring_2011.pptBiochemistry_II_Ch._22_Fatty_Acid_Metabolism_Spring_2011.ppt
Biochemistry_II_Ch._22_Fatty_Acid_Metabolism_Spring_2011.pptSachin Teotia
 
Fatty Acids Oxidation.ppt
Fatty Acids Oxidation.pptFatty Acids Oxidation.ppt
Fatty Acids Oxidation.pptSachin Teotia
 
fatty acid synthesis.ppt
fatty acid synthesis.pptfatty acid synthesis.ppt
fatty acid synthesis.pptSachin Teotia
 

More from Sachin Teotia (18)

protein microarray-types and approaches.pptx
protein microarray-types and approaches.pptxprotein microarray-types and approaches.pptx
protein microarray-types and approaches.pptx
 
Metabolic Profiling_techniques and approaches.ppt
Metabolic Profiling_techniques and approaches.pptMetabolic Profiling_techniques and approaches.ppt
Metabolic Profiling_techniques and approaches.ppt
 
metabolomics_techniques_approaches_methods
metabolomics_techniques_approaches_methodsmetabolomics_techniques_approaches_methods
metabolomics_techniques_approaches_methods
 
PLasma_membrane_transport_lecture__.pptx
PLasma_membrane_transport_lecture__.pptxPLasma_membrane_transport_lecture__.pptx
PLasma_membrane_transport_lecture__.pptx
 
Transport__Across__Cell__Membranes_.pptx
Transport__Across__Cell__Membranes_.pptxTransport__Across__Cell__Membranes_.pptx
Transport__Across__Cell__Membranes_.pptx
 
Lecture 2-PM-Cellular Membranes_structure.ppt
Lecture 2-PM-Cellular Membranes_structure.pptLecture 2-PM-Cellular Membranes_structure.ppt
Lecture 2-PM-Cellular Membranes_structure.ppt
 
Postranslational Modification--short.ppt
Postranslational Modification--short.pptPostranslational Modification--short.ppt
Postranslational Modification--short.ppt
 
Metabolic Profiling: Limitations, Challenges.ppt
Metabolic Profiling: Limitations, Challenges.pptMetabolic Profiling: Limitations, Challenges.ppt
Metabolic Profiling: Limitations, Challenges.ppt
 
operon_lac_and_trp_in_ bacteria.ppt
operon_lac_and_trp_in_      bacteria.pptoperon_lac_and_trp_in_      bacteria.ppt
operon_lac_and_trp_in_ bacteria.ppt
 
End DNA replication in prokaryotes mechanism
End DNA replication in prokaryotes mechanismEnd DNA replication in prokaryotes mechanism
End DNA replication in prokaryotes mechanism
 
DNA Replication-2 in prokaryotes and eukaryotes.ppt
DNA Replication-2 in prokaryotes and eukaryotes.pptDNA Replication-2 in prokaryotes and eukaryotes.ppt
DNA Replication-2 in prokaryotes and eukaryotes.ppt
 
Protein Chemistry-Proteomics-Lec1_Intro.ppt
Protein Chemistry-Proteomics-Lec1_Intro.pptProtein Chemistry-Proteomics-Lec1_Intro.ppt
Protein Chemistry-Proteomics-Lec1_Intro.ppt
 
Lehninger_Chapter 17_Fatty acid Oxid.ppt
Lehninger_Chapter 17_Fatty acid Oxid.pptLehninger_Chapter 17_Fatty acid Oxid.ppt
Lehninger_Chapter 17_Fatty acid Oxid.ppt
 
Fatty Acid metabolism_oxidation, catabolism.ppt
Fatty Acid metabolism_oxidation, catabolism.pptFatty Acid metabolism_oxidation, catabolism.ppt
Fatty Acid metabolism_oxidation, catabolism.ppt
 
Biochemistry_II_Ch._22_Fatty_Acid_Metabolism_Spring_2011.ppt
Biochemistry_II_Ch._22_Fatty_Acid_Metabolism_Spring_2011.pptBiochemistry_II_Ch._22_Fatty_Acid_Metabolism_Spring_2011.ppt
Biochemistry_II_Ch._22_Fatty_Acid_Metabolism_Spring_2011.ppt
 
Protein folding.pdf
Protein folding.pdfProtein folding.pdf
Protein folding.pdf
 
Fatty Acids Oxidation.ppt
Fatty Acids Oxidation.pptFatty Acids Oxidation.ppt
Fatty Acids Oxidation.ppt
 
fatty acid synthesis.ppt
fatty acid synthesis.pptfatty acid synthesis.ppt
fatty acid synthesis.ppt
 

Recently uploaded

Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physicsvishikhakeshava1
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfSwapnil Therkar
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 sciencefloriejanemacaya1
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxAArockiyaNisha
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxpradhanghanshyam7136
 
Luciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxLuciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxAleenaTreesaSaji
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PPRINCE C P
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 

Recently uploaded (20)

Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physics
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 science
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptx
 
Luciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxLuciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptx
 
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C P
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 

Lecture__on__Proteomics_Introduction.ppt

  • 1. DNA Genome “Genomics” Proteins Cell functions Proteome “Proteomics” DNA sequencing cDNA arrays 2D PAGE, HPLC CGTCCAA CTGACGT CTACAAG TTCCTAA GCT RNA Transcriptome “-ome” Reactome, the chemical reactions involving a nucleotide
  • 2. Protein Chemistry/Proteomics Protein Chemistry • Individual proteins • Complete sequence analysis • Emphasis on structure and function • Structural biology Proteomics • Complex mixtures • Partial sequence analysis • Emphasis in identification by database matching • System biology
  • 3. Proteins are the mediators of functions in the cell Deviations from normal status denotes disease Proteins are drug/therapeutic targets Why are we studying proteins?
  • 4. Proteome Mining Identifying as many as possible of the proteins in your sample Protein Expression Profiling Identification of proteins in a particular sample as a function of a particular state of the organism or cell Functional proteomics Post-translational modifications Identifying how and where the proteins are modified Protein-protein interactions Protein- network mapping Determining how the proteins interact with each other in living systems Structural Proteomics Protein quantitation or differential analysis Proteomics and biology /Applications
  • 5. Tools of Proteomics Protein separation technology Simplify complex protein mixtures Target specific proteins for analysis Mass spectrometry (MS) Provide accurate molecular mass measurements of intact proteins and peptides Database Protein, EST, and complete genome sequence databases Software collection Match the MS data with specific protein sequences in databases
  • 6. The Proteome • Cycle of Proteins • Proteins as Modular Structures – motifs, domains • Functional Families • Genomic Sequences • Protein Expression /Protein level The proteome in any cell represents a subset of all possible gene products Not all the genes are expressed in all the cells. It will vary in different cells and tissue types in the same organism and between different growth and developmental stages The proteome is dependent on environmental factors, disease, drugs, stress, growth conditions.
  • 7. Life cycle of a protein Information found in DNA is used for synthesis of the proteins mRNA Protein Proteolytic Cleaveage Acylation Methylation Phosphorylation Sulfation Selenoproteins Ubiquination Glycolisation Translocation Damage -free radicals Degradation Environmental -chemicals radioactiivty Posttranslational Processing to specific subcellular or extracellular compartments Folding
  • 8. Molecular Structures -helices -sheets Primary structure a chain of amino acids Secondary structure three dimensional form, formally defined by the hydrogen bonds of the polymer Amino acids vary in their ability to form the various secondary structure elements. Confer similar properties or functions when they occur in a variety of proteins Amino acids that prefer to adopt helical conformations in proteins include methionine, alanine, leucine, glutamate and lysine ("MALEK" in amino acid 1-letter codes) The large aromatic residues (tryptophan, tyrosine and phenylalanine) and Cβ-branched amino acids (isoleucine, valine and threonine) prefer to adopt -strand conformations.
  • 9. Sequence alignment A software tool used for general sequences alignment tasks is ClustalW The degree of relatedness, similarity between the sequences is predicted computationally or statistically Sequence alignment is a way of arranging primary sequences (of DNA, RNA, or proteins) in such a way as to align areas sharing common properties.
  • 11. BLAST It is used to compare a novel sequence with those contained in nucleotide and protein data bases by aligning the novel sequence with the previously characterized genes. The emphasis of this tools is to find regions of sequence similarity, which will yield functional and evolutionary clues about the structure and function of this novel sequence. Basic Local Alignment Search Tool NCBI BLAST http://www.ncbi.nlm.nih.gov/BLAST/
  • 12.
  • 13. Molecular Structures / Functional Families Tertiary structure the overall shape of the protein (fold) the process by which a protein assumes its characteristic function The three-dimensional shape of the proteins might be critical to their function. For example, specific binding sites for substrates on enzymes Specific sequences that also confer unique properties and functions, motifs or domains Quaternary structure -formation usually involves the "assembly" or "coassembly" of subunits that have already folded Incorrectly folded proteins are responsible for illnesses such as Creutfeltdt_Jakob disease and Bovine spongiform encephalopathy (mad cow disease), and amyloid related illnesses such as Alzheimer’s.
  • 14. Domains / Motifs Structural alignment: a method for discovering significant structural motifs. -based on comparison of shape Structural alignment of thioredoxins from humans (red)and the fly Drosphila melangaster (yellow). Motifs: short conserved sequences, which appear in a variety of other molecules. Domains: part of the sequence that appear as conserved modules in proteins that are not related, in global terms. Usually with a distinct three dimensional fold, carrying a unique function and appearing in different proteins Repeats: structurally or functionally interdependent modules.
  • 15. Functional families Protein family classification databases: PROSITE. Database of protein families and domain, defined by patterns and profiles, at ExPASY. http://au.expasy.org/prosite/ Pfam. Multiple sequence alignments and HMMs of protein domains and families, at Sanger Institute. http://www.sanger.ac.uk/Software/Pfam/help/index.shtml SMART Simple Modular Architecture Research Tool, at EMBL. http://smart.embl-heidelberg.de/ By associating a novel protein with a protein family, one can predict the function of the novel protein Domains are clustered into families in which significant sequence similarity is detected as well as conservation of biochemical activity. SCOP-a structural classification of proteins Proteins can be grouped into functional families; proteins that carry out related functions Structural Signaling pathways Metabolic Transportation
  • 17. A Pseudo-Rotational Online Service and Interactive Tool
  • 18. Pfam
  • 19.
  • 20. Sequence Threading Sequence-Structure-Function Structure more conserved than sequence Structure Function Threading techniques try to match a target sequence on a library of known three-dimensional structures by “threading” the target sequence over the known coordinates. In this manner, threading tries to predict the three-dimensional structure starting from a given protein sequence. It is sometimes successful when comparisons based on sequences or sequence profiles alone fail to a too low similarity. (modified from: http://www.pasteur.fr/recherche/unites/Binfs/definition/bioinformatics_definition.html)
  • 21. Genomic sequencing/ Protein level Genome size (bp) 5.386 580.000 12,1  106 3,2  109 90  109 670  109 Mycoplasma genitalium Yeast (S. Cerevisiae) X-174 virus Human Lilium longiflorum Amoeba dubia Biological complexity does not come simply from greater number of genes. complexity
  • 24. More than 100 modification forms known A single protein may carry several modifications Modified proteins show different properties compared to unmodified counterparts In most cases, we do not know the origin or the biological significance of the observed heterogeneities Much larger number of spots compared to protein species they represent H.influenza : 1500 spots 500 different proteins Protein Heterogeneity
  • 25. 4.5 pI Electrophoresis, 1999, 20 (14) 2970 g-enolase About 3000 Spots after Coomassie Stain Partial 2D-gel images showing g-enolase from human brain. The protein is represented by one spot when IEF was performed on pH 3-10 non-linear IPG strips (A), and by six spots when IEF was performed on pH 4-7 strips (B). Increased Resolution and Detection of More Spots with the Use of Narrow pH Gradient Strips A B 2D gel image of brain proteins
  • 27. Genomic sequencing Paralogues are similar sequences within a single organism that have arisen due to a gene duplication event. Homologues are similar sequences in two different organisms that have been derived from a common ancestor sequence. Orthologues are similar sequences in two different organisms that have arisen due to a speciation event.
  • 28. Pattern / Profile Pattern –conserved sequence of a few amino acids identify various important sites within protein •Enzyme catalytic site •Prosthetic group attachment •Metal ion binding site •Cysteines for disulphide bonds •Protein or molecular binding Profile a multiple alignment with matrix frequencies- describe protein families or domains conserved in sequence. •Score-based representations •Position-specific scoring matrix (PSSM) •Hidden Markov model (HMM) Database: PROSITE Patterns Patterns and Profiles aredused to search for motifs/ domains of biological significance that characterize protein family
  • 29. Protein level Codon bias- the tendency of an organism to prefer certain codons over others that code for the same amino acid in the gene sequence. The level of any protein in a cell at a given time: • Transcription rate • Efficiency of translation in the cell • The rate of degradation of the protein Larger genomes have larger gene families (the average family size also increases with genome size)
  • 30. Protein expression Protein It consists of the stages after DNA has been translated Amino acid chains chains which is ultimately folded into proteins Expression profiling what genes are expressed in a particular cell type of an organism, at a particular time, under particular conditions? As the expression of many genes is known to be regulated after transcription, an increase in mRNA concentration need not always increase expression
  • 31. ESI-MS Electrospray Ionization tandem MS MALDI-TOF Matrix Assisted Laser Desorption Ionization –Time of Flight General workflow of proteomics analysis proteins digestion separation MALDI, MS/MS digestion peptides (LC)-MS/MS Identification
  • 32. The less complex a mixture of proteins is, the better chance we have to identify more proteins. Detergents Reductants Denaturing agents Enzymes digestion Separation of Protein Mixtures
  • 33. Separation techniques 1D- and 2D-SDS PAGE Preparative IEF isoelectric focusing HPLC Separating intact proteins to take advantage of their diversity in physical properties Separation techniques for peptides MS-MS HPLC (MudPIT) Multi-Dimensional Protein Identification Technology SELDI Surface-enhanced laser desorption/ionization Separation techniques used with intact proteins Differential display proteomics Difference gel electrophoresis (DIGE) Isotope-coded affinity tagging (ICAT)
  • 34. •Enrichment from larger volumes Selective precipitation Selective centrifugation Preparative approaches •Combination of 2DE with LC •Multi-dimensional LC Enrichment /Fractionation For the detection of low-abundance proteins, a separation of complex mixtures into fractions with fewer components is necessary
  • 35. Detergents: solubilize membrane proteins- separation from lipids Reductants: Reduce S-S bonds Denaturing agents: Disrupt protein-protein interactions-unfold proteins Enzymes: Digest contaminating molecules (nucleic acids etc) Protease inhibitors Aim: High recovery-low contamination-compatibility with separation method Protein extraction
  • 36. Why digest the protein? Accuracy of mass measurements Suitability Sensitivity Good activity both in gel digestion and in solution The ideal protein digestion approach would cleave proteins at certain specific amino acid residues to yield fragments that are most compatible with MS analysis. Peptide fragments of between 6 – 20 amino acids are ideal for MS analysis and database comparisons. Other enzymes with more or less specific cleavage: Chymotrypsin Glu C (V8 protease) Lys C Asp N Protein digestion Trypsin Cleaves at lysine and arginine, unless either is followed by proline in C- terminal direction
  • 37. Gel electrophoresis Classical process High resolving power: visualization of thousands of protein forms Quantative Identifying proteins within proteome Up/ down regulation of proteins Detection of post-translational modifications Silver: www.healthsystem.virginia.edu Ruby: www.komabiotech.co.kr Protein fixing and staining or blotting General detection methods (staining) Organic dye – and silver based methods Coomassie blue, Silver Radioactive labeling methods Reverse stain methods Fluorescence methods (Supro Ruby) Gel scanning (storage of image in a database) Coomassie blue stained gels Silver stained Ruby red
  • 38. Isoelectric point •Proteins are amphoteric molecules i.e. they have both acidic and basic functional groups •pI= isoelectric point, is where the protein does not have any net charge •The protein charge depends on the pH of the solution.
  • 39. A pH gradient is generated by a limited number of well defined chemicals (immobilines) which are co-polymerized with the acrylamide matrix. Migration of proteins in a pH gradient: protein stop at pH=pI Loading quantities (18 cm strip) Analytical run: 50-100 μg Micropreparative runs: 0,5 – 10 mg Individual strips: 24,18,11,7 cm long 3 mm wide 0,5 mm thickness Use narrow range IPG strips to focus on particular pI range Immobilized pH gradients (IPGs) 1st dimension IsoElectric Focusing, IEF
  • 40. 2nd dimension pH 3 pH 10 The strip is loaded onto a SDS gel Mw pI Staining ! Proteins that were separated on IEF gel are next separated in the second dimension based on their molecular weights.
  • 41. Limitations/difficulties with the 2D gel Reproducibility Samples must be run at least in triplicate to rule out effects from gel-to-gel variation (statistics) Incompatibility of some proteins with the first dimension IEF step (hydrophobic proteins) Marginal solubility leads to protein precipitation and degradation- smearing (Glycolysation, oxidation) Small dynamic range of protein staining as a detection technique- visualization of abundant proteins while less abundant might be missed. Posttranscriptional control mechanisms Co-migrating spots forming a complex region Streaking and smearing Weak spots and background
  • 42. 4.5 9.5 pI 90 20 kDa A B Brain Proteins (About 3000 Spots after Coomassie Stain) Electrophoresis, 1999, 20 (14) 2970
  • 43. A B g-enolase Partial 2D-gel images showing g-enolase from human brain. The protein is represented by one spot when IEF was performed on pH 3-10 non-linear IPG strips (A), and by six spots when IEF was performed on pH 4-7 strips (B). Protein Heterogeneity Increased Resolution and Detection of More Spots with the Use of Narrow pH Gradient Strips
  • 44. Vacuum assisted aspiration into sample tubes Large amount of proteins (up to 3g protein) Preparative IEF The protein mixture is injected into the focusing chamber Proteins are focused as in standard IEF The pH gradient is achieved with soluble ampholytes
  • 45. DIGE Proteins are labeled prior to running the first dimension with up to three different fluorescent cyanide dyes Allows use of an internal standard in each gel-to-gel variation, reduces the number of gels to be run Adds 500 Da to the protein labeled Additional postelectrophoretic staining needed Quantification of Spot Relative Levels 2D Fluorescence Difference Gel Electrophoresis
  • 46. Separation by LC modified:www.dcu.ie/chemistry/ssg/image s/Techni7.gif Salt gradient UV detector EC detector column waste Number of peaks indicates the complexity of starting material Peak position (i.e. elution time) may provide qualitative information about the sample (comparison with standards) Peak area may provide information on relative concentration of components. If coupled to MS protein identification (MW) can be provided
  • 47. Multidimensional HPLC Mud PIT Multidimensional Protein Identification Techniques or Tandem HPLC the combination of dissimilar separation modes will allow a greater resolution of peptides in mixture. Ion-exchange Reversed phase •Reversed phase, hydrophobicity •Ion exchange, net positive/negative charge •Size exclusion, peptide size, molecular weight •Affinity chromatography, interaction with specific functional groups
  • 49. The sample has to be introduced into the ionization source of the instrument. Once inside the ionization source the sample molecules are ionized, because ions are easier to manipulate than neutral molecules. These ions are extracted into the analyzer region of the mass spectrometer where they are separated according to their mass (m)-to-charge (z) ratios (m/z). The separated ions are detected and this signal sent to a data system where the m/z ratios are stored together with their relative abundance for presentation in the format of a m/z spectrum. The analyzer and detector of the mass spectrometer, and often the ionization source too, are maintained under high vacuum to give the ions a reasonable chance of traveling from one end of the instrument to the other without any hindrance from air molecules. Modified from www.csupomona.edu/~drlivesay/ Chm561/winter04_561_lect1.ppt A Mass Spectrometer source analyzer detector
  • 50. ..consists of.. Detector –detection of mass separated ions source analyzer detector MALDI, Matrix-Assisted Laser Desorption and Ionisation ESI, ElectroSpray Ionisation Source -produces the ions from the sample (vaporization /ionization) Mass Anlyzer - resolves ions based on their mass/charge (m/z) ratio Generate different, but complementary information
  • 51. MALDI Matrix Assisted Laser Desorption and Ionisation Peptides co-crystallised with matrix Produces singly charged protonated molecular ions High throughput Single proteins Rapid procedure, high rate of sample throughput large scale identification (“first look at a sample”) + + - + - + laser ions + - - +
  • 52. TOF Separate ions o f different m/z based on flight time Fast Requires pulsed ionization Time of flight Measures the time it takes for the ions to fly form one end to other and strike the detector. The speed with which the ions fly down the analyzer tube is proportional to their m/z values. The greater the m/z the faster they fly
  • 53. Matrix-assisted laser desorption ionization-time of flight MALDI-TOF + + - + - + + - - + Quick, easy, inexpensive Highly tolerant to contaminents High sensitivity Good accuracy in mass determination Compatible with robotic devices for high-throughput proteomics work Best suited to measuring peptide masses TOF analyzer Low reproducibility and repeatability of single shot spectra (Averaging) Low resolution Matrix ions interfere in the low max range
  • 54. MALDI-TOF data Peak List = List of masses 112.1 234.4 890.5 1296.9 1876.4 1987.5 ……. = Modified from http://plantsci.arabidopsis.info/pg/day3practical1.ppt Every peak corresponds to the exact mass (m/z) of a peptide ion fingerprint
  • 55. ElectroSpray Ionization, ESI Voltage Ions are generated by spraying a sample solution through a charged inlet Produces multiply protonated molecular ions of biopolymers ++ + ++ + + + ++ Capillary column Charged droplets + + + + Peptide ions Heated desolvation region •Nanospray needles, fine tipped gold coated needles •Single samples •Nanospray LC probe, connects directly to HPLC outlet – automated sample injection •Samples in solution •Compatible with HPLC •Complex mixtures •Tandem MS analysis •Peptide sequence
  • 56. Analyzers Detector –detection of mass separated ions source analyzer detector MALDI, Matrix-Assisted Laser Desorption and Ionisation ESI, ElectroSpray Ionisation Source -produces the ions from the sample (vaporization /ionization) Mass Anlyzer - resolves ions based on their mass/charge (m/z) ratio Time of Flight, TOF The Quadrupole, Q Ion Trap
  • 57. The Quadrupole The quadrupole consists of four parallel metal rods. Ions travel down the quadropole in between the rods. Only ions of a certain m/q will reach the detector for a given ratio of voltages: other ions have unstable trajectories and will collide with the rods. This allows selection of a particular ion, or scanning by varying the voltages. source Voltage Filters out all m/z values except the ones it is set to pass Obtains a mass spectrum by sweeping across the entire mass range
  • 58. Collects and store ions in order to perform MS-MS analyses on them. Ion Trap Mass Analyzer Trapped ions Ions in Ions out The trap consists of a top and a bottom electrode and a ring electrode around the middle. Ions are ejected on the basis of their m/z values. To monitor the ions coming from the source, the trap continuoulsy repeats a cylcle of filling the trap with ions and scanning the ions according to their m/z values. Separates the mass analysis and ion isolation events in time (using a single mass analyzer) Ionization ion transfer/trapping parent ion isolation/ fragmentation daughter ion detection
  • 59. A mass analyzer for determining the mass-to-charge ratio (m/z) of ions based on the cyclotron frequency of the ions in a fixed magnetic field. All ions are detectedall ions are detected simultaneously over some given period of time Ions are injected into a magnetic field , that causes them to travel in circular paths. Excitation with oscillating electrical field increases the radius and enables a frequency measurement Fourier Transform MS Fourier transform ion cyclotron resonance mass spectrometry, FTICMS ICR can be used with different ionization methods, ESI, MALDI A short sweep of frequencies is used to excite all ions. The complex spectrum of intensity/time is analyzed with Fourier Transform to extract the m/z componets High resolution High accuracy Very sensitive (the minimal quantity for detection is in order of several hundered ions Non destructive –the ions don’t hit the detection plate so they can be selected for further fragmentation
  • 60. Sensitivity amounts of proteins are limited Resolution how well we can distinguish ion of very similar m/z values (the ability of the instrument to resolve two closely placed peaks in the mass spectrum) Mass accuracy the measured values for the peptide ions must be as close as possible to their real values. (the relative percent difference between the measured mass and the true mass, usually represented in ppm.) type m/z range Resolving power cost Quadrupole 1-4000 1000 $$ Ion trap 10-4000 1000 $$ Time of flight 1-100.000 30.000 $$$ Fourier transform 18-10.000 >100.000 $$$$ Figures of merit for mass analyzers MS
  • 61. R = m/Δm = m/(m2-m1) Mass Resolution intensity The ability of the instrument to resolve two closely placed peaks.
  • 62. Mass accuracy The relative percent difference between the measured mass and the true mass (usually represented in ppm). (The lower the number the better the mass accuracy)
  • 63. Molecular ion / precursor ion Ion formed by ionization of the analyte species Fragment ions / product ions Ions formed by the gas-phase dissociation of the molecular ion Relative Abundance Relative Abundance is a measure of the relative amount of ion signal recorded by the detector MS/MS terminology
  • 64. Hybrid instruments /Tandem MS Combines two or more mass analyzers of the same or different types First mass analyzer isolates the ion of interest (parent ion) The ions are then fragmented between the first and second mass analyzer via collisions or irridation with UV light The last mass analyzer obtains the mass spectrum of the fragments ions (daughter ions spectrum) MS-MS spectra reveal fragmentation patterns to provide structural information about a molecule Protein identification by cross-correlation algorithms
  • 65. The triple Quadrupole Mass analyzer Mass analyzer Detector Mixture Survey scan Mass analyzer Mass analyzer Detector Mixture Isolated species Fragments MS/MS scan Collision cell Modified fromÖ Christophe D. Masselon, CEA Grenoble Full-scan, rapid scanning of Q1, values of all ions coming from the source at any given moment are recorded The first quad (Q1) will act as a mass filter in which the voltage settings are fixed to allow only ions of a specific m/z value to pass through. The peptide ions then enter Q2, where they collide with argon gas, to fragment the parent ion present (collision induced dissociation, CID) The third quad (Q3) scans repeatedly over a mass range to detect the fragment ions, obtaining a spectrum.
  • 66. Q-TOF Quadruple Time of Flight mass analyzer Higher mass resolution, increased mass accuracies More effectively used in software- assisted data interpretation
  • 67. SELDI Advantages of SELDI technology: Uses small amounts (< 1l/ 500-1000 cells) of sample (biopsies, microdissected tissue). Quickly obtain protein mapping from multiple samples at same conditions. Ideal for discovering biomarkers quickly. Surface Enhanced Laser Desorption Ionization A combination of chromatography (protein chips) and MALDI-TOF MS Protein capture and enrichment on a chemically or bio affinity active solid phase surface washing EAM, energy absorbing molecule Retained proteins are “eluted” from the Protein Chip array by Laser Desorption and Ionization Ionized proteins are detected and their mass accurately determined by Time-of- Flight Mass Spectrometry
  • 68. Chemical Surfaces (Hydrophobic) (Anionic) (Metal Ion) (Normal Phase) (Cationic) (Antibody - Antigen) (Receptor - Ligand) (DNA - Protein) (PS10 or PS20) Biological Surfaces The chip
  • 69. Software for MS PeptIdent MultiIdent ProFound PepSea MASCOT MS-Fit SEQUEST PepFrag MS-Tag Sherpa Task for students: find the appropriate url for each above mentioned tool