This document proposes a new technique to enhance the learning capabilities and reduce the computation intensity of a competitive learning multi-layered neural network using the K-means clustering algorithm. The proposed model uses a multi-layered network architecture with backpropagation learning to analyze web log data. Data preprocessing steps like cleaning, user identification, and transaction identification are applied to prepare the enterprise proxy log data for analysis. The proposed framework aims to discover useful patterns from web log data through a combination of K-means clustering and a feedforward neural network.