SlideShare a Scribd company logo
1 of 26
HIGH FREQUENCY CURRENT
DR.AYESHA BHATTI
BSPT(K.E.M.U) PP.DPT(RCRS)
HIGH FREQUENCY CURRENT:
High frequency current is a current which alternates so rapidly that it
doesn’t stimulate motor or sensory nerves.
To achieve this it must have the frequency of more than approximately
more than 500,000 cycles/sec and it is often termed as oscillating
current.
An oscillation may be defined as a swinging to and fro.
A high frequency alternating current is described as an oscillating
current, because the electrons swing to and fro in the circuit and
behavior of an oscillating current in many ways resembles that of other
oscillating systems.
PRODUCTION OF HIGH FREQUENCY CURRENT:
The valve is a device which transmits in one direction only, common
example being the valve of heart, veins and that of bicycle tyre .
A thermionic valve is a device which transmits an electric current in one
direction only, and the term thermionic implies that heat plays some
part in the working.
There are various types of thermionic valve which are named according
to the number of electrodes that they contain.
THE DIODE VALVES:
This is the simplest form of thermionic valve, and contains two
electrodes. The filament and the plate which are enclosed in evacuated
glass bulb. For a current to pass across the valve the filament must be
heated and a p.d(potential difference) applied, so that the plate is
positive in relation to the filament. When the filament is heated
thermionic emission to the filament, the free electrons are attracted
through the vacuum to the plate and current passes across the valve.
if P.d is reversed so that the plate is negative relative to the filament, as
there are no free electrons in the region of plate.
Thus electron can pass from the filament to the plate, but not in reverse
direction, and the valve transmits current in one direction only.
The pressure in the valve must be low so that there is minimal
impedance to the electron movement.
The intensity of the current that flows across the valve depends on
heating of filament and on p.d the filament and the plate.
Increasing the former increases the number of electrons that are
liberated and increase in p.d makes available the greater force to attract
them across the valve.
The filament is heated by an electric current and circuit which carries
this current is known as the filament circuit.
This circuit which carries the current which passes across the valve is
termed the plate or anode circuit.
The filament may be heated directly by passing the electric current
through it or may be of the indirectly heated type.
The later takes rather longer to reach the necessary temperature and
there is some delay after switching on before the valve begins to
transmit current.
THE TRIODE VALVE:
This is constructed in a similar manner to the diode,, but in addition
contains a third electrode, the grid, which is placed b/w the filament
and the plate.
The grid may consists of Mattel plate perforated to allow the electrons
to pass through, or, more usually, may be a coil of wire.
When the filament is heated a current can be passed through the valve.
As in the diode, in one direction only i.e. from the filament to the plate.
If The grid is uncharged it has no effect on the current, that the electron
pass through the opening in it and on to the anode, if the grid is charges
negatively from some outside source, it repels electrons, so that the
current is reduced on intensity, with the stronger charge stopped
completely.
If, however, the grid is charged positively the electrons can pass and
current flows. The intensity of the current is then greater than when the
grid id uncharged, as positive electrons away from the filament.
Most of these pass through the grid and on to the anode.
Triode symbol. From top
to bottom: plate (anode),
control grid, cathode,
heater (filament)
The charge is applied to the grid from an external source are known as
grid biased and, as the grid lies closer to the filament than does the
plate, the grid charged has a greater influence on the flow of current
than has a similar charge on the anode.
The strength of the current going across the valve can be regulated, as in
the diode, by altering the temperature of the filament or by altering the
positive charge applied to the anode.
In addition, the flow of current across the triode valve can be regulated
by adjusting the biased of the grid.
The triode valve has various functions in electrometrical apparatus, the
principle ones being its used for the production of the interrupted direct
and other muscle stimulation currents and, in conjunction with a
condenser and an inductance, for the production of high frequency
currents.
It is not used specifically as a rectifier, but will always rectify the current
that passes through it.
TRANSISTORS
– (bipolar) transistor = combination of two diodes that share
middle portion, called “base” of transistor; other two
sections: “emitter'' and “collector”;
– usually, base is very thin and lightly doped.
– two kinds of bipolar transistors: pnp and npn transistors
– “pnp” means emitter is p-type, base is n-type, and collector
is p-type material;
– in “normal operation of pnp transistor, apply positive
voltage to emitter, negative voltage to collector;
Fig
operation of pnp transistor:
operation of pnp transistor:
– if emitter-base junction is forward biased, “holes
flow” from battery into emitter, move into base;
– some holes annihilate with electrons in n-type
base, but base thin and lightly doped  most holes
make it through base into collector,
– holes move through collector into negative
terminal of battery; i.e. “collector current” flows
whose size depends on how many holes have been
captured by electrons in the base;
operation of pnp transistor:
• this depends on the number of n-type carriers in the base
which can be controlled by the size of the current (the “base
current”) that is allowed to flow from the base to the emitter;
the base current is usually very small; small changes in the
base current can cause a big difference in the collector current
Transistor operation
– transistor acts as amplifier of base current,
since small changes in base current cause big
changes in collector current.
– transistor as switch: if voltage applied to base is
such that emitter-base junction is reverse-biased,
no current flows through transistor -- transistor is
“off”
– therefore, a transistor can be used as a voltage-
controlled switch; computers use transistors in this
way.
What is DIATHERMY?
• The use of non-ionizing electromagnetic
energy from the radio-frequency spectrum
as therapeutic agent
Types of Diathermy
Long wave
- longest wavelength 300 – 30 m
- most penetrating
- no longer utilized due to high potential of
causing burns and interference with radio
transmissions
Shortwave
Microwave
PRODUCTION OF HIGH FREQUECHY SHORT WAVES:
High frequency electromagnetic waves of frequency b/w 107 or 108 and
a wavelength b/w 30-3 m to generate heat in body tissues.
therapeutically used and available f=27.12MHz and λ=11m commonly.
It is not possible to construct any mechanical device which causes
sufficient rapid movement to produce high frequency current so this
type of current is obtained by discharging a condenser through an
inductance of low ohmic resistance.
The basic oscillator circuit consists of a condenser and an inductance
and current of different frequencies are obtained by selecting suitable
condensers and inductances.
If a current of high frequency is required the capacity and inductance
are small, while to produce a current of lower frequency a larger
condenser and/or inductance are used.
Basic oscillator circuit is now a days frequently replaced by a more
modern oscillator such as co-axial line or pot oscillator but the principle
remain same.
In order to produce high frequency current the condenser must be
made to charge and discharge repeatedly and to achieve this the
oscillator is incorporated in either a spark gap or a valve circuit, the
latter being commonly used in apparatus encountered in physiotherapy
department. In future transistor may replace the triode valve.
The high frequency current is produced in the basic oscillator which is
incorporated in anode circuit of triode valve.
This current produces a similar high frequency current in a second
circuit, the resonator circuit by electromagnetic induction and by action
of wireless waves.
It is the current from this second circuit, which is used for the treatment
of patients and for the production of oscillator and a resonator circuits
must be in a resonance with each other.
For this to occur the product of inductance and capacity must be same
for both circuits.
MICRO WAVE PRODUCTION:
Microwave diathermy can be defined as Use of microwave for various
therapeutic purposes. Microwave has much higher frequency and a
shorter wavelength than short wave diathermy.
The frequency and wavelength ranges from 300 MHz TO 300 GHz and
1cm to 1m.
The commonly used frequency are 2456 MHz, 915 MHz and 433 MHz
with a wavelength 12.24 cm ,32.79cm and 69cm respectively.
PRODUCTION OF MICROWAVES:
The microwave circuit is connected to the main AC which provides it a
current of 50 Hz and a voltage of 220volts.
It is not possible to produce microwaves by mechanical means and
hence a special type of thermionic valve is used called magnetron.
The primary function of magnetron is to produce high frequency current
required for he production of microwaves.
Magnetron is special type of thermionic valve characterized by centrally
placed cathode and a surrounding circular metal anode.
MICROWAVE DIATHERMY APPARATUS
Coaxial cables carries this high frequency currents from the magnetron
and passes it to the antenna of emitter.
Emitter is also known as director or applicator consists of antenna and a
reflector.
Antenna is mounted in front of a metal reflector. Reflector is a metal
plate which directs the microwaves in on direction only.
The distance b/w the emitter and skin should be about 10-20 cms from
the body.
However vary according to size of emitter , the part to be treated and
condition of patient.
THERAPEUTIC EFFECTS
• Increased blood flow or circulation to the
area
• Increased tissue temperature
• Increased metabolism
• Facilitate relaxation
• Increased pain threshold
• Decreased blood viscosity
INDICATIONS
• Soft tissue injury
• Mobilization
• Pain relief
CONTRAINDICATIONS
• Pacemakers
• Metal implants
• Impaired
sensation
• Pregnancy
• Hemorrhage
• Ischemic Tissue
• Testicles and eyes
• Malignant CA
• Active TB
• Fever
• Thrombosis
• X-ray exposure
• Uncooperative
patient
• Areas of poor
circulation
THANKS

More Related Content

What's hot (20)

Russian current
Russian currentRussian current
Russian current
 
IDC
IDCIDC
IDC
 
Faradic current
Faradic currentFaradic current
Faradic current
 
Medium Frequency Currents in Physiotherapy SRS
Medium Frequency Currents in  Physiotherapy SRSMedium Frequency Currents in  Physiotherapy SRS
Medium Frequency Currents in Physiotherapy SRS
 
Short wave diathermy (s.w.d) electro therapy
Short wave diathermy (s.w.d) electro therapyShort wave diathermy (s.w.d) electro therapy
Short wave diathermy (s.w.d) electro therapy
 
LASER
LASERLASER
LASER
 
Sinusoidal current
Sinusoidal currentSinusoidal current
Sinusoidal current
 
S d curve
S d curveS d curve
S d curve
 
Pulsed shortwave
Pulsed shortwavePulsed shortwave
Pulsed shortwave
 
MWD
MWDMWD
MWD
 
Russian current
Russian currentRussian current
Russian current
 
Galvanic-Current.pptx
Galvanic-Current.pptxGalvanic-Current.pptx
Galvanic-Current.pptx
 
SD curve (Strength Duration Curve)
SD curve (Strength Duration Curve)SD curve (Strength Duration Curve)
SD curve (Strength Duration Curve)
 
Constant galvanic current
Constant galvanic currentConstant galvanic current
Constant galvanic current
 
Laser therapy (physiotherapy)
Laser therapy (physiotherapy)Laser therapy (physiotherapy)
Laser therapy (physiotherapy)
 
Interferential Therapy (IFT)
Interferential Therapy (IFT)Interferential Therapy (IFT)
Interferential Therapy (IFT)
 
Ultrasonic therapy
Ultrasonic therapyUltrasonic therapy
Ultrasonic therapy
 
Suspension therapy
Suspension therapySuspension therapy
Suspension therapy
 
Electrotherapy intro.. 5 th semester
Electrotherapy intro.. 5 th semesterElectrotherapy intro.. 5 th semester
Electrotherapy intro.. 5 th semester
 
Diadynamic currents
Diadynamic currentsDiadynamic currents
Diadynamic currents
 

Similar to High frequency current

X ray generator
X ray generatorX ray generator
X ray generatoraslam bs
 
Electricity1,corrected.pptx
Electricity1,corrected.pptxElectricity1,corrected.pptx
Electricity1,corrected.pptxmohamedrifky10
 
High direct current measurement
High direct current measurementHigh direct current measurement
High direct current measurementMd Ibrahim Khalil
 
X-Ray Generators.pptx
X-Ray Generators.pptxX-Ray Generators.pptx
X-Ray Generators.pptxRohit Bansal
 
Current Electricity- Dr. Diksha Gondkar, MPT (Neuro)
Current Electricity- Dr. Diksha Gondkar, MPT (Neuro)Current Electricity- Dr. Diksha Gondkar, MPT (Neuro)
Current Electricity- Dr. Diksha Gondkar, MPT (Neuro)DikshaGondkar
 
clap switch.ppt
clap switch.pptclap switch.ppt
clap switch.pptHamed Raza
 
1 basic electronics
1 basic electronics1 basic electronics
1 basic electronicsPaulo Abelho
 
"high tension generator", "high tension","tension generator", "generator", ...
"high tension generator",  "high tension","tension generator",  "generator", ..."high tension generator",  "high tension","tension generator",  "generator", ...
"high tension generator", "high tension","tension generator", "generator", ...Prem Murti
 
Wirless Power Transmission
Wirless Power TransmissionWirless Power Transmission
Wirless Power TransmissionVamsi Krishna
 
circuit diagram.pptx
circuit diagram.pptxcircuit diagram.pptx
circuit diagram.pptxFAYAZ KHAWAJA
 
UNIT V RADAR TRANSMITTERS AND RECEIVERS 14.11.23.pdf
UNIT V RADAR TRANSMITTERS AND RECEIVERS 14.11.23.pdfUNIT V RADAR TRANSMITTERS AND RECEIVERS 14.11.23.pdf
UNIT V RADAR TRANSMITTERS AND RECEIVERS 14.11.23.pdfdevicaf983
 
X-Ray Tube complete-1.pptx
X-Ray Tube complete-1.pptxX-Ray Tube complete-1.pptx
X-Ray Tube complete-1.pptxNMdcat2021
 

Similar to High frequency current (20)

X ray generator
X ray generatorX ray generator
X ray generator
 
Short wave diathermy.pptx
Short wave diathermy.pptxShort wave diathermy.pptx
Short wave diathermy.pptx
 
Electricity,.pdf
Electricity,.pdfElectricity,.pdf
Electricity,.pdf
 
Electricity1,corrected.pptx
Electricity1,corrected.pptxElectricity1,corrected.pptx
Electricity1,corrected.pptx
 
High direct current measurement
High direct current measurementHigh direct current measurement
High direct current measurement
 
X ray generators
X ray generatorsX ray generators
X ray generators
 
X-Ray Generators.pptx
X-Ray Generators.pptxX-Ray Generators.pptx
X-Ray Generators.pptx
 
Current Electricity- Dr. Diksha Gondkar, MPT (Neuro)
Current Electricity- Dr. Diksha Gondkar, MPT (Neuro)Current Electricity- Dr. Diksha Gondkar, MPT (Neuro)
Current Electricity- Dr. Diksha Gondkar, MPT (Neuro)
 
clap switch.ppt
clap switch.pptclap switch.ppt
clap switch.ppt
 
ELECTRICITY (1).pptx
ELECTRICITY (1).pptxELECTRICITY (1).pptx
ELECTRICITY (1).pptx
 
Electro presentation
Electro presentationElectro presentation
Electro presentation
 
1 basic electronics
1 basic electronics1 basic electronics
1 basic electronics
 
Introduction of electricity
Introduction of electricityIntroduction of electricity
Introduction of electricity
 
Linac presentation
Linac presentationLinac presentation
Linac presentation
 
"high tension generator", "high tension","tension generator", "generator", ...
"high tension generator",  "high tension","tension generator",  "generator", ..."high tension generator",  "high tension","tension generator",  "generator", ...
"high tension generator", "high tension","tension generator", "generator", ...
 
Linear Accelerators.pptx
Linear Accelerators.pptxLinear Accelerators.pptx
Linear Accelerators.pptx
 
Wirless Power Transmission
Wirless Power TransmissionWirless Power Transmission
Wirless Power Transmission
 
circuit diagram.pptx
circuit diagram.pptxcircuit diagram.pptx
circuit diagram.pptx
 
UNIT V RADAR TRANSMITTERS AND RECEIVERS 14.11.23.pdf
UNIT V RADAR TRANSMITTERS AND RECEIVERS 14.11.23.pdfUNIT V RADAR TRANSMITTERS AND RECEIVERS 14.11.23.pdf
UNIT V RADAR TRANSMITTERS AND RECEIVERS 14.11.23.pdf
 
X-Ray Tube complete-1.pptx
X-Ray Tube complete-1.pptxX-Ray Tube complete-1.pptx
X-Ray Tube complete-1.pptx
 

Recently uploaded

Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfSELF-EXPLANATORY
 
insect anatomy and insect body wall and their physiology
insect anatomy and insect body wall and their  physiologyinsect anatomy and insect body wall and their  physiology
insect anatomy and insect body wall and their physiologyDrAnita Sharma
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxpriyankatabhane
 
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxNandakishor Bhaurao Deshmukh
 
Heredity: Inheritance and Variation of Traits
Heredity: Inheritance and Variation of TraitsHeredity: Inheritance and Variation of Traits
Heredity: Inheritance and Variation of TraitsCharlene Llagas
 
Twin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptxTwin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptxEran Akiva Sinbar
 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxFarihaAbdulRasheed
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.PraveenaKalaiselvan1
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Welcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work DayWelcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work DayZachary Labe
 
Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫qfactory1
 
Temporomandibular joint Muscles of Mastication
Temporomandibular joint Muscles of MasticationTemporomandibular joint Muscles of Mastication
Temporomandibular joint Muscles of Masticationvidulajaib
 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentationtahreemzahra82
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
 
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tantaDashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tantaPraksha3
 
Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2John Carlo Rollon
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 

Recently uploaded (20)

Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
 
insect anatomy and insect body wall and their physiology
insect anatomy and insect body wall and their  physiologyinsect anatomy and insect body wall and their  physiology
insect anatomy and insect body wall and their physiology
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
 
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
 
Heredity: Inheritance and Variation of Traits
Heredity: Inheritance and Variation of TraitsHeredity: Inheritance and Variation of Traits
Heredity: Inheritance and Variation of Traits
 
Twin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptxTwin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptx
 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Welcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work DayWelcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work Day
 
Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫
 
Temporomandibular joint Muscles of Mastication
Temporomandibular joint Muscles of MasticationTemporomandibular joint Muscles of Mastication
Temporomandibular joint Muscles of Mastication
 
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort ServiceHot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -I
 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentation
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
 
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tantaDashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
 
Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 

High frequency current

  • 1. HIGH FREQUENCY CURRENT DR.AYESHA BHATTI BSPT(K.E.M.U) PP.DPT(RCRS)
  • 2. HIGH FREQUENCY CURRENT: High frequency current is a current which alternates so rapidly that it doesn’t stimulate motor or sensory nerves. To achieve this it must have the frequency of more than approximately more than 500,000 cycles/sec and it is often termed as oscillating current. An oscillation may be defined as a swinging to and fro. A high frequency alternating current is described as an oscillating current, because the electrons swing to and fro in the circuit and behavior of an oscillating current in many ways resembles that of other oscillating systems.
  • 3. PRODUCTION OF HIGH FREQUENCY CURRENT: The valve is a device which transmits in one direction only, common example being the valve of heart, veins and that of bicycle tyre . A thermionic valve is a device which transmits an electric current in one direction only, and the term thermionic implies that heat plays some part in the working. There are various types of thermionic valve which are named according to the number of electrodes that they contain. THE DIODE VALVES: This is the simplest form of thermionic valve, and contains two electrodes. The filament and the plate which are enclosed in evacuated glass bulb. For a current to pass across the valve the filament must be heated and a p.d(potential difference) applied, so that the plate is positive in relation to the filament. When the filament is heated thermionic emission to the filament, the free electrons are attracted through the vacuum to the plate and current passes across the valve.
  • 4.
  • 5. if P.d is reversed so that the plate is negative relative to the filament, as there are no free electrons in the region of plate. Thus electron can pass from the filament to the plate, but not in reverse direction, and the valve transmits current in one direction only. The pressure in the valve must be low so that there is minimal impedance to the electron movement. The intensity of the current that flows across the valve depends on heating of filament and on p.d the filament and the plate. Increasing the former increases the number of electrons that are liberated and increase in p.d makes available the greater force to attract them across the valve.
  • 6. The filament is heated by an electric current and circuit which carries this current is known as the filament circuit. This circuit which carries the current which passes across the valve is termed the plate or anode circuit. The filament may be heated directly by passing the electric current through it or may be of the indirectly heated type. The later takes rather longer to reach the necessary temperature and there is some delay after switching on before the valve begins to transmit current.
  • 7. THE TRIODE VALVE: This is constructed in a similar manner to the diode,, but in addition contains a third electrode, the grid, which is placed b/w the filament and the plate. The grid may consists of Mattel plate perforated to allow the electrons to pass through, or, more usually, may be a coil of wire. When the filament is heated a current can be passed through the valve. As in the diode, in one direction only i.e. from the filament to the plate. If The grid is uncharged it has no effect on the current, that the electron pass through the opening in it and on to the anode, if the grid is charges negatively from some outside source, it repels electrons, so that the current is reduced on intensity, with the stronger charge stopped completely. If, however, the grid is charged positively the electrons can pass and current flows. The intensity of the current is then greater than when the grid id uncharged, as positive electrons away from the filament. Most of these pass through the grid and on to the anode.
  • 8. Triode symbol. From top to bottom: plate (anode), control grid, cathode, heater (filament)
  • 9. The charge is applied to the grid from an external source are known as grid biased and, as the grid lies closer to the filament than does the plate, the grid charged has a greater influence on the flow of current than has a similar charge on the anode. The strength of the current going across the valve can be regulated, as in the diode, by altering the temperature of the filament or by altering the positive charge applied to the anode. In addition, the flow of current across the triode valve can be regulated by adjusting the biased of the grid. The triode valve has various functions in electrometrical apparatus, the principle ones being its used for the production of the interrupted direct and other muscle stimulation currents and, in conjunction with a condenser and an inductance, for the production of high frequency currents. It is not used specifically as a rectifier, but will always rectify the current that passes through it.
  • 10. TRANSISTORS – (bipolar) transistor = combination of two diodes that share middle portion, called “base” of transistor; other two sections: “emitter'' and “collector”; – usually, base is very thin and lightly doped. – two kinds of bipolar transistors: pnp and npn transistors – “pnp” means emitter is p-type, base is n-type, and collector is p-type material; – in “normal operation of pnp transistor, apply positive voltage to emitter, negative voltage to collector;
  • 11. Fig
  • 12. operation of pnp transistor:
  • 13. operation of pnp transistor: – if emitter-base junction is forward biased, “holes flow” from battery into emitter, move into base; – some holes annihilate with electrons in n-type base, but base thin and lightly doped  most holes make it through base into collector, – holes move through collector into negative terminal of battery; i.e. “collector current” flows whose size depends on how many holes have been captured by electrons in the base;
  • 14. operation of pnp transistor: • this depends on the number of n-type carriers in the base which can be controlled by the size of the current (the “base current”) that is allowed to flow from the base to the emitter; the base current is usually very small; small changes in the base current can cause a big difference in the collector current
  • 15. Transistor operation – transistor acts as amplifier of base current, since small changes in base current cause big changes in collector current. – transistor as switch: if voltage applied to base is such that emitter-base junction is reverse-biased, no current flows through transistor -- transistor is “off” – therefore, a transistor can be used as a voltage- controlled switch; computers use transistors in this way.
  • 16. What is DIATHERMY? • The use of non-ionizing electromagnetic energy from the radio-frequency spectrum as therapeutic agent
  • 17. Types of Diathermy Long wave - longest wavelength 300 – 30 m - most penetrating - no longer utilized due to high potential of causing burns and interference with radio transmissions Shortwave Microwave
  • 18. PRODUCTION OF HIGH FREQUECHY SHORT WAVES: High frequency electromagnetic waves of frequency b/w 107 or 108 and a wavelength b/w 30-3 m to generate heat in body tissues. therapeutically used and available f=27.12MHz and λ=11m commonly. It is not possible to construct any mechanical device which causes sufficient rapid movement to produce high frequency current so this type of current is obtained by discharging a condenser through an inductance of low ohmic resistance. The basic oscillator circuit consists of a condenser and an inductance and current of different frequencies are obtained by selecting suitable condensers and inductances. If a current of high frequency is required the capacity and inductance are small, while to produce a current of lower frequency a larger condenser and/or inductance are used. Basic oscillator circuit is now a days frequently replaced by a more modern oscillator such as co-axial line or pot oscillator but the principle remain same.
  • 19. In order to produce high frequency current the condenser must be made to charge and discharge repeatedly and to achieve this the oscillator is incorporated in either a spark gap or a valve circuit, the latter being commonly used in apparatus encountered in physiotherapy department. In future transistor may replace the triode valve. The high frequency current is produced in the basic oscillator which is incorporated in anode circuit of triode valve. This current produces a similar high frequency current in a second circuit, the resonator circuit by electromagnetic induction and by action of wireless waves. It is the current from this second circuit, which is used for the treatment of patients and for the production of oscillator and a resonator circuits must be in a resonance with each other. For this to occur the product of inductance and capacity must be same for both circuits.
  • 20. MICRO WAVE PRODUCTION: Microwave diathermy can be defined as Use of microwave for various therapeutic purposes. Microwave has much higher frequency and a shorter wavelength than short wave diathermy. The frequency and wavelength ranges from 300 MHz TO 300 GHz and 1cm to 1m. The commonly used frequency are 2456 MHz, 915 MHz and 433 MHz with a wavelength 12.24 cm ,32.79cm and 69cm respectively. PRODUCTION OF MICROWAVES: The microwave circuit is connected to the main AC which provides it a current of 50 Hz and a voltage of 220volts. It is not possible to produce microwaves by mechanical means and hence a special type of thermionic valve is used called magnetron. The primary function of magnetron is to produce high frequency current required for he production of microwaves. Magnetron is special type of thermionic valve characterized by centrally placed cathode and a surrounding circular metal anode.
  • 22. Coaxial cables carries this high frequency currents from the magnetron and passes it to the antenna of emitter. Emitter is also known as director or applicator consists of antenna and a reflector. Antenna is mounted in front of a metal reflector. Reflector is a metal plate which directs the microwaves in on direction only. The distance b/w the emitter and skin should be about 10-20 cms from the body. However vary according to size of emitter , the part to be treated and condition of patient.
  • 23. THERAPEUTIC EFFECTS • Increased blood flow or circulation to the area • Increased tissue temperature • Increased metabolism • Facilitate relaxation • Increased pain threshold • Decreased blood viscosity
  • 24. INDICATIONS • Soft tissue injury • Mobilization • Pain relief
  • 25. CONTRAINDICATIONS • Pacemakers • Metal implants • Impaired sensation • Pregnancy • Hemorrhage • Ischemic Tissue • Testicles and eyes • Malignant CA • Active TB • Fever • Thrombosis • X-ray exposure • Uncooperative patient • Areas of poor circulation