SlideShare a Scribd company logo
1 of 53
QM Reminder
C Nave @ gsu.edu
http://hyperphysics.phy-astr.gsu.edu/hbase/quacon.html#quacon
Outline
• Postulates of QM
• Picking Information Out of Wavefunctions
– Expectation Values
– Eigenfunctions & Eigenvalues
• Where do we get wavefunctions from?
– Non-Relativistic
– Relativistic
• What good-looking Ys look like
• Techniques for solving the Schro Eqn
– Analytically
– Numerically
– Creation-Annihilation Ops
Postulates of Quantum Mechanics
• The state of a physical system is completely described by a
wavefunction Y.
• All information is contained in the wavefunction Y
• Probabilities are determined by the overlap of
wavefunctions
2
| 
Y
Y
 b
a
Postulates of QM
• Every measurable physical quantity has a corresponding operator.
• The results of any individ measurement yields one of the
eigenvalues ln of the corresponding operator.
• Given a Hermetian Op with eigenvalues ln and eigenvectors Fn ,
the probability of measuring the eigenvalue ln is
2
2
3
*
Y
F
Y
F
 n
n or
r
d
Postulates of QM
• If measurement of an observable gives a result ln , then
immediately afterward the system is in state fn .
• The time evolution of a system is given by
• . Y

Y H
dt
d
i
corresponds to
classical Hamiltonian
Picking Information out of
Wavefunctions
Expectation Values
Eigenvalue Problems
Common Operators
• Position
• Momentum
• Total Energy
• Angular Momentum
r = ( x, y, z ) - Cartesian repn
)
,
,
( z
y
x
i
i 






 

p
t
op
tot i
E 
 
L = r x p - work it out
Using Operators: A
• Usual situation: Expectation Values
• Special situations: Eigenvalue Problems
r
d
A
A
space
all
3
*
Y
Y
 
Y

Y l
A
the original wavefn
a constant
(as far as A is concerned)
Expectation Values
• Probability Density at r
• Prob of finding the system in a region d3r about r
• Prob of finding the system anywhere
)
(
)
( f
f r
r Y
Y
r
d3
Y
Y
1
3

Y
Y
 r
d
space
all
• Average value of position r
• Average value of momentum p
• Expectation value of total energy
r
d
r
space
all
3
Y
Y


r
d
space
all
3
Y
Y
 p

r
d
space
all
3
Y
Y
 H
Eigenvalue Problems
Sometimes a function fn has a special property
fn
the
wrt
const
some
fn 








Op
Op
eigenvalue
eigenfn
Since this is simpler than doing integrals, we usually label QM systems
by their list of eigenvalues (aka quantum numbers).
Eigenfns: 1-D Plane Wave moving in +x direction
Y(x,t) = A sin(kx-wt) or A cos(kx-wt) or A ei(kx-wt)
• Y is an eigenfunction of Px
• Y is an eigenfunction of Tot E
• Y is not an eigenfunction of position X
Y





Y 

k
e
k
e
i
x
t
kx
i
t
kx
i
x 

 )
(
)
( w
w
P
Y




Y 

w
w w
w


 )
(
)
( t
kx
i
t
kx
i
t e
e
i
E
Tot
Y


Y 
x
e
x t
kx
i )
( w
X
Eigenfns: Hydrogenic atom Ynlm(r,,f)
• Y is an eigenfunction of Tot E
• Y is an eigenfunction of L2 and Lz
• Y is an eigenfunction of parity
)
(
6
.
13
)
(
1
2
)
4
(
)
(
2
)
(
)
(
2
2
2
2
2
4
2
f
f

f
f
f
r
n
Z
r
n
e
mZ
r
V
m
r
r
nlm
nlm
o
nlm
nlm
nlm
Y


Y


Y










Y

Y

2
P
H
E
Tot
)
(
)
1
(
)
( 2
f
f r
r nlm
nlm Y


Y 


2
L
units eV
)
(
)
( 2
f
f r
m
r nlm
nlm
z Y

Y 
L
)
(
)
(
)
( f
f r
r nlm
nlm Y


Y 
Parity
Eigenfns: Hydrogenic atom Ynlm(r,,f)
• Y is not an eigenfn of position X, Y, Z
• Y is not an eigenfn of the momentum vector Px , Py , Pz
• Y is not an eigenfn of Lx and Ly
Where Wavefunctions come from
Where do we get the wavefunctions from?
• Physics tools
– Newton’s equation of motion
– Conservation of Energy
– Cons of Momentum & Ang Momentum
The most powerful and easy to use technique is Cons NRG.
Schrödinger Wave Equation
V
m
V
KE
H 



2
2
p
Use non-relativistic formula for Total Energy Ops
t
op
tot i
E 
 
and
( ) ( )
t
i
t
H t ,
, r
r Y


Y 
( ) ( )
t
i
t
V
m
t ,
,
2
2
r
r
p
Y


Y






 
( ) ( )
t
i
t
V
m
t ,
,
2
2
2
r
r Y


Y








 

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians
Klein-Gordon Wave Equation
Start with the relativistic constraint for free particle:
Etot
2 – p2c2 = m2c4 .
[ Etot
2 – p2c2 ] Y(r,t) = m2c4 Y(r,t).
( ) ( )
  ( ) ( )
t
r
c
m
t
r
c
i
i t ,
, 4
2
2
2
2
Y

Y



 

p2 = px
2 + py
2 + pz
2
 a Monster to solve
Dirac Wave Equation
Wanted a linear relativistic equation
[ Etot
2 – p2c2  m2c4 ] Y(r,t) = 0
Etot
2 – p2c2 = m2c4
Change notation slightly
t
op
tot
c
i
c
E
p 



/
0
p = ( px , py , pz )
~ [P4
2c2  m2c4 ] Y(r,t) = 0
P4 = ( po , ipx , ipy , ipz )
difference of squares can be factored ~ ( P4c + mc2) (P4c-mc2)
and there are two options for how to do overall +/- signs
 4 coupled equations to solve.
Time Dependent Schro Eqn
Y

Y H
dt
d
i
Where H = KE + Potl E
( )
t
x,
Y
Time Dependent Schro Eqn
Y

Y H
dt
d
i
Where H = KE + Potl E
( )
t
x,
Y
( ) ( )
t
i
t
V
m
t ,
,
2
2
r
r
p
Y


Y






 
( ) ( )
t
i
t
V
m
t ,
,
2
2
2
r
r Y


Y








 

ER 5-5
Time Independent Schro Eqn
KE involves spatial derivatives only
If Pot’l E not time dependent, then Schro Eqn separable
( ) ( ) ( )
t
f
x
t
x 

Y ,
( ) ( ) 
/
, iEt
e
x
t
x 

Y 
ref: Griffiths 2.1
( ) ( )
t
i
t
V
m
t ,
,
2
2
2
r
r Y


Y








 

( ) ( )
r
r Y

Y








 tot
E
V
m
2
2
2

( ) ( ) ( )
x
E
x
x
V
m
tot
x Y

Y









2
2
2

Drop to 1-D for ease
What Good Wavefunctions Look
Like
ER 5-6
Sketching Pictures of Wavefunctions
( ) ( ) ( )
x
E
x
x
V
m
tot
x Y

Y









2
2
2

( ) ( ) ( )
x
E
x
x
V
m
p
tot Y

Y







2
2
( )
  ( ) ( )
x
E
x
x
V
KE tot Y

Y

KE + V = Etot
Prob ~ Y* Y
Bad Wavefunctions
( ) ( ) ( )
x
E
x
x
V
m
tot
x Y

Y









2
2
2

To examine general behavior of wave fns, look for soln of the form
x
ik
e
A

Y
where k is not necessarily a constant
(but let’s pretend it is for a sec)
tot
E
V
m
k


2
2
2

( )
V
E
m
k tot 
 2
2

Sketching Pictures of Wavefunctions
KE
( )
V
E
m
k tot 
 2
2

x
ik
e
A

Y
If Etot > V, then k Re
Y ~ kinda free particle
If Etot < V, then k Im
Y ~ decaying exponential
2/k ~ l ~ wavelength 1/k ~ 1/e distance
KE + KE 
Sample Y(x) Sketches
• Free Particles
• Step Potentials
• Barriers
• Wells
Free Particle
Energy axis
V(x)=0 everywhere
1-D Step Potential
1-D Finite Square Well
1-D Harmonic Oscillator
1-D Infinite Square Well
1-D Barrier
NH3 Molecule
E&R Ch 5 Prob 23
Discrete or Continuous Excitation Spectrum ?
E&R Ch 5,
Prob 30
Which well goes with wfn ?
Techniques for solving the Schro Eqn.
• Analytically
– Solve the DiffyQ to obtain solns
• Numerically
– Do the DiffyQ integrations with code
• Creation-Annihilation Operators
– Pattern matching techniques derived from 1D SHO.
Analytic Techniques
• Simple Cases
– Free particle (ER 6.2)
– Infinite square well (ER 6.8)
• Continuous Potentials
– 1-D Simple Harmonic Oscillator (ER 6.9, Table 6.1, and App I)
– 3-D Attractive Coulomb (ER 7.2-6, Table 7.2)
– 3-D Simple Harmonic Oscillator
• Discontinuous Potentials
– Step Functions (ER 6.3-7)
– Barriers (ER6.3-7)
– Finite Square Well (ER App H)
Simple/Bare
Coulomb
Eigenfns: Bare Coulomb - stationary states
Ynlm(r,,f) or Rnl(r) Ylm(,f)
Numerical Techniques
• Using expectations of what the wavefn should look like…
– Numerical integration of 2nd order DiffyQ
– Relaxation methods
– ..
– ..
– Joe Blow’s idea
– Willy Don’s idea
– Cletus’ lame idea
– ..
– ..
ER 5.7, App G
SHO Creation-Annihilation Op
Techniques
( )
x
m
p
i
m
a ˆ
ˆ
2
1
ˆ w
w



( )
x
m
p
i
m
a ˆ
ˆ
2
1
ˆ w
w





2
2
2
1
2
1
2
ˆ
)
( x
k
m
p
a
a 


 
w

H
Define:
  
i
p
x 
ˆ
,   1
ˆ
,
ˆ 

a
a
If you know the gnd state wavefn Yo, then the nth excited state is:
( ) o
n
a Y

ˆ
Inadequacy of Techniques
• Modern measurements require greater accuracy in
model predictions.
– Analytic
– Numerical
– Creation-Annihilation (SHO, Coul)
• More Refined Potential Energy Fn: V()
– Time-Independent Perturbation Theory
• Changes in the System with Time
– Time-Dependent Perturbation Theory

More Related Content

Similar to Schrodinger equation in QM Reminders.ppt

Discrete Signal Processing
Discrete Signal ProcessingDiscrete Signal Processing
Discrete Signal Processingmargretrosy
 
Particle in a box- Application of Schrodinger wave equation
Particle in a box- Application of Schrodinger wave equationParticle in a box- Application of Schrodinger wave equation
Particle in a box- Application of Schrodinger wave equationRawat DA Greatt
 
Recent developments on unbiased MCMC
Recent developments on unbiased MCMCRecent developments on unbiased MCMC
Recent developments on unbiased MCMCPierre Jacob
 
EC8553 Discrete time signal processing
EC8553 Discrete time signal processing EC8553 Discrete time signal processing
EC8553 Discrete time signal processing ssuser2797e4
 
Ch4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transformCh4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transformShalabhMishra10
 
Seismic data processing lecture 3
Seismic data processing lecture 3Seismic data processing lecture 3
Seismic data processing lecture 3Amin khalil
 
NMR Spectroscopy
NMR SpectroscopyNMR Spectroscopy
NMR Spectroscopyclayqn88
 
Unbiased MCMC with couplings
Unbiased MCMC with couplingsUnbiased MCMC with couplings
Unbiased MCMC with couplingsPierre Jacob
 
Phase Retrieval: Motivation and Techniques
Phase Retrieval: Motivation and TechniquesPhase Retrieval: Motivation and Techniques
Phase Retrieval: Motivation and TechniquesVaibhav Dixit
 
Non Linear Dynamics Basics and Theory
Non Linear Dynamics Basics and TheoryNon Linear Dynamics Basics and Theory
Non Linear Dynamics Basics and TheoryAnupama Kate
 
Schrodinger equation in quantum mechanics
Schrodinger equation in quantum mechanicsSchrodinger equation in quantum mechanics
Schrodinger equation in quantum mechanicsRakeshPatil2528
 
Frequency domain analysis of Linear Time Invariant system
Frequency domain analysis of Linear Time Invariant systemFrequency domain analysis of Linear Time Invariant system
Frequency domain analysis of Linear Time Invariant systemTsegaTeklewold1
 
Extreme‐Scale Parallel Symmetric Eigensolver for Very Small‐Size Matrices Usi...
Extreme‐Scale Parallel Symmetric Eigensolver for Very Small‐Size Matrices Usi...Extreme‐Scale Parallel Symmetric Eigensolver for Very Small‐Size Matrices Usi...
Extreme‐Scale Parallel Symmetric Eigensolver for Very Small‐Size Matrices Usi...Takahiro Katagiri
 

Similar to Schrodinger equation in QM Reminders.ppt (20)

Lecture 9
Lecture 9Lecture 9
Lecture 9
 
Discrete Signal Processing
Discrete Signal ProcessingDiscrete Signal Processing
Discrete Signal Processing
 
Particle in a box- Application of Schrodinger wave equation
Particle in a box- Application of Schrodinger wave equationParticle in a box- Application of Schrodinger wave equation
Particle in a box- Application of Schrodinger wave equation
 
Recent developments on unbiased MCMC
Recent developments on unbiased MCMCRecent developments on unbiased MCMC
Recent developments on unbiased MCMC
 
EC8553 Discrete time signal processing
EC8553 Discrete time signal processing EC8553 Discrete time signal processing
EC8553 Discrete time signal processing
 
Ch4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transformCh4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transform
 
Seismic data processing lecture 3
Seismic data processing lecture 3Seismic data processing lecture 3
Seismic data processing lecture 3
 
NMR Spectroscopy
NMR SpectroscopyNMR Spectroscopy
NMR Spectroscopy
 
Unbiased MCMC with couplings
Unbiased MCMC with couplingsUnbiased MCMC with couplings
Unbiased MCMC with couplings
 
Bird’s-eye view of Gaussian harmonic analysis
Bird’s-eye view of Gaussian harmonic analysisBird’s-eye view of Gaussian harmonic analysis
Bird’s-eye view of Gaussian harmonic analysis
 
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
 
Phase Retrieval: Motivation and Techniques
Phase Retrieval: Motivation and TechniquesPhase Retrieval: Motivation and Techniques
Phase Retrieval: Motivation and Techniques
 
Non Linear Dynamics Basics and Theory
Non Linear Dynamics Basics and TheoryNon Linear Dynamics Basics and Theory
Non Linear Dynamics Basics and Theory
 
Dsp 2marks
Dsp 2marksDsp 2marks
Dsp 2marks
 
Linear response theory
Linear response theoryLinear response theory
Linear response theory
 
Schrodinger equation in quantum mechanics
Schrodinger equation in quantum mechanicsSchrodinger equation in quantum mechanics
Schrodinger equation in quantum mechanics
 
AI_HF_6.pdf
AI_HF_6.pdfAI_HF_6.pdf
AI_HF_6.pdf
 
Frequency domain analysis of Linear Time Invariant system
Frequency domain analysis of Linear Time Invariant systemFrequency domain analysis of Linear Time Invariant system
Frequency domain analysis of Linear Time Invariant system
 
Extreme‐Scale Parallel Symmetric Eigensolver for Very Small‐Size Matrices Usi...
Extreme‐Scale Parallel Symmetric Eigensolver for Very Small‐Size Matrices Usi...Extreme‐Scale Parallel Symmetric Eigensolver for Very Small‐Size Matrices Usi...
Extreme‐Scale Parallel Symmetric Eigensolver for Very Small‐Size Matrices Usi...
 
Wave function
Wave functionWave function
Wave function
 

Recently uploaded

Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxUnboundStockton
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.arsicmarija21
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...jaredbarbolino94
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 

Recently uploaded (20)

Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docx
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 

Schrodinger equation in QM Reminders.ppt

  • 2. C Nave @ gsu.edu http://hyperphysics.phy-astr.gsu.edu/hbase/quacon.html#quacon
  • 3. Outline • Postulates of QM • Picking Information Out of Wavefunctions – Expectation Values – Eigenfunctions & Eigenvalues • Where do we get wavefunctions from? – Non-Relativistic – Relativistic • What good-looking Ys look like • Techniques for solving the Schro Eqn – Analytically – Numerically – Creation-Annihilation Ops
  • 4. Postulates of Quantum Mechanics • The state of a physical system is completely described by a wavefunction Y. • All information is contained in the wavefunction Y • Probabilities are determined by the overlap of wavefunctions 2 |  Y Y  b a
  • 5. Postulates of QM • Every measurable physical quantity has a corresponding operator. • The results of any individ measurement yields one of the eigenvalues ln of the corresponding operator. • Given a Hermetian Op with eigenvalues ln and eigenvectors Fn , the probability of measuring the eigenvalue ln is 2 2 3 * Y F Y F  n n or r d
  • 6. Postulates of QM • If measurement of an observable gives a result ln , then immediately afterward the system is in state fn . • The time evolution of a system is given by • . Y  Y H dt d i corresponds to classical Hamiltonian
  • 7.
  • 8. Picking Information out of Wavefunctions Expectation Values Eigenvalue Problems
  • 9. Common Operators • Position • Momentum • Total Energy • Angular Momentum r = ( x, y, z ) - Cartesian repn ) , , ( z y x i i           p t op tot i E    L = r x p - work it out
  • 10. Using Operators: A • Usual situation: Expectation Values • Special situations: Eigenvalue Problems r d A A space all 3 * Y Y   Y  Y l A the original wavefn a constant (as far as A is concerned)
  • 11. Expectation Values • Probability Density at r • Prob of finding the system in a region d3r about r • Prob of finding the system anywhere ) ( ) ( f f r r Y Y r d3 Y Y 1 3  Y Y  r d space all
  • 12. • Average value of position r • Average value of momentum p • Expectation value of total energy r d r space all 3 Y Y   r d space all 3 Y Y  p  r d space all 3 Y Y  H
  • 13. Eigenvalue Problems Sometimes a function fn has a special property fn the wrt const some fn          Op Op eigenvalue eigenfn Since this is simpler than doing integrals, we usually label QM systems by their list of eigenvalues (aka quantum numbers).
  • 14. Eigenfns: 1-D Plane Wave moving in +x direction Y(x,t) = A sin(kx-wt) or A cos(kx-wt) or A ei(kx-wt) • Y is an eigenfunction of Px • Y is an eigenfunction of Tot E • Y is not an eigenfunction of position X Y      Y   k e k e i x t kx i t kx i x    ) ( ) ( w w P Y     Y   w w w w    ) ( ) ( t kx i t kx i t e e i E Tot Y   Y  x e x t kx i ) ( w X
  • 15. Eigenfns: Hydrogenic atom Ynlm(r,,f) • Y is an eigenfunction of Tot E • Y is an eigenfunction of L2 and Lz • Y is an eigenfunction of parity ) ( 6 . 13 ) ( 1 2 ) 4 ( ) ( 2 ) ( ) ( 2 2 2 2 2 4 2 f f  f f f r n Z r n e mZ r V m r r nlm nlm o nlm nlm nlm Y   Y   Y           Y  Y  2 P H E Tot ) ( ) 1 ( ) ( 2 f f r r nlm nlm Y   Y    2 L units eV ) ( ) ( 2 f f r m r nlm nlm z Y  Y  L ) ( ) ( ) ( f f r r nlm nlm Y   Y  Parity
  • 16. Eigenfns: Hydrogenic atom Ynlm(r,,f) • Y is not an eigenfn of position X, Y, Z • Y is not an eigenfn of the momentum vector Px , Py , Pz • Y is not an eigenfn of Lx and Ly
  • 17.
  • 19. Where do we get the wavefunctions from? • Physics tools – Newton’s equation of motion – Conservation of Energy – Cons of Momentum & Ang Momentum The most powerful and easy to use technique is Cons NRG.
  • 20. Schrödinger Wave Equation V m V KE H     2 2 p Use non-relativistic formula for Total Energy Ops t op tot i E    and ( ) ( ) t i t H t , , r r Y   Y  ( ) ( ) t i t V m t , , 2 2 r r p Y   Y         ( ) ( ) t i t V m t , , 2 2 2 r r Y   Y            http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians
  • 21. Klein-Gordon Wave Equation Start with the relativistic constraint for free particle: Etot 2 – p2c2 = m2c4 . [ Etot 2 – p2c2 ] Y(r,t) = m2c4 Y(r,t). ( ) ( )   ( ) ( ) t r c m t r c i i t , , 4 2 2 2 2 Y  Y       p2 = px 2 + py 2 + pz 2  a Monster to solve
  • 22. Dirac Wave Equation Wanted a linear relativistic equation [ Etot 2 – p2c2  m2c4 ] Y(r,t) = 0 Etot 2 – p2c2 = m2c4 Change notation slightly t op tot c i c E p     / 0 p = ( px , py , pz ) ~ [P4 2c2  m2c4 ] Y(r,t) = 0 P4 = ( po , ipx , ipy , ipz ) difference of squares can be factored ~ ( P4c + mc2) (P4c-mc2) and there are two options for how to do overall +/- signs  4 coupled equations to solve.
  • 23. Time Dependent Schro Eqn Y  Y H dt d i Where H = KE + Potl E ( ) t x, Y
  • 24. Time Dependent Schro Eqn Y  Y H dt d i Where H = KE + Potl E ( ) t x, Y ( ) ( ) t i t V m t , , 2 2 r r p Y   Y         ( ) ( ) t i t V m t , , 2 2 2 r r Y   Y            ER 5-5
  • 25. Time Independent Schro Eqn KE involves spatial derivatives only If Pot’l E not time dependent, then Schro Eqn separable ( ) ( ) ( ) t f x t x   Y , ( ) ( )  / , iEt e x t x   Y  ref: Griffiths 2.1
  • 26. ( ) ( ) t i t V m t , , 2 2 2 r r Y   Y            ( ) ( ) r r Y  Y          tot E V m 2 2 2  ( ) ( ) ( ) x E x x V m tot x Y  Y          2 2 2  Drop to 1-D for ease
  • 27.
  • 28. What Good Wavefunctions Look Like ER 5-6
  • 29. Sketching Pictures of Wavefunctions ( ) ( ) ( ) x E x x V m tot x Y  Y          2 2 2  ( ) ( ) ( ) x E x x V m p tot Y  Y        2 2 ( )   ( ) ( ) x E x x V KE tot Y  Y  KE + V = Etot Prob ~ Y* Y
  • 31. ( ) ( ) ( ) x E x x V m tot x Y  Y          2 2 2  To examine general behavior of wave fns, look for soln of the form x ik e A  Y where k is not necessarily a constant (but let’s pretend it is for a sec) tot E V m k   2 2 2  ( ) V E m k tot   2 2  Sketching Pictures of Wavefunctions KE
  • 32. ( ) V E m k tot   2 2  x ik e A  Y If Etot > V, then k Re Y ~ kinda free particle If Etot < V, then k Im Y ~ decaying exponential 2/k ~ l ~ wavelength 1/k ~ 1/e distance KE + KE 
  • 33. Sample Y(x) Sketches • Free Particles • Step Potentials • Barriers • Wells
  • 36.
  • 42. E&R Ch 5 Prob 23 Discrete or Continuous Excitation Spectrum ?
  • 43. E&R Ch 5, Prob 30 Which well goes with wfn ?
  • 44.
  • 45.
  • 46. Techniques for solving the Schro Eqn. • Analytically – Solve the DiffyQ to obtain solns • Numerically – Do the DiffyQ integrations with code • Creation-Annihilation Operators – Pattern matching techniques derived from 1D SHO.
  • 47. Analytic Techniques • Simple Cases – Free particle (ER 6.2) – Infinite square well (ER 6.8) • Continuous Potentials – 1-D Simple Harmonic Oscillator (ER 6.9, Table 6.1, and App I) – 3-D Attractive Coulomb (ER 7.2-6, Table 7.2) – 3-D Simple Harmonic Oscillator • Discontinuous Potentials – Step Functions (ER 6.3-7) – Barriers (ER6.3-7) – Finite Square Well (ER App H)
  • 48.
  • 49.
  • 50. Simple/Bare Coulomb Eigenfns: Bare Coulomb - stationary states Ynlm(r,,f) or Rnl(r) Ylm(,f)
  • 51. Numerical Techniques • Using expectations of what the wavefn should look like… – Numerical integration of 2nd order DiffyQ – Relaxation methods – .. – .. – Joe Blow’s idea – Willy Don’s idea – Cletus’ lame idea – .. – .. ER 5.7, App G
  • 52. SHO Creation-Annihilation Op Techniques ( ) x m p i m a ˆ ˆ 2 1 ˆ w w    ( ) x m p i m a ˆ ˆ 2 1 ˆ w w      2 2 2 1 2 1 2 ˆ ) ( x k m p a a      w  H Define:    i p x  ˆ ,   1 ˆ , ˆ   a a If you know the gnd state wavefn Yo, then the nth excited state is: ( ) o n a Y  ˆ
  • 53. Inadequacy of Techniques • Modern measurements require greater accuracy in model predictions. – Analytic – Numerical – Creation-Annihilation (SHO, Coul) • More Refined Potential Energy Fn: V() – Time-Independent Perturbation Theory • Changes in the System with Time – Time-Dependent Perturbation Theory