This document provides an overview of RAPIDS, an open source suite of libraries for GPU-accelerated data science. It discusses how RAPIDS uses GPUs to accelerate ETL, machine learning, and other data science workflows. Key points include:
- RAPIDS includes libraries like cuDF for dataframes, cuML for machine learning, and cuGraph for graph analytics. It aims to provide familiar Python APIs for these tasks.
- cuDF provides over 10x speedups for ETL tasks like data loading, transformations, and feature engineering by keeping data on the GPU.
- cuML provides GPU-accelerated versions of popular scikit-learn algorithms like linear regression, random forests,