SlideShare a Scribd company logo
Cassandra
Replication & Consistency

  Benjamin Black, b@b3k.us
        2010-04-28
Dynamo                         BigTable
     Cluster                         Sparse,
 management,                     columnar data
replication, fault               model, storage
   tolerance                      architecture
                     Cassandra
Dynamo-like
 Features
Symmetric, P2P architecture
 No special nodes/SPOFs
Gossip-based cluster management
Distributed hash table for data
placement
 Pluggable partitioning
 Pluggable topology discovery
 Pluggable placement strategies
Tunable, eventual consistency
BigTable-like
  Features
Sparse, “columnar” data model
 Optional, 2-level maps called
 Super Column Families
SSTable disk storage
 Append-only commit log
 Memtable (buffer and sort)
 Immutable SSTable files
Hadoop integration
Topic(s) for Today

    Replication
         &
    Consistency
[1]
Replication
How many copies of each piece
  of data do we want in the
           system?

            N=3
Consistency
     Level
  How many replicas must
respond to declare success?
W=2                 R=2


       ?
CL.Options
WRITE                                       READ
 Level     Description       Level     Description

 ZERO     Cross fingers

 ANY
                 WEAK
          1st Response
         (including HH)
 ONE      1st Response       ONE      1st Response



              STRONG
QUORUM   N/2 + 1 replicas   QUORUM   N/2 + 1 replicas

 ALL       All replicas      ALL       All replicas
A Side Note on
      CL
        Consistency
        Level is based
        on Replication
        Factor (N), not
        on the number
        of nodes in the
        system.
A Question of
       Time
       row



             column    column      column      column      column

             value      value       value       value       value

        timestamp     timestamp   timestamp   timestamp   timestamp




All columns have a value and a timestamp
Timestamps provided by clients
   usec resolution by convention
Latest timestamp wins
Vector clocks may be introduced in 0.7
Read Repair
      ?




Query all replicas on every read
  Data from one replica
  Checksum/timestamps from all
  others
If there is a mismatch:
  Pull all data and merge
  Write back to out of sync replicas
Weak vs. Strong
Weak Consistency
(reads)Perform repair after
returning results

      Strong Consistency (reads)
    Perform repair before returning
                             results
R+W>N

  Please imagine this inequality has huge fangs, dripping with the
blood of innocent, enterprise developers so you can best appreciate
                        the terror it inspires.
Our Guarantee
R+W>N guarantees overlap of
  read and write quorums


 W=2                 R=2

           N=3
A Matter of
Perspective
       View
    consistency



                Replica
              consistency
[2]
The Ring
           0
  range
                  113

375               125


 312
           250
Tokens
A TOKEN is a
partitioner-dependent
element on the ring
                  Each NODE has a
                  single, unique TOKEN

   Each NODE claims a RANGE of
   the ring from its TOKEN to the
   token of the previous node on
   the ring
Partitioning
    Map from Key Space to Token

RandomPartitioner
  Tokens are integers in the range 0-2127
  MD5(Key) -> Token
  Good: Even key distribution, Bad:
  Inefficient range queries
OrderPreservingPartitioner
  Tokens are UTF8 strings in the range ‘’-∞
  Key -> Token
  Good: Efficient range queries, Bad:
  Uneven key distribution
Snitching
     Map from Nodes to Physical
             Location
EndpointSnitch
  Guess at rack and datacenter based on IP address octets.


DatacenterEndpointSnitch
  Specify IP subnets for racks, grouped per datacenter.


PropertySnitch
  Specify arbitrary mappings from individual IP addresses to
  racks and datacenters.


            Or write your own!
Placement
  Map from Token Space to Nodes


The first replica is always placed
on the node that claims the
range in which the token falls.

Strategies determine where the
rest of the replicas are placed.
RackUnaware
    Place replicas on the N-1
subsequent nodes around the ring,
       ignoring topology.

datacenter A            datacenter B

     rack 1    rack 2        rack 1    rack 2
RackAware
Place the second replica in another
datacenter, and the remaining N-2
replicas on nodes in other racks in
       the same datacenter.
datacenter A             datacenter B

     rack 1     rack 2        rack 1    rack 2
DatacenterShard
Place M of the N replicas in another
 datacenter, and the remaining N -
 (M + 1) replicas on nodes in other
   racks in the same datacenter.
datacenter A            datacenter B

     rack 1    rack 2        rack 1    rack 2
Or write your own!
[fin]
Cassandra
http://cassandra.apache.org
Amazon Dynamo
   http://www.allthingsdistributed.com/2007/10/amazons_dynamo.html




       Google BigTable
                http://labs.google.com/papers/bigtable.html




Facebook Cassandra
http://www.cs.cornell.edu/projects/ladis2009/papers/lakshman-ladis2009.pdf
Thank you!
 Questions?

More Related Content

What's hot

RedisConf17 - Lyft - Geospatial at Scale - Daniel Hochman
RedisConf17 - Lyft - Geospatial at Scale - Daniel HochmanRedisConf17 - Lyft - Geospatial at Scale - Daniel Hochman
RedisConf17 - Lyft - Geospatial at Scale - Daniel Hochman
Redis Labs
 
Scalability, Availability & Stability Patterns
Scalability, Availability & Stability PatternsScalability, Availability & Stability Patterns
Scalability, Availability & Stability Patterns
Jonas Bonér
 
Hadoop Architecture | HDFS Architecture | Hadoop Architecture Tutorial | HDFS...
Hadoop Architecture | HDFS Architecture | Hadoop Architecture Tutorial | HDFS...Hadoop Architecture | HDFS Architecture | Hadoop Architecture Tutorial | HDFS...
Hadoop Architecture | HDFS Architecture | Hadoop Architecture Tutorial | HDFS...
Simplilearn
 
Intro to HBase
Intro to HBaseIntro to HBase
Intro to HBase
alexbaranau
 
Built in physical and logical replication in postgresql-Firat Gulec
Built in physical and logical replication in postgresql-Firat GulecBuilt in physical and logical replication in postgresql-Firat Gulec
Built in physical and logical replication in postgresql-Firat Gulec
FIRAT GULEC
 
Spark shuffle introduction
Spark shuffle introductionSpark shuffle introduction
Spark shuffle introduction
colorant
 
NoSQL Databases: Why, what and when
NoSQL Databases: Why, what and whenNoSQL Databases: Why, what and when
NoSQL Databases: Why, what and when
Lorenzo Alberton
 
Hadoop YARN
Hadoop YARNHadoop YARN
Hadoop YARN
Vigen Sahakyan
 
Cassandra Introduction & Features
Cassandra Introduction & FeaturesCassandra Introduction & Features
Cassandra Introduction & Features
DataStax Academy
 
Apache Spark Architecture
Apache Spark ArchitectureApache Spark Architecture
Apache Spark Architecture
Alexey Grishchenko
 
Introduction to Apache ZooKeeper
Introduction to Apache ZooKeeperIntroduction to Apache ZooKeeper
Introduction to Apache ZooKeeper
Saurav Haloi
 
Apache spark
Apache sparkApache spark
Apache spark
shima jafari
 
MongoDB presentation
MongoDB presentationMongoDB presentation
MongoDB presentation
Hyphen Call
 
Understanding Data Partitioning and Replication in Apache Cassandra
Understanding Data Partitioning and Replication in Apache CassandraUnderstanding Data Partitioning and Replication in Apache Cassandra
Understanding Data Partitioning and Replication in Apache Cassandra
DataStax
 
Introduction to Redis
Introduction to RedisIntroduction to Redis
Introduction to Redis
Dvir Volk
 
An overview of Neo4j Internals
An overview of Neo4j InternalsAn overview of Neo4j Internals
An overview of Neo4j Internals
Tobias Lindaaker
 
Introduction to Apache Kafka
Introduction to Apache KafkaIntroduction to Apache Kafka
Introduction to Apache Kafka
AIMDek Technologies
 
Handle Large Messages In Apache Kafka
Handle Large Messages In Apache KafkaHandle Large Messages In Apache Kafka
Handle Large Messages In Apache Kafka
Jiangjie Qin
 
Deep Dive on Amazon DynamoDB
Deep Dive on Amazon DynamoDB Deep Dive on Amazon DynamoDB
Deep Dive on Amazon DynamoDB
Amazon Web Services
 
What Is Apache Spark? | Introduction To Apache Spark | Apache Spark Tutorial ...
What Is Apache Spark? | Introduction To Apache Spark | Apache Spark Tutorial ...What Is Apache Spark? | Introduction To Apache Spark | Apache Spark Tutorial ...
What Is Apache Spark? | Introduction To Apache Spark | Apache Spark Tutorial ...
Simplilearn
 

What's hot (20)

RedisConf17 - Lyft - Geospatial at Scale - Daniel Hochman
RedisConf17 - Lyft - Geospatial at Scale - Daniel HochmanRedisConf17 - Lyft - Geospatial at Scale - Daniel Hochman
RedisConf17 - Lyft - Geospatial at Scale - Daniel Hochman
 
Scalability, Availability & Stability Patterns
Scalability, Availability & Stability PatternsScalability, Availability & Stability Patterns
Scalability, Availability & Stability Patterns
 
Hadoop Architecture | HDFS Architecture | Hadoop Architecture Tutorial | HDFS...
Hadoop Architecture | HDFS Architecture | Hadoop Architecture Tutorial | HDFS...Hadoop Architecture | HDFS Architecture | Hadoop Architecture Tutorial | HDFS...
Hadoop Architecture | HDFS Architecture | Hadoop Architecture Tutorial | HDFS...
 
Intro to HBase
Intro to HBaseIntro to HBase
Intro to HBase
 
Built in physical and logical replication in postgresql-Firat Gulec
Built in physical and logical replication in postgresql-Firat GulecBuilt in physical and logical replication in postgresql-Firat Gulec
Built in physical and logical replication in postgresql-Firat Gulec
 
Spark shuffle introduction
Spark shuffle introductionSpark shuffle introduction
Spark shuffle introduction
 
NoSQL Databases: Why, what and when
NoSQL Databases: Why, what and whenNoSQL Databases: Why, what and when
NoSQL Databases: Why, what and when
 
Hadoop YARN
Hadoop YARNHadoop YARN
Hadoop YARN
 
Cassandra Introduction & Features
Cassandra Introduction & FeaturesCassandra Introduction & Features
Cassandra Introduction & Features
 
Apache Spark Architecture
Apache Spark ArchitectureApache Spark Architecture
Apache Spark Architecture
 
Introduction to Apache ZooKeeper
Introduction to Apache ZooKeeperIntroduction to Apache ZooKeeper
Introduction to Apache ZooKeeper
 
Apache spark
Apache sparkApache spark
Apache spark
 
MongoDB presentation
MongoDB presentationMongoDB presentation
MongoDB presentation
 
Understanding Data Partitioning and Replication in Apache Cassandra
Understanding Data Partitioning and Replication in Apache CassandraUnderstanding Data Partitioning and Replication in Apache Cassandra
Understanding Data Partitioning and Replication in Apache Cassandra
 
Introduction to Redis
Introduction to RedisIntroduction to Redis
Introduction to Redis
 
An overview of Neo4j Internals
An overview of Neo4j InternalsAn overview of Neo4j Internals
An overview of Neo4j Internals
 
Introduction to Apache Kafka
Introduction to Apache KafkaIntroduction to Apache Kafka
Introduction to Apache Kafka
 
Handle Large Messages In Apache Kafka
Handle Large Messages In Apache KafkaHandle Large Messages In Apache Kafka
Handle Large Messages In Apache Kafka
 
Deep Dive on Amazon DynamoDB
Deep Dive on Amazon DynamoDB Deep Dive on Amazon DynamoDB
Deep Dive on Amazon DynamoDB
 
What Is Apache Spark? | Introduction To Apache Spark | Apache Spark Tutorial ...
What Is Apache Spark? | Introduction To Apache Spark | Apache Spark Tutorial ...What Is Apache Spark? | Introduction To Apache Spark | Apache Spark Tutorial ...
What Is Apache Spark? | Introduction To Apache Spark | Apache Spark Tutorial ...
 

Viewers also liked

Replication, Durability, and Disaster Recovery
Replication, Durability, and Disaster RecoveryReplication, Durability, and Disaster Recovery
Replication, Durability, and Disaster Recovery
Steven Francia
 
Understanding Data Consistency in Apache Cassandra
Understanding Data Consistency in Apache CassandraUnderstanding Data Consistency in Apache Cassandra
Understanding Data Consistency in Apache Cassandra
DataStax
 
An Overview of Apache Cassandra
An Overview of Apache CassandraAn Overview of Apache Cassandra
An Overview of Apache Cassandra
DataStax
 
Indexing in Cassandra
Indexing in CassandraIndexing in Cassandra
Indexing in Cassandra
Ed Anuff
 
How to size up an Apache Cassandra cluster (Training)
How to size up an Apache Cassandra cluster (Training)How to size up an Apache Cassandra cluster (Training)
How to size up an Apache Cassandra cluster (Training)
DataStax Academy
 
Cassandra NoSQL Tutorial
Cassandra NoSQL TutorialCassandra NoSQL Tutorial
Cassandra NoSQL Tutorial
Michelle Darling
 
Cassandra at NoSql Matters 2012
Cassandra at NoSql Matters 2012Cassandra at NoSql Matters 2012
Cassandra at NoSql Matters 2012
jbellis
 
Cassandra by example - the path of read and write requests
Cassandra by example - the path of read and write requestsCassandra by example - the path of read and write requests
Cassandra by example - the path of read and write requests
grro
 
C* Summit 2013: Eventual Consistency != Hopeful Consistency by Christos Kalan...
C* Summit 2013: Eventual Consistency != Hopeful Consistency by Christos Kalan...C* Summit 2013: Eventual Consistency != Hopeful Consistency by Christos Kalan...
C* Summit 2013: Eventual Consistency != Hopeful Consistency by Christos Kalan...
DataStax Academy
 
User Inspired Management of Scientific Jobs in Grids and Clouds
User Inspired Management of Scientific Jobs in Grids and CloudsUser Inspired Management of Scientific Jobs in Grids and Clouds
User Inspired Management of Scientific Jobs in Grids and Clouds
Eran Chinthaka Withana
 
Cassandra By Example: Data Modelling with CQL3
Cassandra By Example: Data Modelling with CQL3Cassandra By Example: Data Modelling with CQL3
Cassandra By Example: Data Modelling with CQL3
Eric Evans
 
Lect 07 data replication
Lect 07 data replicationLect 07 data replication
Lect 07 data replication
Bilal khan
 
Cassandra: Two data centers and great performance
Cassandra: Two data centers and great performanceCassandra: Two data centers and great performance
Cassandra: Two data centers and great performance
DATAVERSITY
 
IBM InfoSphere Data Replication for Big Data
IBM InfoSphere Data Replication for Big DataIBM InfoSphere Data Replication for Big Data
IBM InfoSphere Data Replication for Big Data
IBM Analytics
 
Large partition in Cassandra
Large partition in CassandraLarge partition in Cassandra
Large partition in Cassandra
Shogo Hoshii
 
Cassandra Data Model
Cassandra Data ModelCassandra Data Model
Cassandra Data Model
ebenhewitt
 
Introduction to Cassandra Basics
Introduction to Cassandra BasicsIntroduction to Cassandra Basics
Introduction to Cassandra Basics
nickmbailey
 
Learning Cassandra
Learning CassandraLearning Cassandra
Learning Cassandra
Dave Gardner
 
Apache Cassandra and DataStax Enterprise Explained with Peter Halliday at Wil...
Apache Cassandra and DataStax Enterprise Explained with Peter Halliday at Wil...Apache Cassandra and DataStax Enterprise Explained with Peter Halliday at Wil...
Apache Cassandra and DataStax Enterprise Explained with Peter Halliday at Wil...
DataStax Academy
 
Introduction to Apache Cassandra
Introduction to Apache CassandraIntroduction to Apache Cassandra
Introduction to Apache Cassandra
Robert Stupp
 

Viewers also liked (20)

Replication, Durability, and Disaster Recovery
Replication, Durability, and Disaster RecoveryReplication, Durability, and Disaster Recovery
Replication, Durability, and Disaster Recovery
 
Understanding Data Consistency in Apache Cassandra
Understanding Data Consistency in Apache CassandraUnderstanding Data Consistency in Apache Cassandra
Understanding Data Consistency in Apache Cassandra
 
An Overview of Apache Cassandra
An Overview of Apache CassandraAn Overview of Apache Cassandra
An Overview of Apache Cassandra
 
Indexing in Cassandra
Indexing in CassandraIndexing in Cassandra
Indexing in Cassandra
 
How to size up an Apache Cassandra cluster (Training)
How to size up an Apache Cassandra cluster (Training)How to size up an Apache Cassandra cluster (Training)
How to size up an Apache Cassandra cluster (Training)
 
Cassandra NoSQL Tutorial
Cassandra NoSQL TutorialCassandra NoSQL Tutorial
Cassandra NoSQL Tutorial
 
Cassandra at NoSql Matters 2012
Cassandra at NoSql Matters 2012Cassandra at NoSql Matters 2012
Cassandra at NoSql Matters 2012
 
Cassandra by example - the path of read and write requests
Cassandra by example - the path of read and write requestsCassandra by example - the path of read and write requests
Cassandra by example - the path of read and write requests
 
C* Summit 2013: Eventual Consistency != Hopeful Consistency by Christos Kalan...
C* Summit 2013: Eventual Consistency != Hopeful Consistency by Christos Kalan...C* Summit 2013: Eventual Consistency != Hopeful Consistency by Christos Kalan...
C* Summit 2013: Eventual Consistency != Hopeful Consistency by Christos Kalan...
 
User Inspired Management of Scientific Jobs in Grids and Clouds
User Inspired Management of Scientific Jobs in Grids and CloudsUser Inspired Management of Scientific Jobs in Grids and Clouds
User Inspired Management of Scientific Jobs in Grids and Clouds
 
Cassandra By Example: Data Modelling with CQL3
Cassandra By Example: Data Modelling with CQL3Cassandra By Example: Data Modelling with CQL3
Cassandra By Example: Data Modelling with CQL3
 
Lect 07 data replication
Lect 07 data replicationLect 07 data replication
Lect 07 data replication
 
Cassandra: Two data centers and great performance
Cassandra: Two data centers and great performanceCassandra: Two data centers and great performance
Cassandra: Two data centers and great performance
 
IBM InfoSphere Data Replication for Big Data
IBM InfoSphere Data Replication for Big DataIBM InfoSphere Data Replication for Big Data
IBM InfoSphere Data Replication for Big Data
 
Large partition in Cassandra
Large partition in CassandraLarge partition in Cassandra
Large partition in Cassandra
 
Cassandra Data Model
Cassandra Data ModelCassandra Data Model
Cassandra Data Model
 
Introduction to Cassandra Basics
Introduction to Cassandra BasicsIntroduction to Cassandra Basics
Introduction to Cassandra Basics
 
Learning Cassandra
Learning CassandraLearning Cassandra
Learning Cassandra
 
Apache Cassandra and DataStax Enterprise Explained with Peter Halliday at Wil...
Apache Cassandra and DataStax Enterprise Explained with Peter Halliday at Wil...Apache Cassandra and DataStax Enterprise Explained with Peter Halliday at Wil...
Apache Cassandra and DataStax Enterprise Explained with Peter Halliday at Wil...
 
Introduction to Apache Cassandra
Introduction to Apache CassandraIntroduction to Apache Cassandra
Introduction to Apache Cassandra
 

Similar to Introduction to Cassandra: Replication and Consistency

Dynamo: Not Just For Datastores
Dynamo: Not Just For DatastoresDynamo: Not Just For Datastores
Dynamo: Not Just For Datastores
Susan Potter
 
Design Patterns for Distributed Non-Relational Databases
Design Patterns for Distributed Non-Relational DatabasesDesign Patterns for Distributed Non-Relational Databases
Design Patterns for Distributed Non-Relational Databases
guestdfd1ec
 
Design Patterns For Distributed NO-reational databases
Design Patterns For Distributed NO-reational databasesDesign Patterns For Distributed NO-reational databases
Design Patterns For Distributed NO-reational databases
lovingprince58
 
Cassandra for Sysadmins
Cassandra for SysadminsCassandra for Sysadmins
Cassandra for Sysadmins
Nathan Milford
 
Handling Data in Mega Scale Web Systems
Handling Data in Mega Scale Web SystemsHandling Data in Mega Scale Web Systems
Handling Data in Mega Scale Web Systems
Vineet Gupta
 
Distributed Coordination
Distributed CoordinationDistributed Coordination
Distributed Coordination
Luis Galárraga
 
Dynamo cassandra
Dynamo cassandraDynamo cassandra
Dynamo cassandra
Wu Liang
 
Renegotiating the boundary between database latency and consistency
Renegotiating the boundary between database latency  and consistencyRenegotiating the boundary between database latency  and consistency
Renegotiating the boundary between database latency and consistency
ScyllaDB
 
NoSql Database
NoSql DatabaseNoSql Database
NoSql Database
Suresh Parmar
 
Cassandra & Python - Springfield MO User Group
Cassandra & Python - Springfield MO User GroupCassandra & Python - Springfield MO User Group
Cassandra & Python - Springfield MO User Group
Adam Hutson
 
Cassandra
CassandraCassandra
Cassandra
Upaang Saxena
 
NOSQL Database: Apache Cassandra
NOSQL Database: Apache CassandraNOSQL Database: Apache Cassandra
NOSQL Database: Apache Cassandra
Folio3 Software
 
Cassandra overview
Cassandra overviewCassandra overview
Cassandra overview
Sean Murphy
 
Distributed Database Consistency: Architectural Considerations and Tradeoffs
Distributed Database Consistency: Architectural Considerations and TradeoffsDistributed Database Consistency: Architectural Considerations and Tradeoffs
Distributed Database Consistency: Architectural Considerations and Tradeoffs
ScyllaDB
 
Talk about apache cassandra, TWJUG 2011
Talk about apache cassandra, TWJUG 2011Talk about apache cassandra, TWJUG 2011
Talk about apache cassandra, TWJUG 2011
Boris Yen
 
Talk About Apache Cassandra
Talk About Apache CassandraTalk About Apache Cassandra
Talk About Apache Cassandra
Jacky Chu
 
Basics of Distributed Systems - Distributed Storage
Basics of Distributed Systems - Distributed StorageBasics of Distributed Systems - Distributed Storage
Basics of Distributed Systems - Distributed Storage
Nilesh Salpe
 
Distribute Key Value Store
Distribute Key Value StoreDistribute Key Value Store
Distribute Key Value Store
Santal Li
 
Distribute key value_store
Distribute key value_storeDistribute key value_store
Distribute key value_store
drewz lin
 
Compilers Are Databases
Compilers Are DatabasesCompilers Are Databases
Compilers Are Databases
Martin Odersky
 

Similar to Introduction to Cassandra: Replication and Consistency (20)

Dynamo: Not Just For Datastores
Dynamo: Not Just For DatastoresDynamo: Not Just For Datastores
Dynamo: Not Just For Datastores
 
Design Patterns for Distributed Non-Relational Databases
Design Patterns for Distributed Non-Relational DatabasesDesign Patterns for Distributed Non-Relational Databases
Design Patterns for Distributed Non-Relational Databases
 
Design Patterns For Distributed NO-reational databases
Design Patterns For Distributed NO-reational databasesDesign Patterns For Distributed NO-reational databases
Design Patterns For Distributed NO-reational databases
 
Cassandra for Sysadmins
Cassandra for SysadminsCassandra for Sysadmins
Cassandra for Sysadmins
 
Handling Data in Mega Scale Web Systems
Handling Data in Mega Scale Web SystemsHandling Data in Mega Scale Web Systems
Handling Data in Mega Scale Web Systems
 
Distributed Coordination
Distributed CoordinationDistributed Coordination
Distributed Coordination
 
Dynamo cassandra
Dynamo cassandraDynamo cassandra
Dynamo cassandra
 
Renegotiating the boundary between database latency and consistency
Renegotiating the boundary between database latency  and consistencyRenegotiating the boundary between database latency  and consistency
Renegotiating the boundary between database latency and consistency
 
NoSql Database
NoSql DatabaseNoSql Database
NoSql Database
 
Cassandra & Python - Springfield MO User Group
Cassandra & Python - Springfield MO User GroupCassandra & Python - Springfield MO User Group
Cassandra & Python - Springfield MO User Group
 
Cassandra
CassandraCassandra
Cassandra
 
NOSQL Database: Apache Cassandra
NOSQL Database: Apache CassandraNOSQL Database: Apache Cassandra
NOSQL Database: Apache Cassandra
 
Cassandra overview
Cassandra overviewCassandra overview
Cassandra overview
 
Distributed Database Consistency: Architectural Considerations and Tradeoffs
Distributed Database Consistency: Architectural Considerations and TradeoffsDistributed Database Consistency: Architectural Considerations and Tradeoffs
Distributed Database Consistency: Architectural Considerations and Tradeoffs
 
Talk about apache cassandra, TWJUG 2011
Talk about apache cassandra, TWJUG 2011Talk about apache cassandra, TWJUG 2011
Talk about apache cassandra, TWJUG 2011
 
Talk About Apache Cassandra
Talk About Apache CassandraTalk About Apache Cassandra
Talk About Apache Cassandra
 
Basics of Distributed Systems - Distributed Storage
Basics of Distributed Systems - Distributed StorageBasics of Distributed Systems - Distributed Storage
Basics of Distributed Systems - Distributed Storage
 
Distribute Key Value Store
Distribute Key Value StoreDistribute Key Value Store
Distribute Key Value Store
 
Distribute key value_store
Distribute key value_storeDistribute key value_store
Distribute key value_store
 
Compilers Are Databases
Compilers Are DatabasesCompilers Are Databases
Compilers Are Databases
 

Recently uploaded

Programming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup SlidesProgramming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup Slides
Zilliz
 
JavaLand 2024: Application Development Green Masterplan
JavaLand 2024: Application Development Green MasterplanJavaLand 2024: Application Development Green Masterplan
JavaLand 2024: Application Development Green Masterplan
Miro Wengner
 
“How Axelera AI Uses Digital Compute-in-memory to Deliver Fast and Energy-eff...
“How Axelera AI Uses Digital Compute-in-memory to Deliver Fast and Energy-eff...“How Axelera AI Uses Digital Compute-in-memory to Deliver Fast and Energy-eff...
“How Axelera AI Uses Digital Compute-in-memory to Deliver Fast and Energy-eff...
Edge AI and Vision Alliance
 
Monitoring and Managing Anomaly Detection on OpenShift.pdf
Monitoring and Managing Anomaly Detection on OpenShift.pdfMonitoring and Managing Anomaly Detection on OpenShift.pdf
Monitoring and Managing Anomaly Detection on OpenShift.pdf
Tosin Akinosho
 
Astute Business Solutions | Oracle Cloud Partner |
Astute Business Solutions | Oracle Cloud Partner |Astute Business Solutions | Oracle Cloud Partner |
Astute Business Solutions | Oracle Cloud Partner |
AstuteBusiness
 
Dandelion Hashtable: beyond billion requests per second on a commodity server
Dandelion Hashtable: beyond billion requests per second on a commodity serverDandelion Hashtable: beyond billion requests per second on a commodity server
Dandelion Hashtable: beyond billion requests per second on a commodity server
Antonios Katsarakis
 
Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024
Jason Packer
 
Northern Engraving | Nameplate Manufacturing Process - 2024
Northern Engraving | Nameplate Manufacturing Process - 2024Northern Engraving | Nameplate Manufacturing Process - 2024
Northern Engraving | Nameplate Manufacturing Process - 2024
Northern Engraving
 
AppSec PNW: Android and iOS Application Security with MobSF
AppSec PNW: Android and iOS Application Security with MobSFAppSec PNW: Android and iOS Application Security with MobSF
AppSec PNW: Android and iOS Application Security with MobSF
Ajin Abraham
 
Taking AI to the Next Level in Manufacturing.pdf
Taking AI to the Next Level in Manufacturing.pdfTaking AI to the Next Level in Manufacturing.pdf
Taking AI to the Next Level in Manufacturing.pdf
ssuserfac0301
 
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge GraphGraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
Neo4j
 
Nordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptxNordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptx
MichaelKnudsen27
 
Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...
Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...
Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...
saastr
 
"Choosing proper type of scaling", Olena Syrota
"Choosing proper type of scaling", Olena Syrota"Choosing proper type of scaling", Olena Syrota
"Choosing proper type of scaling", Olena Syrota
Fwdays
 
Digital Banking in the Cloud: How Citizens Bank Unlocked Their Mainframe
Digital Banking in the Cloud: How Citizens Bank Unlocked Their MainframeDigital Banking in the Cloud: How Citizens Bank Unlocked Their Mainframe
Digital Banking in the Cloud: How Citizens Bank Unlocked Their Mainframe
Precisely
 
Fueling AI with Great Data with Airbyte Webinar
Fueling AI with Great Data with Airbyte WebinarFueling AI with Great Data with Airbyte Webinar
Fueling AI with Great Data with Airbyte Webinar
Zilliz
 
What is an RPA CoE? Session 1 – CoE Vision
What is an RPA CoE?  Session 1 – CoE VisionWhat is an RPA CoE?  Session 1 – CoE Vision
What is an RPA CoE? Session 1 – CoE Vision
DianaGray10
 
The Microsoft 365 Migration Tutorial For Beginner.pptx
The Microsoft 365 Migration Tutorial For Beginner.pptxThe Microsoft 365 Migration Tutorial For Beginner.pptx
The Microsoft 365 Migration Tutorial For Beginner.pptx
operationspcvita
 
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
Jason Yip
 
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
Edge AI and Vision Alliance
 

Recently uploaded (20)

Programming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup SlidesProgramming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup Slides
 
JavaLand 2024: Application Development Green Masterplan
JavaLand 2024: Application Development Green MasterplanJavaLand 2024: Application Development Green Masterplan
JavaLand 2024: Application Development Green Masterplan
 
“How Axelera AI Uses Digital Compute-in-memory to Deliver Fast and Energy-eff...
“How Axelera AI Uses Digital Compute-in-memory to Deliver Fast and Energy-eff...“How Axelera AI Uses Digital Compute-in-memory to Deliver Fast and Energy-eff...
“How Axelera AI Uses Digital Compute-in-memory to Deliver Fast and Energy-eff...
 
Monitoring and Managing Anomaly Detection on OpenShift.pdf
Monitoring and Managing Anomaly Detection on OpenShift.pdfMonitoring and Managing Anomaly Detection on OpenShift.pdf
Monitoring and Managing Anomaly Detection on OpenShift.pdf
 
Astute Business Solutions | Oracle Cloud Partner |
Astute Business Solutions | Oracle Cloud Partner |Astute Business Solutions | Oracle Cloud Partner |
Astute Business Solutions | Oracle Cloud Partner |
 
Dandelion Hashtable: beyond billion requests per second on a commodity server
Dandelion Hashtable: beyond billion requests per second on a commodity serverDandelion Hashtable: beyond billion requests per second on a commodity server
Dandelion Hashtable: beyond billion requests per second on a commodity server
 
Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024
 
Northern Engraving | Nameplate Manufacturing Process - 2024
Northern Engraving | Nameplate Manufacturing Process - 2024Northern Engraving | Nameplate Manufacturing Process - 2024
Northern Engraving | Nameplate Manufacturing Process - 2024
 
AppSec PNW: Android and iOS Application Security with MobSF
AppSec PNW: Android and iOS Application Security with MobSFAppSec PNW: Android and iOS Application Security with MobSF
AppSec PNW: Android and iOS Application Security with MobSF
 
Taking AI to the Next Level in Manufacturing.pdf
Taking AI to the Next Level in Manufacturing.pdfTaking AI to the Next Level in Manufacturing.pdf
Taking AI to the Next Level in Manufacturing.pdf
 
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge GraphGraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
 
Nordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptxNordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptx
 
Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...
Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...
Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...
 
"Choosing proper type of scaling", Olena Syrota
"Choosing proper type of scaling", Olena Syrota"Choosing proper type of scaling", Olena Syrota
"Choosing proper type of scaling", Olena Syrota
 
Digital Banking in the Cloud: How Citizens Bank Unlocked Their Mainframe
Digital Banking in the Cloud: How Citizens Bank Unlocked Their MainframeDigital Banking in the Cloud: How Citizens Bank Unlocked Their Mainframe
Digital Banking in the Cloud: How Citizens Bank Unlocked Their Mainframe
 
Fueling AI with Great Data with Airbyte Webinar
Fueling AI with Great Data with Airbyte WebinarFueling AI with Great Data with Airbyte Webinar
Fueling AI with Great Data with Airbyte Webinar
 
What is an RPA CoE? Session 1 – CoE Vision
What is an RPA CoE?  Session 1 – CoE VisionWhat is an RPA CoE?  Session 1 – CoE Vision
What is an RPA CoE? Session 1 – CoE Vision
 
The Microsoft 365 Migration Tutorial For Beginner.pptx
The Microsoft 365 Migration Tutorial For Beginner.pptxThe Microsoft 365 Migration Tutorial For Beginner.pptx
The Microsoft 365 Migration Tutorial For Beginner.pptx
 
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
 
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
 

Introduction to Cassandra: Replication and Consistency

  • 1. Cassandra Replication & Consistency Benjamin Black, b@b3k.us 2010-04-28
  • 2. Dynamo BigTable Cluster Sparse, management, columnar data replication, fault model, storage tolerance architecture Cassandra
  • 3. Dynamo-like Features Symmetric, P2P architecture No special nodes/SPOFs Gossip-based cluster management Distributed hash table for data placement Pluggable partitioning Pluggable topology discovery Pluggable placement strategies Tunable, eventual consistency
  • 4. BigTable-like Features Sparse, “columnar” data model Optional, 2-level maps called Super Column Families SSTable disk storage Append-only commit log Memtable (buffer and sort) Immutable SSTable files Hadoop integration
  • 5. Topic(s) for Today Replication & Consistency
  • 6. [1]
  • 7. Replication How many copies of each piece of data do we want in the system? N=3
  • 8. Consistency Level How many replicas must respond to declare success? W=2 R=2 ?
  • 9. CL.Options WRITE READ Level Description Level Description ZERO Cross fingers ANY WEAK 1st Response (including HH) ONE 1st Response ONE 1st Response STRONG QUORUM N/2 + 1 replicas QUORUM N/2 + 1 replicas ALL All replicas ALL All replicas
  • 10. A Side Note on CL Consistency Level is based on Replication Factor (N), not on the number of nodes in the system.
  • 11. A Question of Time row column column column column column value value value value value timestamp timestamp timestamp timestamp timestamp All columns have a value and a timestamp Timestamps provided by clients usec resolution by convention Latest timestamp wins Vector clocks may be introduced in 0.7
  • 12. Read Repair ? Query all replicas on every read Data from one replica Checksum/timestamps from all others If there is a mismatch: Pull all data and merge Write back to out of sync replicas
  • 13. Weak vs. Strong Weak Consistency (reads)Perform repair after returning results Strong Consistency (reads) Perform repair before returning results
  • 14. R+W>N Please imagine this inequality has huge fangs, dripping with the blood of innocent, enterprise developers so you can best appreciate the terror it inspires.
  • 15. Our Guarantee R+W>N guarantees overlap of read and write quorums W=2 R=2 N=3
  • 16. A Matter of Perspective View consistency Replica consistency
  • 17. [2]
  • 18. The Ring 0 range 113 375 125 312 250
  • 19. Tokens A TOKEN is a partitioner-dependent element on the ring Each NODE has a single, unique TOKEN Each NODE claims a RANGE of the ring from its TOKEN to the token of the previous node on the ring
  • 20. Partitioning Map from Key Space to Token RandomPartitioner Tokens are integers in the range 0-2127 MD5(Key) -> Token Good: Even key distribution, Bad: Inefficient range queries OrderPreservingPartitioner Tokens are UTF8 strings in the range ‘’-∞ Key -> Token Good: Efficient range queries, Bad: Uneven key distribution
  • 21. Snitching Map from Nodes to Physical Location EndpointSnitch Guess at rack and datacenter based on IP address octets. DatacenterEndpointSnitch Specify IP subnets for racks, grouped per datacenter. PropertySnitch Specify arbitrary mappings from individual IP addresses to racks and datacenters. Or write your own!
  • 22. Placement Map from Token Space to Nodes The first replica is always placed on the node that claims the range in which the token falls. Strategies determine where the rest of the replicas are placed.
  • 23. RackUnaware Place replicas on the N-1 subsequent nodes around the ring, ignoring topology. datacenter A datacenter B rack 1 rack 2 rack 1 rack 2
  • 24. RackAware Place the second replica in another datacenter, and the remaining N-2 replicas on nodes in other racks in the same datacenter. datacenter A datacenter B rack 1 rack 2 rack 1 rack 2
  • 25. DatacenterShard Place M of the N replicas in another datacenter, and the remaining N - (M + 1) replicas on nodes in other racks in the same datacenter. datacenter A datacenter B rack 1 rack 2 rack 1 rack 2
  • 27. [fin]
  • 29. Amazon Dynamo http://www.allthingsdistributed.com/2007/10/amazons_dynamo.html Google BigTable http://labs.google.com/papers/bigtable.html Facebook Cassandra http://www.cs.cornell.edu/projects/ladis2009/papers/lakshman-ladis2009.pdf

Editor's Notes