Fourier Series
Fourier Series
2
0 0
0
2
0 0
0
1
( )cos(2 ) ( )
1
( )sin(2 ) ( )
n
n
a x t nf t d t
b x t nf t d t


 

 





0
0
0 0
0 0
0 0
1
2
1 2
( ) 2 2
f
T
t f t
d t f dt dt dt
T T
 

  


  
is the “fundamental frequency”
0 0
1
1
( ) cos(2 ) sin(2 )
2
N
n i n
n
x t a a nf t b nf t
 

  

Fourier Series
2
0 0
0
2
0 0
0
1
( )cos(2 ) ( )
1
( )sin(2 ) ( )
n
n
a x t nf t d t
b x t nf t d t


 

 





0
0
0 0
0 0
0 0
1
2
1 2
( ) 2 2
f
T
t f t
d t f dt dt dt
T T
 

  


  
is the “fundamental frequency”
0 0
1
1
( ) cos(2 ) sin(2 )
2
N
n i n
n
x t a a nf t b nf t
 

  

Fourier Series
Integration limits: when 0 2
t
 
 , then
0 0 0
2 2 1
2 /
t
T T
 
 
  
so we get:
0 0
1
1
( ) cos(2 ) sin(2 )
2
N
n i n
n
x t a a nf t b nf t
 

  

0
0
0
0 0
0
0 0
2
( )cos(2 )
2
( )sin(2 )
T
n
T
n
a x t nf t dt
T
b x t nf t dt
T






Fourier Series
Euler:
0 0
1
1
( ) cos(2 ) sin(2 )
2
N
n i n
n
x t a a nf t b nf t
 

  

2
cos(2 ) sin(2 )
i
j f t
i i
e f t j f t

 
 
0
2
( ) jn f t
n
n
x t c e 


 
Fourier Series
0
2
( ) jn f t
n
n
x t c e 


 
0
0
0
2
0
2
1
( )
T
jn t
n
T
c x t e dt
T



 
We can show
2 2
n n n
c a b
  1
tan ( / )
n n
b a
 

;
recall that
2 2 1
cos( ) sin( ) cos( tan ( ))
b
a b a b
a
   
   
Phasors:
Phasors
2 2
a b

Symmetry
Odd f(-t) =-f(t)
Fourier: sine terms
only
Even f(t) = f(-t)
Fourier: cosine terms
only
Neither
Half-wave symmetry:
0
( ) ( )
2
T
f t f t
  
has no even harmonics
| |
t t+T/2
Example of non-symmetric waveform:
0
( ) ( )
2
T
f t f t
  
Fundamental Signals
Unit Step:
1, 0
( )
0, 0
t
t
t


 
  

 
Fundamental Signals
Unit Step:
1, 0
( )
0, 0
t
t
t


 
  

 
Unit Impulse
0, 0
( )
, 0
t
t
undefined t


 
  

 
( ) ( )
t
t dt t
 




4945427.ppt

  • 1.
  • 2.
    Fourier Series 2 0 0 0 2 00 0 1 ( )cos(2 ) ( ) 1 ( )sin(2 ) ( ) n n a x t nf t d t b x t nf t d t             0 0 0 0 0 0 0 0 1 2 1 2 ( ) 2 2 f T t f t d t f dt dt dt T T            is the “fundamental frequency” 0 0 1 1 ( ) cos(2 ) sin(2 ) 2 N n i n n x t a a nf t b nf t       
  • 3.
    Fourier Series 2 0 0 0 2 00 0 1 ( )cos(2 ) ( ) 1 ( )sin(2 ) ( ) n n a x t nf t d t b x t nf t d t             0 0 0 0 0 0 0 0 1 2 1 2 ( ) 2 2 f T t f t d t f dt dt dt T T            is the “fundamental frequency” 0 0 1 1 ( ) cos(2 ) sin(2 ) 2 N n i n n x t a a nf t b nf t       
  • 4.
    Fourier Series Integration limits:when 0 2 t    , then 0 0 0 2 2 1 2 / t T T        so we get: 0 0 1 1 ( ) cos(2 ) sin(2 ) 2 N n i n n x t a a nf t b nf t        0 0 0 0 0 0 0 0 2 ( )cos(2 ) 2 ( )sin(2 ) T n T n a x t nf t dt T b x t nf t dt T      
  • 5.
    Fourier Series Euler: 0 0 1 1 () cos(2 ) sin(2 ) 2 N n i n n x t a a nf t b nf t        2 cos(2 ) sin(2 ) i j f t i i e f t j f t      0 2 ( ) jn f t n n x t c e     
  • 6.
    Fourier Series 0 2 ( )jn f t n n x t c e      0 0 0 2 0 2 1 ( ) T jn t n T c x t e dt T      We can show 2 2 n n n c a b   1 tan ( / ) n n b a    ; recall that 2 2 1 cos( ) sin( ) cos( tan ( )) b a b a b a        
  • 7.
  • 8.
    Symmetry Odd f(-t) =-f(t) Fourier:sine terms only Even f(t) = f(-t) Fourier: cosine terms only Neither
  • 9.
    Half-wave symmetry: 0 ( )( ) 2 T f t f t    has no even harmonics | | t t+T/2
  • 10.
    Example of non-symmetricwaveform: 0 ( ) ( ) 2 T f t f t   
  • 11.
    Fundamental Signals Unit Step: 1,0 ( ) 0, 0 t t t          
  • 12.
    Fundamental Signals Unit Step: 1,0 ( ) 0, 0 t t t           Unit Impulse 0, 0 ( ) , 0 t t undefined t           ( ) ( ) t t dt t     