Solution
Solution
Use table 2.4 for matrices properties and table 2.1 for fibers properties.
a)
---------------------------------------------------------------------------
b)
------------------------------------------------------------------
c)
I have tried a lot of combinations and volume fraction using data from tables
mentioned above and I couldn't choose materials that satisfy the requirements.
To be asked about in the lecture.
MATLAB Code
clear;clc;close all;
Ef=input('Ef(in GPa) = ')
Em=input('Em(in Gpa) = ')
nu_f=input('fiber poisson ratio = ')
nu_m=input('matrix poisson ratio = ')
Vf=input('fiber volume fraction = ')
alfa_f=input('fiber thermal expansion coeff = ')
alfa_m=input('matrithermal expansion coeff = ')
Vm=1-Vf;
Gf=Ef/(2*(1+nu_f))
Gm=Em/(2*(1+nu_m))
E1=Vm*Em+Vf*Ef
E2=Ef*Em/(Vf*Em+Vm*Ef)
G12=Gf*Gm/(Vf*Gm+Vm*Gf)
eta23=(3-4*nu_m+Gm/Gf)/(4*(1-nu_m))
G23=Gm*((Vf+eta23*(1-Vf))/(eta23*(1-Vf)+Vf*Gm/Gf))
nu_12=nu_f*Vf+nu_m*Vm
alfa1=alfa_f*Vf*Ef/(Vf*Ef+Vm*Em)+alfa_m*Vm*Em/(Vf*Ef+Vm*Em)
alfa_2=alfa_f*Vf+alfa_m*Vm
Results On problem 4.6 part (C)
Ef(in GPa) = 230
Ef =
230
Em(in Gpa) = 3.4
Em =
3.4000
fiber poisson ratio = 0.2
nu_f =
0.2000
matrix poisson ratio = 0.38
nu_m =
0.3800
fiber volume fraction = 0.55
Vf =
0.5500
fiber thermal expansion coeff = 0
alfa_f =
0
matrithermal expansion coeff = 0
alfa_m =
0
Gf =
95.8333
Gm =
1.2319
E1 =
128.0300
E2 =
7.4215
G12 =
2.6952
eta23 =
0.6020
G23 =
3.6382
nu_12 =
0.2810
alfa1 =
0
alfa_2 =
0

Hw 4

  • 1.
    Solution Solution Use table 2.4for matrices properties and table 2.1 for fibers properties. a)
  • 2.
  • 3.
    I have trieda lot of combinations and volume fraction using data from tables mentioned above and I couldn't choose materials that satisfy the requirements. To be asked about in the lecture. MATLAB Code clear;clc;close all; Ef=input('Ef(in GPa) = ') Em=input('Em(in Gpa) = ') nu_f=input('fiber poisson ratio = ') nu_m=input('matrix poisson ratio = ') Vf=input('fiber volume fraction = ') alfa_f=input('fiber thermal expansion coeff = ') alfa_m=input('matrithermal expansion coeff = ') Vm=1-Vf; Gf=Ef/(2*(1+nu_f)) Gm=Em/(2*(1+nu_m)) E1=Vm*Em+Vf*Ef E2=Ef*Em/(Vf*Em+Vm*Ef) G12=Gf*Gm/(Vf*Gm+Vm*Gf) eta23=(3-4*nu_m+Gm/Gf)/(4*(1-nu_m)) G23=Gm*((Vf+eta23*(1-Vf))/(eta23*(1-Vf)+Vf*Gm/Gf)) nu_12=nu_f*Vf+nu_m*Vm alfa1=alfa_f*Vf*Ef/(Vf*Ef+Vm*Em)+alfa_m*Vm*Em/(Vf*Ef+Vm*Em) alfa_2=alfa_f*Vf+alfa_m*Vm Results On problem 4.6 part (C) Ef(in GPa) = 230
  • 4.
    Ef = 230 Em(in Gpa)= 3.4 Em = 3.4000 fiber poisson ratio = 0.2 nu_f = 0.2000 matrix poisson ratio = 0.38 nu_m = 0.3800 fiber volume fraction = 0.55 Vf = 0.5500
  • 5.
    fiber thermal expansioncoeff = 0 alfa_f = 0 matrithermal expansion coeff = 0 alfa_m = 0 Gf = 95.8333 Gm = 1.2319 E1 = 128.0300
  • 6.
    E2 = 7.4215 G12 = 2.6952 eta23= 0.6020 G23 = 3.6382 nu_12 = 0.2810 alfa1 =
  • 7.