SlideShare a Scribd company logo
Gripping technologies 1 
1 on the basis of the paper “Grasping devices and methods in 
automated production processes” , CIRP Annals - Manufacturing 
Technology, Volume 63, Issue 2, 2014, 
G. Fantoni 
Department of Civil and Industrial Engineering 
University of Pisa (Italy) 
NEWTECH 2013 
STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 1
Remarks 
• The presentation has been prepared for NewTech Conference 2013 and it is 
titled Gripping Technology. However it is based on the CIRP Keynote 
paper titled «Grasping devices and methods in automated production 
processes». 
• Please refer to this presentation by citing the paper as: 
Fantoni, G., Santochi, M., Dini, G., Tracht, K., Scholz-Reiter, B., Fleischer, J., 
Lien, T.K., Seliger, G., Reinhart, G.,Franke, J., Hansen, H.N., Verl, A.,2014, 
Grasping devices and methods in automated production processes, CIRP 
Annals - Manufacturing Technology, Volume 63, Issue 2, 2014, Pages 679- 
701, ISSN 0007-8506, http://dx.doi.org/10.1016/j.cirp.2014.05.006. 
• The final version of the present paper can be found at 
http://www.sciencedirect.com/science/article/pii/S0007850614001887 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 2
Outline 
• Standard definition and abstract definition 
• Grasping process 
– Grasping principles 
– Releasing principles 
– Monitoring principles 
• Trends 
• Why not? 
• Conclusions 
• Acknowledgements 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 3
Outline 
• Standard definition and abstract definition 
• Grasping process 
– Grasping principles 
– Releasing principles 
– Monitoring principles 
• Trends 
• Why not? 
• Conclusions 
• Acknowledgements 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 4
Gripper: definition 
“a subsystems of handling mechanisms which provide 
temporary contact with the object to be grasped [..] and ensure 
the position and orientation when carrying and mating the object 
to the handling equipment [..]; the term “gripper” is also used in 
cases where no actual grasping, but rather holding of the object 
where the retention force can act on a point, line or surface [..]” 
Monkman et al. Robot grippers 
In abstract terms: 
h. mechanisms + Block/Hold + object + temporary 
That means that after grasping 
some of the DOF of G. and O. are the same 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 5
Cases of «not standard» grippers 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 6
Outline 
• Standard definition and abstract definition 
• Grasping process 
– Grasping principles 
– Releasing principles 
– Monitoring principles 
• Trends 
• Why not? 
• Conclusions 
• Acknowledgements 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 7
The grasping process 
1. Approaching the object: the gripper is positioned nearby the object. 
2. Coming into contact with the object surface 
3. Increasing the grasping force: the grasping force is increased, within certain limits. 
4. Securing the object. The force stops increasing. The dof of the object are removed 
5. Lifting the object; 
6. Releasing the object. Issue at the microscale; 
Monitoring the grasp: direct or indirect control of force, torque, stick slip sensors, contact. 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 8
But is it true? 
FEEDING GRASPING HANDLING PLACING 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 9
But is it true? 
FEEDING GRASPING HANDLING PLACING 
S 
N 
Porous plies Steel sheets 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 10
But is it true? 
FEEDING GRASPING HANDLING PLACING 
S 
N 
Porous plies Steel sheets 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 11
But is it true? 
FEEDING GRASPING HANDLING PLACING 
High accelerations 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 12
Adhesion problems in micro 
assembly 
Force between a silicon sphere and plane (by Fearing) 
100 
10-5 
force [N] 
10-10 
10-6 10-5 10-4 10-3 10-15 
radius of the sphere [m] 
STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 13 
NEWTECH 2013 G. Fantoni - Gripping technology
Releasing?? 
Releasing problems only at microscale? FALSE 
permanent magnets on 
rotors of electric drives Sol-Gel dough products Frozen products 
An for sure at micro and nano scale 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 14
Outline 
• Standard definition and abstract definition 
• Grasping process 
– Grasping principles 
– Releasing principles 
– Monitoring principles 
• Trends 
• Why not? 
• Conclusions 
• Acknowledgements 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 15
Grasping principles 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 16
Standard Friction and Jaw grippers 
Friction-jaw mechanical grippers 
sx) two fingers; 
centre) single moving finger; 
dx) microgripper piezoelectrically 
actuated. 
20° 
90° 90° 
20° 
b) 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 17 
a) 
c) d) 
See Festo 
See Monkman
Friction and Jaw grippers: standard? 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 18
Vacuum grippers 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 19
Vacuum: the key tech in SMDs assembly 
STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 20 
NEWTECH 2013 G. Fantoni - Gripping technology
Needle gripper 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 21
Bernoulli grippers 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 22
Capillary grippers 
At microscale capillary grippers have been used owing to their flexibility 
and reliability; have a compliant behaviour and a self-centring effect; 
capability of grasping small and light components in a wide range of 
materials and shapes; capability of handling delicate components as the 
meniscus between the gripper and the object has a “bumper” effect. 
To release parts grasped by 
capillary grippers: 
- Scratching agaist an 
edge, 
- Two different fluids, 
- Changing the gripper 
curvature, 
- Electrowetting. 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 23
Capillary principle 
α1 α2 Fc=FL+FT (1) 
Gripper 
T T 
T T 
mg 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 24 
pa 
pl 
FL= 2  HπRa 
2 (2) 
FT= 2πRaγsin(θ+α) (3) 
In the previous equations γ is 
the surface tension (for water 
~7210-3Nm-1) and 
H=2(1/r0-1/r1).
Capillary grippers 
• Reliable 
• Self centering 
• Compliant 
• It can work without refilling for more than 
1000 times (grasping-releasing cycles) 
• It leaves traces and can stain lenses or 
surface finished parts (mirrors, optics) 
• Particular care in its use with SMDs and 
other electronic components 
• Often the process need for a following 
phase of heating in order to remove (by 
evaporation) the liquid 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 25
Capillary grippers: grasping and releasing 
STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 26
Capillary grippers: grasping and releasing 
Grasping 
Moving Releasing 
Working principle of the 
adhesion gripper able to 
“grasp” and release microparts 
by a curvature change. 
STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 27 
NEWTECH 2013 G. Fantoni - Gripping technology
Grasping and releasing microparts exploiting 
liquids with different surface tensions 
A novel grasping and releasing strategy for microparts exploiting liquids with different surface tensions 
[Fantoni, Porta, Santochi] 
Releasing Force 
h [mm] 
Vol [mm3] 
Fc [mN] 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 28
Results 
High reliability Centring effect 
Many tests, 
all succeeded 
100% reliability 
Also for very small ‘releasing’ volume 
STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 29 
NEWTECH 2013 G. Fantoni - Gripping technology
Capillary grippers 
Multiple grasping 
[Lambert,2005] 
Extensions to macroscale? 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 30
«ice» gripper 
More in general we can define them as «phase transition 
grippers», they exploit the transition of a material from 
liquid to ‘solid’. 
Ultrasonic-assisted adhesive for 
limp and air-permeable textiles 
Ice gripper 
for limp and air-permeable textiles 
Ice gripper 
for 
microlenses 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 31
Electrostatic principle 
Conductive 
Dielectric 
Conductive or dielectric 
+ + + + + + + + + + 
- - - - - - - - - 
+ + + + + + + + 
+- -+- +- -+- +- 
V 
- - - - - - 
+ + + + + + + + + + 
+- -+- +- -+- +- 
- - - - - - - - - - - - - - - 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 32 
V 
(a) 
+ + + + 
- - - - 
- - - 
+ + + 
+ 
+ + + 
+ 
(d) 
V 
(c) 
V 
- - - - - - - - - - - - - - - 
(b)
Electrostatic grippers 
Electrostatic forces: 
experimental evidences 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 33
[ Fantoni ] 
HV 
Electrostatic Microgrippers 
V0 
Glass substrate 
Cross gripper 
Conductive 
working plane 
Cross 
gripper 
Grasped component 
+++++++++++++++ V 
- - - - - - - - - - - - - - - 
conductive 
- + - + - + 
[ Hesselbach ] 
[ Enikov ] 
STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 34 
NEWTECH 2013 G. Fantoni - Gripping technology
Electrostatic Microgrippers with 
centering capabilities 
STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 35 
NEWTECH 2013 G. Fantoni - Gripping technology
Force acting at the micro scale 
Van der Waals 
Capillary 
Electrostatic 
Forces 
Adhesion 
force 
g 
STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 36 
NEWTECH 2013 G. Fantoni - Gripping technology
Van der Waals forces 
Towards gecko tapes  
STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 37 
NEWTECH 2013 G. Fantoni - Gripping technology
Adhesive grippers: grasping and releasing 
a b c d 
STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 38 
NEWTECH 2013 G. Fantoni - Gripping technology
Ultrasound «gripper» 
Sonodrote: the parts are 
moved by the air pressure 
generated by a sonodrote. 
The parts levitate above the 
plate. 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 39
Outline 
• Standard definition and abstract definition 
• Grasping process 
– Grasping principles 
– Releasing principles 
– Monitoring principles 
• Trends 
• Why not? 
• Conclusions 
• Acknowledgements 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 40
Releasing strategies 
Collection of strategies and approaches to release 
parts mainly at micro level. 
[Arai], [Fearing], [Fantoni], [Van Brussel] 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 41
Releasing part 1 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 42
Releasing part 2 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 43
Outline 
• Standard definition and abstract definition 
• Grasping process 
– Grasping principles 
– Releasing principles 
– Monitoring principles 
• Trends 
• Why not? 
• Conclusions 
• Acknowledgements 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 44
The grasping process 
1. Approaching the object: the gripper is positioned nearby the object. 
2. Coming into contact with the object surface 
3. Increasing the grasping force: the grasping force is increased, within certain limits. 
4. Securing the object. The force stops increasing. The dof of the object are removed 
5. Lifting the object; 
6. Releasing the object. Issue at the microscale; 
Monitoring the grasp: direct or indirect control of force, torque, stick slip, contact. 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 45
The monitoring methods 
Sensing principles: 
a) Mechanical switch; 
b) electrical sensor; 
c) photoelectric sensor; 
d) vision based; 
e) tactile sensor; 
f) strain gauges; 
g) force/torque sensor; 
h) vision based; 
i) capacitive or electrostatic; 
j) led-photodiode (often IR); 
k) vision based monitoring. 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 46
Flat‐pack inductive 
proximity sensor 
Piezoresitive 
The monitoring methods 
Strain gauges 
[Tracht] 
z-sensor 
y-sensor 
x-sensor 
gripper 
GEH6030 
adapter 
plate 
gripper finger 1 
gripper finger 2 
Capacitive sensor 
Indirect force measuring system 
x 
y 
z 
[Fantoni] 
STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 47 
NEWTECH 2013 G. Fantoni - Gripping technology
Outline 
• Standard definition and abstract definition 
• Grasping process 
– Grasping principles 
– Releasing principles 
– Monitoring principles 
• Trends 
• Why not? 
• Conclusions 
• Acknowledgements 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 48
Trends 
• More than one single principle per time 
• Soft one piece gripper (silicon or AM) 
• High coupling 
• Active surfaces 
• New «principles» and «strategies» 
• Underactuated grippers 
• Bimanual handling 
• Lightweight grippers 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 49
Trends 
• More than one single principle per time 
• Soft one piece gripper (silicon or AM) 
• High coupling 
• Active surfaces 
• New «principles» and «strategies» 
• Underactuated grippers 
• Bimanual handling 
• Lightweight grippers 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 50
Hybrid Grippers 
A new generation of hybrid grippers seems emerging: 
• More than two principles per gripper 
• Increasing object-gripper coupling 
Form + Force 
+ Vacuum 
Electroadhesive + Force Bernoulli + «Form» 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 51
Vacuum + Friction 
2 vacuum cups 
additional vacuum cup 
telescopic slide-out 
flap 
parcel 
parcel parcel 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 52
Electrostatic + Form 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 53
Jamming technology for grasping 
Form + Friction + Vacuum (+ liquid/solid transition) 
The Jamming Gripper is based on a 
granular material contained in a 
flexible membrane. The latex balloon 
membrane is connected to the base 
through a collar, producing an airtight 
seal. The collar is the rigid part of the 
gripper (when not actuated) and helps to 
guide the gripper and to fit its shape to 
the target. When the gripper and the 
object are coupled, vacuum is provided 
and a transition from deformable to 
rigid state generates the grasping force 
(grasping based on friction). 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 54
Working modes 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 55
Electrostatic Peltiér 
Micro distributed vacuum cups Adhesive silicon gripper 
 Programmable 
 Switchable 
 Adhesive 
 +distributed 
vacuum 
STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 56 
NEWTECH 2013 G. Fantoni - Gripping technology
Trends 
• More than one single principle per time 
• Soft one piece gripper (silicon or AM) 
• High coupling 
• Active surfaces 
• New «principles» and «strategies» 
• Underactuated grippers 
• Bimanual handling 
• Lightweight grippers 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 57
Soft grippers 
a) b) c) d) 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 58 
e)
Additive manufactured gripper 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 59
Trends 
• More than one single principle per time 
• Soft one piece gripper (silicon or AM) 
• High coupling 
• Active surfaces 
• New «principles» and «strategies» 
• Underactuated grippers 
• Bimanual handling 
• Lightweight grippers 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 60
Increasing gripper d.o.f. 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 61
Flexible and compliant friction gripper 
The “hose gripper” is a flexible 
gripper, formed of a double-walled 
hose filled with water or air. This 
hose is contained into a pipe and 
actuated by a plunger that moves up 
and down into the double-walled 
hose. To make the gripper capable of 
grasping and lifting objects, the 
underside of the hose is located over 
the object, thus partially covering the 
object’s surface. When the plunger 
raises, the hose and the object are 
roped into the rigid pipe. The 
releasing is performed moving back 
the plunger. 
The grasping is performed by 
exploiting both form and force 
closure (friction). 
STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 62 
NEWTECH 2013 G. Fantoni - Gripping technology
Compliant Vacuum Cups 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 63
Handling of flexible materials: leather plies 
Since its flexibility, the compliant 
vacuum cup is able to maintain the 
grasping also in case of deformable 
objects (leather plies, textiles, etc..). 
During handling, the borders of the 
objects fall down due to gravity. 
Therefore the entire object deforms 
and, if the vacuum cup does not 
follow the object shape, the vacuum 
decreases and the object is released. 
The compliancy of the vacuum cup 
(due to both design and material) 
allows a reliable securing phase. 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 64
Adaptable + self-activating valves 
vacuum vacuum 
vacuum 
STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 65 
NEWTECH 2013 G. Fantoni - Gripping technology
Various approaches to adaptability 
[Scott] [Pettersson] 
[Reinhart] 
[Jonas] 
STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 66 
NEWTECH 2013 G. Fantoni - Gripping technology
Trends 
• More than one single principle per time 
• Soft one piece gripper (silicon or AM) 
• High coupling 
• Active surfaces 
• New «principles» and «strategies» 
• Underactuated grippers 
• Bimanual handling 
• Lightweight grippers 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 67
Active surfaces 
a) b) 
c) d) 
a) Roll-on gripper 
b) Velvet fingers 
c) Traction gripper 
d) Robin Read’s g. 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 68
Roll-on gripper 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 69
Traction gripper for logistic applications 
The Traction Gripper consists of double 
belt conveying units arranged 
perpendicular to each other. Each unit 
has traction belts that exert a friction 
force allowing the grasping of several 
shape goods. Each conveyor belts has a 
separate drive chain. The inward 
conveying motion of the traction belts 
causes friction between the active 
surfaces. The object is pulled into the 
right angle and held there firmly. 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 70
Velvet Fingers 
External 
presentation 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 71
Trends 
• More than one single principle per time 
• Soft one piece gripper (silicon or AM) 
• High coupling 
• Active surfaces 
• New «principles» and «strategies» 
• Underactuated grippers 
• Bimanual handling 
• Lightweight grippers 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 72
From Micro to Macro and viceversa 
Van derWaals Capillary Needle 
[Parness] 
Cutkosky [Lanzetta] 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 73
Terrific forces 
[Cutkosky], [Parness] Video 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 74
The Gecko Adhesive System 
Lamellae—mm scale 
Branches—μm scale 
Setae—10s of μms 
Spatulae—10s of nms 
[Autumn], [Parness] Contact features use van der Waals forces 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 75
Synthetic Gecko Adhesive 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 76
Loading the Wedges 
Load Direction 
Unloaded 
Moderately Loaded 
Adhesion OFF 
Adhesion ON 
NEWTECH 2013 G. Fantoni - Gripping technology 
Heavily Loaded 
HIGH Adhesion ON 
STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 77
Gecko Gripper (1) 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 78
NanoForceGripper by FESTO 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 79
Jamming for everything 
Jamming for finger pads 
(roof tiles) 
Jamming for trunc 
Jamming for joints 
Jamming for palm 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 80
Outline 
• Standard definition and abstract definition 
• Grasping process 
– Grasping principles 
– Releasing principles 
– Monitoring principles 
• Trends 
• Why not? 
• Conclusions 
• Acknowledgements 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 81
Why not? 
– Tree frogs 
– Cargofloor® and Switl® 
– Tixotropic / dilatants /rehopetic grippers 
–Magnetic fluids+adaptable surfaces 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 82
Toward a new adhesive gripper 
W Federle, W.J.P Barnes, 
W Baumgartner, P 
Drechsler and J.M Smith, 
Wet but not slippery: 
boundary friction in tree 
frog adhesivetoe pads J. 
R. Soc. Interface 2006 3, 
689-697 
GRASP 
component 
Hydrophobic areas 
Hydrophillic areas 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 83
Toward a new adhesive gripper: skin and pulp 
Frog Fingeprint (SEM) 
Supehydrophobic surface 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 84
Theoretical model 
mg 
h* 
F1 
xa1 
mg 
mg F2 
h* 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 85 
A 
B 
C
xa1 
R Theoretical model 
F3 
xa2 
F1 
xa3 
F4 
mg 
mg 
mg 
water 
superhydrophobic 
water 
hydrophobic 
water 
hydrophilic 
Hydrophobic ring 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 86 
D 
E 
F
Concept design 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 87
Active surfaces for grasping and 
releasing of microparts 
Grasping and releasing of microparts by using active hydrophillic-phobic surfaces 
[Fantoni, Hansen, Santochi ] 
Programmable hydrophobic surfaces [Fantoni, Zang, Tosello, Hansen] in progress 
Standard Treated 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 88
Other principles? 
SWITL: an active shovel able to pick up even semi-liquid materials 
Cargo floor: stick slip motion through selective surfaces activation 
But can smart fluids be used? 
Dilatants fluids: 
what for in microassembly? 
Tixotropic liquids: their viscosity changes 
with the movement. e.g. S. Gennaro’s 
blood, wine, maionnaise, ketchup, 
quicksands, etc.. 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 89
Outline 
• Standard definition and abstract definition 
• Grasping process 
– Grasping principles 
– Releasing principles 
– Monitoring principles 
• Trends 
• Why not? 
• Conclusions 
• Acknowledgements 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 90
Conclusions 
• Research activities 
– RobLog (7° EU project) 
– MicroGrippers expoliting structured surfaces 
– Extension of the grasping principles from micro to macro 
– Continue the research on compliant, actuated, hyerarchical 
surfaces 
• Search for partners for joint projects and exchange of 
students 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 91
Aknowledgements 
• Newtech 2013 Organizing commitee 
(mainly my former student Antonio Maffei) 
• RobLog project (7° FP) 
• Fantoni, G., Santochi, M., Tracht, K., Dini, G., Scholz-Reiter, 
B., Fleischer, J., Lien, T.K., Seliger, G., Reinhart, G., Franke, 
J., Hansen, H.N., Verl, A., 2014, Grasping devices and 
methods in automated production processes 
Thank You for your attention! 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 92
References 
• Akbiyik, H., Kirchheim, A., & Echelmeyer, W., 2009, Latest Trends in the Container Market ‐ Analyse of Qualitative and Quantitative Features of the 
Containerised Import in European Ports, in Bremer Value Reports für Produktion und Logistik, Vol. 3, ISSN 1866‐7031 
• Alting L., Kimura F., Hansen H.N., Bissacco G., 2003, Micro engineering, Keynotepaper, CIRP Annals, Vol. 52/2, p.635‐658. 
• Amend, J. R., Brown, Jr. E., Rodenberg, N., Jaeger, H., Lipson, H., 2012, A Positive Pressure Universal Gripper Based on the Jamming of Granular Material, 
IEEE Transactions on Robotics, vol. 28, pp. 341‐350, Apr. 2012. 
• Angerer, A. Ehinger, C. Hoffmann, A., Reif, W., Reinhart, G., , 2011, Design of an Automation System for Preforming Processes in Aerospace Industries, in IEEE 
International Conference on Automation Science and Engineering (CASE 2011), S. 557‐562. 
• Angerer, A. Ehinger, C. Hoffmann, A., Reif, W., Reinhart, G., Straßer, G., 2010, Automated Cutting and Handling of Carbon Fiber Fabrics in Aerospace 
Industries, in Automation Science and Engineering (CASE), IEEE Conference on. Piscataway, N.J: IEEE 2010, S. 861‐866. ISBN: 978‐1‐4244‐5447‐1 
• Arai, F., Andou, D., Fukuda, T., Nonoda, Y., Oota T., 1995, Micro Manipulation Based on Micro Physics ‐Strategy Based on Attractive Force Reduction and 
Stress Measurement‐, Proc. of IEEE/RSJ Conf. on Robots and Intelligent Systems 2, pp. 236‐241. 
• Arderne M. , Matope S. , Van der Merwe A. F. , Nyanga L. 2012. Use of Van der Waals forces actuated polyurethane microgrippers in the handling of IC micro‐components. 
Proceedings of the 42nd International Conference on Computers and Industrial Engineering (CIE42), 16‐18 July 2012, Cape Town pp. 189‐1 to 
189‐7. 
• Autumn, K., Dittmore, A., Santos, D., Spenko, M., & Cutkosky, M. (2006). Frictional adhesion: a new angle on gecko attachment. Journal of Experimental 
Biology, 209(18), 3569‐3579. 
• Ballufff‐Leuze Pty Ltd, Using sensors to make grippers more productive. Available at www.processonline.com.au/articles/45979‐Using‐sensors‐to‐make‐grippers‐ 
more‐productive. Last seen at 20 December 2012. 
• Bancel PA, Cajipe VB, Rodier F, Witz J. Laser seeding for biomolecular crystallization, Journal of Crystal Growth 1998, 191, 537‐544. 
• Bar‐Cohen, Y. (2000). Electroactive polymers as artificial muscles‐capabilities, potentials and challenges. Handbook on biomimetics, 11(8), 1‐3. 
• Bark, C., Binneboese, T., 1998, Gripping with low viscosity fluid, IEEE Int. workshop on MEMS, pp. 301‐305. 
• Basdere, B., Keil, T., Rebafka, U., Seliger, G. Innovative Processes and Tools for Disassembly. In CIRP Annals Manufacturing Technology, San Sebastian, Spain, 
2002, pp 37‐40. 
• bdml.stanford.edu/Main/RobotiqGrasping. Last seen: 14 December 2012. 
• Bellouard, Y., Clavel, R., Gotthardt, R., Bidaux, J. E., & Sidler, T. (1998, June). A new concept of monolithic shape memory alloy micro‐devices used in micro‐robotics. 
In Proc. Actuator (Vol. 98, pp. 499‐502). 
• Bicchi, A., 2000, Hands for dexterous manipulation and robust grasping: a difficult road toward simplicity, IEEE Transactions of Robotics and Automation, 
China. 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 93
References 
• Biganzoli, F., Fantoni, G., 2004, Contactless Electrostatic Handling of Microcomponents, Proc. Instn. Mech. Engrs. Vol 218 Part B: Journal of Engineering 
Manufacture, pp.1795‐1806. 
• Biganzoli, F., Fantoni, G., 2008, A self‐centering electrostatic microgripper, Journal of Manufacturing Systems, Volume 27, Issue 3, Pages 136‐144 
• Biganzoli, F., Fassi, I., Pagano, C., 2005, Development of a gripping system based on a capillary force, Proc. IEEE ISATP, pp.36 ‐40 
• Boothroyd, G., Dewhurst, P., Knight, W. A., 2010, Product Design for Manufacture and Assembly, Third Edition, CRC Press 
• Bosse, S., Hogreve, S., Tracht, K., 2012, Design of a Mechanical Gripper with an Integrated Smart Sensor Network for Multi‐Axial Force Sensing and 
Perception of Environment. Proceedings of the Smart Systems Integration Conference 2012, Zurich, Switzerland 21‐22 March 2012 (SSI 2012). VDE 
Verlag Berlin Offenbach. 
• Braunschweiger, N., Echelmeyer, W., Wellbrock, E., Schmidt, K., 2007, International Patent WO002007131464A1 Gripper system for stacked unit loads, 
pp. 1–39 
• Breuninger, J., Becker, R., Wolf, A., Rommel, S., Verl, A., Generative Fertigung mit Kunststoffen: Konzeption und Konstruktion für Selektives Lasersintern, 
Berlin, Heidelberg : Springer Vieweg, 2013 
• Bruns, R., Cleves, B., 2011, Automatische kommissionierung geometrisch unterschiedlicher artikel, At‐Automatisierungstechnik, 59 (4), pp. 218‐225. 
• Bruzzone, A.G.; Traverso, A; Antonelli, D.; Carmignato, S.; Savio, E.; Fantoni, G.; Porta, M.; Leone, C.; Lopresto, V., 2009, Study and integration of 
microtechnologies for smart assembly of hybrid micro‐products, International Journal of Mechatronics and Manufacturing Systems, Volume 2, Number 
3, 26 May 2009 , pp. 265‐293(29) 
• Bütefisch, S., Entwicklung von Greifern für die automatisierte Montage hybrider Mikrosysteme. Aachen, Shaker, 2003 (in German). 
• Butterfass, J., Fischer, M., Grebenstein, M., Haidacher, S., Hirzinger, G., 2004, Design and Experiences with DLR Hand II. In Proceedings of the World 
Automation Congress 2004, Seville, Spain, 28 June‐1 July 2004. 
• Büttgenbach, S., Hesselbach, J., Tutsch, R., Berndt, M., Hoxhold, B., Schöttler, K., 2006, Sensor guided handling and assembly of active micro‐systems. In: 
Microsystem Technologies, 12, 665‐669. 
• C. Munzinger, G. Lanza, G. Koehler, M. Schneider, D. Ruch, A. Ochs, T. Gerbracht, J. Elser, 2009, Process Chain for the Flexible Production of Curved 
Extrusion Profiles, 2nd International Researchers Symposium 2009 on Innovative PROduction Machines and Systems, 22.07.2009‐14.07.2009, Ischia, 
Italien, Band CD‐Ablage, pp. 1‐6. 
• Carello M., Ferraresi C., Visconte C. (2003) A new flexible pneumatic finger for a fruit‐harvesting hand. In 7th International Symposium on Fluid Control, 
Measurement and Visualization, 25‐28 August 2003 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 94
References 
• Catalano MG, Grioli G, Serio A, et al. (2012) Adaptive synergies for a humanoid robot hand. In: Proceedings of IEEERAS International Conference on 
Humanoid Robots. Osaka, Japan. 
• Catalano, MG Grioli, G, Farnioli, E., Serio, A., Piazza C., Bicchi, A., 2014, Adaptive synergies for the design and control of the Pisa/IIT SoftHand, The 
International Journal of Robotics Research, (in print) 
• Chua, P. Y., Ilschner, T., & Caldwell, D. G. (2003). Robotic manipulation of food products – a review. Industrial Robot: An International Journal, 30(4), 345- 
354. 
• Ciocarlie, M., Hicks, F.M., Holmberg, R., Hawke, J., Schlicht, M., Gee, J., Stanford, S., Bahadur., R., 2014, The Velo gripper: A versatile single-actuator design 
for enveloping, parallel and fingertip grasps, International Journal of Robotics Research, 2014 
• Clevy, C., Hubert, A., Agnus, J., Chaillet, N., 2005, A micromanipulation cell including a tool changer, Journal of Micromechal and Microengineering 15, pp. 
292-301. 
• Costo, S., Molfino, R. A new robotic unit for onboard airplanes bomb disposal. In 35th International Symposium on Robotics ISR 2004. 2004. p. 23-26. 
• Davis, S. Gray, J.O. and Caldwell, D.G., 2006, An end-effector based on the Bernoulli principle for handling of sliced food and vegetables, Robotics and 
Computer Integrated Manufacturing, 24/2/2006, pp 249-257 
• De Volder, M., Moers, A. J. M., & Reynaerts, D. (2011). Fabrication and control of miniature McKibben actuators. Sensors and Actuators A: Physical, 166(1), 
111-116. 
• Deimel, R. , Brock, O. , 2013, A compliant hand based on a novel pneumatic actuator, in Proceedings of the IEEE International Conference on Robotics and 
Automation (ICRA) 
• Dini, G. Fantoni, G. Failli, F., 2009, Grasping leather plies by Bernoulli grippers, CIRP Annals, Vol.58/1, 21-24. 
• Dini, G., Failli, F., 2005, Development and test of new vaccum cups for grasping leather plies [private communication] 
• Dollar A and Howe R (2010) The highly adaptive SDM hand: Design and performance evaluation. The International Journal of Robotics Research 29(5): 585– 
597. 
• Dollar, A.M., Howe, R. D., 2006, Joint Coupling Design of Underactuated Grippers, Proceedings the 30th Annual ASME Mechanisms and Robotics 
Conference, 2006 International Design Engineering Technical Conferences (IDETC}, pp.10-13 
• Domanski, K., Janus, P., Grabiec, P., Perez, R., Chaillet, N., Fahlbusch, S., Sill, A., Fatikow, S.: Design, fabrication and characterization of force sensors for 
nanorobot. In: Microelectronic Engineering 78-79, March 2005, 171-177. 
• Echelmeyer, W., Frank, H., 2008, International Patent EP000002125587A2 Apparatus and method for transfering part loads, 2008, pp. 1–39 
• Echelmeyer, W., Kirchheim, A., Lilienthal, A. L., Akbiyik, H., Bonini, M.: Performance Indicators for Robotics Systems in Logistics Applications, inIROS 
Workshop on Metrics and Methodologies for Autonomous Robot Teams in Logistics (MMART-LOG), 2011 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 95
References 
• Echelmeyer, W., Kirchheim, A., Wellbrock, E.:Robotics-logistics: Challenges for automation of logistic processes, in2008 IEEE International Conference on 
Automation and Logistics,2008, pp. 2099-2103,IEEE 
• Echelmeyer, W., Wellbrock, E., Rohde, M., 2008, Development and Optimisation of a Robot-based System for Automated Unloading of Packages out of 
Transport Units and Containers, 6th CIRP International Conference on Intelligent Computation in Manufacturing Engineering (CIRP ICME ’08), pp. 263-268, 
ISBN 978-88-9000948-7-3 
• Ellwood, R.J., Raatz, A., Hesselbach, J., 2010, Vision and Force Sensing to Decrease Assembly Uncertainty. In: 5th International Precision Assembly Seminar 
(IPAS 2010), Chamonix, France, Springer, Berlin Heidelberg New York, 123-130. 
• Emmett, R., 2004, A Connector, Patent WO2004055394/A1 
• Enikov ET, Lazarov KV. 2001; Optically transparent gripper for microassembly, SPIE, 4568, 40-49. 
• Erikson T., Hansen H.N., Gegeckaite A., Arentoft M., Automated assembly of micro mechanical parts in a microfactory setup, Proc. of the 5th international 
workshop on microfactories, Besancon, France, October 2006. 
• Failli, F., Dini, G., 2004, An Innovative Approach to the Automated Stacking and Grasping of Leather Plies, CIRP Annals, Vol.53/1, 31-34. 
• Fantoni G, Santochi M, Hansen NH, 2013, A new capillary gripper for mini and micro parts. CIRP Annals – Manufacturing Technology 
• Fantoni G, Santochi M., 2005, A modular contactless feeder for microparts, CIRP Annals 2005, 54/1. 
• Fantoni, G., Biganzoli, F., 2004, Design of a novel electrostatic gripper, International Journal for Manufacturing Science and Production, Volume 6, N4, pp. 
163‐179, ISSN 0793‐6648. 
• Fantoni, G., Gabelloni, D., Tilli, J., 2013, Concept design of new grippers using abstraction and analogy, Part B: Journal of Engineering Manufacture. 
• Fantoni, G., Gripping technology, keynote speech Newtech2013, private communication. 
• Fantoni, G., Porta, M., 2008, A critical review of releasing strategies in microparts handling, Proceeding of the 6th Int. Precision Assembly Seminar 
(IPAS’2008), 17-19 March, Bad Hofgastein, Austria. 
• Fantoni, G., Tilli, J., Capiferri, S., 2014, submitted to the CIRP 24th Design Conference 2014 
• Fantoni, G., Tincani V., Santochi M., 2011, Indirect force measurement system in a mechanical microgripper, AITeM, Naples, ,2011 
• Fearing, R.S., 1995, Survey of sticking effects for micro parts handling, IEEE/RSJ International Workshop on Intelligent Robots & Systems (IROS), Pittsburgh. 
• Feitler, D.:High Throughput Automatic Parcel Unloading, in NineSigma Request for Proposal, 2010, Retrieved from 
https://www.myninesigma.com/sites/public/_layouts/RFPs/NineSigma_RFP_66159.pdf 
• Feldmann K., Franke J., Schüßler F., Development of Micro Assembly Processes for Further Miniaturization in Electronics Production, CIRP Annals, Vol. 
59/1/2010, p.1 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 96
References 
• Feldmann, K., Trautner, St., Meedt, O., 1998, Innovative Disassembly Strategies Based On Flexible Partial Destructive Tools. Proc. Of the IFAC Workshop on 
Intelligent Assembly and Disassembly IAD’98, Bled, Slowenia 
• Fellner, H., 2007, Verfahren und Vorrichtung zum Entpalettieren von gestapelten Gebinden, patent application DE 10 2006 022 155 A1 
• Fernández, J. de G., Albiez, J. C., & Kirchner, F. Bio-inspired Robotic Handling of Heterogeneous Logistics Goods, in Proceedings of the IEEE International 
Conference on Automation and Logistics, 2007, pp. 192-197 
• Fischmann, C., Giesen, T., et al., Analysis and evaluation of methods for automated wafer handling in high volume manufacturing. In 26th European 
Photovoltaic Solar Energy Conference and Exhibition, pp. 1107–1110, 2011 
• Fischmann, C., Giesen, T., Wertz, R., et al., Analysis of influences on solar wafers during pick-and-place operations. In 267th European Photovoltaic Solar 
Energy Conference and Exhibition, pp. 1171–1174, 2012 
• Fleischer, J., Lanza, G., Brabandt, D. Wagner, H., 2012, Overcoming the challenges of automated preforming of semi-finished textiles, SEMAT 12 SAMPE 
EUROPE Symposium, Munich, Germany, ISBN 978-3-9523565-6-2, S. 114-143 
• Fleischer, J., Lanza, G., Munzinger, C., Schmidt-Ewig, J. Ruch, D., Schneider, M. Stengel, G. , 2006, Maschinentechnik zur flexiblen Herstellung räumlich 
gekrümmter Strangpressprofile, ZWF Jahrg. 101 7/8 S. 426-430 
• Fleischer, J., Ochs, A., Dosch, S., 2012, The future of lightweight manufacturing - production-related challenges when hybridizing metals and continuous fiber-reinforced 
plastics. International Conference on New Developments in Sheet Metal Forming, 22.-23.05.2012, Stuttgart, Germany 
• Fleischer, J., Ochs, A., Förster, F., 2013, Gripping Technology for Carbon Fibre Material, CIRP International conference on competitive manufacturing, Band: 
Green manufacturing for a blue planet, ISBN 978-0-7972-1405-7, S. 65-71 
• Fleischer, J., Ochs, A., Koch, S-F.,2012, Ultrasonic-assisted adhesive handling of limp and air-permeable textile semi-finished products in composites 
manufacturing, 4th CIRP Conference on Assembly Technologies and Systems, Ann Arbor, Michigan, USA, S. 7-10 
• Franke, J., 2010, Kontaktierungsverfahren und Prozesstechnik für Ultra-Fine-Pitch-Baugruppen, Ergebnisbericht des BMBF Verbundprojektes PROUFP, FAPS-TT 
Nürnberg, 2010 
• Fritsch D. et al., Branchenunabhängige Basismodule für ein Kommissionierrobotersystem, Final report of the research project KomRob, Stuttgart, 2006 
• Furukawa, H., 2012, Method of transfer, and device of the same, JP2009072209, video: http://www.made-in-japan.bz/switl/ 
• Gauthier, M., Régnier, S., Lopez-Walle, B., Gibeau, E., Rougeot, P., Hériban, D. Chaillet, N., 2007, Micro-assembly and modeling of the liquid microworld: the 
PRONOMIA project, IROS 2007, San Diego, CA, U.S.A. 
• Gebhardt, A. (2007). Generative Fertigungsverfahren: Rapid Prototyping - Rapid Tooling - Rapid Manufacturing. 3. Ausgabe, Carl Hanser Verlag GmbH & CO. 
KG, München. 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 97
References 
• Gegeckaite A, Hansen HN, De Chiffre L, Pocius P (2007) Handling of Micro Objects: Investigation of Mechanical Gripper Functional Surfaces. Proceedings of 
7th EUSPEN International Conference, Bremen, 185–188. 
• Gegeckaite A., Hansen H.N., Alignment procedure for pallet and robot coordinate system in micro assembly operations, 10th Anniversary International 
Conference of the European Society for Precision Engineering and Nanotechnology (Euspen), Zurich (Switzerland), 18-22 May 2008, Vol. II, p.371-374. 
• Gegeckaite A., Hansen H.N., Eriksson T., Development of a gripper for handling and assembly of microscrews, Proc. of the 6th Euspen International conference, 
Baden, Austria, May 28-June 1, 2006, p. 120-123. 
• Giesen, T., Bürk, E., Fischmann, C., Gauchel, W., Zindl, M., Verl, A, 2013, Advanced gripper development and tests for automated photovoltaic wafer 
handling, Assembly automation 33, Nr.4, S.334-344, ISSN: 0144-5154 
• Gjerstad, T. B., Lien, T. K., Buljo, J. O., 2006, Handle of Non-Rigid Products using a Compact Needle Gripper. Proceedings of the 39th CIRP International 
Seminar on Manufacturing Systems. Ljubljana ISBN 961-6536-09-5. s. 145-151 
• Gjerstad, T.B. (2012) Automated handling in fish packaging, Doctoral thesis at NTNU 2012:134, Trondheim, ISBN 978-82-471-3551-8 
• Greminger, M.A., Nelson, B.J., 2004, Vision-Based Force Measurement. In IEEE Transactions on pattern analysis and machine intelligence, Vol. 26, No. 3, 
March 2004, 290-298. 
• Grzesiak, A., Becker, R., Verl, A., 2011, The Bionic Handling Assistant – A Success Story of Additive Manufacturing, Assembly Automation, Vol. 31, No. 4 
• Guse, R. Koch, W. and Schulz, G. (988). Festgefriergreifer und Verfahren zu seinem Betrieben, German patent application DE 3701874 A1, 4.August 1988. 
• Haag, M. Greifen mit Gefühl – sensorisch unterstützte mechatronische Greifsysteme. In Handhabungstechnik – innovative Greiftechnik für komplexe 
Handhabungsaufgaben. Eds.: Zäh, M., Reinhart, G., Utz, München, 2009, 7.1–7.11 (in German). 
• Hansen H.N., Carneiro K., Haitjema H., De Chiffre L., Dimensional micro and nano metrology, Annals of CIRP Vol. 55/2 (2006), p.721-744. 
• Hawkes, E.W., Christensen, D.L., Eason, E.V., Estrada, M.A., Heverly, M., Hilgemann, E., Jiang, H., Pope, M.T., Parness, A., and Cutkosky, M.R., Dynamic 
Surface Grasping with Directional Adhesion, IEEE/RSJ IROS 2013 
• Hesselbach, J., Büttgenbach, S., Wrege, J., Bütefisch, S., Graf, C., 2001, Centering electrostatic microgripper and magazines for microassembly tasks, 
Microrobotics and Microassembly 3, Proc. of SPIE, vol. 4568, Newton, USA. 
• Hesselbach, J., Wrege, J, Raatz, A., 2007, Micro Handling Devices Supported by Electrostatic Forces, CIRP Annals ‐ Manufacturing Technology , Elsevier Vol. 
56/1, 45‐48 
• Hoxhold B., Büttgenbach, S. 2009, Micro Tools with Pneumatic Actuators for Desktop Factories. In Sensors & Transducers, Vol. 7, 10/09, pp. 440-443 
• Hoxhold, B., Wrege, J., Bütefisch, S., Burisch, A. Raatz, A. Hesselbach, J. Büttgenbach S., 2011, Tools for Handling and Assembling of Microparts. In Design 
and Manufacturing of Active Microsystems, Berlin Springer, Microtechnology and MEMS Series, pp. 287-308, ISBN 978-3-642-12902-5 
• http://epp.eurostat.ec.europa.eu/portal/page/portal/waste/key_waste_streams/waste_electrical_electronic_equipment_weee Date: 2013.June.07 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 98
References 
• http://epp.eurostat.ec.europa.eu/tgm/table.do?tab=table&init=1&language=en&pcode=teilm100 [July 2012] 
• http://robot.dti.dk/en/projects/hybridgripper.aspx 
• http://www.qubiqa.com/default.asp?Action=Details&Item=567 
• http://www.schunk.com/schunk_files/attachments/SCHUNK_ATEX_Flyer_EN.pdf 
• http://www.sri.com/sites/default/files/brochures/sri_electroadhesion.pdf 
• http://www.us.schunk.com/schunk/schunk_websites/products/products_level_3/product_level3.html?product_level_3=7261&product_level_2=250&product_lev 
el_1=244&country=USA&lngCode=EN&lngCode2=EN 
• http://www.willowgarage.com/velo2g 
• http://xdki.festo.com/xDKI/products_010800 Click on "Product finder 
• https://www.youtube.com/watch?v=WbEU6Fmkg0w 
• Iio, S., Umebachi, M., Li, X., Kagawa, T., Ikeda, T. 2010, Performance of a non-contact handling device using swirling flow with various gap height, Journal of 
Visualization 13 (4) , pp. 319-326 
• Islam A., Hansen H.N., Davids S., Kristensen L., 2012, 8 Pin RIC socket for hearing aid applications, Proceedings 9th International Conference on Multi 
Material micro Manufacture, October 2012, Vienna, Austria, p. 241-249. 
• ITRPV 2012, International Technology Roadmap for Photovoltaics Results 2012, Third Edition, Berlin 2012, www.ITRPV.net. 
• Jonas, S., Redmann, L., 2012, Gripper, in particular a Bernoulli gripper, Patent US8172288 
• Junker S., Technologien und Systemlösungen für die flexibel automatisierte Bestückung permanent erregter Läufer mit oberflächenmontierten Dauermagneten, 
Dissertation, Meisenbach Verlag Bamberg, 2007 
• K. H. Lee, J. H. Lee, J. M. Won, and S. K. Chung, Novel tweezers using acoustically oscillating twin bubbles, The 16th International Conference on Solid-State 
Sensors, Actuators and Microsystems (Transducers 2011), June 5-9, 2011, Beijing, China, pp. 1713-1716 
• Karakerezis, A., Doulgeri, Z., Peditris, V., A gripper for handling flat non-rigid materials, Dept. of Mech. Eng., A.M.A.R.C., University of Bristol. 
• Kato, I., (1987). Mechanical hands illustrated (Rev. ed. editor Sadamoto, Kuni), Hemisphere, Washington 
• Kazerooni H and Foley C. A Robotic Mechanism for Grasping Sacks. Trans. on Automation and Engineering, vol. 2, no. 2, pp. 111-120, 2005. 
• Kessens C. C. and Desai, J. P. Design, Fabrication, and Implementation of a Self-selecting Grasper, Accepted for publication in 2010 IEEE International 
Conference on Robotics and Automation, in press, Anchoroge, AK, May 2010 
• Kim, S., Laschi, C., Trimmer, B., 2013, Soft robotics: a bioinspired evolution in robotics, Trends in biotechnology,V31/5, 287-294, 12 April 2013 
STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 99
References 
• Kirchheim, A., Burwinkel, M., Echelmeyer, W., 2008, Automatic unloading of heavy sacks from containers, in IEEE International Conference on Automation 
and Logistics, pp. 946-951 
• Kochan, A., 1997, European project develops ice gripper for micro-sized components, Assembly Automation, vol. 17/2, pp. 114-115. 
• Kocijan, F., 2006, US20090027149, Magnet Arrays 
• Koepge, R., Schoenfelder, S., Giesen, T., Fischmann, C., Verl, A. and Bagdahn, J., The influence of transport operations on the wafer strength and breakage 
rate. In 26th European Photovoltaic Solar Energy Conference and Exhibition, pp. 2072–2077, 2011 
• Krüger, J., Lien, T.K., Verl, A., 2009, Cooperation of human and machines in assembly lines, CIRP Annals - Manufacturing Technology, Volume 58, Issue 2, 
2009, Pages 628-646 
• Lambert, P., 2007, Capillary forces in microassembly: modeling, simulation, experiments, and case study. Microtechnology and MEMS. Springer, New York 
• Lang, D., Kurniawan, I., Tichem, M., Karpuschewski, B., 2005, First investigations on force mechanisms in liquid solidification micro-gripping, In C Mascle 
(Ed.), ISATP 2005, the 6th IEEE Int. symposium on assembly and task planning, pp. 1-6. 
• Lanzetta, M., Cutkosky, M.R., 2008, Shape Deposition Manufacturing of Biologically Inspired Hierarchical Microstructures, CIRP Annals vol 57 n1 p.231 
• Lanzetta, M., Iagnemma, K., 2013, Gripping by controllable wet adhesion using a magnetorheological fluid, CIRP Annals, V62/1, pp. 21–25 
• Lemper, B., Hader, A., 2001, Entwicklungstendenzen des seewärtigen Welthandels, in Schriftenreihe der Deutschen Verkehrswissenschaften Gesellschaft e.V., 
Kiel, 8th Conference. 
• Li X., Kawashima, K., Kagawa, T., 2008, Analysis of vortex levitation, Experimental Thermal and Fluid Science, 32, 1448-1454 (2008) 
• Li, X., Iio, S., Kawashima, K., Kagawa, T. 2011, Computational fluid dynamics study of a noncontact handling device using air-swirling flow, Journal of 
Engineering Mechanics 137 (6) , pp. 400-409 
• Li, X., Kagawa, T., 2013, Development of a new noncontact gripper using swirl vanes, Robotics and Computer-Integrated Manufacturing 29 (1) , pp. 63-70 
• Lien, T.K. Gripper technologies for food industry robots, Caldwell, D.G, (editor) (2013) Robotics and automation in the food industry, Cambridge, ISBN 978-1- 
84569-801-0, pp 143-170 
• Lien, T.K., Davis, P.G.G., 2008, A Novel Gripper for Limp Materials Based on Lateral Coanda Ejectors, CIRP Annals, 57/1: 33-36. 
• Lien, T.K., Gjerstad, T.B.,. 2008, A New Reversible Thermal Flow Gripper for Non-Rigid Products. Transactions of the North American Manufacturing 
Research Institution of SME. Dearborn, Michigan USA, Society of Manufacturing Engineers 2008 ISBN 0-87263-856-1. s. 565-572 
• Maatsch, S., Tasto, M., 2010, Prognose des Umschlagpotenzials des Hamburger Hafens für die Jahre 2015 , 2020 und 2025, Projektendbericht, Bremen 
• Matope, S. and Van der Merwe, A. F. (2010) The application of Van‐der‐Waals forces in micro‐material handling. Journal for New Generation Sciences, Vol 8, 
No.1, p. 122‐134. 
• Matope, S., Van der Merwe, A. F., Nkosi, M., Maaza, M. and Nemutudi R. (2011) Micro-material handling employing e-beam generated topographies of copper 
and aluminum. South Africa Journal of Industrial Engineering. Volume No.22, Issue 2, pp. 175-188). 
STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 10 
NEWTECH 2013 G. Fantoni - Gripping technology 0
References 
• Michalos, G. Makris, S. Papakostas, N. Mourtzis, D. Chryssolouris, G., 2010, Automotive assembly technologies review: challenges and outlook for a flexible 
and adaptive approach, CIRP Journal of Manufacturing Science and Technology, V 2/2, p81-91 
• Monkman GJ. 2003, Electroadhesive Microgrippers, Assembly Automation, 24/1. 
• Monkman, G.J., Hesse, S., Steinmann, R., Schunk, H., 2007, Robot Grippers, Wiley, 352760989X, 9783527609895 
• Mori M. , Suzumori K. (2009). Development of very high force hydraulic McKibben artificial muscle and its application to shape-adaptable power hand, 
Conference on Robotics and Biomimetics (ROBIO), 2009 IEEE International, pp. 1457 – 1462. 
• Munzinger, C., Fleischer, J., Stengel, G., Schneider, M., 2008, Accuracy of a Flying Cutting Device, Advanced Materials Research Vol. 43 S.23-35 
• Munzinger, C., Schulze, V., Ochs A., 2010, Schwingungsunterstütztes Greifen technischer Textilien VDI-Z Integrierte Produktion, Jahrgang 152 (2010), 
Heft/Band 6, Springer-VDI-Verlag, Düsseldorf, S. 51-53 
• Munzinger, C., Simm, T., Köhler, G., Ruch, D., 2007, Modulares Greifsystem für die Verpackungstechnik – Ein Modularisierungsansatz für die 
auftragsbezogene Konfiguration einer Handhabungseinheit. Wt Werkstattstechnik online Heft 9/2007, publisher: Springer VDI-Verlag GmbH &Co. KG, 
Düsseldorf 
• Murphy, M., Kim, S., Sitti, M. 2009, Enhanced Adhesion by Gecko Inspired Hierarchical Adhesives, Applied Materials and Interfaces 
• Nakao M, Tsuchiya K, Matsumoto K, Hatamura Y. Micro handling with Rotational Needle-type Tools Under Real Time Observation, Annals of CIRP 2001, 
50/1/2001, 9-12. 
• Neugebauer, R., Koriath, H.-J., Van der Merwe, A. F., Müller M. and Matope, S., 2011, Study on applicability of adhesive forces for micro-material handling in 
production technology, Proceedings of the International Conference on Industrial Engineering and Engineering Management for Sustainable Global 
Development, Stellenbosch, Capetown, pp.55-1 to 55-12. 
• Obata, K., Miyata, N., Kobayashi, M., Masaki, N., & Yoshikawa, H., 2001, Development of automatic container yard crane, in Mitsubishi Heavy Industries, 
Ltd. Technical Review, Vol. 38, No.2, pp. 62-66 
• Obata, K.J., Motokado, T., Saito, S., Takahashi, K., 2004, A scheme for micro-manipulation based on capillary force, Journal of Fluid Mechanics, v. 498, pp. 
113-121. 
• Papakostas, N., Michalos, G., Makris, S., Zouzias, D., Chryssolouris, G., 2011, Industrial applications with cooperating robots for the flexible assembly, 
International Journal of Computer Integrated Manufacturing, v24/7, 650-660 
• Parness, A., 2010, Microstructured adhesives for climbing applications, Stanford University PhD Thesis, 2010. 
• Parness, A., 2011, Anchoring Foot Mechanisms for Sampling and Mobility in Microgravity ICRA Communications May 9·13, 2011, Shanghai, China 
STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 10 
NEWTECH 2013 G. Fantoni - Gripping technology 1
References 
• Parness, A., Asbeck, A., Dastoor, S., Fullerton, L., Esparza, N., Soto, D., Heyneman, B., Cutkosky, M., 2009, Climbing rough vertical surfaces with hierarchical 
directional adhesives, IEEE ICRA, 2009, 2675-2680. 
• Perline, R.E. et al, 2008, Electroadhesion, Patent US20080089002 
• Persson, C.,1997, International Patent EP000001012101B1 Lifting device 
• Pethig, R, 2010, Review Article—Dielectrophoresis: Status of the theory, technology, and applications, Biomicrofluidics. 2010 June, 4(2): 022811. 
• Petterson, A., Ohlsson, T., Caldwell, D.G., Davis, S. ,Gray, J.O., Dodd, T.J., 2010 A Bernoulli principle gripper for handling of planar and 3D (food) products, 
Industrial Robot: An International Journal, Vol. 37 Iss: 6, pp.518 - 526 
• Pfeffer M., Goth C., Craiovan D., Franke J., 3D-Assembly of Molded Interconnect Devices with Standard SMD Pick & Place Machines Using an Active Multi 
Axis Workpiece Carrier, In Proceedings: 2011 IEEE International Symposium on Assembly and Manufacturing, ISAM 2011, Tampere, May 25-27 2011 
• Phillips, L.B., Jo, H., 1994, Lightweight, Multi-Purpose Two Roll Gripper for Part Manipulation, Society of Manufacturing Engineers. 
• Pouliezos, A. Visionary Automation of Sack Handling and Emptying, inIEEE Robotics Automation Magazine, Vol. 7, No.4, 2000, pp. 44–49 
• Raatz, A., Rathmann, S., Hesselbach, J., 2012, Active Gripper for Hot Melt Joining of Micro Components, CIRP Annals – Manufacturing Technology 61 
• Raatz, A., Rathmann, S., Hesselbach, J., 2012, Process development for the assembly of microsystems with hotmelt adhesives, CIRP Annals - Manufacturing 
Technology, 61, 5–8 
• Read, G. R., Robotic hand effector, Patent GB 2 459 723, 2009. 
• Reinhart, G., Ehinger, C., 2011, Novel Robot-based End-effector Design for an Automated Preforming of Limb Carbon Fiber Textiles, in G. Schuh et al. Future 
Trends in Production Engineering – Proceedings of the First Conference of the German Academic Society for Production Engineering 
• Reinhart, G., Ehinger, C., Philipp, T., Schilp, J., Shen, Y., Spillner, R., Thiemann, C., 2011, Novel automation technologies for an efficient production of fiber 
reinforced plastics (FRP) structures at a glance, in Sampe Europe Technical Conference - Setec 11, S. 411-418. 
• Reinhart, G., Glück, A., Ehinger, C., 2012, Automated Process Chain for the Manufacturing of Fiber Reinforced Plastics (FRP), in SAMPE (Hrsg.): SAMPE 
EUROPE - 2nd. International Semat 12 Symposium Munich, 24.-25. 5.2012, S. 144-149. 
• Reinhart, G., Heinz, M., Kirchmeier, T.: Integration of the Ultrasonic Handling Technology into Microassembly Systems. In Lien, T. K. (Hrsg.): 3rd CIRP 
Conference on Assembly Technologies and Systems (CATS). Trondheim. Trondheim, Norway: Tapir Uttrykk 2010, S. 91-96. ISBN: 978-8-25192-616-4. 
• Reinhart, G., Höppner, J.: The Use of Acoustic Levitation Technologies for Non-Contact Handling Purposes. In Annals of the German Academic Society for 
Production Engineering VIII(2001)1 
• Reinhart, G., Loy, M., 2008, Flexible Feeding of Complex Parts, 2nd CIRP Conference on Assembly Technologies and Systems, Toronto, Canada. 
• Reinhart, G., Straßer, G., 2011, Flexible gripping technology for the automated handling of limp technical textiles in composites industry, In Production 
Engineering, Volume 5, Number 3, p. 301-306, 2011. 
STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 10 
NEWTECH 2013 G. Fantoni - Gripping technology 2
References 
• Reinhart, G., Straßer, G., Ehinger, C., 2010, Highly flexible automated manufacturing of composite structures consisting of limp carbon fibre textiles, in SAE 
International Journal of Aerospace 2 1, S. 181-187 
• Reinhart, G., Zeilinger, T. (2010): Lasergestützte Positionierung von MOEMS. In Mikroproduktion (02), S. 12–16. 
• Reinhart, G., Zeilinger, T.: Sensor detection of hidden functional surfaces – Laser guided, active positioning of microoptical components in automated assembly 
systems. wt Werkstattstechnik online, Vol. 99, Is. 9, 2009, 585-591 (in German). 
• Reinhart, J. Hoeppner, Non-Contact Handling Using High-Intensity Ultrasonics, CIRP Annals - Manufacturing Technology, Volume 49, Issue 1, 2000, Pages 5- 
STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 10 
NEWTECH 2013 G. Fantoni - Gripping technology 3 
8 
• Rohde, M., Fantoni, G., Tilli, J., Ernits R. M., 2014, A challenge for automation in logistics: gripping systems for automatically unloading of coffee sacks, 4th 
International Conference on Dynamics in Logistics - LDIC 2014 February 10 14, 2014, Bremen, Germany. 
• Rohde, M., Schmidt, K.: Low Cost Automation in der Logistik in ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb, 2010, Vol.02, pp. 91–95 
• Ruffatto, D., Shah, J., Spenko, M., 2013, Optimization and experimental validation of electrostatic adhesive geometry. In Aerospace Conference, 2013 IEEE 
(pp. 1-8). 
• Ruprecht, E., 2012, Prozesskette zur Herstellung schichtbasierter Systeme mit integrierten Kavitäten, ISBN:978-3-8440-1207-1, Shaker-Verlag 
• Saito, S., Soda, F., Dhelika, R., Takahashi, K., Takarada, W., & Kikutani, T. (2013). Compliant electrostatic chuck based on hairy microstructure. Smart 
Materials and Structures, 22(1), 015019. 
• Santochi M., Sebastiani F., Dini G., 2006, An innovative device for manipulation of end of life household appliances, 1st international seminar on Assembly 
systems, pp 215-220, Stuttgart,vol. 1, 2006 
• Scheid, W. Perspektiven zur Automatisierung in der Logistik: Teil2 – Praktische Umsetzung, in Hebezeuge Fördermittel – Fachzeitschrift für technische 
Logistik,2010, Vol. 50, No.10, pp.482-483, ISSN 0017-9442 
• Schmidt, K., Echelmeyer, W., Franke, H.: International Patent WO002011035898A1 Vacuum Gripper for Picking up and setting down unit loads, 2011, pp.1–54 
• Schmitt, J., Bruhn, M., Raatz, A. 2012, Comparative analysis of pneumatic grippers for handling operations of crystalline solar cells, Proceedings of the 
IASTED Asian Conference on Power and Energy Systems, AsiaPES 2012 , pp. 386-392 
• Schüßler F., 2010, Verbindungs- und Systemtechnik für thermisch hochbeanspruchte und miniaturisierte elektronische Baugruppen, Dissertation, Meisenbach 
Verlag Bamberg 
• Scott, P. B., 1985,The ‘Omnigripper’: a form of robot universal gripper, Robotica vol. 3, pp. 153-158. 
• Seliger, C. Gutsche, Hsieh, L.-H., 1992, Design of Needle and Card Grippers, CIRP Annals, 41/1 (1992), pp. 33–36 
• Seliger, G., 2007, Hybrid Disassembly System, in Sustainability in Manufacturing: Recovery of Resources in Product and Material Cycles, Chapter 5.5, pages 
290-312, Springer Verlag, Heidelberg, 2007 
• Seliger, G., Basdere,B., Keil, T., Rebafka, U. , 2002, Innovative Processes and Tools for Disassembly, CIRP Annals, V. 51/1 pp. 37-40
References 
• Seliger, G., Consiglio, S., Odry, D., Zettl, M.: Development of intelligent modular tools for disassembly. Proceedings of 15th International CIRP Design 
Seminar. S. 182-187, 2005. 
• Seliger, G., Rebafka, U., Stenzel, A., Zuo, B.-R., 2001, Process model based development of disassembly tools. Journal of Engineering Manufacture Vol. 215 
Part B:711-722. 
• Seliger, G., Szimmat, F. Niemeier, J. Stephan, J., 2003, Automated Handling of Non-Rigid Parts, CIRP Annals, Vol.52/1, 21-24. 
• Seliger, G., Szimmat, F.: Textile De-Stacking With A Freezing Gripper. In Proceedings of the 5th International Conference on Frontiers of Design and 
Manufacturing (ICFDM´2002), Dalian, China, 09. – 13.07.2002, S. 478 – 485 
• Shu L., Lenau T.A., Hansen H.N., Alting L., Biomimetics applied to centering in micro-assembly, CIRP Annals, Vol. 52/1/2003, p.101-104. 
• Sieben, C., 2011, Precise assembly of engines, Research News Jun 01 
• Sjælland, A.J., Christensen, T., 2004, Apparatus for handling layers of palletized goods, Patent US6802688 
• Spencer B., Aaron M. Dollar, 2012, Robust, Inexpensive Resonant Frequency Based Contact Detection for Robotic Manipulators, 2012 IEEE International 
Conference on Robotics and Automation, RiverCentre, Saint Paul, Minnesota, USA, May 14-18, 2012 
• Stephan, J., Seliger, G., 1999, Handling with ice – the cryo-gripper, a new approach, Assembly Automation, Vol. 19 Iss: 4, pp.332 – 337 
• Stokes, A.A., Shepherd.R.F., Morin.S.A., Ilievski.F., and Whitesides.G.M., 2013, A Hybrid Combining Hard and Soft Robots, Soft Robotics, 2013, 1, 70-74. 
• Suppa, M., Hofschulte, J.: Industrial Robotics - Industrierobotik im Wandel, in at - Automatisierungstechnik, 2010, Vol. 58, No.12, pp. 663-664 
• Szimmat, F., 2004, Beitrag zum Handhaben flächiger biegeschlaffer Bauteile, Dissertation, Technische Universität Berlin. 
• Tadakuma,K., Tadakuma, R., Ioka, K., Kudo,T., Takagi, M., Tsumaki, Y., Higashimori, M., Kaneko, M., 2012, Additional manipulating function for limited 
narrow space with omnidirectional driving gear. IROS 2012: 5438-5439 
• Tadakuma,K., Tadakuma, R., Ioka, K., Kudo,T., Takagi, M., Tsumaki, Y., Higashimori, M., Kaneko, M., 2012, Omnidirectional driving gears and their input 
mechanism with passive rollers. IROS 2012: 2881-2888 
• Tichem, M., Lang, D., Karpuschewski, B., 2003, A classification scheme for quantitative analysis of micro-grip principles, Proc. of the 1st Int. Precision 
Assembly Seminar (IPAS’2003), 17-19 March, Bad Hofgastein, Austria. 
• Tincani, V., Catalano, M. G., Farnioli, E., Garabini, M., Grioli, G., Fantoni, G., Bicchi, A., 2012, Velvet fingers: A smart gripper with controlled contact 
surfaces, International Conference of Intelligent Robots and Systems - IROS 2012, Vilamoura, Algarve, Portugal, October 7 - 12 2012. 
• Tincani, V., Grioli, G., Catalano, M.G., Bonilla, M., Garabini, M., Fantoni, G., Bicchi A., 2013, Controlling the active surfaces of the Velvet Fingers: sticky to 
slippy fingers., International Conference of Intelligent Robots and Systems - IROS 2013 
• Tincani, V., Grioli, G., Catalano, M.G., Garabini, M., Grechi, S., Fantoni, G., Bicchi A., 2013, Implementation and Control of the Velvet Fingers: a Dexterous 
Gripper with Active Surfaces, Proceeding of ICRA 
STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 10 
NEWTECH 2013 G. Fantoni - Gripping technology 4
References 
• Tolley, M. T., Onal, C D., Rus, D., Wood, R.J., 2013, Morphological Computation in an Origami-Inspired Folded Gripper, International Workshop on Soft 
Robotics and Morphological Computation 2013, Ascona, Switzerland, July 14-19, 2013 
• Tong, T., Zhao, Y., Delzeit, L., Kashani, A., Meyyappan, M., & Majumdar, A. (2008). Height independent compressive modulus of vertically aligned carbon 
nanotube arrays. Nano letters, 8(2), 511-515. 
• Tracht, K., Hogreve, S., Borchers, F., 2011, Gripper with Integrated Three-Dimensional Force Detection. Enabling Manufacturing Competitiveness and 
Economic Sustainability – 4th International Conference on Changeable, Agile, Reconfigurable and Virtual Production (CARV 2011), Montréal, Canada, 364- 
369. 
• Tracht, K., Hogreve, S., Bosse, S., 2012, Interpretation of multiaxial gripper force sensors. Technologies and Systems for Assembly Quality, Productivity and 
Customization - Proceedings of the 4th CIRP Conference on Assembly Technologies and Systems (CATS 2012), Ann Arbor, Michigan, USA, 
• Tremel J., Kühl A., Franke J., Innovative Developments for Automated Magnet Handling and Bonding of Rare Earth Magnets, In Proceedings: 2011 IEEE 
International Symposium on Assembly and Manufacturing, ISAM 2011, Tampere, May 25-27 2011 
• Uhlmann, E., Seliger, G., Härtwig, J.-P., Keil, T., 2000, Pilot Disassembly System for Home Appliance using new Tools and Concepts. Proc. of the 3rd World 
Congress on Intelligent Manufacturing Processes and Systems, Cambridge: 453-456. 
• Ulmen, J., Cutkosky, M.: A Robust, Low-Cost and Low-Noise Artificial Skin for Human-Friendly Robots. In 2010 IEEE International Conference on Robotics 
and Automation (ICRA), 3-7 May 2010, Anchorage, Alaska, USA, 4836-4841. 
• van Brussel, H., J Peirs , D. Reynaerts , A. Delchambre , G. Reinhart: Assembly of Microsystems (2000), Keynote Paper CIRP Annals, Vol. 49 (2), 2000, pp. 
451-472 
• van de Klundert, M., 2006, Depalletizing Device, patent WO2006/088354 A1 
• Van der Merwe, A. F. and Matope, S. (2010) Manipulation of Van der‐Waals forces by geometrical parameters in micro‐material handling. Journal for New 
Generation Sciences, Vol 8, No.3, pp.152‐ 166. 
• Vandaele, V., Lambert, P., and Delchambre, A., Noncontact Handling in Microassembly: Acoustical Levitation, Precis. Eng.-J. Int. Soc. Precis. Eng. 
Nanotechnol., Vol. 29, No. 4, pp. 491-505, 2005. 
• Vasudev, A., Zhe, J., 2009, A low voltage capillary microgripper using electrowetting, TRANSDUCERS 2009-15th International Conference on Solid-State 
Sensors, Actuators and Microsystems, Denver, CO, pp 825-828 
• Wadhwa, R.S., Flexibility in manufacturing automation: A living lab case study of Norwegian metalcasting SMEs, Journal of Manufacturing Systems 31 (2012) 
444– 454 
• Wertz, R., Böttinger, F., Fischmann, C., Giesen, T., Michen, M., 2012, How automation can benefit the PV industry. In Photovoltaics International N.16,. 15-24 
STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 10 
NEWTECH 2013 G. Fantoni - Gripping technology 5
References 
• Wohlfahrt, A. Peder, I., Verfahren und Vorrichtung zur Aufnahme von Stückgut, patent EP 0 627 373 B1 (1997-12-07) 
• Wolf, A. et. al. (2005). Grippers in Motion – The Fascination of Automated Handling Tasks. 1st Edition, Springer Verlag, Berlin, Heidelberg. 
• Zäh, M. F., Jacob, D., Ehrenstraßer, M., Schilp, J., 2003, Hybrid Micro‐Assembly System for Teleoperated and Automated Micromanipulation. In American 
Society for Precision Engineering, Winter Topical Meeting 28, S. 119–124 
• Zhang H, Burdet E, Poo AN, Hutmacher DW, 2008, Microassembly fabrication of tissue engineering scaffolds with customized design, IEEE Transactions on 
Automation Science and Engineering, Vol:5, ISSN:1545-5955, Pages:446-456. 
• Zheng, K., Lu, Z., &Sun, X., 2010, An Effective Heuristic for the Integrated Scheduling Problem of Automated Container Handling System Using Twin 40’ 
Cranes, in ICCMS 2010 Second International Conference on Computer Modeling and Simulation, 2010, pp. 406-410, IEEE 
STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 10 
NEWTECH 2013 G. Fantoni - Gripping technology 6
1 on the basis of the paper “Grasping devices and methods in 
automated production processes” , CIRP Annals - Manufacturing 
Technology, Volume 63, Issue 2, 2014, 
STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 10 
7 
Gripping technologies 1 
G. Fantoni g.fantoni@ing.unipi.it 
Department of Civil and Industrial Engineering 
University of Pisa (Italy) 
NEWTECH 2013

More Related Content

What's hot

Manufacture of composites
Manufacture  of  compositesManufacture  of  composites
Manufacture of composites
AERONAUTICAL ENGINEERING at RTU
 
Composites and it's manufacturing
Composites and it's manufacturingComposites and it's manufacturing
Composites and it's manufacturing
Harsh Joshi
 
Graphene by ISMAIL ALSARHI
Graphene by ISMAIL ALSARHIGraphene by ISMAIL ALSARHI
Graphene by ISMAIL ALSARHI
ISMAILH6
 
Microprocessor controlled injection molding machine
Microprocessor controlled injection molding machineMicroprocessor controlled injection molding machine
Microprocessor controlled injection molding machine
AvinashKumar1564
 
zeta potential
zeta potentialzeta potential
zeta potential
MdHelalHossain6
 
Glass transition temperature tg
Glass transition temperature tgGlass transition temperature tg
Glass transition temperature tg
Ahmad Sakib
 
Surface modification
Surface modificationSurface modification
Surface modification
translateds
 
Metal matrix composites
Metal matrix compositesMetal matrix composites
Metal matrix composites
Raghu kk
 
Mechanical properties
Mechanical propertiesMechanical properties
Mechanical properties
Prem Kumar Soni
 
Composite materials
Composite materialsComposite materials
Composite materials
tej kumar
 
Additive manufacturing (3d printing)
Additive manufacturing (3d printing)Additive manufacturing (3d printing)
Additive manufacturing (3d printing)
jyotishmathi college
 
ceramic sintering
ceramic sinteringceramic sintering
Mechanical properties of materials
Mechanical properties of materialsMechanical properties of materials
Mechanical properties of materials
Power System Operation
 
Powder Mixed Electric Discharge Machining
Powder Mixed Electric Discharge MachiningPowder Mixed Electric Discharge Machining
Powder Mixed Electric Discharge Machining
Soumavo Boral
 
Surface modification techniques in biomedical sector
Surface modification techniques in biomedical sector Surface modification techniques in biomedical sector
Surface modification techniques in biomedical sector
Sum K
 
Isostatic pressing
Isostatic pressingIsostatic pressing
Isostatic pressing
primary information services
 
Elastic plastic fracture mechanics
Elastic plastic fracture mechanicsElastic plastic fracture mechanics
Elastic plastic fracture mechanics
Dr. Saad Mahmood Ali
 
Creep
CreepCreep
Graphene presentation 11 March 2014
Graphene presentation 11 March 2014Graphene presentation 11 March 2014
Graphene presentation 11 March 2014
Jonathan Fosdick
 
Ndtm 2-mpt
Ndtm 2-mptNdtm 2-mpt
Ndtm 2-mpt
Godwin Pithalis
 

What's hot (20)

Manufacture of composites
Manufacture  of  compositesManufacture  of  composites
Manufacture of composites
 
Composites and it's manufacturing
Composites and it's manufacturingComposites and it's manufacturing
Composites and it's manufacturing
 
Graphene by ISMAIL ALSARHI
Graphene by ISMAIL ALSARHIGraphene by ISMAIL ALSARHI
Graphene by ISMAIL ALSARHI
 
Microprocessor controlled injection molding machine
Microprocessor controlled injection molding machineMicroprocessor controlled injection molding machine
Microprocessor controlled injection molding machine
 
zeta potential
zeta potentialzeta potential
zeta potential
 
Glass transition temperature tg
Glass transition temperature tgGlass transition temperature tg
Glass transition temperature tg
 
Surface modification
Surface modificationSurface modification
Surface modification
 
Metal matrix composites
Metal matrix compositesMetal matrix composites
Metal matrix composites
 
Mechanical properties
Mechanical propertiesMechanical properties
Mechanical properties
 
Composite materials
Composite materialsComposite materials
Composite materials
 
Additive manufacturing (3d printing)
Additive manufacturing (3d printing)Additive manufacturing (3d printing)
Additive manufacturing (3d printing)
 
ceramic sintering
ceramic sinteringceramic sintering
ceramic sintering
 
Mechanical properties of materials
Mechanical properties of materialsMechanical properties of materials
Mechanical properties of materials
 
Powder Mixed Electric Discharge Machining
Powder Mixed Electric Discharge MachiningPowder Mixed Electric Discharge Machining
Powder Mixed Electric Discharge Machining
 
Surface modification techniques in biomedical sector
Surface modification techniques in biomedical sector Surface modification techniques in biomedical sector
Surface modification techniques in biomedical sector
 
Isostatic pressing
Isostatic pressingIsostatic pressing
Isostatic pressing
 
Elastic plastic fracture mechanics
Elastic plastic fracture mechanicsElastic plastic fracture mechanics
Elastic plastic fracture mechanics
 
Creep
CreepCreep
Creep
 
Graphene presentation 11 March 2014
Graphene presentation 11 March 2014Graphene presentation 11 March 2014
Graphene presentation 11 March 2014
 
Ndtm 2-mpt
Ndtm 2-mptNdtm 2-mpt
Ndtm 2-mpt
 

Viewers also liked

Chapter 3 Manipulator end effectors
Chapter 3 Manipulator end effectorsChapter 3 Manipulator end effectors
Chapter 3 Manipulator end effectors
Afiq Sajuri
 
Robotics End Effector
Robotics End EffectorRobotics End Effector
Robotics End Effector
Yasodharan R
 
Hand Closing
Hand ClosingHand Closing
Hand Closing
guestff2235
 
Grips
GripsGrips
Robot gripper arm
Robot gripper armRobot gripper arm
Robot gripper arm
Vee Create
 
Robot Gripper for High-Mix, Low Volume Automation
Robot Gripper for High-Mix, Low Volume AutomationRobot Gripper for High-Mix, Low Volume Automation
Robot Gripper for High-Mix, Low Volume Automation
Robotiq
 
Robotics in Textile
Robotics in TextileRobotics in Textile
Robotics in Textile
Virendra Saroj
 
Grippers and lifting mechanisms
Grippers and lifting mechanismsGrippers and lifting mechanisms
Grippers and lifting mechanisms
Mashal Kumar
 

Viewers also liked (8)

Chapter 3 Manipulator end effectors
Chapter 3 Manipulator end effectorsChapter 3 Manipulator end effectors
Chapter 3 Manipulator end effectors
 
Robotics End Effector
Robotics End EffectorRobotics End Effector
Robotics End Effector
 
Hand Closing
Hand ClosingHand Closing
Hand Closing
 
Grips
GripsGrips
Grips
 
Robot gripper arm
Robot gripper armRobot gripper arm
Robot gripper arm
 
Robot Gripper for High-Mix, Low Volume Automation
Robot Gripper for High-Mix, Low Volume AutomationRobot Gripper for High-Mix, Low Volume Automation
Robot Gripper for High-Mix, Low Volume Automation
 
Robotics in Textile
Robotics in TextileRobotics in Textile
Robotics in Textile
 
Grippers and lifting mechanisms
Grippers and lifting mechanismsGrippers and lifting mechanisms
Grippers and lifting mechanisms
 

Recently uploaded

DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODELDEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
gerogepatton
 
Question paper of renewable energy sources
Question paper of renewable energy sourcesQuestion paper of renewable energy sources
Question paper of renewable energy sources
mahammadsalmanmech
 
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
University of Maribor
 
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdfIron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
RadiNasr
 
Properties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptxProperties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptx
MDSABBIROJJAMANPAYEL
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Christina Lin
 
Literature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptxLiterature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptx
Dr Ramhari Poudyal
 
PPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testingPPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testing
anoopmanoharan2
 
digital fundamental by Thomas L.floydl.pdf
digital fundamental by Thomas L.floydl.pdfdigital fundamental by Thomas L.floydl.pdf
digital fundamental by Thomas L.floydl.pdf
drwaing
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
insn4465
 
14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application
SyedAbiiAzazi1
 
Generative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of contentGenerative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of content
Hitesh Mohapatra
 
ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024
Rahul
 
Series of visio cisco devices Cisco_Icons.ppt
Series of visio cisco devices Cisco_Icons.pptSeries of visio cisco devices Cisco_Icons.ppt
Series of visio cisco devices Cisco_Icons.ppt
PauloRodrigues104553
 
Swimming pool mechanical components design.pptx
Swimming pool  mechanical components design.pptxSwimming pool  mechanical components design.pptx
Swimming pool mechanical components design.pptx
yokeleetan1
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
ClaraZara1
 
Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
IJECEIAES
 
DfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributionsDfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributions
gestioneergodomus
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
Madan Karki
 
sieving analysis and results interpretation
sieving analysis and results interpretationsieving analysis and results interpretation
sieving analysis and results interpretation
ssuser36d3051
 

Recently uploaded (20)

DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODELDEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
 
Question paper of renewable energy sources
Question paper of renewable energy sourcesQuestion paper of renewable energy sources
Question paper of renewable energy sources
 
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
 
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdfIron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
 
Properties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptxProperties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptx
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
 
Literature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptxLiterature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptx
 
PPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testingPPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testing
 
digital fundamental by Thomas L.floydl.pdf
digital fundamental by Thomas L.floydl.pdfdigital fundamental by Thomas L.floydl.pdf
digital fundamental by Thomas L.floydl.pdf
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
 
14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application
 
Generative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of contentGenerative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of content
 
ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024
 
Series of visio cisco devices Cisco_Icons.ppt
Series of visio cisco devices Cisco_Icons.pptSeries of visio cisco devices Cisco_Icons.ppt
Series of visio cisco devices Cisco_Icons.ppt
 
Swimming pool mechanical components design.pptx
Swimming pool  mechanical components design.pptxSwimming pool  mechanical components design.pptx
Swimming pool mechanical components design.pptx
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
 
Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
 
DfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributionsDfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributions
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
 
sieving analysis and results interpretation
sieving analysis and results interpretationsieving analysis and results interpretation
sieving analysis and results interpretation
 

Grasping everything

  • 1. Gripping technologies 1 1 on the basis of the paper “Grasping devices and methods in automated production processes” , CIRP Annals - Manufacturing Technology, Volume 63, Issue 2, 2014, G. Fantoni Department of Civil and Industrial Engineering University of Pisa (Italy) NEWTECH 2013 STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 1
  • 2. Remarks • The presentation has been prepared for NewTech Conference 2013 and it is titled Gripping Technology. However it is based on the CIRP Keynote paper titled «Grasping devices and methods in automated production processes». • Please refer to this presentation by citing the paper as: Fantoni, G., Santochi, M., Dini, G., Tracht, K., Scholz-Reiter, B., Fleischer, J., Lien, T.K., Seliger, G., Reinhart, G.,Franke, J., Hansen, H.N., Verl, A.,2014, Grasping devices and methods in automated production processes, CIRP Annals - Manufacturing Technology, Volume 63, Issue 2, 2014, Pages 679- 701, ISSN 0007-8506, http://dx.doi.org/10.1016/j.cirp.2014.05.006. • The final version of the present paper can be found at http://www.sciencedirect.com/science/article/pii/S0007850614001887 STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 2
  • 3. Outline • Standard definition and abstract definition • Grasping process – Grasping principles – Releasing principles – Monitoring principles • Trends • Why not? • Conclusions • Acknowledgements STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 3
  • 4. Outline • Standard definition and abstract definition • Grasping process – Grasping principles – Releasing principles – Monitoring principles • Trends • Why not? • Conclusions • Acknowledgements STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 4
  • 5. Gripper: definition “a subsystems of handling mechanisms which provide temporary contact with the object to be grasped [..] and ensure the position and orientation when carrying and mating the object to the handling equipment [..]; the term “gripper” is also used in cases where no actual grasping, but rather holding of the object where the retention force can act on a point, line or surface [..]” Monkman et al. Robot grippers In abstract terms: h. mechanisms + Block/Hold + object + temporary That means that after grasping some of the DOF of G. and O. are the same STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 5
  • 6. Cases of «not standard» grippers STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 6
  • 7. Outline • Standard definition and abstract definition • Grasping process – Grasping principles – Releasing principles – Monitoring principles • Trends • Why not? • Conclusions • Acknowledgements STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 7
  • 8. The grasping process 1. Approaching the object: the gripper is positioned nearby the object. 2. Coming into contact with the object surface 3. Increasing the grasping force: the grasping force is increased, within certain limits. 4. Securing the object. The force stops increasing. The dof of the object are removed 5. Lifting the object; 6. Releasing the object. Issue at the microscale; Monitoring the grasp: direct or indirect control of force, torque, stick slip sensors, contact. STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 8
  • 9. But is it true? FEEDING GRASPING HANDLING PLACING STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 9
  • 10. But is it true? FEEDING GRASPING HANDLING PLACING S N Porous plies Steel sheets STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 10
  • 11. But is it true? FEEDING GRASPING HANDLING PLACING S N Porous plies Steel sheets STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 11
  • 12. But is it true? FEEDING GRASPING HANDLING PLACING High accelerations STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 12
  • 13. Adhesion problems in micro assembly Force between a silicon sphere and plane (by Fearing) 100 10-5 force [N] 10-10 10-6 10-5 10-4 10-3 10-15 radius of the sphere [m] STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 13 NEWTECH 2013 G. Fantoni - Gripping technology
  • 14. Releasing?? Releasing problems only at microscale? FALSE permanent magnets on rotors of electric drives Sol-Gel dough products Frozen products An for sure at micro and nano scale STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 14
  • 15. Outline • Standard definition and abstract definition • Grasping process – Grasping principles – Releasing principles – Monitoring principles • Trends • Why not? • Conclusions • Acknowledgements STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 15
  • 16. Grasping principles STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 16
  • 17. Standard Friction and Jaw grippers Friction-jaw mechanical grippers sx) two fingers; centre) single moving finger; dx) microgripper piezoelectrically actuated. 20° 90° 90° 20° b) STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 17 a) c) d) See Festo See Monkman
  • 18. Friction and Jaw grippers: standard? STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 18
  • 19. Vacuum grippers STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 19
  • 20. Vacuum: the key tech in SMDs assembly STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 20 NEWTECH 2013 G. Fantoni - Gripping technology
  • 21. Needle gripper STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 21
  • 22. Bernoulli grippers STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 22
  • 23. Capillary grippers At microscale capillary grippers have been used owing to their flexibility and reliability; have a compliant behaviour and a self-centring effect; capability of grasping small and light components in a wide range of materials and shapes; capability of handling delicate components as the meniscus between the gripper and the object has a “bumper” effect. To release parts grasped by capillary grippers: - Scratching agaist an edge, - Two different fluids, - Changing the gripper curvature, - Electrowetting. STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 23
  • 24. Capillary principle α1 α2 Fc=FL+FT (1) Gripper T T T T mg STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 24 pa pl FL= 2  HπRa 2 (2) FT= 2πRaγsin(θ+α) (3) In the previous equations γ is the surface tension (for water ~7210-3Nm-1) and H=2(1/r0-1/r1).
  • 25. Capillary grippers • Reliable • Self centering • Compliant • It can work without refilling for more than 1000 times (grasping-releasing cycles) • It leaves traces and can stain lenses or surface finished parts (mirrors, optics) • Particular care in its use with SMDs and other electronic components • Often the process need for a following phase of heating in order to remove (by evaporation) the liquid STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 25
  • 26. Capillary grippers: grasping and releasing STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 26
  • 27. Capillary grippers: grasping and releasing Grasping Moving Releasing Working principle of the adhesion gripper able to “grasp” and release microparts by a curvature change. STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 27 NEWTECH 2013 G. Fantoni - Gripping technology
  • 28. Grasping and releasing microparts exploiting liquids with different surface tensions A novel grasping and releasing strategy for microparts exploiting liquids with different surface tensions [Fantoni, Porta, Santochi] Releasing Force h [mm] Vol [mm3] Fc [mN] STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 28
  • 29. Results High reliability Centring effect Many tests, all succeeded 100% reliability Also for very small ‘releasing’ volume STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 29 NEWTECH 2013 G. Fantoni - Gripping technology
  • 30. Capillary grippers Multiple grasping [Lambert,2005] Extensions to macroscale? STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 30
  • 31. «ice» gripper More in general we can define them as «phase transition grippers», they exploit the transition of a material from liquid to ‘solid’. Ultrasonic-assisted adhesive for limp and air-permeable textiles Ice gripper for limp and air-permeable textiles Ice gripper for microlenses STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 31
  • 32. Electrostatic principle Conductive Dielectric Conductive or dielectric + + + + + + + + + + - - - - - - - - - + + + + + + + + +- -+- +- -+- +- V - - - - - - + + + + + + + + + + +- -+- +- -+- +- - - - - - - - - - - - - - - - STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 32 V (a) + + + + - - - - - - - + + + + + + + + (d) V (c) V - - - - - - - - - - - - - - - (b)
  • 33. Electrostatic grippers Electrostatic forces: experimental evidences STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 33
  • 34. [ Fantoni ] HV Electrostatic Microgrippers V0 Glass substrate Cross gripper Conductive working plane Cross gripper Grasped component +++++++++++++++ V - - - - - - - - - - - - - - - conductive - + - + - + [ Hesselbach ] [ Enikov ] STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 34 NEWTECH 2013 G. Fantoni - Gripping technology
  • 35. Electrostatic Microgrippers with centering capabilities STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 35 NEWTECH 2013 G. Fantoni - Gripping technology
  • 36. Force acting at the micro scale Van der Waals Capillary Electrostatic Forces Adhesion force g STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 36 NEWTECH 2013 G. Fantoni - Gripping technology
  • 37. Van der Waals forces Towards gecko tapes  STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 37 NEWTECH 2013 G. Fantoni - Gripping technology
  • 38. Adhesive grippers: grasping and releasing a b c d STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 38 NEWTECH 2013 G. Fantoni - Gripping technology
  • 39. Ultrasound «gripper» Sonodrote: the parts are moved by the air pressure generated by a sonodrote. The parts levitate above the plate. STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 39
  • 40. Outline • Standard definition and abstract definition • Grasping process – Grasping principles – Releasing principles – Monitoring principles • Trends • Why not? • Conclusions • Acknowledgements STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 40
  • 41. Releasing strategies Collection of strategies and approaches to release parts mainly at micro level. [Arai], [Fearing], [Fantoni], [Van Brussel] STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 41
  • 42. Releasing part 1 STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 42
  • 43. Releasing part 2 STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 43
  • 44. Outline • Standard definition and abstract definition • Grasping process – Grasping principles – Releasing principles – Monitoring principles • Trends • Why not? • Conclusions • Acknowledgements STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 44
  • 45. The grasping process 1. Approaching the object: the gripper is positioned nearby the object. 2. Coming into contact with the object surface 3. Increasing the grasping force: the grasping force is increased, within certain limits. 4. Securing the object. The force stops increasing. The dof of the object are removed 5. Lifting the object; 6. Releasing the object. Issue at the microscale; Monitoring the grasp: direct or indirect control of force, torque, stick slip, contact. STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 45
  • 46. The monitoring methods Sensing principles: a) Mechanical switch; b) electrical sensor; c) photoelectric sensor; d) vision based; e) tactile sensor; f) strain gauges; g) force/torque sensor; h) vision based; i) capacitive or electrostatic; j) led-photodiode (often IR); k) vision based monitoring. STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 46
  • 47. Flat‐pack inductive proximity sensor Piezoresitive The monitoring methods Strain gauges [Tracht] z-sensor y-sensor x-sensor gripper GEH6030 adapter plate gripper finger 1 gripper finger 2 Capacitive sensor Indirect force measuring system x y z [Fantoni] STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 47 NEWTECH 2013 G. Fantoni - Gripping technology
  • 48. Outline • Standard definition and abstract definition • Grasping process – Grasping principles – Releasing principles – Monitoring principles • Trends • Why not? • Conclusions • Acknowledgements STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 48
  • 49. Trends • More than one single principle per time • Soft one piece gripper (silicon or AM) • High coupling • Active surfaces • New «principles» and «strategies» • Underactuated grippers • Bimanual handling • Lightweight grippers STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 49
  • 50. Trends • More than one single principle per time • Soft one piece gripper (silicon or AM) • High coupling • Active surfaces • New «principles» and «strategies» • Underactuated grippers • Bimanual handling • Lightweight grippers STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 50
  • 51. Hybrid Grippers A new generation of hybrid grippers seems emerging: • More than two principles per gripper • Increasing object-gripper coupling Form + Force + Vacuum Electroadhesive + Force Bernoulli + «Form» STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 51
  • 52. Vacuum + Friction 2 vacuum cups additional vacuum cup telescopic slide-out flap parcel parcel parcel STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 52
  • 53. Electrostatic + Form STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 53
  • 54. Jamming technology for grasping Form + Friction + Vacuum (+ liquid/solid transition) The Jamming Gripper is based on a granular material contained in a flexible membrane. The latex balloon membrane is connected to the base through a collar, producing an airtight seal. The collar is the rigid part of the gripper (when not actuated) and helps to guide the gripper and to fit its shape to the target. When the gripper and the object are coupled, vacuum is provided and a transition from deformable to rigid state generates the grasping force (grasping based on friction). STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 54
  • 55. Working modes STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 55
  • 56. Electrostatic Peltiér Micro distributed vacuum cups Adhesive silicon gripper  Programmable  Switchable  Adhesive  +distributed vacuum STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 56 NEWTECH 2013 G. Fantoni - Gripping technology
  • 57. Trends • More than one single principle per time • Soft one piece gripper (silicon or AM) • High coupling • Active surfaces • New «principles» and «strategies» • Underactuated grippers • Bimanual handling • Lightweight grippers STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 57
  • 58. Soft grippers a) b) c) d) STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 58 e)
  • 59. Additive manufactured gripper STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 59
  • 60. Trends • More than one single principle per time • Soft one piece gripper (silicon or AM) • High coupling • Active surfaces • New «principles» and «strategies» • Underactuated grippers • Bimanual handling • Lightweight grippers STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 60
  • 61. Increasing gripper d.o.f. STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 61
  • 62. Flexible and compliant friction gripper The “hose gripper” is a flexible gripper, formed of a double-walled hose filled with water or air. This hose is contained into a pipe and actuated by a plunger that moves up and down into the double-walled hose. To make the gripper capable of grasping and lifting objects, the underside of the hose is located over the object, thus partially covering the object’s surface. When the plunger raises, the hose and the object are roped into the rigid pipe. The releasing is performed moving back the plunger. The grasping is performed by exploiting both form and force closure (friction). STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 62 NEWTECH 2013 G. Fantoni - Gripping technology
  • 63. Compliant Vacuum Cups STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 63
  • 64. Handling of flexible materials: leather plies Since its flexibility, the compliant vacuum cup is able to maintain the grasping also in case of deformable objects (leather plies, textiles, etc..). During handling, the borders of the objects fall down due to gravity. Therefore the entire object deforms and, if the vacuum cup does not follow the object shape, the vacuum decreases and the object is released. The compliancy of the vacuum cup (due to both design and material) allows a reliable securing phase. STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 64
  • 65. Adaptable + self-activating valves vacuum vacuum vacuum STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 65 NEWTECH 2013 G. Fantoni - Gripping technology
  • 66. Various approaches to adaptability [Scott] [Pettersson] [Reinhart] [Jonas] STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 66 NEWTECH 2013 G. Fantoni - Gripping technology
  • 67. Trends • More than one single principle per time • Soft one piece gripper (silicon or AM) • High coupling • Active surfaces • New «principles» and «strategies» • Underactuated grippers • Bimanual handling • Lightweight grippers STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 67
  • 68. Active surfaces a) b) c) d) a) Roll-on gripper b) Velvet fingers c) Traction gripper d) Robin Read’s g. STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 68
  • 69. Roll-on gripper STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 69
  • 70. Traction gripper for logistic applications The Traction Gripper consists of double belt conveying units arranged perpendicular to each other. Each unit has traction belts that exert a friction force allowing the grasping of several shape goods. Each conveyor belts has a separate drive chain. The inward conveying motion of the traction belts causes friction between the active surfaces. The object is pulled into the right angle and held there firmly. STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 70
  • 71. Velvet Fingers External presentation STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 71
  • 72. Trends • More than one single principle per time • Soft one piece gripper (silicon or AM) • High coupling • Active surfaces • New «principles» and «strategies» • Underactuated grippers • Bimanual handling • Lightweight grippers STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 72
  • 73. From Micro to Macro and viceversa Van derWaals Capillary Needle [Parness] Cutkosky [Lanzetta] STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 73
  • 74. Terrific forces [Cutkosky], [Parness] Video STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 74
  • 75. The Gecko Adhesive System Lamellae—mm scale Branches—μm scale Setae—10s of μms Spatulae—10s of nms [Autumn], [Parness] Contact features use van der Waals forces STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 75
  • 76. Synthetic Gecko Adhesive STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 76
  • 77. Loading the Wedges Load Direction Unloaded Moderately Loaded Adhesion OFF Adhesion ON NEWTECH 2013 G. Fantoni - Gripping technology Heavily Loaded HIGH Adhesion ON STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 77
  • 78. Gecko Gripper (1) STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 78
  • 79. NanoForceGripper by FESTO STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 79
  • 80. Jamming for everything Jamming for finger pads (roof tiles) Jamming for trunc Jamming for joints Jamming for palm STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 80
  • 81. Outline • Standard definition and abstract definition • Grasping process – Grasping principles – Releasing principles – Monitoring principles • Trends • Why not? • Conclusions • Acknowledgements STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 81
  • 82. Why not? – Tree frogs – Cargofloor® and Switl® – Tixotropic / dilatants /rehopetic grippers –Magnetic fluids+adaptable surfaces STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 82
  • 83. Toward a new adhesive gripper W Federle, W.J.P Barnes, W Baumgartner, P Drechsler and J.M Smith, Wet but not slippery: boundary friction in tree frog adhesivetoe pads J. R. Soc. Interface 2006 3, 689-697 GRASP component Hydrophobic areas Hydrophillic areas STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 83
  • 84. Toward a new adhesive gripper: skin and pulp Frog Fingeprint (SEM) Supehydrophobic surface STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 84
  • 85. Theoretical model mg h* F1 xa1 mg mg F2 h* STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 85 A B C
  • 86. xa1 R Theoretical model F3 xa2 F1 xa3 F4 mg mg mg water superhydrophobic water hydrophobic water hydrophilic Hydrophobic ring STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 86 D E F
  • 87. Concept design STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 87
  • 88. Active surfaces for grasping and releasing of microparts Grasping and releasing of microparts by using active hydrophillic-phobic surfaces [Fantoni, Hansen, Santochi ] Programmable hydrophobic surfaces [Fantoni, Zang, Tosello, Hansen] in progress Standard Treated STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 88
  • 89. Other principles? SWITL: an active shovel able to pick up even semi-liquid materials Cargo floor: stick slip motion through selective surfaces activation But can smart fluids be used? Dilatants fluids: what for in microassembly? Tixotropic liquids: their viscosity changes with the movement. e.g. S. Gennaro’s blood, wine, maionnaise, ketchup, quicksands, etc.. STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 89
  • 90. Outline • Standard definition and abstract definition • Grasping process – Grasping principles – Releasing principles – Monitoring principles • Trends • Why not? • Conclusions • Acknowledgements STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 90
  • 91. Conclusions • Research activities – RobLog (7° EU project) – MicroGrippers expoliting structured surfaces – Extension of the grasping principles from micro to macro – Continue the research on compliant, actuated, hyerarchical surfaces • Search for partners for joint projects and exchange of students STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 91
  • 92. Aknowledgements • Newtech 2013 Organizing commitee (mainly my former student Antonio Maffei) • RobLog project (7° FP) • Fantoni, G., Santochi, M., Tracht, K., Dini, G., Scholz-Reiter, B., Fleischer, J., Lien, T.K., Seliger, G., Reinhart, G., Franke, J., Hansen, H.N., Verl, A., 2014, Grasping devices and methods in automated production processes Thank You for your attention! STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 92
  • 93. References • Akbiyik, H., Kirchheim, A., & Echelmeyer, W., 2009, Latest Trends in the Container Market ‐ Analyse of Qualitative and Quantitative Features of the Containerised Import in European Ports, in Bremer Value Reports für Produktion und Logistik, Vol. 3, ISSN 1866‐7031 • Alting L., Kimura F., Hansen H.N., Bissacco G., 2003, Micro engineering, Keynotepaper, CIRP Annals, Vol. 52/2, p.635‐658. • Amend, J. R., Brown, Jr. E., Rodenberg, N., Jaeger, H., Lipson, H., 2012, A Positive Pressure Universal Gripper Based on the Jamming of Granular Material, IEEE Transactions on Robotics, vol. 28, pp. 341‐350, Apr. 2012. • Angerer, A. Ehinger, C. Hoffmann, A., Reif, W., Reinhart, G., , 2011, Design of an Automation System for Preforming Processes in Aerospace Industries, in IEEE International Conference on Automation Science and Engineering (CASE 2011), S. 557‐562. • Angerer, A. Ehinger, C. Hoffmann, A., Reif, W., Reinhart, G., Straßer, G., 2010, Automated Cutting and Handling of Carbon Fiber Fabrics in Aerospace Industries, in Automation Science and Engineering (CASE), IEEE Conference on. Piscataway, N.J: IEEE 2010, S. 861‐866. ISBN: 978‐1‐4244‐5447‐1 • Arai, F., Andou, D., Fukuda, T., Nonoda, Y., Oota T., 1995, Micro Manipulation Based on Micro Physics ‐Strategy Based on Attractive Force Reduction and Stress Measurement‐, Proc. of IEEE/RSJ Conf. on Robots and Intelligent Systems 2, pp. 236‐241. • Arderne M. , Matope S. , Van der Merwe A. F. , Nyanga L. 2012. Use of Van der Waals forces actuated polyurethane microgrippers in the handling of IC micro‐components. Proceedings of the 42nd International Conference on Computers and Industrial Engineering (CIE42), 16‐18 July 2012, Cape Town pp. 189‐1 to 189‐7. • Autumn, K., Dittmore, A., Santos, D., Spenko, M., & Cutkosky, M. (2006). Frictional adhesion: a new angle on gecko attachment. Journal of Experimental Biology, 209(18), 3569‐3579. • Ballufff‐Leuze Pty Ltd, Using sensors to make grippers more productive. Available at www.processonline.com.au/articles/45979‐Using‐sensors‐to‐make‐grippers‐ more‐productive. Last seen at 20 December 2012. • Bancel PA, Cajipe VB, Rodier F, Witz J. Laser seeding for biomolecular crystallization, Journal of Crystal Growth 1998, 191, 537‐544. • Bar‐Cohen, Y. (2000). Electroactive polymers as artificial muscles‐capabilities, potentials and challenges. Handbook on biomimetics, 11(8), 1‐3. • Bark, C., Binneboese, T., 1998, Gripping with low viscosity fluid, IEEE Int. workshop on MEMS, pp. 301‐305. • Basdere, B., Keil, T., Rebafka, U., Seliger, G. Innovative Processes and Tools for Disassembly. In CIRP Annals Manufacturing Technology, San Sebastian, Spain, 2002, pp 37‐40. • bdml.stanford.edu/Main/RobotiqGrasping. Last seen: 14 December 2012. • Bellouard, Y., Clavel, R., Gotthardt, R., Bidaux, J. E., & Sidler, T. (1998, June). A new concept of monolithic shape memory alloy micro‐devices used in micro‐robotics. In Proc. Actuator (Vol. 98, pp. 499‐502). • Bicchi, A., 2000, Hands for dexterous manipulation and robust grasping: a difficult road toward simplicity, IEEE Transactions of Robotics and Automation, China. STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 93
  • 94. References • Biganzoli, F., Fantoni, G., 2004, Contactless Electrostatic Handling of Microcomponents, Proc. Instn. Mech. Engrs. Vol 218 Part B: Journal of Engineering Manufacture, pp.1795‐1806. • Biganzoli, F., Fantoni, G., 2008, A self‐centering electrostatic microgripper, Journal of Manufacturing Systems, Volume 27, Issue 3, Pages 136‐144 • Biganzoli, F., Fassi, I., Pagano, C., 2005, Development of a gripping system based on a capillary force, Proc. IEEE ISATP, pp.36 ‐40 • Boothroyd, G., Dewhurst, P., Knight, W. A., 2010, Product Design for Manufacture and Assembly, Third Edition, CRC Press • Bosse, S., Hogreve, S., Tracht, K., 2012, Design of a Mechanical Gripper with an Integrated Smart Sensor Network for Multi‐Axial Force Sensing and Perception of Environment. Proceedings of the Smart Systems Integration Conference 2012, Zurich, Switzerland 21‐22 March 2012 (SSI 2012). VDE Verlag Berlin Offenbach. • Braunschweiger, N., Echelmeyer, W., Wellbrock, E., Schmidt, K., 2007, International Patent WO002007131464A1 Gripper system for stacked unit loads, pp. 1–39 • Breuninger, J., Becker, R., Wolf, A., Rommel, S., Verl, A., Generative Fertigung mit Kunststoffen: Konzeption und Konstruktion für Selektives Lasersintern, Berlin, Heidelberg : Springer Vieweg, 2013 • Bruns, R., Cleves, B., 2011, Automatische kommissionierung geometrisch unterschiedlicher artikel, At‐Automatisierungstechnik, 59 (4), pp. 218‐225. • Bruzzone, A.G.; Traverso, A; Antonelli, D.; Carmignato, S.; Savio, E.; Fantoni, G.; Porta, M.; Leone, C.; Lopresto, V., 2009, Study and integration of microtechnologies for smart assembly of hybrid micro‐products, International Journal of Mechatronics and Manufacturing Systems, Volume 2, Number 3, 26 May 2009 , pp. 265‐293(29) • Bütefisch, S., Entwicklung von Greifern für die automatisierte Montage hybrider Mikrosysteme. Aachen, Shaker, 2003 (in German). • Butterfass, J., Fischer, M., Grebenstein, M., Haidacher, S., Hirzinger, G., 2004, Design and Experiences with DLR Hand II. In Proceedings of the World Automation Congress 2004, Seville, Spain, 28 June‐1 July 2004. • Büttgenbach, S., Hesselbach, J., Tutsch, R., Berndt, M., Hoxhold, B., Schöttler, K., 2006, Sensor guided handling and assembly of active micro‐systems. In: Microsystem Technologies, 12, 665‐669. • C. Munzinger, G. Lanza, G. Koehler, M. Schneider, D. Ruch, A. Ochs, T. Gerbracht, J. Elser, 2009, Process Chain for the Flexible Production of Curved Extrusion Profiles, 2nd International Researchers Symposium 2009 on Innovative PROduction Machines and Systems, 22.07.2009‐14.07.2009, Ischia, Italien, Band CD‐Ablage, pp. 1‐6. • Carello M., Ferraresi C., Visconte C. (2003) A new flexible pneumatic finger for a fruit‐harvesting hand. In 7th International Symposium on Fluid Control, Measurement and Visualization, 25‐28 August 2003 STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 94
  • 95. References • Catalano MG, Grioli G, Serio A, et al. (2012) Adaptive synergies for a humanoid robot hand. In: Proceedings of IEEERAS International Conference on Humanoid Robots. Osaka, Japan. • Catalano, MG Grioli, G, Farnioli, E., Serio, A., Piazza C., Bicchi, A., 2014, Adaptive synergies for the design and control of the Pisa/IIT SoftHand, The International Journal of Robotics Research, (in print) • Chua, P. Y., Ilschner, T., & Caldwell, D. G. (2003). Robotic manipulation of food products – a review. Industrial Robot: An International Journal, 30(4), 345- 354. • Ciocarlie, M., Hicks, F.M., Holmberg, R., Hawke, J., Schlicht, M., Gee, J., Stanford, S., Bahadur., R., 2014, The Velo gripper: A versatile single-actuator design for enveloping, parallel and fingertip grasps, International Journal of Robotics Research, 2014 • Clevy, C., Hubert, A., Agnus, J., Chaillet, N., 2005, A micromanipulation cell including a tool changer, Journal of Micromechal and Microengineering 15, pp. 292-301. • Costo, S., Molfino, R. A new robotic unit for onboard airplanes bomb disposal. In 35th International Symposium on Robotics ISR 2004. 2004. p. 23-26. • Davis, S. Gray, J.O. and Caldwell, D.G., 2006, An end-effector based on the Bernoulli principle for handling of sliced food and vegetables, Robotics and Computer Integrated Manufacturing, 24/2/2006, pp 249-257 • De Volder, M., Moers, A. J. M., & Reynaerts, D. (2011). Fabrication and control of miniature McKibben actuators. Sensors and Actuators A: Physical, 166(1), 111-116. • Deimel, R. , Brock, O. , 2013, A compliant hand based on a novel pneumatic actuator, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) • Dini, G. Fantoni, G. Failli, F., 2009, Grasping leather plies by Bernoulli grippers, CIRP Annals, Vol.58/1, 21-24. • Dini, G., Failli, F., 2005, Development and test of new vaccum cups for grasping leather plies [private communication] • Dollar A and Howe R (2010) The highly adaptive SDM hand: Design and performance evaluation. The International Journal of Robotics Research 29(5): 585– 597. • Dollar, A.M., Howe, R. D., 2006, Joint Coupling Design of Underactuated Grippers, Proceedings the 30th Annual ASME Mechanisms and Robotics Conference, 2006 International Design Engineering Technical Conferences (IDETC}, pp.10-13 • Domanski, K., Janus, P., Grabiec, P., Perez, R., Chaillet, N., Fahlbusch, S., Sill, A., Fatikow, S.: Design, fabrication and characterization of force sensors for nanorobot. In: Microelectronic Engineering 78-79, March 2005, 171-177. • Echelmeyer, W., Frank, H., 2008, International Patent EP000002125587A2 Apparatus and method for transfering part loads, 2008, pp. 1–39 • Echelmeyer, W., Kirchheim, A., Lilienthal, A. L., Akbiyik, H., Bonini, M.: Performance Indicators for Robotics Systems in Logistics Applications, inIROS Workshop on Metrics and Methodologies for Autonomous Robot Teams in Logistics (MMART-LOG), 2011 STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 95
  • 96. References • Echelmeyer, W., Kirchheim, A., Wellbrock, E.:Robotics-logistics: Challenges for automation of logistic processes, in2008 IEEE International Conference on Automation and Logistics,2008, pp. 2099-2103,IEEE • Echelmeyer, W., Wellbrock, E., Rohde, M., 2008, Development and Optimisation of a Robot-based System for Automated Unloading of Packages out of Transport Units and Containers, 6th CIRP International Conference on Intelligent Computation in Manufacturing Engineering (CIRP ICME ’08), pp. 263-268, ISBN 978-88-9000948-7-3 • Ellwood, R.J., Raatz, A., Hesselbach, J., 2010, Vision and Force Sensing to Decrease Assembly Uncertainty. In: 5th International Precision Assembly Seminar (IPAS 2010), Chamonix, France, Springer, Berlin Heidelberg New York, 123-130. • Emmett, R., 2004, A Connector, Patent WO2004055394/A1 • Enikov ET, Lazarov KV. 2001; Optically transparent gripper for microassembly, SPIE, 4568, 40-49. • Erikson T., Hansen H.N., Gegeckaite A., Arentoft M., Automated assembly of micro mechanical parts in a microfactory setup, Proc. of the 5th international workshop on microfactories, Besancon, France, October 2006. • Failli, F., Dini, G., 2004, An Innovative Approach to the Automated Stacking and Grasping of Leather Plies, CIRP Annals, Vol.53/1, 31-34. • Fantoni G, Santochi M, Hansen NH, 2013, A new capillary gripper for mini and micro parts. CIRP Annals – Manufacturing Technology • Fantoni G, Santochi M., 2005, A modular contactless feeder for microparts, CIRP Annals 2005, 54/1. • Fantoni, G., Biganzoli, F., 2004, Design of a novel electrostatic gripper, International Journal for Manufacturing Science and Production, Volume 6, N4, pp. 163‐179, ISSN 0793‐6648. • Fantoni, G., Gabelloni, D., Tilli, J., 2013, Concept design of new grippers using abstraction and analogy, Part B: Journal of Engineering Manufacture. • Fantoni, G., Gripping technology, keynote speech Newtech2013, private communication. • Fantoni, G., Porta, M., 2008, A critical review of releasing strategies in microparts handling, Proceeding of the 6th Int. Precision Assembly Seminar (IPAS’2008), 17-19 March, Bad Hofgastein, Austria. • Fantoni, G., Tilli, J., Capiferri, S., 2014, submitted to the CIRP 24th Design Conference 2014 • Fantoni, G., Tincani V., Santochi M., 2011, Indirect force measurement system in a mechanical microgripper, AITeM, Naples, ,2011 • Fearing, R.S., 1995, Survey of sticking effects for micro parts handling, IEEE/RSJ International Workshop on Intelligent Robots & Systems (IROS), Pittsburgh. • Feitler, D.:High Throughput Automatic Parcel Unloading, in NineSigma Request for Proposal, 2010, Retrieved from https://www.myninesigma.com/sites/public/_layouts/RFPs/NineSigma_RFP_66159.pdf • Feldmann K., Franke J., Schüßler F., Development of Micro Assembly Processes for Further Miniaturization in Electronics Production, CIRP Annals, Vol. 59/1/2010, p.1 STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 96
  • 97. References • Feldmann, K., Trautner, St., Meedt, O., 1998, Innovative Disassembly Strategies Based On Flexible Partial Destructive Tools. Proc. Of the IFAC Workshop on Intelligent Assembly and Disassembly IAD’98, Bled, Slowenia • Fellner, H., 2007, Verfahren und Vorrichtung zum Entpalettieren von gestapelten Gebinden, patent application DE 10 2006 022 155 A1 • Fernández, J. de G., Albiez, J. C., & Kirchner, F. Bio-inspired Robotic Handling of Heterogeneous Logistics Goods, in Proceedings of the IEEE International Conference on Automation and Logistics, 2007, pp. 192-197 • Fischmann, C., Giesen, T., et al., Analysis and evaluation of methods for automated wafer handling in high volume manufacturing. In 26th European Photovoltaic Solar Energy Conference and Exhibition, pp. 1107–1110, 2011 • Fischmann, C., Giesen, T., Wertz, R., et al., Analysis of influences on solar wafers during pick-and-place operations. In 267th European Photovoltaic Solar Energy Conference and Exhibition, pp. 1171–1174, 2012 • Fleischer, J., Lanza, G., Brabandt, D. Wagner, H., 2012, Overcoming the challenges of automated preforming of semi-finished textiles, SEMAT 12 SAMPE EUROPE Symposium, Munich, Germany, ISBN 978-3-9523565-6-2, S. 114-143 • Fleischer, J., Lanza, G., Munzinger, C., Schmidt-Ewig, J. Ruch, D., Schneider, M. Stengel, G. , 2006, Maschinentechnik zur flexiblen Herstellung räumlich gekrümmter Strangpressprofile, ZWF Jahrg. 101 7/8 S. 426-430 • Fleischer, J., Ochs, A., Dosch, S., 2012, The future of lightweight manufacturing - production-related challenges when hybridizing metals and continuous fiber-reinforced plastics. International Conference on New Developments in Sheet Metal Forming, 22.-23.05.2012, Stuttgart, Germany • Fleischer, J., Ochs, A., Förster, F., 2013, Gripping Technology for Carbon Fibre Material, CIRP International conference on competitive manufacturing, Band: Green manufacturing for a blue planet, ISBN 978-0-7972-1405-7, S. 65-71 • Fleischer, J., Ochs, A., Koch, S-F.,2012, Ultrasonic-assisted adhesive handling of limp and air-permeable textile semi-finished products in composites manufacturing, 4th CIRP Conference on Assembly Technologies and Systems, Ann Arbor, Michigan, USA, S. 7-10 • Franke, J., 2010, Kontaktierungsverfahren und Prozesstechnik für Ultra-Fine-Pitch-Baugruppen, Ergebnisbericht des BMBF Verbundprojektes PROUFP, FAPS-TT Nürnberg, 2010 • Fritsch D. et al., Branchenunabhängige Basismodule für ein Kommissionierrobotersystem, Final report of the research project KomRob, Stuttgart, 2006 • Furukawa, H., 2012, Method of transfer, and device of the same, JP2009072209, video: http://www.made-in-japan.bz/switl/ • Gauthier, M., Régnier, S., Lopez-Walle, B., Gibeau, E., Rougeot, P., Hériban, D. Chaillet, N., 2007, Micro-assembly and modeling of the liquid microworld: the PRONOMIA project, IROS 2007, San Diego, CA, U.S.A. • Gebhardt, A. (2007). Generative Fertigungsverfahren: Rapid Prototyping - Rapid Tooling - Rapid Manufacturing. 3. Ausgabe, Carl Hanser Verlag GmbH & CO. KG, München. STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 97
  • 98. References • Gegeckaite A, Hansen HN, De Chiffre L, Pocius P (2007) Handling of Micro Objects: Investigation of Mechanical Gripper Functional Surfaces. Proceedings of 7th EUSPEN International Conference, Bremen, 185–188. • Gegeckaite A., Hansen H.N., Alignment procedure for pallet and robot coordinate system in micro assembly operations, 10th Anniversary International Conference of the European Society for Precision Engineering and Nanotechnology (Euspen), Zurich (Switzerland), 18-22 May 2008, Vol. II, p.371-374. • Gegeckaite A., Hansen H.N., Eriksson T., Development of a gripper for handling and assembly of microscrews, Proc. of the 6th Euspen International conference, Baden, Austria, May 28-June 1, 2006, p. 120-123. • Giesen, T., Bürk, E., Fischmann, C., Gauchel, W., Zindl, M., Verl, A, 2013, Advanced gripper development and tests for automated photovoltaic wafer handling, Assembly automation 33, Nr.4, S.334-344, ISSN: 0144-5154 • Gjerstad, T. B., Lien, T. K., Buljo, J. O., 2006, Handle of Non-Rigid Products using a Compact Needle Gripper. Proceedings of the 39th CIRP International Seminar on Manufacturing Systems. Ljubljana ISBN 961-6536-09-5. s. 145-151 • Gjerstad, T.B. (2012) Automated handling in fish packaging, Doctoral thesis at NTNU 2012:134, Trondheim, ISBN 978-82-471-3551-8 • Greminger, M.A., Nelson, B.J., 2004, Vision-Based Force Measurement. In IEEE Transactions on pattern analysis and machine intelligence, Vol. 26, No. 3, March 2004, 290-298. • Grzesiak, A., Becker, R., Verl, A., 2011, The Bionic Handling Assistant – A Success Story of Additive Manufacturing, Assembly Automation, Vol. 31, No. 4 • Guse, R. Koch, W. and Schulz, G. (988). Festgefriergreifer und Verfahren zu seinem Betrieben, German patent application DE 3701874 A1, 4.August 1988. • Haag, M. Greifen mit Gefühl – sensorisch unterstützte mechatronische Greifsysteme. In Handhabungstechnik – innovative Greiftechnik für komplexe Handhabungsaufgaben. Eds.: Zäh, M., Reinhart, G., Utz, München, 2009, 7.1–7.11 (in German). • Hansen H.N., Carneiro K., Haitjema H., De Chiffre L., Dimensional micro and nano metrology, Annals of CIRP Vol. 55/2 (2006), p.721-744. • Hawkes, E.W., Christensen, D.L., Eason, E.V., Estrada, M.A., Heverly, M., Hilgemann, E., Jiang, H., Pope, M.T., Parness, A., and Cutkosky, M.R., Dynamic Surface Grasping with Directional Adhesion, IEEE/RSJ IROS 2013 • Hesselbach, J., Büttgenbach, S., Wrege, J., Bütefisch, S., Graf, C., 2001, Centering electrostatic microgripper and magazines for microassembly tasks, Microrobotics and Microassembly 3, Proc. of SPIE, vol. 4568, Newton, USA. • Hesselbach, J., Wrege, J, Raatz, A., 2007, Micro Handling Devices Supported by Electrostatic Forces, CIRP Annals ‐ Manufacturing Technology , Elsevier Vol. 56/1, 45‐48 • Hoxhold B., Büttgenbach, S. 2009, Micro Tools with Pneumatic Actuators for Desktop Factories. In Sensors & Transducers, Vol. 7, 10/09, pp. 440-443 • Hoxhold, B., Wrege, J., Bütefisch, S., Burisch, A. Raatz, A. Hesselbach, J. Büttgenbach S., 2011, Tools for Handling and Assembling of Microparts. In Design and Manufacturing of Active Microsystems, Berlin Springer, Microtechnology and MEMS Series, pp. 287-308, ISBN 978-3-642-12902-5 • http://epp.eurostat.ec.europa.eu/portal/page/portal/waste/key_waste_streams/waste_electrical_electronic_equipment_weee Date: 2013.June.07 STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 98
  • 99. References • http://epp.eurostat.ec.europa.eu/tgm/table.do?tab=table&init=1&language=en&pcode=teilm100 [July 2012] • http://robot.dti.dk/en/projects/hybridgripper.aspx • http://www.qubiqa.com/default.asp?Action=Details&Item=567 • http://www.schunk.com/schunk_files/attachments/SCHUNK_ATEX_Flyer_EN.pdf • http://www.sri.com/sites/default/files/brochures/sri_electroadhesion.pdf • http://www.us.schunk.com/schunk/schunk_websites/products/products_level_3/product_level3.html?product_level_3=7261&product_level_2=250&product_lev el_1=244&country=USA&lngCode=EN&lngCode2=EN • http://www.willowgarage.com/velo2g • http://xdki.festo.com/xDKI/products_010800 Click on "Product finder • https://www.youtube.com/watch?v=WbEU6Fmkg0w • Iio, S., Umebachi, M., Li, X., Kagawa, T., Ikeda, T. 2010, Performance of a non-contact handling device using swirling flow with various gap height, Journal of Visualization 13 (4) , pp. 319-326 • Islam A., Hansen H.N., Davids S., Kristensen L., 2012, 8 Pin RIC socket for hearing aid applications, Proceedings 9th International Conference on Multi Material micro Manufacture, October 2012, Vienna, Austria, p. 241-249. • ITRPV 2012, International Technology Roadmap for Photovoltaics Results 2012, Third Edition, Berlin 2012, www.ITRPV.net. • Jonas, S., Redmann, L., 2012, Gripper, in particular a Bernoulli gripper, Patent US8172288 • Junker S., Technologien und Systemlösungen für die flexibel automatisierte Bestückung permanent erregter Läufer mit oberflächenmontierten Dauermagneten, Dissertation, Meisenbach Verlag Bamberg, 2007 • K. H. Lee, J. H. Lee, J. M. Won, and S. K. Chung, Novel tweezers using acoustically oscillating twin bubbles, The 16th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers 2011), June 5-9, 2011, Beijing, China, pp. 1713-1716 • Karakerezis, A., Doulgeri, Z., Peditris, V., A gripper for handling flat non-rigid materials, Dept. of Mech. Eng., A.M.A.R.C., University of Bristol. • Kato, I., (1987). Mechanical hands illustrated (Rev. ed. editor Sadamoto, Kuni), Hemisphere, Washington • Kazerooni H and Foley C. A Robotic Mechanism for Grasping Sacks. Trans. on Automation and Engineering, vol. 2, no. 2, pp. 111-120, 2005. • Kessens C. C. and Desai, J. P. Design, Fabrication, and Implementation of a Self-selecting Grasper, Accepted for publication in 2010 IEEE International Conference on Robotics and Automation, in press, Anchoroge, AK, May 2010 • Kim, S., Laschi, C., Trimmer, B., 2013, Soft robotics: a bioinspired evolution in robotics, Trends in biotechnology,V31/5, 287-294, 12 April 2013 STNCE-WA T2E0C11H 2013 Fantoni G.- Active surfaGce.s ,F maantteorinalis -anGdr tiopoplsi nfogr atsescehmnbolylo-gy 99
  • 100. References • Kirchheim, A., Burwinkel, M., Echelmeyer, W., 2008, Automatic unloading of heavy sacks from containers, in IEEE International Conference on Automation and Logistics, pp. 946-951 • Kochan, A., 1997, European project develops ice gripper for micro-sized components, Assembly Automation, vol. 17/2, pp. 114-115. • Kocijan, F., 2006, US20090027149, Magnet Arrays • Koepge, R., Schoenfelder, S., Giesen, T., Fischmann, C., Verl, A. and Bagdahn, J., The influence of transport operations on the wafer strength and breakage rate. In 26th European Photovoltaic Solar Energy Conference and Exhibition, pp. 2072–2077, 2011 • Krüger, J., Lien, T.K., Verl, A., 2009, Cooperation of human and machines in assembly lines, CIRP Annals - Manufacturing Technology, Volume 58, Issue 2, 2009, Pages 628-646 • Lambert, P., 2007, Capillary forces in microassembly: modeling, simulation, experiments, and case study. Microtechnology and MEMS. Springer, New York • Lang, D., Kurniawan, I., Tichem, M., Karpuschewski, B., 2005, First investigations on force mechanisms in liquid solidification micro-gripping, In C Mascle (Ed.), ISATP 2005, the 6th IEEE Int. symposium on assembly and task planning, pp. 1-6. • Lanzetta, M., Cutkosky, M.R., 2008, Shape Deposition Manufacturing of Biologically Inspired Hierarchical Microstructures, CIRP Annals vol 57 n1 p.231 • Lanzetta, M., Iagnemma, K., 2013, Gripping by controllable wet adhesion using a magnetorheological fluid, CIRP Annals, V62/1, pp. 21–25 • Lemper, B., Hader, A., 2001, Entwicklungstendenzen des seewärtigen Welthandels, in Schriftenreihe der Deutschen Verkehrswissenschaften Gesellschaft e.V., Kiel, 8th Conference. • Li X., Kawashima, K., Kagawa, T., 2008, Analysis of vortex levitation, Experimental Thermal and Fluid Science, 32, 1448-1454 (2008) • Li, X., Iio, S., Kawashima, K., Kagawa, T. 2011, Computational fluid dynamics study of a noncontact handling device using air-swirling flow, Journal of Engineering Mechanics 137 (6) , pp. 400-409 • Li, X., Kagawa, T., 2013, Development of a new noncontact gripper using swirl vanes, Robotics and Computer-Integrated Manufacturing 29 (1) , pp. 63-70 • Lien, T.K. Gripper technologies for food industry robots, Caldwell, D.G, (editor) (2013) Robotics and automation in the food industry, Cambridge, ISBN 978-1- 84569-801-0, pp 143-170 • Lien, T.K., Davis, P.G.G., 2008, A Novel Gripper for Limp Materials Based on Lateral Coanda Ejectors, CIRP Annals, 57/1: 33-36. • Lien, T.K., Gjerstad, T.B.,. 2008, A New Reversible Thermal Flow Gripper for Non-Rigid Products. Transactions of the North American Manufacturing Research Institution of SME. Dearborn, Michigan USA, Society of Manufacturing Engineers 2008 ISBN 0-87263-856-1. s. 565-572 • Maatsch, S., Tasto, M., 2010, Prognose des Umschlagpotenzials des Hamburger Hafens für die Jahre 2015 , 2020 und 2025, Projektendbericht, Bremen • Matope, S. and Van der Merwe, A. F. (2010) The application of Van‐der‐Waals forces in micro‐material handling. Journal for New Generation Sciences, Vol 8, No.1, p. 122‐134. • Matope, S., Van der Merwe, A. F., Nkosi, M., Maaza, M. and Nemutudi R. (2011) Micro-material handling employing e-beam generated topographies of copper and aluminum. South Africa Journal of Industrial Engineering. Volume No.22, Issue 2, pp. 175-188). STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 10 NEWTECH 2013 G. Fantoni - Gripping technology 0
  • 101. References • Michalos, G. Makris, S. Papakostas, N. Mourtzis, D. Chryssolouris, G., 2010, Automotive assembly technologies review: challenges and outlook for a flexible and adaptive approach, CIRP Journal of Manufacturing Science and Technology, V 2/2, p81-91 • Monkman GJ. 2003, Electroadhesive Microgrippers, Assembly Automation, 24/1. • Monkman, G.J., Hesse, S., Steinmann, R., Schunk, H., 2007, Robot Grippers, Wiley, 352760989X, 9783527609895 • Mori M. , Suzumori K. (2009). Development of very high force hydraulic McKibben artificial muscle and its application to shape-adaptable power hand, Conference on Robotics and Biomimetics (ROBIO), 2009 IEEE International, pp. 1457 – 1462. • Munzinger, C., Fleischer, J., Stengel, G., Schneider, M., 2008, Accuracy of a Flying Cutting Device, Advanced Materials Research Vol. 43 S.23-35 • Munzinger, C., Schulze, V., Ochs A., 2010, Schwingungsunterstütztes Greifen technischer Textilien VDI-Z Integrierte Produktion, Jahrgang 152 (2010), Heft/Band 6, Springer-VDI-Verlag, Düsseldorf, S. 51-53 • Munzinger, C., Simm, T., Köhler, G., Ruch, D., 2007, Modulares Greifsystem für die Verpackungstechnik – Ein Modularisierungsansatz für die auftragsbezogene Konfiguration einer Handhabungseinheit. Wt Werkstattstechnik online Heft 9/2007, publisher: Springer VDI-Verlag GmbH &Co. KG, Düsseldorf • Murphy, M., Kim, S., Sitti, M. 2009, Enhanced Adhesion by Gecko Inspired Hierarchical Adhesives, Applied Materials and Interfaces • Nakao M, Tsuchiya K, Matsumoto K, Hatamura Y. Micro handling with Rotational Needle-type Tools Under Real Time Observation, Annals of CIRP 2001, 50/1/2001, 9-12. • Neugebauer, R., Koriath, H.-J., Van der Merwe, A. F., Müller M. and Matope, S., 2011, Study on applicability of adhesive forces for micro-material handling in production technology, Proceedings of the International Conference on Industrial Engineering and Engineering Management for Sustainable Global Development, Stellenbosch, Capetown, pp.55-1 to 55-12. • Obata, K., Miyata, N., Kobayashi, M., Masaki, N., & Yoshikawa, H., 2001, Development of automatic container yard crane, in Mitsubishi Heavy Industries, Ltd. Technical Review, Vol. 38, No.2, pp. 62-66 • Obata, K.J., Motokado, T., Saito, S., Takahashi, K., 2004, A scheme for micro-manipulation based on capillary force, Journal of Fluid Mechanics, v. 498, pp. 113-121. • Papakostas, N., Michalos, G., Makris, S., Zouzias, D., Chryssolouris, G., 2011, Industrial applications with cooperating robots for the flexible assembly, International Journal of Computer Integrated Manufacturing, v24/7, 650-660 • Parness, A., 2010, Microstructured adhesives for climbing applications, Stanford University PhD Thesis, 2010. • Parness, A., 2011, Anchoring Foot Mechanisms for Sampling and Mobility in Microgravity ICRA Communications May 9·13, 2011, Shanghai, China STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 10 NEWTECH 2013 G. Fantoni - Gripping technology 1
  • 102. References • Parness, A., Asbeck, A., Dastoor, S., Fullerton, L., Esparza, N., Soto, D., Heyneman, B., Cutkosky, M., 2009, Climbing rough vertical surfaces with hierarchical directional adhesives, IEEE ICRA, 2009, 2675-2680. • Perline, R.E. et al, 2008, Electroadhesion, Patent US20080089002 • Persson, C.,1997, International Patent EP000001012101B1 Lifting device • Pethig, R, 2010, Review Article—Dielectrophoresis: Status of the theory, technology, and applications, Biomicrofluidics. 2010 June, 4(2): 022811. • Petterson, A., Ohlsson, T., Caldwell, D.G., Davis, S. ,Gray, J.O., Dodd, T.J., 2010 A Bernoulli principle gripper for handling of planar and 3D (food) products, Industrial Robot: An International Journal, Vol. 37 Iss: 6, pp.518 - 526 • Pfeffer M., Goth C., Craiovan D., Franke J., 3D-Assembly of Molded Interconnect Devices with Standard SMD Pick & Place Machines Using an Active Multi Axis Workpiece Carrier, In Proceedings: 2011 IEEE International Symposium on Assembly and Manufacturing, ISAM 2011, Tampere, May 25-27 2011 • Phillips, L.B., Jo, H., 1994, Lightweight, Multi-Purpose Two Roll Gripper for Part Manipulation, Society of Manufacturing Engineers. • Pouliezos, A. Visionary Automation of Sack Handling and Emptying, inIEEE Robotics Automation Magazine, Vol. 7, No.4, 2000, pp. 44–49 • Raatz, A., Rathmann, S., Hesselbach, J., 2012, Active Gripper for Hot Melt Joining of Micro Components, CIRP Annals – Manufacturing Technology 61 • Raatz, A., Rathmann, S., Hesselbach, J., 2012, Process development for the assembly of microsystems with hotmelt adhesives, CIRP Annals - Manufacturing Technology, 61, 5–8 • Read, G. R., Robotic hand effector, Patent GB 2 459 723, 2009. • Reinhart, G., Ehinger, C., 2011, Novel Robot-based End-effector Design for an Automated Preforming of Limb Carbon Fiber Textiles, in G. Schuh et al. Future Trends in Production Engineering – Proceedings of the First Conference of the German Academic Society for Production Engineering • Reinhart, G., Ehinger, C., Philipp, T., Schilp, J., Shen, Y., Spillner, R., Thiemann, C., 2011, Novel automation technologies for an efficient production of fiber reinforced plastics (FRP) structures at a glance, in Sampe Europe Technical Conference - Setec 11, S. 411-418. • Reinhart, G., Glück, A., Ehinger, C., 2012, Automated Process Chain for the Manufacturing of Fiber Reinforced Plastics (FRP), in SAMPE (Hrsg.): SAMPE EUROPE - 2nd. International Semat 12 Symposium Munich, 24.-25. 5.2012, S. 144-149. • Reinhart, G., Heinz, M., Kirchmeier, T.: Integration of the Ultrasonic Handling Technology into Microassembly Systems. In Lien, T. K. (Hrsg.): 3rd CIRP Conference on Assembly Technologies and Systems (CATS). Trondheim. Trondheim, Norway: Tapir Uttrykk 2010, S. 91-96. ISBN: 978-8-25192-616-4. • Reinhart, G., Höppner, J.: The Use of Acoustic Levitation Technologies for Non-Contact Handling Purposes. In Annals of the German Academic Society for Production Engineering VIII(2001)1 • Reinhart, G., Loy, M., 2008, Flexible Feeding of Complex Parts, 2nd CIRP Conference on Assembly Technologies and Systems, Toronto, Canada. • Reinhart, G., Straßer, G., 2011, Flexible gripping technology for the automated handling of limp technical textiles in composites industry, In Production Engineering, Volume 5, Number 3, p. 301-306, 2011. STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 10 NEWTECH 2013 G. Fantoni - Gripping technology 2
  • 103. References • Reinhart, G., Straßer, G., Ehinger, C., 2010, Highly flexible automated manufacturing of composite structures consisting of limp carbon fibre textiles, in SAE International Journal of Aerospace 2 1, S. 181-187 • Reinhart, G., Zeilinger, T. (2010): Lasergestützte Positionierung von MOEMS. In Mikroproduktion (02), S. 12–16. • Reinhart, G., Zeilinger, T.: Sensor detection of hidden functional surfaces – Laser guided, active positioning of microoptical components in automated assembly systems. wt Werkstattstechnik online, Vol. 99, Is. 9, 2009, 585-591 (in German). • Reinhart, J. Hoeppner, Non-Contact Handling Using High-Intensity Ultrasonics, CIRP Annals - Manufacturing Technology, Volume 49, Issue 1, 2000, Pages 5- STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 10 NEWTECH 2013 G. Fantoni - Gripping technology 3 8 • Rohde, M., Fantoni, G., Tilli, J., Ernits R. M., 2014, A challenge for automation in logistics: gripping systems for automatically unloading of coffee sacks, 4th International Conference on Dynamics in Logistics - LDIC 2014 February 10 14, 2014, Bremen, Germany. • Rohde, M., Schmidt, K.: Low Cost Automation in der Logistik in ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb, 2010, Vol.02, pp. 91–95 • Ruffatto, D., Shah, J., Spenko, M., 2013, Optimization and experimental validation of electrostatic adhesive geometry. In Aerospace Conference, 2013 IEEE (pp. 1-8). • Ruprecht, E., 2012, Prozesskette zur Herstellung schichtbasierter Systeme mit integrierten Kavitäten, ISBN:978-3-8440-1207-1, Shaker-Verlag • Saito, S., Soda, F., Dhelika, R., Takahashi, K., Takarada, W., & Kikutani, T. (2013). Compliant electrostatic chuck based on hairy microstructure. Smart Materials and Structures, 22(1), 015019. • Santochi M., Sebastiani F., Dini G., 2006, An innovative device for manipulation of end of life household appliances, 1st international seminar on Assembly systems, pp 215-220, Stuttgart,vol. 1, 2006 • Scheid, W. Perspektiven zur Automatisierung in der Logistik: Teil2 – Praktische Umsetzung, in Hebezeuge Fördermittel – Fachzeitschrift für technische Logistik,2010, Vol. 50, No.10, pp.482-483, ISSN 0017-9442 • Schmidt, K., Echelmeyer, W., Franke, H.: International Patent WO002011035898A1 Vacuum Gripper for Picking up and setting down unit loads, 2011, pp.1–54 • Schmitt, J., Bruhn, M., Raatz, A. 2012, Comparative analysis of pneumatic grippers for handling operations of crystalline solar cells, Proceedings of the IASTED Asian Conference on Power and Energy Systems, AsiaPES 2012 , pp. 386-392 • Schüßler F., 2010, Verbindungs- und Systemtechnik für thermisch hochbeanspruchte und miniaturisierte elektronische Baugruppen, Dissertation, Meisenbach Verlag Bamberg • Scott, P. B., 1985,The ‘Omnigripper’: a form of robot universal gripper, Robotica vol. 3, pp. 153-158. • Seliger, C. Gutsche, Hsieh, L.-H., 1992, Design of Needle and Card Grippers, CIRP Annals, 41/1 (1992), pp. 33–36 • Seliger, G., 2007, Hybrid Disassembly System, in Sustainability in Manufacturing: Recovery of Resources in Product and Material Cycles, Chapter 5.5, pages 290-312, Springer Verlag, Heidelberg, 2007 • Seliger, G., Basdere,B., Keil, T., Rebafka, U. , 2002, Innovative Processes and Tools for Disassembly, CIRP Annals, V. 51/1 pp. 37-40
  • 104. References • Seliger, G., Consiglio, S., Odry, D., Zettl, M.: Development of intelligent modular tools for disassembly. Proceedings of 15th International CIRP Design Seminar. S. 182-187, 2005. • Seliger, G., Rebafka, U., Stenzel, A., Zuo, B.-R., 2001, Process model based development of disassembly tools. Journal of Engineering Manufacture Vol. 215 Part B:711-722. • Seliger, G., Szimmat, F. Niemeier, J. Stephan, J., 2003, Automated Handling of Non-Rigid Parts, CIRP Annals, Vol.52/1, 21-24. • Seliger, G., Szimmat, F.: Textile De-Stacking With A Freezing Gripper. In Proceedings of the 5th International Conference on Frontiers of Design and Manufacturing (ICFDM´2002), Dalian, China, 09. – 13.07.2002, S. 478 – 485 • Shu L., Lenau T.A., Hansen H.N., Alting L., Biomimetics applied to centering in micro-assembly, CIRP Annals, Vol. 52/1/2003, p.101-104. • Sieben, C., 2011, Precise assembly of engines, Research News Jun 01 • Sjælland, A.J., Christensen, T., 2004, Apparatus for handling layers of palletized goods, Patent US6802688 • Spencer B., Aaron M. Dollar, 2012, Robust, Inexpensive Resonant Frequency Based Contact Detection for Robotic Manipulators, 2012 IEEE International Conference on Robotics and Automation, RiverCentre, Saint Paul, Minnesota, USA, May 14-18, 2012 • Stephan, J., Seliger, G., 1999, Handling with ice – the cryo-gripper, a new approach, Assembly Automation, Vol. 19 Iss: 4, pp.332 – 337 • Stokes, A.A., Shepherd.R.F., Morin.S.A., Ilievski.F., and Whitesides.G.M., 2013, A Hybrid Combining Hard and Soft Robots, Soft Robotics, 2013, 1, 70-74. • Suppa, M., Hofschulte, J.: Industrial Robotics - Industrierobotik im Wandel, in at - Automatisierungstechnik, 2010, Vol. 58, No.12, pp. 663-664 • Szimmat, F., 2004, Beitrag zum Handhaben flächiger biegeschlaffer Bauteile, Dissertation, Technische Universität Berlin. • Tadakuma,K., Tadakuma, R., Ioka, K., Kudo,T., Takagi, M., Tsumaki, Y., Higashimori, M., Kaneko, M., 2012, Additional manipulating function for limited narrow space with omnidirectional driving gear. IROS 2012: 5438-5439 • Tadakuma,K., Tadakuma, R., Ioka, K., Kudo,T., Takagi, M., Tsumaki, Y., Higashimori, M., Kaneko, M., 2012, Omnidirectional driving gears and their input mechanism with passive rollers. IROS 2012: 2881-2888 • Tichem, M., Lang, D., Karpuschewski, B., 2003, A classification scheme for quantitative analysis of micro-grip principles, Proc. of the 1st Int. Precision Assembly Seminar (IPAS’2003), 17-19 March, Bad Hofgastein, Austria. • Tincani, V., Catalano, M. G., Farnioli, E., Garabini, M., Grioli, G., Fantoni, G., Bicchi, A., 2012, Velvet fingers: A smart gripper with controlled contact surfaces, International Conference of Intelligent Robots and Systems - IROS 2012, Vilamoura, Algarve, Portugal, October 7 - 12 2012. • Tincani, V., Grioli, G., Catalano, M.G., Bonilla, M., Garabini, M., Fantoni, G., Bicchi A., 2013, Controlling the active surfaces of the Velvet Fingers: sticky to slippy fingers., International Conference of Intelligent Robots and Systems - IROS 2013 • Tincani, V., Grioli, G., Catalano, M.G., Garabini, M., Grechi, S., Fantoni, G., Bicchi A., 2013, Implementation and Control of the Velvet Fingers: a Dexterous Gripper with Active Surfaces, Proceeding of ICRA STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 10 NEWTECH 2013 G. Fantoni - Gripping technology 4
  • 105. References • Tolley, M. T., Onal, C D., Rus, D., Wood, R.J., 2013, Morphological Computation in an Origami-Inspired Folded Gripper, International Workshop on Soft Robotics and Morphological Computation 2013, Ascona, Switzerland, July 14-19, 2013 • Tong, T., Zhao, Y., Delzeit, L., Kashani, A., Meyyappan, M., & Majumdar, A. (2008). Height independent compressive modulus of vertically aligned carbon nanotube arrays. Nano letters, 8(2), 511-515. • Tracht, K., Hogreve, S., Borchers, F., 2011, Gripper with Integrated Three-Dimensional Force Detection. Enabling Manufacturing Competitiveness and Economic Sustainability – 4th International Conference on Changeable, Agile, Reconfigurable and Virtual Production (CARV 2011), Montréal, Canada, 364- 369. • Tracht, K., Hogreve, S., Bosse, S., 2012, Interpretation of multiaxial gripper force sensors. Technologies and Systems for Assembly Quality, Productivity and Customization - Proceedings of the 4th CIRP Conference on Assembly Technologies and Systems (CATS 2012), Ann Arbor, Michigan, USA, • Tremel J., Kühl A., Franke J., Innovative Developments for Automated Magnet Handling and Bonding of Rare Earth Magnets, In Proceedings: 2011 IEEE International Symposium on Assembly and Manufacturing, ISAM 2011, Tampere, May 25-27 2011 • Uhlmann, E., Seliger, G., Härtwig, J.-P., Keil, T., 2000, Pilot Disassembly System for Home Appliance using new Tools and Concepts. Proc. of the 3rd World Congress on Intelligent Manufacturing Processes and Systems, Cambridge: 453-456. • Ulmen, J., Cutkosky, M.: A Robust, Low-Cost and Low-Noise Artificial Skin for Human-Friendly Robots. In 2010 IEEE International Conference on Robotics and Automation (ICRA), 3-7 May 2010, Anchorage, Alaska, USA, 4836-4841. • van Brussel, H., J Peirs , D. Reynaerts , A. Delchambre , G. Reinhart: Assembly of Microsystems (2000), Keynote Paper CIRP Annals, Vol. 49 (2), 2000, pp. 451-472 • van de Klundert, M., 2006, Depalletizing Device, patent WO2006/088354 A1 • Van der Merwe, A. F. and Matope, S. (2010) Manipulation of Van der‐Waals forces by geometrical parameters in micro‐material handling. Journal for New Generation Sciences, Vol 8, No.3, pp.152‐ 166. • Vandaele, V., Lambert, P., and Delchambre, A., Noncontact Handling in Microassembly: Acoustical Levitation, Precis. Eng.-J. Int. Soc. Precis. Eng. Nanotechnol., Vol. 29, No. 4, pp. 491-505, 2005. • Vasudev, A., Zhe, J., 2009, A low voltage capillary microgripper using electrowetting, TRANSDUCERS 2009-15th International Conference on Solid-State Sensors, Actuators and Microsystems, Denver, CO, pp 825-828 • Wadhwa, R.S., Flexibility in manufacturing automation: A living lab case study of Norwegian metalcasting SMEs, Journal of Manufacturing Systems 31 (2012) 444– 454 • Wertz, R., Böttinger, F., Fischmann, C., Giesen, T., Michen, M., 2012, How automation can benefit the PV industry. In Photovoltaics International N.16,. 15-24 STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 10 NEWTECH 2013 G. Fantoni - Gripping technology 5
  • 106. References • Wohlfahrt, A. Peder, I., Verfahren und Vorrichtung zur Aufnahme von Stückgut, patent EP 0 627 373 B1 (1997-12-07) • Wolf, A. et. al. (2005). Grippers in Motion – The Fascination of Automated Handling Tasks. 1st Edition, Springer Verlag, Berlin, Heidelberg. • Zäh, M. F., Jacob, D., Ehrenstraßer, M., Schilp, J., 2003, Hybrid Micro‐Assembly System for Teleoperated and Automated Micromanipulation. In American Society for Precision Engineering, Winter Topical Meeting 28, S. 119–124 • Zhang H, Burdet E, Poo AN, Hutmacher DW, 2008, Microassembly fabrication of tissue engineering scaffolds with customized design, IEEE Transactions on Automation Science and Engineering, Vol:5, ISSN:1545-5955, Pages:446-456. • Zheng, K., Lu, Z., &Sun, X., 2010, An Effective Heuristic for the Integrated Scheduling Problem of Automated Container Handling System Using Twin 40’ Cranes, in ICCMS 2010 Second International Conference on Computer Modeling and Simulation, 2010, pp. 406-410, IEEE STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 10 NEWTECH 2013 G. Fantoni - Gripping technology 6
  • 107. 1 on the basis of the paper “Grasping devices and methods in automated production processes” , CIRP Annals - Manufacturing Technology, Volume 63, Issue 2, 2014, STC-A 2011 Fantoni G.- Active surfaces, materials and tools for assembly - 10 7 Gripping technologies 1 G. Fantoni g.fantoni@ing.unipi.it Department of Civil and Industrial Engineering University of Pisa (Italy) NEWTECH 2013